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ABSTRACT 

 

LEITE, I. S. Potential effects of nanostructured protoporphyrin IX-mediated 

photodynamic therapy in different types of cancer. 2020. 84 p. Thesis (Doctor in Science) 

– Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2020. 

 

Light-photoactive substances interactions assessment to promote cell death as therapeutic 

outcome was initially introduced by Oscar Raab in the late 1800s. Since then, the forementioned 

technique - photodynamic therapy (PDT) - has been evaluated to treat a wide range of diseases. 

Cancer, a collection of related diseases, is among the leading causes of mortality worldwide 

and has been widely evaluated in research and clinical trials using PDT over the past 35 years. 

Although it may be prescribed for precancerous lesions treatment and some specific types of 

cancer, its effectiveness is limited by the ineffective photosensitizer buildup at the treatment 

site. Nanotechnology has addressed the problem of drug delivery through the development of 

different nanostructured platforms capable of increasing several pharmacological properties of 

molecules, such as their solubility and their circulating half-life. The association of 

nanotechnology's potential to improve photosensitizer delivery to target tissues with the 

oxidative damage of PDT to induce cell death has emerged as a promising prospect for 

optimizing cancer treatment. In this study, we propose to evaluate the potential of redox-

responsive silica nanoparticles and membrane fusogenic liposomes (MFLs) carrying 

protoporphyrin IX (PpIX) as the selected photosensitizer for melanoma, non-melanoma and 

breast cancer treatment using PDT in vitro. Studies evaluating the impact of different solvents 

on the free and nanostructured PpIX photostability, the nanoparticles and MFLs internalization, 

phototoxicity and reactive oxygen species (ROS) were carried out, showing that, despite the 

aggregation, the molecules and nanoparticles are internalized in sufficient quantity to promote 

massive damage to cell viability when irradiated with 630 nm.   

 

 

Keywords: Photodynamic therapy. Protoporphyrin IX. Nanotechnology. 

 

 



 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

RESUMO 

 

LEITE, I. S. Potencial efeito de terapia fotodinâmica mediada por protoporfirina IX 

nanoestruturada em diferentes tipos de câncer. 2020. 84 p. Tese (Doutorado em Ciências) – 

Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2020. 

 

A investigação da interação da luz com substâncias fotoativas para promover morte celular foi 

inicialmente introduzida por Oscar Raab no final dos anos 1800. Desde então, esta técnica – 

terapia fotodinâmica (TFD) - foi proposta para tratar diversas doenças. O câncer, nome dado a 

uma coleção de doenças relacionadas entre si, está entre as principais causas de mortalidade no 

mundo e tem sido amplamente avaliado em pesquisas e ensaios clínicos utilizando TFD nos 

últimos 35 anos. Embora possa ser prescrita para tratamento de lesões pré-cancerosas e alguns 

tipos de câncer, sua eficácia é limitada pelo acúmulo ineficaz do fotossensibilizador no local do 

tratamento. A nanotecnologia tem abordado o problema de entrega de fármacos através do 

desenvolvimento de distintas plataformas nanoestruturadas capazes de aumentar diversas 

propriedades farmacológicas de moléculas, como sua solubilidade e sua meia-vida circulante. 

A associação do potencial da nanotecnologia para melhorar a entrega do fotossensibilizador 

para os tecidos alvo com o dano oxidativo da TFD para induzir a morte celular tem despontado 

como perspectiva promissora de otimização do tratamento do câncer. Nesse estudo, foi proposto 

avaliar o potencial de nanopartículas redox-responsivas de sílica e lipossomas fundíveis com a 

membrana celular (menbrane fusogenic liposomes, MFLs) carreando protoporfirina IX (PpIX) 

para o tratamento de diferentes tipos de câncer. Estudos avaliando o impacto de diferentes 

solventes sobre a fotoestabilidade da PpIX livre e nanoestruturada, sua internalização e sua 

fototoxicidade foram realizados, evidenciando que, apesar da agregação, as moléculas e 

nanopartículas são internalizadas em quantidade suficiente para promover danos massivos 

sobre a viabilidade celular quando irradiados com 630 nm. Estudos avaliando a produção de 

espécies reativas de oxigênio revelaram que, apesar da agregação da PpIX livre, as moléculas 

e as nanoestruturas são capazes de produzir quantidades suficientes dessas espécies no interior 

das células, sendo responsáveis pelo dano cellular observados em ensaios de fototoxicidade. 

 

Palavras-chave: Terapia fotodinâmica. Protoporfirina IX. Nanotecnologia. 



 
  

 
 

  



 
 

LIST OF FIGURES 

 

Figure 1 -  Schematic illustration of the Jablonski diagram, with the mechanisms involved in 

PDT. The PS in the singlet ground state is excited and then converted to its triplet 

state by intersystem crossing. This triplet state can interact with molecular oxygen 

in two pathways: type 1 (leading to ROS formation) and type 2 (leading to singlet 

oxygen formation). ............................................................................................................ 28 
 
Figure 2 -  Chronology of the Nanotechnology-based drug delivery systems development. ............. 30 
 
Figure 3 -  Chemical structure’s schematic representation of A) control (Ctrl-PpIX-PSilQ) and 

B) redox-responsive (RR-PpIX-PSilQ) nanoparticles of polysilsesquioxane. .................. 36 
 
Figure 4 -  Emission spectrum of the 630 nm Biotable LEDs (red line) and the PpIX absorbance 

spectrum in DMSO (brown line). ..................................................................................... 37 
 
Figure 5 -  Fluorescence decay time of free PpIX and the following nanoparticles: A) Ctrl-PpIX-

PsilQ, B) PEG-RR-PpIX-PsilQ in ethanol and PBS, and C) RR-PpIX-PsilQ in 

ethanol, PBS and DMEM with 1% SFB. The decay time histogram of free PpIX and 

RR-PpIX-PSilQ is shown in D (the other histograms are not displayed due to the 

similar behavior of the nanoparticles in the different solvents). ....................................... 43 
 
Figure 6 -  PpIX release profile after adding 10 mM GSH (the exact time the GSH was added is 

indicated with an arrow). .................................................................................................. 45 
 
Figure 7 -  Assessment of cell uptake by: LSCM of A) free PpIX and B) RR-PpIX-PSilQ (with 

white arrows indicating aggregates inside the cells), C) flow cytometry using the FL-

3 channel and D) measurement of the cell lysates fluorescence intensity of samples 

incubated with and without RR-PpIX-PSilQ, using 407 nm as excitation and 

emission as 630 nm. .......................................................................................................... 46 
 
Figure 8 -  Assessment of RR-PpIX-PSilQ uptake in healthy (fibroblasts: HDFn) and tumor 

(melanoma: B16-F10) cells using A) LSCM and B) flow cytometry. .............................. 48 
 
Figure 9 -  Free PpIX and nanostructured PpIX-mediated PDT in breast tumor cell cultures 

(MCF-7). Results are displayed as mean values of cell viability, and ** indicates p 

≤ 0.005 and ****, p ≤ 0.00005.......................................................................................... 50 
 
Figure 10 -  Free PpIX and nanostructured PpIX-mediated PDT in non-melanoma skin cancer 

cell cultures (A-431). Results are displayed as mean values of cell viability, and ** 

indicates p ≤ 0.005 and ****, p ≤ 0.00005. ...................................................................... 51 
 
Figure 11 -  Free PpIX and nanostructured PpIX-mediated PDT in keratinocytes cultures 

(HaCaT). Results are displayed as mean values of cell viability, and ** indicates p ≤ 

0.005 and ****, p ≤ 0.00005. ............................................................................................ 52 
 
Figure 12 -  Free PpIX and nanostructured PpIX-mediated PDT in keratinocytes cultures 

(HaCaT). Results are displayed as mean values of cell viability, and ** indicates p ≤ 

0.005 and ****, p ≤ 0.00005. ............................................................................................ 53 
 

file:///C:/Users/User/Desktop/Thesis/PhD_Thesis_vFinal.docx%23_Toc35482748
file:///C:/Users/User/Desktop/Thesis/PhD_Thesis_vFinal.docx%23_Toc35482748
file:///C:/Users/User/Desktop/Thesis/PhD_Thesis_vFinal.docx%23_Toc35482748
file:///C:/Users/User/Desktop/Thesis/PhD_Thesis_vFinal.docx%23_Toc35482748
file:///C:/Users/User/Desktop/Thesis/PhD_Thesis_vFinal.docx%23_Toc35482748


 
  

 
 

Figure 13 -  PDT results when different concentrations of A) Ctrl-PpIX-PSilQ, B) RR-PpIX-

PSilQ and C) PEG-RR-PpIX-PSilQ are incubated for 24 hours in fibroblast cultures 

(HDFn, blank) and murine melanoma (B16-F10, in gray). ............................................... 54 
 
Figure 14 -  ROS production in breast cancer cells in the absence (orange bars) or presence (black 

bars) of 630 nm. ................................................................................................................. 56 
 
Figure 15 -  ROS production in breast cancer cells in the absence (orange bars) or presence (black 

bars) of 630 nm. ................................................................................................................. 57 
 
Figure 16 -  MFL-PpIX and free PpIX uptake after exposure for 24 hours in melanoma cells 

evaluated by A) fluorescence microscopy (where fluorescence is displayed in white) 

and B) flow cytometry. ...................................................................................................... 63 
 
Figure 17 -  MFL-PpIX and free PpIX uptake after exposure for 24 hours fibroblasts using A) 

fluorescence microscopy (where fluorescence is displayed in white) and B) flow 

cytometry ........................................................................................................................... 64 
 
Figure 18 -  MFL-PpIX and free PpIX uptake in fibroblasts (1 µg/mL, 1 and 4 hours) evaluated 

by A) fluorescence microscopy (where fluorescence is displayed in white) and B) 

flow cytometry. .................................................................................................................. 65 
 
Figure 19 -  MFL-PpIX and free PpIX uptake in non-melanoma skin cancer cultures (1 µg/mL, 

1 and 4 hours) evaluated by A) fluorescence microscopy (where fluorescence is 

displayed in white) and B) flow cytometry. ...................................................................... 67 
 
Figure 20 –  Blank MFL, MFL-PpIX and free PpIX PDT in melanoma cultures after exposing 

cells for 24 hours to 1.5, 7.5 and 15 µg/mL. Results are displayed as mean values of 

cell viability, and *** indicates significant differences when compared to the control 

group (cells not exposed to MFLs or PpIX and protected from light), with p ≤ 0.005.

 ........................................................................................................................................... 68 
 
Figure 21 –  Blank MFL, MFL-PpIX and free PpIX PDT in fibroblasts cultures after exposing 

cells for 24 hours to 1.5, 7.5 and 15 µg/mL. Results are displayed as mean values of 

cell viability, and *** indicates significant differences when compared to the control 

group (cells not exposed to MFLs or PpIX and protected from light), with p ≤ 0.005.

 ........................................................................................................................................... 69 
 
Figure 22 –  Free PpIX and MFL-PpIX-mediated PDT in non-melanoma skin cancer cultures 

after exposing cells for 1 and 4 hours to 0.5, 0.5 and 1 µg/mL and using 20, 40 and 

50 J/cm² to irradiate the samples.  Results are displayed as mean values of cell 

viability, and *** indicates significant differences when compared to the control 

group (cells not exposed to MFLs or PpIX and protected from light), with p ≤ 0.005.

