• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Victor Henrique Rabesquine Nogueira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Nascimento, Alessandro Silva (Presidente)
Caffarena, Ernesto Raul
Honorio, Káthia Maria
Título em português
Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
Palavras-chave em português
Energia livre de ligação
Interações moleculares
Monte Carlo
Resumo em português
Os sistemas biológicos macromoleculares são conhecidos por serem sistemas interagentes. Essas interações são fundamentais para processos como comunicação celular, especificidade de reações enzimáticas e regulação da expressão gênica. Os métodos disponíveis atualmente para estimar a afinidade das interações biomoleculares podem ser divididos, basicamente, em dois grupos: métodos rápidos que estimam a energia livre de ligação através de aproximações de campo de força (por exemplo, docking); e os métodos que são baseados em ensembles de Dinâmica Molecular (DM) para calcular as energias livres de ligação de maneira mais rigorosa, porém, com custo computacional mais elevado. O objetivo deste trabalho é aprimorar e validar um método menos custoso para o cálculo da energia livre de ligação. Para isso, simulações atomísticas de Monte Carlo (MC) dos ligantes no sítio de ligação são usadas para gerar ensembles termodinâmicos. Depois disso, as energias livres de ligação são calculadas usando uma combinação de energias e entropias estimadas através de uma estratégia de aproximação de primeira ordem. Dois algoritmos de amostragem foram avaliados no cálculo de energia de ligação. O primeiro algoritmo amostra graus de liberdade de translação e rotação randômicas do centro de massa do ligante no sítio de ligação, além de variações randômicas nos ângulos de torção envolvendo átomos pesados (não hidrogênio). O segundo amostra graus de liberdade rotacional e translacional do centro de massa, além de deslocamentos atômicos individuais para cada átomo do ligante. Além disso, diferentes modelos para calcular as contribuições polares para interação intermolecular foram utilizados. Comparações entre as energias livres de ligação calculadas com baixo custo computacional e as experimentais disponíveis na literatura para o sistema modelo utilizado, lisozima do vírus T4, mostraram uma correlação considerável (r=0,64 para N=27). Esses dados também apresentaram resultados interessantes quando comparados com outras metodologias, tais como LIE, MM-PBSA e MM-GBSA. Assim, a abordagem utilizada para a determinação das energias de interação mostrou-se eficiente em termos de tempo computacional e para comparação com dados de energia livre de ligação determinados experimentalmente.
Título em inglês
Validation of Monte Carlo methods for evaluating protein-ligand binding free energy
Palavras-chave em inglês
Binding free energy
Molecular interactions
Monte Carlo
Resumo em inglês
Macromolecular biological systems are widely known by its interaction properties. Those interactions play fundamental roles in processes such as cellular communication, specificity of enzymatic reactions and regulation of gene expression. The methods currently available to estimate the affinity of biomolecular interactions can be divided basically into two groups: fast methods that estimate the free energy of binding through force field approximations (e.g., docking); and methods that are based on Molecular Dynamics (DM) ensembles to calculate binding free energies more rigorously, however, with higher computational cost. The objective of this work is to improve and validate a less costly method for calculating binding free energy. For this, atomistic Monte Carlo (MC) simulations of ligands at the binding site are used to generate thermodynamic ensembles. Thereafter, the binding free energies are calculated using a combination of energies and entropy estimated through a first-order approximation strategy. Two sampling algorithms were evaluated in the calculation of the binding energy. The first one samples the degrees of freedom from translation and rotation of the center of mass of the binder at the binding site, as well as random variations in the torsion angles involving heavy atoms (non-hydrogen). The second one samples the rotational and translational degrees of freedom of the ligand center of mass, as well as individual atomic displacements for each atom of the ligand. In addition, different models to calculate the polar contributions for intermolecular interaction were used. Comparisons between the binding free energies calculated with low computational cost and the experimental ones available in the literature for the system used, T4 virus lysozyme, resulted in acceptable correlation values (r=0.64 for N=27). Those data also showed interesting results compared to different methodologies such as LIE, MM-PBSA and MM-GBSA. Therefore, the used approach for determining the binding energies was efficient in terms of computational time and for comparison with free energy data determined experimentally.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-09-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.