• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.76.1999.tde-27112014-164749
Document
Auteur
Nom complet
Fátima Nelsizeuma Sombra de Medeiros
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1999
Directeur
Jury
Costa, Luciano da Fontoura (Président)
Cruvinel, Paulo Estevão
Dutra, Luciano Vieira
Orgambide, Alejandro César Frery
Tannus, Alberto
Titre en portugais
Filtragem adaptativa de imagens de radar de abertura sintética utilizando a abordagem maximum a posteriori
Mots-clés en portugais
Filtragem
Imagens SAR
Ruído speckle
Resumé en portugais
Imagens de radar de abertura sintética (SAR) são tipicamente corrompidas pelo ruído "speckle" que também degrada imagens geradas por ultra-som, laser, etc. Esta tese propõe algoritmos de filtragem baseados na abordagem "maximum a posteriori" (MAP) para redução de "speckle" em imagens SAR. Na derivação dos filtros MAP, para imagens obtidas por detecção linear, são utilizadas as distribuições (condicionais) Rayleigh e raiz quadrada de gama na regra de Bayes como modelos para o ruído "speckle" em imagens SAR obtidas em amplitudes com 1 e múltiplas visadas, respectivamente, e usadas várias distribuições para o modelo "a priori". Toda a formulação dos algoritmos tem por base o modelo multiplicativo que constitui o modelo mais adequado ao "speckle". Propõe-se ainda neste trabalho a combinação dos filtros MAP formulados com o algoritmo k-médias e com a técnica de crescimento de regiões, como forma de melhoria da abordagem de filtragem proposta. Os resultados de filtragem foram avaliados segundo critérios (medidas) de melhoria da relação sinal-ruído e perda de resolução. O primeiro critério avalia a redução da intensidade do ruído "speckle" sobre regiões homogêneas e para avaliar a perda de resolução decorrente da filtragem é proposta uma nova técnica baseada na transformada de Hough. Os algoritmos foram testados em imagens artificialmente contaminadas por ruído "speckle" e em imagens SAR reais apresentando estatísticas Rayleigh e raiz de gama. Os resultados obtidos mostram a melhoria que proporcionam os algoritmos de filtragem MAP, especialmente quando combinados com o classificador k-médias e com a técnica de crescimento de região. O uso da técnica de crescimento de região reforça a conclusão de que o uso de vizinhança estatisticamente mais semelhante ao pixel ruidoso melhora a estimação dos parâmetros de filtragem. As medidas de desempenho e validação dos algoritmos MAP permitiram concluir que os filtros com distribuições "a priori" Gaussiana, gama, chi-quadrado e beta apresentaram melhores resultados de filtragem em relação aos demais modelos "a priori" quando comparados ao filtro de Kuan e com a técnica de "wavelets" para a classe de imagens utilizadas
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
Synthetic aperture radar (SAR) images are typically corrupted by speckle noise, which also degrade images produced by laser beams, ultrasound, etc. This thesis proposes filtering algorithms based on the "maximum a posteriori" (MAP) approach, to reduce speckle in SAR images. To derive the MAP filters for linearly detected images we assumed the multiplicative model for the speckle and used the conditional density functions in the Bayes rule following a Rayleigh and square root of gamma for one-look and N-looks images, respectively, and several different "a priori" densities. The MAP filters are combined with the k-means classifier and region growing tools to improve the proposed filtering approach. Measures evaluating both the signal-to-noise improvement and resolution loss due to filtering are computed. To assess the improvement brought by the proposed algorithms we evaluate them with respect to signal to noise ratio and edge preservation. The former is a classical way to evaluate the speckle strenght reduction over homogeneous areas and the latter is a new proposed technique based on the Hough transform that measures distortions at the edges produced by the speckle MAP filtering algorithms. The qualitative analysis of the MAP proposed algorithms includes the methods based on the curvature and wavelets . The algorithms were applied to simulated noisy speckled images and real SAR images with statistics of linearly detected images with one-look and N-looks. The obtained results demonstrated the improvement brought by the speckle MAP filtering algorithms, specially when combined with the k-means clustering algorithm and with the region growing approach. This region growing approach reinforces the conclusion that the use of a neighborhood whose pixels have statistics similar to the noisy pixel provides a better estimation for filtering. The evaluating measures point out that the MAP filters whose "a priori" models are the Gaussian, gamma, chi-square and beta presented better results than the other "a priori" models proposed in this thesis, the Kuan filter and the wavelets filter, for the class of images that were tested
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
FatimaMedeirosD.pdf (7.56 Mbytes)
Date de Publication
2014-11-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.