 ........................................................................................................................................... 71 
 
Figure 23 –  Free PpIX and MFL-PpIX-mediated PDT in fibroblasts cultures after exposing cells 

for 1 and 4 hours to 0.5, 0.5 and 1 µg/mL and using 20, 40 and 50 J/cm² to irradiate 

the samples.  Results are displayed as mean values of cell viability, with ** and *** 

indicating significant differences when compared to the control group (cells not 

exposed to MFLs or PpIX and protected from light), with p ≤ 0.05 and p ≤ 0.005, 

respectivelly. ...................................................................................................................... 72 
 



 
 

Figure 24 –  Fluorescence intensity measurement for ROS production quantification in melanoma 

cells exposed to blank MFL (MFL), MFL-PpIX and free PpIX after incubation for 

24 hours. PDT and phototoxicity groups were exposed to 630 nm, with a light 

fluence of 50 J/cm². ........................................................................................................... 74 
 
Figure 25 –  Fluorescence intensity measurement for ROS production quantification in 

fibroblasts exposed to blank MFL (MFL), MFL-PpIX and free PpIX after incubation 

for 24 hours. PDT and phototoxicity groups were exposed to 630 nm, with a light 

fluence of 50 J/cm². ........................................................................................................... 75 
 

Figure 26 – Fluorescence intensity measurement for ROS production quantification in fibroblasts 

exposed to blank MFL (MFL), MFL-PpIX and free PpIX concentrations, 

corresponding to a final PpIX concentration of 0.1 and 1 0.1 and 1 µg/mL, after 

incubation for 1 and 4 hours. PDT and phototoxicity groups were exposed to 630 

nm, with a light fluence of 50 J/cm².................................................................................. 76 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

LIST OF TABLES 

 

Table 1 - Summary of the experimental conditions assessed in trial using MCF-7 cells. ..................... 40 

 

Table 2 - Nanoparticles and free PpIX fluorescence decay times in different solvents. ....................... 44 

 

Table 3 - Cell viability mean values obtained in preliminary experiments with distinct light fluences (λ 

= 630 nm). ............................................................................................................................................. 49 

 

 

  

 

 

 

 

 

 

 



 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CONTENTS 
 

1 INTRODUCTION .............................................................................................................................. 23 

2 LITERATURE REVIEW ................................................................................................................... 25 

2.1 Cancer .............................................................................................................................................. 25 

2.2 Photodynamic Therapy .................................................................................................................... 27 

2.3 Nanotechnology ............................................................................................................................... 29 

3 OBJECTIVES..................................................................................................................................... 33 

4 REDOX-RESPONSIVE SYSTEM .................................................................................................... 35 

4.1 Nanoparticles ................................................................................................................................... 35 

4.2 Material and Methods ...................................................................................................................... 36 

4.2.1 Reagents ....................................................................................................................................... 36 

4.2.2 Light Source ................................................................................................................................. 37 

4. 3 Different Solvents Effects on PpIX Photostability ......................................................................... 38 

4. 4 PpIX release and RR-PpIX-PSilQs and Free PpIX Uptake ............................................................ 38 

4.5 In vitro PDT Assays ........................................................................................................................ 39 

4.6 Reactive Oxygen Species (ROS) Quantification ............................................................................. 41 

4.7 Statistical Analysis .......................................................................................................................... 42 

4.8 Results and Discussion .................................................................................................................... 42 

4.8.1 PpIX Photostability ...................................................................................................................... 42 

4.8.2 PpIX release under reducing conditions and Nanostructured vs. Free PpIX Internalization ....... 44 

4.8.3 PDT: cancer vs. healthy cells ....................................................................................................... 48 

4.8.3.1 Preliminary assessment for optimal light fluence determination ............................................... 48 

4.8.3.2 PDT under optimal conditions ................................................................................................... 50 

4.8.3.3 PDT: nanoparticles selectivity ................................................................................................... 53 

4.8.4 ROS Production ............................................................................................................................ 55 

5 LIPOSOMES ...................................................................................................................................... 59 

5.1. Membrane Fusogenic Liposomes ................................................................................................... 59 

5.2 Material and Methods ...................................................................................................................... 59 

5.2.1 Reagents ....................................................................................................................................... 59 

5.2.2 PpIX Uptake ................................................................................................................................. 60 

5.2.3 In vitro PDT Assays ..................................................................................................................... 61 

5.2.4 ROS Quantification ...................................................................................................................... 61 

5.2.5 Statistical Analysis ....................................................................................................................... 62 

5.3 Results and Discussion .................................................................................................................... 62 



 
  

 
 

5.3.1 PpIX Uptake ..................................................................................................................................62 

5.3.2 PDT ...............................................................................................................................................68 

5.3.3 ROS Production ............................................................................................................................73 

6 CONCLUSION ...................................................................................................................................77 

    REFERENCES ...................................................................................................................................79 

 





23 
 

 
 

1 INTRODUCTION 

 

Cancer is the name attributed to a collection of related diseases, which is among the 

leading causes of mortality worldwide: in 2018, it was estimated that approximately 9.6 million 

deaths occurred as a result of these diseases, with statistics indicating that, worldwide, 1 in 6 

deaths is due to cancer. Among several types, skin cancer is the most prevalent in the world 

population, with annual diagnosis of over 1 million new cases. In the female population, breast 

cancer has the highest prevalence, also affecting men. Regardless of the type of cancer, 

predictions indicate that over the next 20 years, the incidence and mortality numbers derived 

from these diseases should increase by 70%. These numbers indicate the necessity to continue 

investing in developing alternative techniques for cancer treatment. 

The interaction between light and photoactive substances, called photosensitizers (PS), 

to promote cell death was initially investigated by Oscar Raab in the late 1800s. Since then, this 

technique, called photodynamic therapy (PDT), has been studied to treat a wide range of 

diseases, and is already clinically approved and indicated for the treatment of some types of 

cancer. However, its effectiveness is limited by ineffective PS accumulation treatment site. 

Nanotechnology has addressed the drug delivery problem by developing distinct nanostructured 

platforms capable of increasing several molecules of interest pharmacological properties, such 

as solubility and circulating half-life. Intelligent stimulus-responsive systems, releasing the 

carried molecule more selectively and specifically at the treatment target, have shown 

promising results in various in vitro and preclinical studies. Thus, the association of 

Nanotechnology to improve FS delivery in targeted tissues with the oxidative damage promoted 

by PDT to induce cell death has emerged as a promising perspective for cancer treatment 

optimization. 

Thus, the objectives of the present study are to verify and compare the efficiency of 2 

nanoplatforms, redox-responsive silica nanoparticles and membrane fusogenic liposomes, 

carrying protoporphyrin IX in in vitro PDT of different tumor cells (derived from: breast cancer, 

non-melanoma skin cancer and melanoma ), to assess its effects on healthy cells and to compare 

the efficacy of nanocarriers among themselves and with the unmodified PS. 
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2 LITERATURE REVIEW 

2.1 Cancer 

 

Cancer is the generic designation attributed to a collection of related diseases that are 

characterized by loss of control over the processes of cell differentiation and division.1 By 

presenting defects in pathways and regulatory mechanisms that guarantee their normal 

proliferation and homeostasis, the affected cells begin to proliferate in a disorderly manner and 

may invade surrounding tissues, occasionally aggressively.2 These abnormal cells can dettach 

from their original site and, through the bloodstream or lymphatic system, reach farther tissues, 

lodge in new sites, where they resume their uncontrolled multiplication, resulting in metastases. 

The ability to keep their proliferative signaling active, evade growth suppressors, resist 

mechanisms of cell death, induce angiogenesis, enable their replicative immortality, activate 

the invasion and metastasis process, evade their recognition and eradication by the immune 

system, for example, constitute a set of important characteristics identified in tumor cells that 

enable tumor growth and dissemination.3 

 There are more than 100 different types of cancer, and within the same organ, different 

subtypes of malignant tumors can be found.2 Being a complex group of diseases, its cause 

originates from several factors, from genetic predisposition to external factors such as smoking, 

alcoholism, prolonged exposure to sunlight, ionizing radiation or some infections caused by 

viruses, bacteria or parasites.4-5 Aging also results in a significant increase in the likelihood of 

developing cancer, as the efficiency of the cellular machinery involved in the process of genetic 

material replication decreases over time, reducing its accuracy and ability to repair its own 

errors. Symptoms, as well as treatment, depend on the type of cancer and its stage, and may not 

be linked to the disease itself but may be a consequence of tumor growth. Diagnosis is usually 

made initially by imaging techniques such as X-rays, magnetic resonance imaging, ultrasound, 

endoscopy and tomography, but diagnosis confirmation is achieved by affected tissues biopsy. 

Early diagnosis greatly increases the chances of treatment effectiveness, which usually involves 

one or a combination of the following: surgery, radiotherapy and chemotherapy.6 

According to the International Cancer Research Agency and the World Health 

Organization, cancer is the second leading cause of mortality worldwide, and in 2012, 2015 and 

2018 approximately 8.2, 8.8 and 9.6 million deaths occurred as a result of these diseases, 

respectively.6 Cancer incidence has also been increasing over time: in 2008, about 12.7 million 

new cases were reported, and in 2012 this statistic reached 14.1 million, and estimates indicate 
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that over the next 20 years, these numbers are likely to increase by 70%.1-7 In Brazil, it is 

estimated that 576 thousand new cases were reported in 2014 and approximately 596 thousand 

in 2016.8-9 

The skin is the largest organ in the human body and its frequent exposure to a main risk 

factor, ultraviolet rays from the sun, can cause the development of different types and subtypes 

of cancer. Each year more than 1 million new cases of skin cancer are diagnosed, and this group 

of diseases is the most common in the world population.10 The three main types are: basal cell 

carcinoma, squamous cell carcinoma (also called epidermoid carcinoma. When refered together 

with basal cell carcinoma, it is named non-melanoma skin cancer) and cutaneous melanoma. 

Non-melanoma skin cancer is the most common among skin cancer subtypes and, in the 

Brazilian population, represents approximately 25% of the malignancies registered in the 

country. Estimates predict approximately 176,000 new cases of this cancer in 2016 in Brazil.9 

Its mortality rate, however, is the lowest among skin tumors, totaling 1,805 deaths in 2013.11 

Cutaneous melanoma, originated by the cells responsible for melanin production, despite 

representing a low percentage of malignant skin tumors, is the most aggressive due to its high 

metastatic capacity.12 Its worldwide incidence is less than 5% among skin cancer cases, but it 

is responsible for 95% of deaths caused by this type of cancer.13 In Brazil, its incidence among 

skin cancer cases was only 4% in 2013, but the number of deaths caused, 1,559 in total, 

remained close to non-melanoma skin cancer. The most indicated treatment for melanoma is 

surgical removal of the tumor, and the indication of radiotherapy / chemotherapy is dependent 

on the disease stage.12 

The most common type of cancer in women worldwide, and the second in the Brazilian 

female population, is breast cancer, representing approximately 25% of new cancer cases 

reported14. It is one of the public health challenges faced by Brazil and several countries, with 

data revealing that 60% of deaths associated with this cancer occur in emerging countries.15 

This type of cancer is also developed by men, but with low incidence (close to 1%), and in 2013 

in Brazil, the total number of deaths attributed to this disease was 14,388, with 181 cases 

represented by male patients. The National Cancer Institute José Alencar Gomes da Silva 

(INCA) estimates that in 2016 about 57.960 new cases appeared in the country.14 Between 1992 

and 2012, the number of deaths from breast cancer increased from 6.303 to 13.746.15 Its 

treatment varies according to the staging and characteristics of the disease, as well as the 

patient's conditions, and consists of surgical removal, radiotherapy / chemotherapy.16 



27 
 

 
 

 Regardless of the type of cancer, treatment efficiency and prognosis may be limited 

to several factors, such as the impossibility of performing surgical removal (due tumor 

localization or its extension) or the permanence of some cancer cells after surgery. With the 

high incidence rates and high mortality associated with these diseases, it is necessary to develop 

new techniques for cancer treatment, or that may be associated with the conventional treatment 

of these diseases. 

 

2.2 Photodynamic Therapy 

 

Photodynamic therapy (PDT) is a technique which main application has been treating 

tumors since its first clinical application in 1903, but which is currently being explored to treat 

different premalignant lesions or pathologies caused by bacteria, viruses and fungi.17-22 It 

consists on the interaction of a photoactive substance, called photosensitizer (PS), molecular 

oxygen at the treatment site and light of specific wavelength, capable of interacting with the 

photoactive molecules. In its ground state, this molecule has two electrons in a low-energy 

orbital that have opposite spin orientation (characterizing a singlet state, figure 1). The PS-light 

interaction promotes the transition of one of these electrons to a higher energy orbital, not 

modifying its spin. The return to its original state may be due to energy loss through internal 

conversion to heat, light emission (fluorescence), or the excited singlet state electron may be 

reversed by a process called intersystem crossing, where the molecule state is then converted 

to a triplet state (where electrons in the orbital have parallel spins). In this state, the PS can 

return to its basal state by light emission (phosphorescence) or it can interact with the molecular 

oxygen in the medium through two reactions, promoting PDT: type 1 - direct interaction PS-

substrate with electron transfer, generating radicals that interact with oxygen to produce 

reactive oxygen species (ROS); type 2 - PS-molecular oxygen interaction, which is originally 

in the triple state, with energy transfer, producing singlet oxygen. These products are capable 

of oxidizing cell membranes, organelle membranes, proteins, genetic material and several 

biomolecules that are found in their viscinities, which may lead to cell death.23   



28 
 

 
 

 

Figure 1 -  Schematic illustration of the Jablonski diagram, with the mechanisms involved in PDT. The PS in the 

singlet ground state is excited and then converted to its triplet state by intersystem crossing. This triplet 

state can interact with molecular oxygen in two pathways: type 1 (leading to ROS formation) and type 

2 (leading to singlet oxygen formation). 

Source: Adapted from DENIS et al.24 

 

PSs are fundamental components in PDT. For clinical applications, characteristics such 

as low toxicity, selectivity to therapeutic target, ability to be rapidly eliminated by the organism 

and good quantum yield are limiting factor when selecting the appropriate compound.25 In 

oncology, few PSs are currently approved by regulatory agencies around the world: Photofrin® 

or porfimer sodium (a complex mixture of porphyrins) is used to treat esophageal cancer, non-

small cell lung carcinoma and Barret's esophagus); Foscan® or mTHPC (a chlorine) for head 

and neck squamous cell carcinoma; Levulan®, Metvix® or Metvixia® (aminolevulinic acid - 

ALA - which is a precursor of the photoactive molecule protoporphyrin IX; or ALA derivatives) 

for basal cell carcinoma and actinic keratosis (benign neoplasia) treatment.26-29 However, 

several clinical studies are ongoing, investigating the potential use of PDT in the clinic for 

different types of cancer, such as non-melanoma skin that, due to ALA and its derivatives use, 

has been presenting excellent clinical responses; bile duct, in which the use of Foscan® or 

Photofrin® has shown good responses to unresectable tumors; pancreas, in which tumor 

reduction was observed using Verteporfin® (a porphyrin); on female reproductive tract, with 

high efficacy being verified with methyl ALA application for high grade cervical intraepithelial 

neoplasms treatment; and brain, investigating Photofrin® use for PDT in recurrent high-grade 

gliomas.17,26,28-33 

Clinically, ALA application requires the use of high concentrations of this precursor, 

since its molecules must first accumulate in the lesion to be incorporated into the heme group 
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biosynthesis, culminating in the formation of relevant amounts of protoporphyrin IX (PpIX). 34 

The major limitation of its use in PDT stems from the low penetration of ALA formulations 

into the skin, its instability in aqueous pH-neutral solutions, the limited diffusion of the 

compound through the cell membrane due to its polarity and the heterogeneity in the PpIX 

formation in tissues, resulting in a restricted PS distribution.35-36 A possible alternative is the 

direct use of PpIX, which is an endogenous porphyrin, containing a group of organic 

heterocyclic dyes with four interconnected pyrrolic rings, which have room, in their center, for 

one metal ion binding. Its structure, rich in conjugate systems, has intense absorption bands in 

the visible region of the electromagnetic spectrum, with the peak of the Soret band located near 

410 nm and the Q bands (4 in total) at wavelengths between 500 and 700 nm, approximately.37 

Although PpIX has high quantum yield in biological medium and has been extensively studied 

in PDT, it has dark toxicity and low solubility in aqueous medium, favoring the formation of 

aggregates that reduce the efficiency of singlet oxygen generation.36 

The efficacy of PDT is intrinsically linked to the delivery of significant concentrations 

of PS at the treatment site. Delivery challenges, however, are problems that are not limited to 

PDT, representing a fundamental problem in the planning and development of drugs. In the 

specific case of anticancer agents, issues to be considered are the physiological barriers 

involving the tumor and the tumors own cellular mechanisms, factors that oppose resistance to 

the accumulation and action of the therapeutic agent at its targeted site, and their distribution, 

biotransformation and excretion.38 Characteristics of PSs themselves, such as the 

hydrophobicity of most of these molecules, which causes their aggregation in aqueous media, 

also limit the molecules delivery to their destination.39 

 

2.3 Nanotechnology 

 

One strategy for optimizing drug and molecules of interest delivery that has been widely 

used is Nanotechnology. In the last 4-5 decades, this technology has been explored in several 

areas: energy storage, production and conversion, agriculture, water treatment, disease 

diagnosis, food processing and storage, construction, electronics, etc.40 It has multiple 

definitions, such as the understanding and control of matter in nanoscale dimensions between, 

in which unique phenomena allow new applications.41 In the field of Medicine and Pharmacy, 

its use dates back to the 1960s (figure 2) and the use of various therapeutic products developed 

with Nanotechnology has since been expanded.42 
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Figure 2 - Chronology of the Nanotechnology-based drug delivery systems development. 

Source: CHEN et al.39 

 

Several nanoscale systems have been developed and are applied in the Biomedical area, 

such as: nanoparticles, which are colloidal organizations of less than 1 micrometer that may be 

metallic, polymeric, mesoporous or carbon silica systems; liposomes, which are vesicles in 

which an aqueous environment is entirely surrounded by one (or more) phospholipid bilayer; 

micelles, amphiphilic supramolecular structures that are organized to protect hydrophobic 

molecules within them; dendrimers, radially symmetrical branched structures that are typically 

characterized by three structural components - a focal center, an inner layer formed by the 

repetition of its building unit, and the outer layer formed by multiple peripheral functional 

groups.38,41,43-46 Specifically for drug delivery systems development, the use of nanocarriers 

allows therapeutic agents to reach their destination efficiently by increasing their circulation 

half-life, changing their biodistribution profile, preventing their degradation and excretion by 

the body.38,41 Moreover, this preferential and specific accumulation in the therapeutic target 

promotes toxicity reduction of the compounds employed in the treatments.42 Strategies such as 

nanocarrier surface modification allow substances of interest to circulate for a long time 

throughout the body, since these non-functionalized systems are rapidly opsonized by the 

mononuclear phagocytic system when present in the bloodstream.38 

A wide range of nanocarriers have been studied to optimize the delivery of PSs in PDT.47 

Organically modified silica nanoparticles of approximately 20 nm were conjugated to HPPH, a 

PS belonging to the chlorine class, and tested in colon and fibrosarcoma cancer cells.48 HMME, 

a porphyrin, has been conjugated to fullerene nanocomposites with iron oxide nanoparticles 
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functionalized with polyethylene glycol (PEG) and evaluated in in vitro and in vivo studies of 

murine melanoma.49 PEG-functionalized liposomes carrying m-THPC chlorine showed higher 

selectivity for induced subcutaneous fibrosarcoma in rats when compared to the commercial 

form of FS (Foscan®).50 The use of ALA dendrimers resulted in higher PpIX production in 

mammary carcinoma cultures when compared to free ALA, and higher PpIX production in 

macrophages than in endothelial cells, suggesting the possible application of these nanocarriers 

for breast cancer treatment and atheromatous plaques.51 Curcuminoid-containing PLGA 

nanoparticles showed greater stability in aqueous solution when compared to free PSs, 

photodynamically inactivating S. aureus and C. albicans in in vitro assays.52 

Despite promising results in in vivo studies, the clinical efficiency of nanocarriers is still 

debated due to the response variability obtained whn assessing the permeability and retention 

of these systems.53 This is partly due to the difficulty in controlling the release of the carried 

molecule at its therapeutic target. One approach that has been explored is the use of stimulus-

responsive systems that are able to recognize the microenvironment in which they are inserted 

and respond to its changes. The stimuli may vary in nature: physical (temperature, electric or 

magnetic field, for example) or chemical (pH, ions in solution or chemical recognition).46 

Important features of the pathological microenvironment of interest can be used for the design 

of these intelligent systems, which allows, in principle, the selective and specific delivery of 

the carried molecules, with their release directly into the therapeutic target. Considering tumors 

as targets, the oxidative aspect of their extracellular environment and the reducing aspect of the 

intracellular environment may be explored characteristics when developing redox-responsive 

systems. These nanostructures are commonly based on the introduction of disulfide bonds that 

are easily cleaved by glutathione, an antioxidant present in animal cells and found in higher 

concentrations in tumor cell cytosol when compared to the extracellular environment. Through 

the imbalance in the levels of this reducing agent, the carried molecules are released in larger 

quantities inside the tumor cells, increasing the efficiency of drug and other substances 

delivery.53-55 

Liposomes are bilayered vesicles that present an internal aqueous cavity completely 

enclosed by a membrane composed by phospholipids.57,58 They are considered micro 

particulate or colloidal carriers that can be prepared with different methodologies, such as 

biological membranes disruption by sonication, thin-film hydration (where their structural 

lipids are dissolved in an organic solvent that will be evaporated and the formed films are 

rehydrated in an aqueous solvent), reverse-phase evaporation,  and usually have dimensions 
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ranging from 50 nm – 5 µm. Due its dual characteristic, liposomes can encapsulate drugs with 

different solubility, whereas hydrophilic drugs will remain in its aqueous core, and hydrophobic 

molecules will interact with the phospholipidic bilayer.57 Liposomes were the first class on 

nanoparticles to be clinicaly approved for cancer treatment, and it has been showed in several 

studies that liposomal entraptment improve drug’s pharmacokinetics and biodistribution.59 

Liposomes have been widely studied for PDT, with reports of several PS classes successfully 

being encapsulated and tested over the years.50-61 It has been reported that liposomes can 

drastically decrease PS aggragation and change the PS pharmacokinetics due liposomal 

disintegration on the bloodstream, enhancing treatment efficacy.59 The first liposomal 

photosensitizer in clinical practice was Visudyne® (that contains a PpIX derivative, 

benzoporphyrin derivative monoacid, BPD-MA).62 Foslip® and Fospeg® are liposomal 

formulations containing temoporfin that have been extensively evaluated in in vitro  and pre-

clinical studies, showing their efficacy for Gram-positive and Gram-negative bacteria 

eradication and for oncological PDT.62 Tipically conventional liposomes are internalized by the 

cells via endocytosis, with the carried PS remaining on cell organelles, such as  lisosomes and 

mytochondria, but Kim, Santos and Park described the use of membrane fusogenic liposomes 

(MFLs) to deliver a hydrophobic PS to cell membrane, in order to promote localized cell 

damage and modulate the type of cell death.62 

As previously described, the high incidence of cancer, especially breast and skin cancer, 

creates the demand for alternative or adjunctive treatments to conventional ones. The alliance 

of optimization of pharmacokinetic properties of substances of interest provided by 

nanotechnology with the oxidative damage promoted by PDT, a technique that has been 

showing good results in the treatment of different types of cancer, has resulted in the 

enhancement of therapeutic activity. Thus, this project proposes to study the association of the 

two techniques for the treatment of different types of cancer using redox responsive silica 

nanoparticles carrying PpIX and membrane fusogenic liposomes. The objectives of this work 

are to compare the results of the use of different nanoparticles, evaluating their specificity and 

efficacy in neoplastic and healthy cell cultures, to compare their efficiency with that of free 

PpIX, to study the internalization of nanoparticles and their localization in cells and to evaluate 

reactive oxygen species generation. 
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3 OBJECTIVES 

 

The objectives of this work are to evaluate the effects of nanoparticles-mediated PDT 

mediated on tumor cell lines. 

 

The specific aims are: 

 

 To compare optimal experimental parameter to promote cell death via PDT with 

different types of nanoparticles: polysilsesquioxane nanoparticles and 

membrane fusogenic liposomes; 

 

 To compare nanoparticles uptake and PDT outcome to the free PS; 

 

 To compare the distinct nanosystems specificity and efficacy in neoplastic and 

healthy cell cultures, and to compare their efficiency with free PpIX; 

 

 To evaluate reactive oxygen species generation in cell culture using both 

nanoparticles systems and free PpIX. 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 
 

4 REDOX-RESPONSIVE SYSTEM 

 

4.1 Nanoparticles 

 

Through a collaboration established in the first half of 2015 (FAPESP / SPRINT - 

Process 2015 / 50471-5) with the Prof. Dr. Juan Luis Vivero-Escoto from the Department of 

Chemistry, University of North Carolina at Charlotte, and his student, Zachary Lyles, redox-

responsive polysilsesquioxane nanoparticles (PSilQ) were obtained. PSilQs are crosslinked 

polymers of silsesquioxanes, an organosilicon compound of formula [RSiO3/2]n, which are 

colorless. Through Si-O-Si bonds, they form a three-dimensional network with several possible 

organic substituents. The substituent of the studied nanoparticles was PpIX, and different 

elements were introduced into the synthesis in order to obtain four samples to be evaluated: 

i) PSilQ with PpIX nanoparticles, called Ctrl-PpIX-PSilQs (Figure 3A); 

ii) PSilQ nanoparticles with the introduction of a disulfide bond mediating the 

attachment of polymers to PpIX, producing a redox-responsive system called RR-PpIX-PSilQ 

(Figure 3B); 

iii) polyethylene glycol-functionalized redox-responsive PSilQ and PpIX nanoparticles 

(PEG, a polymer that reduces the formation of corona proteins, also decreasing the recognition 

and phagocytosis of nanoparticles by immune system cells, increasing their circulation time in 

the bloodstream); called PEG-RR-PpIX-PSilQs; 

iv) PEG and folic acid functionalized redox-responsive PSilQ and PpIX nanoparticles 

(due the overexpression of folate receptors on the surface of tumor cells), called FA-PEG-RR-

PpIX-PSilQs. 
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Figure 3 -  Chemical structure’s schematic representation of A) control (Ctrl-PpIX-PSilQ) and B) redox-

responsive (RR-PpIX-PSilQ) nanoparticles of polysilsesquioxane. 

Source: Adapted from VIVERO-ESCOTO et al.56 

 

4.2 Material and Methods 

4.2.1 Reagents 

Dimethyl sulfoxide (DMSO, Catalog No. D8418) and the NaCl, KCl, Na2HPO4 and 

KH2PO4 salts used in the preparation of phosphate saline buffer (PBS) were purchased from 

Synth (Diadema, SP, Brazil). 3- [4,5-Dimethyl-thiazol-2-yl] -2,5-diphenyltetrazolium bromide 

(thiazolyl blue tetrazolium bromide, or “MTT” - catalog number M5655), gluthatione (catalog 

number PHR1359) and protoporphyrin IX (catalog number P8293) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Human mammary adenocarcinoma-derived cell lines 

(MCF-7, catalog number HTB-22), murine melanoma (B16-F10, CRL-6475) and human 

squamous cell carcinoma (A-431, CRL-1555) were purchased from the American Type Culture 

Collection (Manassas, VA, USA); human neonatal dermal fibroblast (HDFn, code C0045C) 

from Thermo Fischer Scientific (Waltham, NY, USA) and human keratinocytew (HaCaT, 

catalog number 0341) from the Rio de Janeiro Cell Bank (Rio de Janeiro, RJ, Brazil). DMEM 

and RPMI 1640 culture media with and without red phenol (DMEM: catalog number. 460 and 

574, respectively, RPMI: Catalog No. 462 and 465), as well as the antibiotic penicillin / 

streptomycin (catalog number 73) and fetal bovine serum (FBS, catalog number 63) were 

purchased from Cultilab (Campinas, SP, Brazil). ROS probe H2DCFDA (catalog number 

D399) was acquired from Thermo Fischer Scientific.  
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4.2.2 Light Source 

 

For sample irradiation, an equipment named Biotable, built by the Technological 

Support Laboratory of the São Carlos Institute of Physics, was used. The arrangement of 24 

LEDs ensures that 24 and 96-well plates are homogeneously irradiated by the base of the well-

plates, with a final intensity of 30 mW/cm², considering the attenuation promoted by the acrylic 

plate bottom. For the study, it was used Biotable with emission centered at 630 nm, so that the 

wavelength overlaps the last Q-band absorption peak of PpIX (Figure 4). The chosen emission 

also ensures that light penetration into biological tissue is deeper due to the use of a longer 

wavelength that remains within the biological optical window while avoiding light absorption 

by water, melanin and hemoglobin.63 

 

 

Figure 4 - Emission spectrum of the 630 nm Biotable LEDs (red line) and the PpIX absorbance spectrum in DMSO 

(brown line). 

Source: By the author. 
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4. 3 Different Solvents Effects on PpIX Photostability 

 

In order to evaluate the influence of solvents on nanoparticles and free PpIX, studies 

using Fluorescence-lifetime Imaging Microscopy (FLIM) were performed. To this end, the 

nanoparticles were washed twice, centrifuged at 13.500 rpm for 20 minutes, and resuspended 

in ethanol (for stock solution stability), in PBS or phenol red-free DMEM supplemented with 

1% FBS (free PpIX and RR-PpIX-PSilQ). Free PpIX, which stock solution is made in DMSO 

to prevent aggregation, was evaluated in the same solvents as nanoparticles. FLIM 

measurements were acquired by Prof. Dr. Francisco Eduardo Gontijo Guimarães at the São 

Carlos Institute of Physics Multi-User Laboratory under the LSM 780 inverted fluorescence 

confocal microscope (Zeiss, Oberkochen, BW, Germany) coupled to the FLIM system 

(PicoQuant, Berlin, Germany). Sample excitation was performed at 405 nm by a 40 MHz 

frequency pulsed diode LASER and fluorescence acquisition was performed by the Time-

correlated single photon counting (TCSPC) method with SymPhoTime software (PicoQuant, 

Berlin, Germany). 64 

 

4. 4 PpIX release and RR-PpIX-PSilQs and Free PpIX Uptake 

 

 To confirm the redox-responsive release of PpIX, samples of RR-PpIX-PSilQ were 

dispersed in DMSO and incubated with 10 mM GSH  in quartz cuvette. Initilially fluorescence 

intensity mesurements were performed in a 5 minute-timelapse, which was gradually increased 

to 1 hour in order to collect data for 50 hours. The specific time intervals, the fluorescence 

intensity of the solutions were measured with the Cary Eclipse Fluorescence Spectrophotometer 

(Agilet, California, USA) using 405/630 as excitation/emission wavelengths. The cuvette 

remained inside the equipement during the data collection, protected from light, in 37 ºC and 

constant agitation. 

 To determine the nanoparticles and free PpIX uptake, studies were performed with 

laser scanning confocal microscopy LSCM), fluorimetry and flow cytometry. Cells were seeded 

in CELLviewTM cell culture plates (Greiner Bio One, Kremsmünster, Austria) and in 6 and 24-

well plates at a density of 106 (single and 6-well plates) and 105 cells/mL in RPMI 1640 

supplemented with 5 % FBS for analysis on inverted LSM 780 confocal microscope, 

SpectraMax M3 multimodal microplate reader (Molecular Devices, Sunnyvale, CA, USA) and 
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Accuri C6 Plus flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA), respectively. 

After 24 hours, the nanoparticles were washed and resuspended in phenol red-free RPMI 

supplemented with 1% FBS at a concentration of 75 µg/mL, and the free PpIX solution was 

prepared in the same medium with the corresponding PpIX concentration found in nanoparticles 

solutions (15 µg/mL). The samples were incubated for 24 hours at 37ºC and 5% CO2 

atmosphere in a humidified incubator. 

 For LSCM analyses, cells were carefully washed with PBS twice and images were 

acquired using a LASER diode emitting 405 nm. For fluorimetric evaluation, cells were washed 

twice with PBS and lysed with 500 µl of DMSO, incubated for 10 minutes at room temperature. 

The fluorescence emission of the lysates was then measured on the spectrophotometer, with 

excitation performed at 407 nm. In flow cytometry analysis, cells were dissociated from the 

multiwell plates, washed twice, resuspended in PBS and filtered on a 50 µm filter to reduce 

lumps, and their fluorescence was evaluated on the FL-3 channel (488 nm excitation and 

670/LP filter detection) and compared to the fluorescence of the control group (cells that 

weren’t exposed to PpIX/nanoparticles). Experiments on the confocal microscope and flow 

cytometer were repeated on 2 different occasions, and with melanoma and breast cancer 

selected as models for tumor cells and fibroblasts as healthy cell model, and fluorescence 

measurements were performed in quintuplicate of each group and repeated 3 times, performed 

for breast cancer cells alone. 
 

4.5 In vitro PDT Assays 

 

Preliminary tests were performed to determine the light fluence that did not promote 

cell damage and was able to interact with PpIX, causing cell death via oxidative stress. The 

MCF-7 breast tumor cell line was exposed in the presence of 75 µg/mL of the Ctrl, RR and 

PEG-RR-PpIX-PSilQ nanoparticles, a concentration that exhibited good results in Dr. Vivero-

Escoto’s previous studies of with a similar nanostructured system.56 

Briefly, two 96-well plates were prepared 24 hours prior to the experiments, seeding 105 

cells/mL in RPMI 1640 supplemented with 5% SFB and kept in a humidified incubator (MCO-

17AC, Sanyo Electric Co. Ltd, Osaka, Japan). After this period, the nanoparticles were washed 

twice and resuspended in the phenol red-free culture medium supplemented with 1% FBS. The 

plates were incubated for additional 24 hours in an incubator to ensure nanoparticles 
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internalization, then washed twice with PBS to remove remaining free nanoparticles in the well 

supernatant and maintained in 10% FBS phenol red-free medium.  One plate was irradiated 

with the 630 nm Biotable while the other plate remained protected from light exposure during 

the irradiation. Both plates remained for additional 24 hours in a humidified incubator at 37ºC 

and 5% CO2 atmosphere. 

Cell viability was determined indirectly by colorimetric assay using MTT, which 

assesses mitochondrial metabolism (which is commonly associated in the literature as an 

indirect measure of the percentage of viable cells in samples). The sample supernatant was 

replaced by phenol-free medium supplemented with only 10% MTT (stock solution: 5 mg/mL) 

and the plates were incubated again in the oven for 3 hours. All liquid was removed and  

formazan violet crystals were solubilized with DMSO. Absorbance readings from each well 

were performed with the Multiskan GO microplate reader (Thermo Fischer Scientific, 

Waltham, MA, USA) at two wavelengths, as indicated by the reagent manufacturer MTT(64): 

570 nm and 690 nm. The viability calculation was performed by subtracting the absorbance 

value of 570 nm from the resultant reading at 690 nm, and considering the absorbance of the 

non-irradiated control group as 100% viability. Table 1 shows the summary of the conditions 

studied in the trials, with each group containing triplicates. 

 

Table 1 - Summary of the experimental conditions assessed in trial using MCF-7 cells. 

Groups Concentration (µg/mL)  Incubation time (h) Fluence (J/cm²) 

Control 

Ctrl-PpIX-PSilQ 

RR-PpIX-PSilQ 

PEG-RR- PpIX-PSilQ 

- 

 

75 
24 

1 

5 

25 

40 

50  

Source: By the author. 

 

After assessing the optimal light fluence for PDT experiments (50 J/cm²), 3 repetitions 

were performed with the MCF-7 cell line (n = 9) including nanoparticles containing folic acid 

in the study. To compare the nanoparticles effectiveness with the free FS’s, cells were exposed 

to 15 µg / mL PpIX solutions (which corresponds to PpIX’s concentration in nanoparticles 

solutions) and a DMSO control group (which was introduced as a control due the preparation 
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of PpIX stock solution in this solvent). The same experimental protocol was repeated with A-

431 and HaCaT cell lines, to evaluate the effect of PpIX nanoparticles-mediated PDT on 

different types of cancer and on an important healthy cell for skin studies, respectivelly. To 

evaluate the response of a tumor and a healthy cell line to different concentrations of PpIX-

PSilQ nanoparticles, the previously described experimental protocol (fixing the incubation time 

and light fluence at 24 hours and 50 J/cm²) was conducted with murine melanoma cell line 

(B16-F10) and dermal fibroblasts (HDFn). In this study, a wide concentration range of PpIX-

PSilQ nanoparticles solutions (50 - 300 µg/mL) was evaluated. 

 

4.6 Reactive Oxygen Species (ROS) Quantification  

 

In order to verify if cell damage was promoted by PDT activity, the ROS production 

was assessed in in vitro experiments emulating PDT assays. Experiments were performed as 

described in session 3.2.5, introducing the cell permeant probe H2DCFDA, which becomes 

fluorescent in the presence of ROS after cleavage by intracellular esterases. Briefly, 105 

cells/mL were seeded in 96 well plates in phenol red-free medium supplemented with 1 % FBS, 

and incubated with 75 μg/mL of RR-PpIX-PSilQ solution or 15 μg/mL of free PpIX for 24 

hours in a humidified incubator. Cells were exposed to the ROS probe 30 minutes before the 

irradiation, by carefully washing the samples twice with PBS and introducing a fresh 10 μM 

H2DCFDA working solution, prepared in PBS immedially before its use, in the well plates. 

Samples were washed twice with PBS and phenol-free medium was added to the cells before 

exposure to 50 J/cm² (dark control groups remained protected from light). ROS production was 

quantifyied by H2DCFDA fluorescence intensity readings using 485 nm as excitation, 

measuring 520 nm emission with the multimodal microplate reader SpectraMax M3 (Molecular 

Devices, Sunnyvale, CA, USA). Breats cancer cells were selected to compare RR-PpIX-PSilQ 

and free PpIX ROS production in the presence and absence of 630 nm, and melanoma cells and 

fibroblast to compare differences in tumor and healthy cell RR-PpIX-PSilQ-mediated PDT.  
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4.7 Statistical Analysis  

 

Cell viability data was expressed as the mean ± standard deviation of the groups. 

Statistical analysis was performed using GraphPad Prism 5 (GRaphPad Software, San Diego, 

California, USA), aplying one-way ANOVA followed by Tukey's multiple comparison test. 

Each group was performed in triplicates and repeated in three different occasions, resulting in 

n = 9. Normality evaluation of samples occasionally did not present a normal distribution, so 

One-Way ANOVA application was performed outside the assumptions provided by this test. 

Differences between groups were considered statiscally significant when comparisons showed 

a value of p ≤0.05, indicated in the graph by *.  

 

4.8 Results and Discussion 

 

4.8.1 PpIX Photostability 

  

Important information about the interaction between the fluorophores of interest and the 

molecular environment in which they are immersed can be extracted from the fluorescence 

decay time. In particular, it is possible to evaluate molecules aggregation due fluorescence 

decay times alterations, since non-radioactive decays of the excited states are significant in 

aggregates, due to the energy transfer between very close molecules.65 In order to observe the 

photostability of free and nanostructured PpIX, experiments evaluating the molecules and 

nanoparticles fluorescence lifetime in different solvents were carried out. From FLIM images, 

the fluorescence decay times were measured (in figure 5) and exposed in table 2. For decays 

ruled by two exponentials behaviors, values of the fast decay time (the one presenting the 

highest slope in the figure) were called τ1, and the slow (lowest slope) were called τ2. 

Figure 5 shows that, when samples are dispersed in alcohol, fluorescence lifetime is 

longer than when PBS is used as a solvent. Free PpIX presented, among all the evaluated 

samples, the longest decay time when solubilized in ethanol, revealing a monoexponential 

decay of the fluorescence lifetime, which results in the absence τ1. This suggests that the energy 

transfer between PpIX molecules is non-existent or very low, indicating the almost exclusive 

presence of the PS monomeric form in ethanol (which is also evidenced by the Gaussian 
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distribution seen in the histogram in figure 5D). Changes in the molecular environment 

introduced by the use of PBS or DMEM with 1% FBS is reflected in the fluorescence decay 

time, which is reduced from 13.5 ns to 9.7 and 11.62 ns, respectively, resulting in changes on 

the histogram profile. In addition, it was possible to detect τ1, requiring the use of 2 exponentials 

to fit the decay curve. The presence of aggregates is highlighted by the reduction in the PpIX 

fluorescence lifetime as well as by the emission efficiency reduction, which was observed by 

comparing fluorescence emission spectra (data not shown).66 

 

Figure 5 -  Fluorescence decay time of free PpIX and the following nanoparticles: A) Ctrl-PpIX-PsilQ, B) PEG-

RR-PpIX-PsilQ in ethanol and PBS, and C) RR-PpIX-PsilQ in ethanol, PBS and DMEM with 1% 

SFB. The decay time histogram of free PpIX and RR-PpIX-PSilQ is shown in D (the other histograms 

are not displayed due to the similar behavior of the nanoparticles in the different solvents). 

Source: By the author 

 When evaluating the nanoparticles in ethanol, no monoexponential decay is observed 

and the decay times are shown to be shorter than free PpIX’s, suggesting the PS aggregation. 

This behaviour was already expected due to the tight packaging of PpIX in the nanostructure, 

which approximates the molecules, allowing their interaction and energy transfer between 
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them. In particular, Ctrl-PpIX-PSilQ and PEG-RR-PpIX-PSilQ nanoparticles have decay times 

much shorter than free PpIX, most likely due to the aggregation in media, which is verified by 

the presence of brown dots in the solutions and the greater difficulty to redispersed these 

samples even when using a ultrasound bath. This hypothesis is reinforced by the small 

difference introduced in fluorescence decay times when PBS is used as solvent. The redox-

responsive sample, however, shows a strong reduction in this parameter when it is prepared in 

PBS or culture medium, with promotes a shift in the histogram populations. Both effects reveal 

the formation of aggregates in the solutions, which potentially results in lower nanoparticle 

internalization by the cells due to their enhanced dimensions.  

 

Table 2 - Nanoparticles and free PpIX fluorescence decay times in different solvents. 

Sample 
Ethanol PBS DMEM 

τ1 (ns) τ2 (ns) τ1 (ns) τ2 (ns) τ1 (ns) τ2 (ns) 

PpIX - 13,52 1,41 9,67 0,83 11,62 

Ctrl-PpIX-PSilQ 0,95 6,28 0,39 5,5 - - 

RR-PpIX-PSilQ 0,94 12,16 0,34 6,67 0,62 6,4 

PEG-RR-PpIX-PSilQ 0,41 6,24 0,17 6,22 - - 

Source: By the author. 

 

4.8.2  PpIX release under reducing conditions and Nanostructured vs. Free PpIX 

Internalization 

 

Before assessing nanoparticles internalization, it was important to determine if the 

nanosystems were able to properly release the PS in its monomeric form in a reducing 

environment. For that, experiments were carried out using gluthatione (GSH) in similar 

concentrations found inside mammalian cells (10 mM) to track PpIX release over time. By 

measuring the solution fluorescence intensity using 405/630 nm excitation/emission, an 

increase in this parameter relates to an increase of free PpIX molecules, since the PS is found 

tightly packed when attached to the nanoparticles, which favors quenching. 
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During the full extent of the 50 hours, it was observed an increase on fluorescence 

intensity, which was initiated by GSH addition into the solution (indicated by the arrow in figure 

6). This data suggests that free PpIX was continuously released in the solution over time. The 

lack of a maximum value and signal intensity stagnation suggests that, over the 50 hours, there 

were still assembled nanoparticles with attached PpIX.  

 

Figure 6 -  PpIX release profile after adding 10 mM GSH (the exact time the GSH was added is indicated with 

an arrow). 

Source: By the author. 

 

To determine the nanoparticles internalization by the cells, which allows their 

degradation by reducing species in the intracellular environment and PpIX release in its 

monomeric form at treatment target, uptake studies were carried out with different techniques. 

Breast cancer cells were initially chosen due to the reasonable proportion between their 

cytoplasm and nucleus, facilitating PS distribution observation in the cytosol. To compare 

nanoparticle and the PS behavior differences under the same conditions, redox-responsive 

nanoparticles and the free PpIX were selected for this study. 

LSCM images, obtainded after 24 hours of incubation, reveals that free PpIX, despite 

the presence of visible small aggregates in the solutions, is internalized in large ammounts and 
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is distributed homogeneously throughout the cytoplasm (figure 7). The same behaviour wasn’t 

observed in samples incubated with redox-responsive nanoparticles, which, after careful sample 

washing, were observed as aggregates in the supernatant, most likely because they were 

attached to the glass or to cell membranes. These aggregates were also observed inside the cells, 

indicating that nanoparticles have been internalized and that they are probably still retained in 

endosomes or endolysosomes after the evaluated timelapse. This observation is consistent with 

the main nanoparticles uptake mechanism by mammalian cells, endocytosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To confirm the nanoparticle’s uptake that was observed by LSCM, cells were subjected 

to the same experimental protocol (same nanoparticles/free PpIX concentration and incubation 

C                                                  D 

Figure 7 - Assessment of cell uptake by: LSCM of A) free PpIX and B) RR-PpIX-PSilQ (with white 

arrows indicating aggregates inside the cells), C) flow cytometry using the FL-3 channel and 

D) measurement of the cell lysates fluorescence intensity of samples incubated with and 

without RR-PpIX-PSilQ, using 407 nm as excitation and emission as 630 nm. 

Souce: By the author. 
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time) for further analysis by flow cytometry. Results show (figure 7C) the cells 

autofluorescence intensity signal in black, with a displacement of the population that was 

exposed to the the nanoparticles (red curve in figure 7C) towards higher fluorescence intensity 

in the FL-3 channel. This indicates that cells in this population present increased fluorescence 

signal when compared to the control group, suggesting PpIX internalization after their exposur 

tho the nanoparticles for 24 hours. The population of cells incubated with free PpIX shows a 

greater displacement (blue curve in figure 7C), which is in accordance with the free PpIX uptake 

profile verified by LSCM. 

Fluorimetry results evaluated the PpIX fluorescence signal (individualized by choosing 

the proper excitation and emission wavelengths) of cell lysates, allowin the assessment of their 

cytoplasmatic content. As shown in figure 7D, it is possible to verify an increase in fluorescence 

intensity of cells exposed to nanoparticles, when compared to the control group. This 

augmentation in PpIX fluorescence signal corroborates the pervious results suggesting the 

nanoparticles uptake and availability of PpIX inside the cells after the 24-hour interval. 

Nanoparticles selectivity to tumor cells assessment was carried out in uptake studies 

using melanoma cells (B16-F10) and fibroblasts (HDFn). LSCM images display the increase 

of fluorescence signal inside the cells for both cell lines when they are exposed to 75 µg/mL of 

RR-PpIX-PSilQ, but the intense autofluorescence yielded by the healthy cell lines interferes 

with visual interpretation of nanoparticle internalization (figure 8A). Flow cytometry, however, 

shows that there is an increase in the fluorescence signal intensity for both cells after 

nanoparticle incubation. However, it also reveals that the tumor cell line present increased 

nanoparticle uptake in the evaluated time when compared to the healthy cells due the larger 

displacement of cell population towards higher fluorescence intensity. 
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Figure 8 - Assessment of RR-PpIX-PSilQ uptake in healthy (fibroblasts: HDFn) and tumor (melanoma: B16-F10) 

cells using A) LSCM and B) flow cytometry. 

Source: By the author. 

 

4.8.3 PDT: cancer vs. healthy cells 

4.8.3.1 Preliminary assessment for optimal light fluence determination 

 

As described in section 2.2, light is one of the three key elements for PDT. The 

determination of adequate light fluence is essential for treatment efficacy, so that the incident 

light is able to properly excite the PS in order to produce significant amounts of ROS. Thus, 

PDT studies started by conducting preliminary tests in which the concentration of nanoparticles 

and the incubation time evaluated in the uptake experiments remained fixed, with light fluence 

variations. The summary of the preliminar experiments, describing the experimental condition 

and the mean value of cell viability is shown in table 3. 
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Table 3 – Cell viability mean values obtained in preliminary experiments with distinct light fluences (λ = 630 

nm). 

Cell viability (%) 

   Light Fluence (J/cm²) 

Groups 0 1 5 25 40 50 

Control 100±5,7 105,8±2,3 82,2±3,6 90,4±2,8 98,2±5,9 80,8±4,6 

Ctrl-PpIX-PSilQ 91,3±2,9 96,2±2,9 69,7±1,3 79,0±3,0 47,2±1,8 31,3±2,8 

RR-PpIX-PSilQ 85,7±5,3 93,2±2,9 70,26±3,1 56,4±5,6 24,9±2,5 13,5±7,3 

PEG-RR- PpIX-PSilQ 97,8±7,1 86,6±3,3 80,1±4,6 98,9±2,9 90,7±9,1 39,8±0,1 

Source: By the author. 

 

It was verified that, in lower light fluences, limited phototoxic effect was produced in 

the samples, regardless of the nanocarrier that was applied. However, at 40 J/cm², a significant 

reduction in cell viability mean values was produced. When 50 J/cm² was evaluated, the redox-

responsive nanosystem was able to promote death of approximately 87 % of the cells. This ligh 

fluence, however, had small impact on cell viability by itself, at which point the increase in this 

parameter could be detrimental to the samples. It is important to point that this parameter is 

experimentally set through properly controling the time of samples exposure to light: light 

fluence is determined by the following equation: 

F = I.t 

 where F stands for light fluence, I is the light source’s fluence rate and t is the time of 

exposure. For a fluency of 50 J/cm², the samples remained 27 minutes and 47 seconds outside 

the humidified incubator, so higher fluences could promote further stress in the cultures due 

prolonged time outside the ideal conditions for cell growth. Therefore it was determined to fix 

light fluence at 50 J/cm². 
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4.8.3.2 PDT under optimal conditions 

 

After determining the light fluence, PDT experiments with MCF-7 cell line were 

performed, with the inclusion of a new nanoparticle, functionalized with folic acid, and free 

PpIX (figure 9). 

 

Figure 9 -  Free PpIX and nanostructured PpIX-mediated PDT in breast tumor cell cultures (MCF-7). Results 

are displayed as mean values of cell viability, and ** indicates p ≤ 0.005 and ****, p ≤ 0.00005. 

Source: By the author. 

 

Groups containing cells that were exposed to nanoparticles but were kept in the dark 

(nanoparticle dark control groups) displayed reduced or no cytotoxicity, and that the percentage 

of DMSO that was used to prepare free PpIX solutions does not interfere with the cell viability 

(DMSO control group). Free PpIX, however, exhibited considerable cytotoxicity by itself, with 

viability values close to 60 %. After irradiation with 50 J/cm², cell viability of the control group 

(cells that weren’t exposed to nanoparticles nor free PpIX, tagged as “RPMI” in figure 9) 

remained unchanged, as well as that of the DMSO control. Irradiation of the 4 nanoparticle 

systems resulted in high phototoxicity, with an average of 7 and 10% of cells remaining viable 

after exposure to Ctrl-PpIX/RR-PpIX-PsilQ and PEG/AF-PEG-RR-PpIX-PsilQ, respectively. 
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Cells exposed to free PpIX and light also yielded a significant reduction in their viability value, 

which remained around 5%. These results show that, although nanoparticles and free PpIX 

present aggregation in culture medium, as seen in section 4.7.2, the PS inside the cells (in larger 

quantities when in its free form) is efficiently excited and promote extensive damage to MCF-

7 cultures. 

To evaluate the effectiveness of the nanoparticles and their potential application in 

different types of tumors, the same protocol was evaluated in cultures of non-melanoma cancer 

cells (figure 10). It was observed that this strain is more prone the nanoparticles and free PpIX 

cytotoxicity (in the absence of light), as the cells viability remained close to 67, 45 and 30% in 

the Ctrl-PpIX/RR-PpIX-PsilQ, PEG/AF-PEG-RR-PpIX-PsilQ and free PpIX groups, 

respectively. However, when irradiated, the results became very similar to those obtained with 

MCF-7 cells. 

 

Figure 10 - Free PpIX and nanostructured PpIX-mediated PDT in non-melanoma skin cancer cell cultures (A-

431). Results are displayed as mean values of cell viability, and ** indicates p ≤ 0.005 and ****, p ≤ 

0.00005. 

Source: By the author. 

To assess whether nanostructured systems have selective behavior (with greater affinity 

for tumor cells), the outlined protocol was used in cultures of normal skin cells, more 
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specifically keratinocytes and fibroblasts (HaCaT and HDFn, figure 11 and 12, respectivelly). 

For keratinocytes, when protected form light exposure, cells were susceptible to the redox-

responsive nanoparticles, with viability values remaining between 58 and 73%, with PpIX 

displaying its elevated cytotoxicity, with aproximately 40% of the cells remaining viable after 

being exposed to the PS. Cell exposed to nanoparticles and irradiation displayed the same 

results previously observed for the tumor cell lines, with a slightly increase on cell death mean 

values: almost 4% of the cells remained viable, which was also observed in the free PpIX group. 

The only group that presented a diverting behavior from the previous obtained was PEG-RR-

PpIX-PSilQ-mediated PDT, yielding cell viability values of approximately 40%. When 

fibroblasts were submitted to the same experimental protocol, a similar cytotoxicity was 

observed when applying free PpIX. Cells displayed slightly higher tolerance to the 

nanoparticles impact on their viability when compared with keratinocytes, with cell viability 

values fluctuating from approximately 60 to 90 %. PDT groups yielded the previously observed 

cell death rates. 

 

 

Figure 11 - Free PpIX and nanostructured PpIX-mediated PDT in keratinocytes cultures (HaCaT). Results are 

displayed as mean values of cell viability, and ** indicates p ≤ 0.005 and ****, p ≤ 0.00005. 

Source: By the author. 
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Figure 12 -  Free PpIX and nanostructured PpIX-mediated PDT in keratinocytes cultures (HaCaT). Results are 

displayed as mean values of cell viability, and ** indicates p ≤ 0.005 and ****, p ≤ 0.00005. 

Source: By the author. 

 

4.8.3.3 PDT: nanoparticles selectivity 

 

So far, light exclusively the impact caused in cell viability through variations in light 

fluence have been evaluated. The absence of the nanosystem’s selectivity in the described cell 

lines may be due to the use of far too elevated nanoparticles concentrations. Therefore, 

experiments were performed with Ctrl-PpIX/RR-PpIX/PEG-RR-PpIX-PSilQ, in which the 

incubation time and light fluence were fixed (24 hours, 50 J/cm²), evaluating distinct 

nanoparticle concentrations (50 to 300 µg/m, as displayed in figure 13). Evaluation of 

nanoparticles selectivity was conducted by comparing the same experimental protocol in tumor 

and healthy cell lines, using melanoma (B16-F10) and fibroblasts (HDFn) as models, 

respectively. 
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Figure 13 -   PDT results when different concentrations of A) Ctrl-PpIX-PSilQ, B) RR-PpIX-PSilQ and C) PEG-

RR-PpIX-PSilQ are incubated for 24 hours in fibroblast cultures (HDFn, blank) and murine 

melanoma (B16-F10, in gray). 

Source: By the author. 
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It was detected that, when cells are exposed to Ctrl-PpIX-PSilQ solutions and kept in 

the dark, cell viability of both strains remained unaffected. However, after their irradiation, a 

dose-dependent behavior was verified, with the highest concentrations showing the greatest 

damage to cell viability. In addition, it is suggested that healthy cells do not show a reduction 

in their viability values up to 150 µg/mL solutions are applied, which results in almost 20% of 

viable cells. Nonetheless, for melanoma cells, the lower nanoparticles concentration was able 

to promote cell death of almost 70%, showing the B16-F10 cell line greater susceptibility to 

nanoparticles-mediated PDT. A similar behavior was observed with RR-PpIX-PSilQ 

nanoparticles, but fibroblast cultures exhibit a reduction in their cell viability for 50 µg/mL 

solutions, which remain close to 85%. Interestingly, when healthy cells are exposed to PEG-

RR-PpIX-PSilQ nanoparticles, it was noticed that fibroblasts did not show a reduction in their 

cell viability values even after PDT, and that melanoma cells are susceptible to the nanoparticle 

cytotoxicity (with no light exposure). 

The results showed the potential of nanoparticles for PDT, with selectivity being 

achieved using lower concentrations of these systems in in vitro studies. Free PpIX has shown 

efficacy comparable to that of the nanostructures, but displayed increased cytotoxicity, which 

is an unsedireble side effect. 

 

4.8.4 ROS Production   

 

To determine if the observed cell damage was promoted by PDT, experiments were 

conducted to detect substances that are known to be produced by the forementioned technique 

and that are involved in the oxidation of important cell structures and biomolecules. ROS 

production was assessed using H2DCFDA, a cell-permeant probe that initially presents no 

fluorescence. After cell uptake and cleavage by intracellular species, it becomes fluorescent in 

the presence of ROS, with an emission peak around 520 – 530 nm.  

Initially, differences in ROS generation levels after cell exposure to nanoparticles and 

free PpIX for 24 hours were evaluated in breast cancer cultures. In figure 14 it is observed that 

neither the culture media nor DMSO promoted significant changes in ROS production, in the 

presence or absence of light. Free PpIX showed a pronounced increase on ROS generation upon 

irradiation, suggesting cell death was promoted by PDT. However, the greatest ROS production 
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was verified in samples exposed to RR-PpIX-PSilQ nanoparticles, which almost displayed a 

threefold increase on fluorescence signal when compared to the one yielded by cells that 

underwent PpIX-mediated PDT. This data suggests that, despite free PpIX presents enhanced 

internalization, when compared to the nanosystem, ROS production upon irradiation is not as 

efficient as RR-PpIX-PSilQ’s. This is due, possibly, to the elevated number of PpIX molecules 

inside the cells, which may lead to PpIX aggregation and quenching, resulting in lower ROS 

production. Nonetheless, cell death is comparable among these samples. 

 

Figure 14 -  ROS production in breast cancer cells in the absence (orange bars) or presence (black bars) of 630 

nm. 

Source: By the author. 

To evaluate tumor and healthy cells ROS production upon RR-PpIX-PSilQ-mediated 

PDT, melanoma cell cultures and fibroblast cultures were submitted to the same experimental 

protocol. Figure 15 shows fibroblasts display a slight increase in ROS production uoon 

irradiation, with melanoma cells showing a significant increase after PDT, with approximately 

a 5-fold enhance in the fluorescence intensity when compared to the group that remained 

protected from light. This information correlates with the enhanced uptake described in section 

4.7.2. 
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Figure 15 -  ROS production in breast cancer cells in the absence (orange bars) or presence (black bars) of 630 

nm. 

Source: By the author. 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 
 

5 LIPOSOMES 

5.1. Membrane Fusogenic Liposomes  

 

 In 2016, Dr. Juliana Cancino-Bernardi (Chemistry Institute of the Alfenas Federal 

University - UNIFAL) and her student, Gabriela Mayr Reyes, established a methodology for 

PpIX encapsulation in membrane fusogenic liposomes (FAPEP Process number 2016/11890-

5) at the Nanomedicine and Nanotoxicology Group (GNano, São Carlos Institute of Physics, 

University of São Paulo)(67). Through a collaboration, 22.5 µg/mL stock solutions of MFL 

samples with and without PpIX (blank samples) were freshly prepared before each experiments. 

Briefly, to synthetize 4 mL of each liposome, stock samples of polymers and PpIX were added 

to glass flasks in the following proportions: 

a) blank MFLs: 100 µL of 10 mg/mL PEG solution, 480 µL of 10 mg/mL DMPC 

solution, 133 µL of 10 mg/mL DOTAP solution and 900 µL of chloroform with 10 

% DMSO (v/v). All solutions were prepared in chloroform.  

b) MFL-PpIX: 100 µL of 10 mg/mL PEG solution, 480 µL of 10 mg/mL DMPC 

solution, 133 µL of 10 mg/mL DOTAP solution and 900 µL of 100 µg/mL PpIX 

solution with 10 % DMSO (v/v). All solutions were prepared in chloroform.  

The samples were homogeneously agitated using a magnetic stirrer for 20 minutes. The 

flasks were covered with punctured parafilm and remained 12-24 hours at room temperature, 

protected from light, to dry. After complete chloroform evaporation, the films were hydrated in 

PBS and homogenized with a magnetic stirrer for 20 minutes. Homogeneous liposomes were 

obtained using an extrusion apparatus at 40 °C with a polycarbonate membrane (pore size: 100 

nm). After 20 cycles, the liposomes were stocked at room temperature and protected from light. 

 

5.2 Material and Methods 

5.2.1 Reagents 

 

DMSO, PBS, MTT, DMEM and RPMI 1640 culture media with and without red phenol, 

FBS, H2DCFDA and cell lines (B16-F10 and A-431 were used as tumor cell line models, and 

HDFn was used as healthy cell line model) are thoroughly described in section 4.2.1. PEG (1,2-
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distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

ammonium salt, catalog  number 800120, Avanti Polar Lipids, Inc., Alabaster, Alabama, USA),  

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine, catalog number 850345, Avanti Polar 

Lipids, Inc.) and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane, catalog number 

890890, Avanti Polar Lipids, Inc.) were kindly provided by the Nanomedicine and 

Nanotoxicology Group. Filter supports (catalog number 610014, Avanti Polar Lipids, Inc.) and 

polycarbonate membranes (pore size: 0.1 µm, diameter: 19 mm, Nucleopore Track-Etch 

Membrane, catalog number 800309, Whatman, Little Chalfont, Buckinghamshire, UK) were 

purchased from Sigma-Aldrich. 

 

5.2.2 PpIX Uptake  

 

To determine PpIX internalization when encapsulated by MFLs, studies were 

performed with an inverted fluorescence micocroscope (Zeiss Axio Observer.Z1, Zeiss) and 

flow cytometry (Accuri C6 Plus flow cytometer). Initially, melanoma cells (B16-F10) and 

fibroblasts (HDFn) were evaluated to assess differences between tumor and healthy cells uptake 

for both free PpIX and MFL-PpIX. Briefly, cells were seeded 24-well plates at a density of 105 

cells/mL in DMEM supplemented with 10 % FBS. After cell adhesion (18-24h in a humidified 

incubator at 37 ºC and 5% CO2 atmosphere) MFL-PpIX and the free PS (with a final PpIX 

concentration of 1.5 and 15 µg/mL, prepared in phenol-free DMEM supplemented with 10% 

FBS) were added to the plates, Cells were exposed to the samples for 24 hours at 37ºC and 5% 

CO2 atmosphere in a humidified incubator. 

 For fluorescence mycorscopy analyses, cells were carefully washed with PBS twice 

and images were acquired using 350 ± 20 nm as excitation and using a 400 nm long pass filter 

for emission collection. For flow cytometry assessment, cells were dissociated from the plates, 

washed twice, resuspended in PBS and evaluated using the FL-3 channel (488 nm excitation 

with 670/LP filter detection). Background fluorescence was considered as the control group 

fluorescence (cells that weren’t exposed to PpIX/MFL-PpIX). The same experiments were 

conducted with non-melanoma cells (A-431) and fibroblasts, evaluating lower incubation times 

(1 and 4 hours exposure) and lower PpIX concentration (1 µg/mL). 
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5.2.3 In vitro PDT Assays 

  

 In order to compare the MFLs efficacy in PDT to PSilQs, similar experimental 

parameters to the ones described in section 4.5 were assessed for the liposomes. Briefly, 

melanoma cells and fibroblasts weres seeded (105 cells/mL in RPMI 1640 supplemented with 

5% SFB) in 96-well plates and kept in a humidified incubator for 24 hours. The supernatant 

was replaced by phenol-free DMEM supplemented with 10% FBS (control group) and solutions 

of blank MFLs, MFL-PpIX and free PpIX (with 1.5, 7.5 and 15 µg/mL as final PpIX 

concentration), with cell exposure to the samples for 24 hours.  After careful sample washing 

with PBS, 50J/cm² (630 nm) was used to irradiate one plate, while dark control groups remained 

protected from light. To obtain cell viability, MTT was used. To evaluate the impact and 

selectivity of MFLs to tumor cells, experiments were performed using non-melanoma skin 

cancer cells and fibroblasts. Lower light fluence (20, 40 and 50 J/cm²), PpIX concentration (0.1, 

0.5 and 1 µg/mL) and incubation times (1 and 4 hours) were assessed using the previously 

described methodology. 

 

5.2.4 ROS Quantification  

 

ROS production was also evaluated when tumor cells and healthy cells were submitted 

to free PpIX and PpIX-mediated PDT using H2DCFDA as described in section 4.6. Briefly, 

105 melanoma cells or fibroblasts/mL were seeded 24 hours prior the experiments in in 96-well 

plates and incubated for 24 hours with a final concentration of PpIX corresponding to 1.5  and 

15 μg/mL for both MFL-PpIX and the free PS. 30 minutes before light exposure, cells were 

carefully washed and incubated with 10 μM H2DCFDA working solution, and washed 

immediately before irradiation with 630 nm - 50 J/cm² (dark control groups remained protected 

from light). Fluorescence intensity was quantified with excitation/emission set as 485/520 nm. 

The same experimental protocol was used to assess non-melanoma skin cancer cells ROS 

production when cells were exposed for 1 and 4 hours to a final PpIX concentration of 0.1 and 

1 µg/mL in MFL, MFL-PpIX and free PpIX solutions and irradiated with 50 J/cm². 
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5.2.5 Statistical Analysis  

 

As in chapter 4, cell viability results were expressed as the mean ± standard deviation. 

Groups were performed in triplicates and the experiments were repeated in three different 

occasions, resulting in n = 9 (with exception for PDT assays with lower PpIX/MFL-PpIX 

concentrations, exposure time and light fluence, which were repeated twice, resulting in n = 6). 

Statistical analysis was performed using GraphPad Prism 5, aplying one-way ANOVA (even 

for groups that did not present normal distributions, when the test was used outside its 

hypothesis) followed by Tukey's multiple comparison test. Statiscally significant differences 

were determined by comparisons displaying p ≤0.05, indicated in the graph by *.  

 

5.3 Results and Discussion 

5.3.1 PpIX Uptake 

 

PpIX internalization was studied initially over 24 hour incubation in tumor (melanoma) 

cells and in healthy (fibroblast) cells cultures using fluorescence microscopy and flow 

cytometry. In melanoma cells, it was observed a mild fluorescence intensity located mainly in 

cells borders when 1.5 µg/mL MFL-PpIX was used (figure 16A). Increasing PpIX 

concentration resulted in a slight increase on the fluorescence signal and localization: 15 µg/mL 

solutions resulted in a more homogeneous fluorescence spread throughout the cells cytoplasm. 

Free PpIX, however, displayed significant increase on the fluorescence intensity when 

comparing 1.5 and 15 µg/mL: 1.5 µg/mL resulted in low fluorescence signal, also located more 

consistently on cell borders. Increasing PpIX concentration to 15 µg/mL promoted elevated 

PpIX internalization, confirmed by intense fluorescence signal, mostly observed in cells 

cytoplasm (figure 16A, lower panels). When 1.5 µg/mL uptake was assessed by flow cytometry 

(figure 16B), a shift on the fluorescence signal was detected on the cell population that was 

exposed to MFL-PpIX towards higher fluorescence intensity. This indicates cells were able to 

interact with the liposomes, internalizing PpIX after 24 hours exposure. When free PpIX was 

used, it resulted in a less intense shift on cell population, indicating MFL-PpIX is more efficient 

to promote PpIX internalization in melanoma cells. The same behavior is not observed for 15 

µg/mL, despite the cytotoxic effect on cell viability reducing the cell population (observed in 
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the PpIX cell population flattening in figure 16B, lower panel): cells present higher fluorescence 

intensity, displaying equal or more intense signal when compared to MFL-PpIX, corroborating 

the results observed in fluorescence microscopy. Therefore, free PpIX is more efficiently 

internalized by melanoma cells when compared to MFL-PpIX, and its cytotoxic effects become 

evident in flow cytometry assays. This effect was also observed in breast cancer cells (section 

4.8.2) when RR-PpIX-PSilQ were studied, with the free PS presenting a homogeneous spread 

in cell cytoplasm. 

 

Figure 16 - MFL-PpIX and free PpIX uptake after exposure for 24 hours in melanoma cells evaluated by A) 

fluorescence microscopy (where fluorescence is displayed in white) and B) flow cytometry. 

Source: By the author. 

 

When MFL-PpIX and free PpIX uptake was evaluated in fibroblasts with fluorescence 

microscopy (figure 17A), it was observed that, for 1.5 µg/mL, the fluorescence intensity is mild, 

but is homogeneously spreaded across the cell cytoplasm when free PpIX is used. For MFL-

PpIX, however, PpIX appear to concentrate in filaments, suggesting the MFLs might present 

affinity to the cytoskeleton fibers. To determine the exact location of MFL-PpIX, a technique 

such as LCSM is required, with z-stacking allowing a close look into different cell planes.  

When the PS concentration is increased, a fluorescence intensity increase is verified for both 

samples, but in larger scale for free PpIX. In flow cytometry, it was observed small differences 

between the population shift, when compared to cells that wasn’t exposed to PpIX, promoted 

by the free PS or when encapsulated in MFLs for 1.5 µg/mL. This suggests that, for this 
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particular healthy cell line, liposomes present similar uptake efficiency when compared to free 

PpIX. The increase in concentration results in a small population shift towards higher 

fluorescence intensity when MFL-PpIX is assessed, with free PpIX displaying a more 

significant shift, reinforcing fluorescence mycrosocopy data.     

 

Figure 17 - MFL-PpIX and free PpIX uptake after exposure for 24 hours fibroblasts using A) fluorescence   

microscopy (where fluorescence is displayed in white) and B) flow cytometry 

Source: By the author.  

 

When incubation times and PpIX concentration were reduced (1 and 4 hours, 1 µg/mL), 

it was observed in fibroblasts a slight increase in the fluorescence intensity for both free PpIX 

and MFL-PpIX exposure (figure 18A). Flow cytometry assay showed a small percentage of 

cells showed PpIX internalization after 1 hour of exposure to MFL-PpIX, close to 1%. After 4 

hours of incubation, the population that presented increased fluorescence intensity 

corresponded approximately to 6% (figure 18B). Free PpIX yielded higher percentages for both 

incubation times, with 20 and approximately 85% for 1 and 4 hours, respectively. This data 

relates to the previous observations when comparing free PpIX and nanoparticles uptake over 

extende incubation times, and shows that MFL-PpIX uptake is a slow process when compared 

to free PpIX, probably due the nature of the mechanisms that take part on the internalization of 

each sample. 
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Figure 18 - MFL-PpIX and free PpIX uptake in fibroblasts (1 µg/mL, 1 and 4 hours) evaluated by A) fluorescence 

microscopy (where fluorescence is displayed in white) and B) flow cytometry. 

Source: By the author. 
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For non-melanoma skin cancer cultures, fluorescence microscopy revealed similar 

uptake behavior to the one verified in fibroblasts cultures (figure  19A). However, increased 

PpIX uptake was highlighted in flow cytometry results: 9 and approximately 21% of cell 

population displaying elevated fluorescence signal when cells were exposed to MFL-PpIX for 

1 and 4 hours, respectively. Cells exposed to free PpIX yielded high a percentage of the 

population (approximately 95%) presenting PpIX internalization after 1 hour of exposure. After 

4 hours, this number increased to almost 99%. This is in accordance to what was expected, 

considering tumor cells have enhanced metabolism and increased uptake. 
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Figure 19 - MFL-PpIX and free PpIX uptake in non-melanoma skin cancer cultures (1 µg/mL, 1 and 4 hours) 

evaluated by A) fluorescence microscopy (where fluorescence is displayed in white) and B) flow 

cytometry. 

Source: By the author. 

 

 



68 
 

 
 

5.3.2 PDT 

 

To evaluate MFL-PpIX efficacy for in vitro PDT, experiments with melanoma cells 

were performed, incubating for 24 hours blank MFLs, MFL-PpIX and free PpIX with a final 

concentration of the PS corresponding to 1.5, 7.5 and 15 µg/mL. As it can be seen in figure 20, 

blank MFLs and MFL-PpIX display similar cytotoxicity to the melanoma cells, reducing cell 

viability in approximately 20%, indenpendently on the concentration. Free PpIX present similar 

effect on the cells up to 7.5 µg/mL, and 15 µg/mL solutions display higher impact on cell 

viability, that remained close to 55%. Upon irradiation, blank MFLs show no further damage 

on cell viability, revealing that the liposome formulation did not present photoactive properties, 

as it was expected. MFL-PpIX, however, display a drastic reduction on cell viability, with no 

dependence on the PpIX concentration: cell viability values were approximately 4% for all 

samples. Free PpIX results were very similar to MFL-PpIX, with almost complete decimation 

of melanoma cultures upon PDT. These data suggest that the studied concentrations might 

contain more PpIX than optimal concentration, due the absence of a dose-dependent behavior 

even when a tenfold increase on the concentration was assessed. 

 

Figure 20 – Blank MFL, MFL-PpIX and free PpIX PDT in melanoma cultures after exposing cells for 24 hours 

to 1.5, 7.5 and 15 µg/mL. Results are displayed as mean values of cell viability, and *** indicates 

significant differences when compared to the control group (cells not exposed to MFLs or PpIX and 

protected from light), with p ≤ 0.005. 

Source: By the author. 
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To evaluate MFL-PpIX-mediated PDT in healthy cell cultures, the same parameters 

were tested in fibroblasts cultures. Blank MFLs displayed similar effects on cell viability when 

compared to melanoma cultures, yielding cell viability values of aproximately 80% and 

showing no dependence on MFL concentration (figure 21). MFL-PpIX, however, revealed a 

dose-dependent cytotoxicity, suggesting fibroblasts are more prone to PpIX cytotoxicity, even 

when the PS is encapsulated. This pattern is repeated in groups exposed to free PpIX,which, as 

seen in melanoma cultures, has similar cytotoxicity to MFL-PpIX up to 7.5 µg/mL. The highest 

concentration presents a reduction of almost 20% in cell viability when compared to MFL-

PpIX, resulting in 40% of viable cells after 24 hours. When compared to melanoma cells, it is 

observed lower cell viability of the healthy cells, reinforcing the higher susceptibility of these 

cells to PpIX cytotoxicity. In PDT groups, blank MFLs present the same cell viability values, 

corroborating the absence of liposomes photoactivity due the absence of impact on cell viability 

upon irradiation. MFL-PpIX and free PpIX, however, display huge impact on cell viability after 

exposure to 630 nm with 50 J/cm², as it was also observed in the previously described results 

in melanoma cells.  

  

Figure 21 –  Blank MFL, MFL-PpIX and free PpIX PDT in fibroblasts cultures after exposing cells for 24 hours 

to 1.5, 7.5 and 15 µg/mL. Results are displayed as mean values of cell viability, and *** indicates 

significant differences when compared to the control group (cells not exposed to MFLs or PpIX and 

protected from light), with p ≤ 0.005. 

Source: By the author. 

  

As no dose-dependence was verified for the chosen experimental parametes so far, 

lower incubation times (1 and 4 hours)  PpIX concentration (0.1, 0.5 and 1 µg/mL) and light 
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fluences were assessed in tumor cells and healthy cells.  When non-melanoma skin cancer 

cultures were exposed to free PpIX for 1 hour, no cytotoxicity was observed when samples 

remained protected from light (figure 22). Upon irradiation, a dose-dependent pattern was 

observed for both PpIX concentration and light fluence: it was verified that 5 J/cm² was able to 

promote cell death on 60% of the population only when 1 µg/mL was used. 20 J/cm² promoted 

cell damage when 0.5 and 1 µg/mL solutions were used, with light fluence increase resulting in 

enhanced cell death. When assessing 50 J/cm², even the lowest PpIX concentration was able to 

promote a decrease on cell viability corresponding to approximately 50%. When cells were 

exposed for 4 hours to free PpIX, similar results were obtained, with a mild enhance on cell 

damage. This suggests that, over time, cells are able to internalize increased amounts of the free 

PS, enhancing the photodynamic damage, which is in accordance to the data produced by 

previously described uptake assays. Considering 20 J/cm² did not display efficient cell death 

rates, MFL-PpIX experiments were conducted with 1 and 4 hour incubation of 0.1, 0.5 and 1 

µg/mL and ligh fluences of 20 and 50 J/cm². No cytotoxicity was observed when cells weren’t 

exposed to 630 nm, and the same dose-dependent behavior thar was veririfed in free PpIX 

assays was also observed for MFL-PpIX. However, when comparing the effect of 

nanostructured PpIX to the free PS on cell viability, non-melanoma skin cancer show higher 

susceptibility to PDT when MFL-PpIX is used. For 1 hour of 0.1 µg/mL incubation, free PpIX 

reduced didn’t show any cell damage when exposed to 20 J/cm². For samples exposed to MFL-

PpIX under the same conditions, cell  viability values are reduced to approximately 60 %. The 

increase on incubation time becomes irrelevant (for this particular scale, 1 and 4 hours) when 

MFL-PpIX solutions of 0.5 µg/mL (or greater) are applied, almost completely decimating the 

cell population (viability values ranging from 3 to 5%).          
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Figure 22 – Free PpIX and MFL-PpIX-mediated PDT in non-melanoma skin cancer cultures after exposing cells 

for 1 and 4 hours to 0.5, 0.5 and 1 µg/mL and using 20, 40 and 50 J/cm² to irradiate the samples.  

Results are displayed as mean values of cell viability, and *** indicates significant differences when 

compared to the control group (cells not exposed to MFLs or PpIX and protected from light), with p 

≤ 0.005. 

Source: By the author. 

 

With 1 hour exposure to free PpIX, healthy cells cultures showed a dose-dependent 

profile mainly to PpIX concentration: no cell viabiality reduction when 0.1 µg/mL solutions 

were evaluated (figure 23).  When the PS concentration was increased to 0.5 µg/mL, cell 

survival values were approximately 75 and 65% when 20 J/cm² was delivered to the plates, 

with 50 J/cm² resulting in 30% of viable cells for 1 µg/mL incubation. Enhancing exposure time 

to the PS for 4 hours, fibroblasts become prone to PDT with the tested concentrations, with a 

dose-depent behavior on light fluence becoming evident when cells are incubated with 1  µg/mL 

solutions. 
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Figure 23 – Free PpIX and MFL-PpIX-mediated PDT in fibroblasts cultures after exposing cells for 1 and 4 hours 

to 0.5, 0.5 and 1 µg/mL and using 20, 40 and 50 J/cm² to irradiate the samples.  Results are displayed 

as mean values of cell viability, with ** and *** indicating significant differences when compared 

to the control group (cells not exposed to MFLs or PpIX and protected from light), with p ≤ 0.05 

and p ≤ 0.005, respectivelly. 

Source: By the author. 

 

Comparing tumor cell and healthy cells responses to free PpIX-mediated PDT, it is  

observed that non-melanoma cells present higher susceptibility to PDT damage than fibroblasts, 

most probably due the differences in PpIX uptake. As described in section 5.3.1, with 1 hour 

exposure, most of non-melanoma cells were able to internalize the free PS, while only 20% of 

fibroblasts present PpIX fluorescence. The difference between positively marked cells for PpIX 

between both cell lines is greatly reduced after 4 hours, when approximately 84% of healthy 

cells show PpIX incorporation. In particular, damage selectivity was greatly achieved when 

cells were exposed to 0.5 µg/mL for 1 hour, resulting in approximately 80% of fibroblasts 
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remaining viable after PDT, but non-melanoma skin cancer displayed cell survival of 40 and 

10% when irradiated with 20 and 50 J/cm², respectively. 

When MFL-PpIX were assessed in fibroblasts, PDT becomes much more effective, 

when compared to the free PS. Almost no difference is observed when incubation time is 

increased, except for the lowest concentration. When 0.1 µg/mL MFL-PpIX is incubated for 1 

hour, 20 J/cm² PDT displays no effect on cell viability, however, after 4 hours, cell viability 

values decrease to approximately 57%. Comparing cell damage promoted by MFL-PpIX-

mediated PDT to the observed results in non-melanoma skin cancer assessment, tumor cells 

present more prone to cell damage than healthy cells, with the enhanced photoxicity due to 

differences in sample uptake, as it was expected due tumor cells fast metabolism and data 

obtained in fluorescence microscopy/flow cytometry. MFL-PpIX selectivity to tumor cells was 

verified only when cells were exposed to 0.1 µg/mL for 4 hours and irradiated with 20 J/cm²: 

fibroblasts cultures yielded viability values close to 60% while non-melanoma skin cancer cells 

presented almost 18% of viable cells after PDT.  

 

5.3.3 ROS Production 

 

As described in section 4.8.4, PDT cytotoxicity may result from ROS generation upon 

irradiating photoactive substances. Using H2DCFDA, we assessed if, as seen for the PSilQ 

nanopplatform, the damage promoted by liposome-carried PpIX-mediated PDT was due the 

photodynamic process. We first evaluated PDT using a final concentration of PpIX 

corresponding to 1.5 and 15 µg/mL of both PpIX and MFL-PpIX incubated for 24 hours. 50 

J/cm² were delivered to melanoma cell cultures and fibroblasts. 

In melanoma cells (B16-F10), when cells remain protected from light exposure, no 

significant differences on ROS levels are detected in any sample (figure 24). Upon irradiation 

with 630 nm (50 J/cm²), basal levels of ROS are increased, with blank MFL displaying no 

significant effect on ROS production. Cells exposed to PpIX, however, showed an increase on 

these species generation, with fluorescence intensity displaying a non-linear direct dependence 

on PpIX concentration. ROS production was more extensively produced on cells exposed to 15 

µg/mL MFL-PpIX, despite increased uptake being observed when free PS is used. This may be 

due the proximity of the molecules inside the cells, with increased PpIX concentrations in the 
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cytoplasm resulting in molecules close to each other. Tighly packed molecules may lead to 

aggregation and quenching, which could explain lower ROS production. But as it was seen in 

section 5.3.2, no significant difference in cell viability was produced when comparing MFL-

PpIX and free PpIX, considering almost complete cell death was achieved for all concentrations 

in both samples. This reinforces the idea that optimal PpIX concentration may be lower than 

the ones initially assessed.  

 

Figure 24 –  Fluorescence intensity measurement for ROS production quantification in melanoma cells exposed 

to blank MFL (MFL), MFL-PpIX and free PpIX after incubation for 24 hours. PDT and 

phototoxicity groups were exposed to 630 nm, with a light fluence of 50 J/cm². 

Source: By the author. 

 

In experiments involving fibroblastos, the absence of variations on ROS levels when 

samples are kept in the dar kis also observed, independently on PpIX concentration (figure 25). 

Light exposure to the previously described parameters resulted on a slight increase on ROS 

production when cells are exposed to blank MFLs, as it was also verified in melanoma cells. 

Higher H2DCFDA fluorescence intensity values were observed when PpIX concentration was 

increased, for both MFL-PpIX and free PpIX, with liposomes presenting greater levels of ROS 

production, as it was also observed in tumor cells cultures. When compared to melanoma cells, 

fibroblastos show lower fluorescence signal, which are explained by the reduced cell number 

of healthy cells after seeding when compared to melanoma cells, due to tumor cells presenting 

faster growth rates, and the increased PpIX uptake verified in tumor cells. Lower ROS 
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production, however, didn’t lead to lower PDT efficacy, with fibroblasts and melanoma 

viability presenting no significant differences.  

 

Figure 25 – Fluorescence intensity measurement for ROS production quantification in fibroblasts exposed to blank 

MFL (MFL), MFL-PpIX and free PpIX after incubation for 24 hours. PDT and phototoxicity groups 

were exposed to 630 nm, with a light fluence of 50 J/cm². 

Source: By the author. 

 

 The absence of MFL-PpIX selectivity to tumor cells and the lack of a dose-dependent 

profile on PpIX concentration may suggest that optimal PDT parameters might be attained 

using lower incubation times, light fluence and PpIX concentration. PDT assays revealed MFL-

PpIX-mediated PDT is more efficient when compared to treatment using free PpIX, and showed 

non-melanoma skin cancer cells are more prone to PDT damage than fibroblasts. Therefore we 

assessed ROS production in non-melanoma skin cancer cells when cells were exposed for 1 and 

4 hours to the lowest and higher concentration (0.1 and 1 µg/mL) and irradiated with 50 J/cm². 

When exposure occurred for 1 hour, it was observed a slight difference in ROS levels when 

cells weren’t exposed to light when blank MFLs were used, including µg/mL when samples 

were exposed to light (figure 26). But a significant increase on ROS production was attained 

when 1 µg/mL solutions of MFL-PpIX and free PpIX were used. No further enhancement in 

these molecular species generation was observed when cells were exposed to the samples for 4 

hours, which is in accordance with the cell death promoted by these parameters, described in 

section 5.3.2, that presented similar viability values for both 1 and 4 hour exposure.  
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Figure 26 – Fluorescence intensity measurement for ROS production quantification in fibroblasts exposed to blank 

MFL (MFL), MFL-PpIX and free PpIX concentrations, corresponding to a final PpIX concentration 

of 0.1 and 1 0.1 and 1 µg/mL, after incubation for 1 and 4 hours. PDT and phototoxicity groups were 

exposed to 630 nm, with a light fluence of 50 J/cm². 

Source: By the author. 
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6 CONCLUSION 

 

Cancer is among the biggest causes of mortality in the world and its incidence continues 

to increase year after year, making it necessary to perpetuate investigations of alternative or 

supporting techniques for the treatment of this set of diseases. The combination of the oxidative 

damage of PDT with the improvement in FSs delivery to the treatment target that 

nanotechnology provides can potentiate the treatment effects, and allow tumors located in 

deeper tissues to be treated with this technique. Thus, it was proposed to evaluate the potential 

of redox-responsive silica nanoparticles (PSilQ nanoparticles) and membrane fusogenic 

liposomes (MFLs) carrying PpIX for PDT. The effect of different solventes on PSilQ 

nanoparticles, nanostructures uptake and their phototoxicity have been evaluated. 

It was found that, for both PpIX and nanoparticles, the use of culture media or PBS for 

its preparation favors its aggregation, however images from confocal microscopy and other 

techniques evaluating PpIX fluorescence, as well as the intensity of its signal, showed 

internalization by breast cancer cells after 24 hours of exposure. It was observed that, when free 

PpIX concentration matches the corresponding PpIX concentration carried by the nanoparticles 

are incubated with the cells, there is a greater incorporation of the PS, which is distributed 

almost homogeneously throughout cell cytoplasm. PSilQ nanoparticles incubation reveals 

lower PpIX internalization and exhibits aggregates in the cytoplasm. Despite these distinctions, 

phototoxicity studies have shown that the efficiency of free PpIX and PSilQ nanoparticles, in 

in vitro tests, are comparable but with the advantage that the nanostructured PpIX presented 

lower toxicity in the dark, compared to the free PS. It is also possible to modulate the PSilQ 

selectivity to murine melanoma cells, when compared to fibroblasts, by using lower nanocarrier 

concentrations. ROS quantification assays revealed both free PpIX and RR-PpIX-PSilQ 

promote ROS production when exposed to 630 nm (50 J/cm²), with the nanoparticles producing 

larger quantities. This suggests that when PpIX is nanostructured, lower amounts of the PS is 

internalized but the molecules are found inside the cells mainly in its monomeric form. Upon 

irradiation, the absence of aggregation results in increased ROS production, when compared to 

PpIX. In its free form, PpIX is more  efficiently internalized but yields lower ROS production, 

probably due the close proximity of the molecules and aggregation, which may lead to 

quenching. Liposomal PpIX also showed higher susceptibility of tumor cells to PDT, and 

displayed increased ROS production when compared to free PpIX. When compared to PSilQ, 
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MFLs showed similar effects on cell viability upon irradiation with lower PpIX concentrations 

and lower incubation times. 

In general, in vitro assays revealed it is possible to promote selective cell damage to 

tumor cell lines varying PpIX concentration and incubation time. Both nanostructures displayed 

similar efficacy for in vitro anti-tumor PDT when compared to free PpIX, presenting lower 

cytotoxicity to the cells when protected from light. This suggests PSilQ and MFLs may present 

increased PDT efficacy in pre-clinical studies when compared to the free PS, where more 

complex effects take place, such as opsonisation and corona protein, that tend to reduce 

treatment efficacy. 
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