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ABSTRACT

MOREIRA, N.A. CoupledDipoles.jl: a Julia package for cold atoms. 2023. 116p.
Thesis (Doctor in Science) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2023.

Modern physics includes theoretical, experimental, and numerical approaches that often
overlap. One such field exemplifying this integration is Cold Atoms, which has witnessed a
surge in intriguing discoveries over the past few decades. Not surprisingly, its numerical as-
pects, such as convergences tolerances, or fastest algorithms, have been largely absent from
the literature, with the prevailing notion that equations can be effortlessly solved using
conventional techniques. This perception, however, cannot align with reality. Computer
simulations in this field have boundaries that are not documented and can affect physi-
cal outcomes, but pinpointing them is challenging. We introduce CoupledDipoles.jl, a
specialized Julia Package designed for simulating interacting cold atoms through various
mathematical models. Our package offers a flexible infrastructure that allows for differ-
ent models (e.g. 2D models, where the effective physics is constraint into a plane) to be
incorporated and, in addition, brings guarantees that its core methods have optimal per-
formance. By addressing this unconventional gap in the literature, we aim to shed light
on the numerical methods in the field, often overlooked, providing a valuable resource for
both newcomers seeking an entry point and experts aiming to enhance their productivity
in this domain.

Keywords: Cold atoms. Coupled dipoles. Julia language.





RESUMO

MOREIRA, N.A. CoupledDipoles.jl: um pacote Julia para átomos frios. 2023. 116p.
Tese (Doutorado em Ciências) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2023.

A física moderna inclui abordagens teóricas, experimentais e numéricas que frequente-
mente se sobrepõem. Um campo que exemplifica essa integração é o dos Átomos Frios,
visto que testemunhou um aumento de descobertas intrigantes nas últimas décadas. Não
é surpreendente que seus aspectos numéricos, como tolerâncias de convergência ou al-
goritmos mais rápidos, tenham estado em grande parte ausentes na literatura, com a
noção predominante de que equações podem ser facilmente resolvidas usando técnicas
convencionais. No entanto, essa percepção não condiz com a realidade. As simulações
computacionais nesse campo têm limites que não estão documentados e podem afetar os
resultados físicos, mas identificá-los é desafiador. Apresentamos o CoupledDipoles.jl,
um pacote escrito Julia especializado projetado para simular átomos frios interagindo por
meio de vários modelos matemáticos. Nosso pacote oferece uma infraestrutura flexível que
permite a incorporação de diferentes modelos (por exemplo, modelos 2D, nos quais a física
efetiva é limitada a um plano) e, além disso, garante que seus métodos principais tenham
desempenho ótimo. Ao abordar essa lacuna não convencional na literatura, pretendemos
esclarecer os métodos numéricos no campo, frequentemente negligenciados, fornecendo
um recurso valioso tanto para iniciantes que buscam um ponto de entrada quanto para
especialistas que desejam aprimorar sua produtividade nesse domínio.

Palavras-chave: Atomos frios. Dipolos acoplados. Linguagem Julia.
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1 INTRODUCTION

The phenomenon of spontaneous emission is a cornerstone of quantum optics,
governing the quantum mechanical behavior of emitters. It is a fundamental process in
which an excited quantum system, such as an atom, undergoes a transition to a lower
energy state, releasing a photon.1 The rate at which spontaneous emission occurs, often
quantified through emission probabilities, holds critical importance in a wide array of
quantum technologies, ranging from atomic clocks to single-photon sources and quantum
memories.2

Indeed, in the context of quantum technologies the traditional free-space spon-
taneous emission probabilities undergo profound alterations when a quantum emitter is
situated within an external medium, such as a resonant cavity3,4 or in proximity to other
atoms. This medium-mediated interaction results in the modification of the electromag-
netic states accessible to the emitter. It is here that the famed Purcell effect5 comes into
play. The Purcell effect, named after physicist Edward M. Purcell, characterizes how the
density of electromagnetic states in a surrounding medium influences spontaneous emis-
sion. In essence, the presence of this external environment introduces additional pathways
for energy exchange between the emitter and its surroundings. Consequently, this inter-
action leads to discernible changes in the quantum system’s radiative and non-radiative
decay rates. Indeed, interference phenomena arise due to the multitude of potential emis-
sion channels, influencing the emission dynamics.

Not only cavities but also the presence of other atoms defy predictions made by
standard electrodynamics due to collective effects. Notably, collective optical responses
deviate significantly from the averaged atom-atom interactions dsecribed in continuous
media (dielectric description, for example), and superradiance, introduced by Dicke6 in
1954, is one of the most well-known effects in this category. It corresponds to the modi-
fication of the emission from a two-level atom due to the presence of neighboring atoms.
The foundational work by Dicke has laid the groundwork for extensive research in the
field of light emission and scattering from ensembles of two-level systems.

To address the challenge of properly modelling the collective emission of light by
atomic systems, the Coupled Dipole Equations (CDE) were derived, which accounts for the
fact that the atoms interact with common modes of the quantized electromagnetic fields,
creating an effective dipole-dipole interaction,7 from which scattered light intensity is then
derived and compared to experiments. For instance, F. Robicheaux has explored line-
broadening8 and polarization9 in atomic clouds, with recent work on superradiance.10,11

F. Pinheiro and L. Dal Negro have leveraged the Coupled Dipole Equations for research
on structures like Aperiodic Vogel Spirals12 and hyper uniform structures.13 R. Kaiser and
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W. Guerin have lead investigations into super- and subradiance.14–16 Finally, S. Skipetrov
has notably delved into the disappearance of Anderson localization and its recovery.17,18

Studies in this field are usually published in Physics Review A (PRA) or Physics
Review Letters (PRL). The PRA guide for authors states that papers must stand on their
own; it must be understandable and convincing without the Supplemental Material.19 In
limiting the space for publication, it is understandable that certain aspects of the research
will not be explicitly mentioned. Consequently, because computer codes are not typically
published or shared in physics, the exact numerical methodologies used in these journals
have received little attention. On the other hand, communities specializing in numerical
methods, such as the Journal of Computational Physics (CompPhy) and the Journal of
Open Source Software (JOSS), have specific policies that require authors to share their
codes to ensure reproducible results.20,21 It is important to note that these journals focus
primarily on the numeric techniques employed, rather than the specific outcomes in the
domain of physics research.

This thesis seeks to address a significant gap in the field, the glaring absence of
optimizations on the numerical aspects of Coupled Dipole Equations and their extensions.
QuTip22 and QuantumOptics.jl23 are packages focused only on simulation of quantum sys-
tems and are limited to a small number of atoms. Even supplementary materials fall short
of elucidating these complex challenges comprehensively, Robicheaux and Sutherland9 is
one of the few exceptions worth mentioning, which proposes a dedicated iterative method
to solve linear systems of equations; Yet, with further testing, we conclude that it is a tool
limited to some specific parameters regime. In response, we develop a library of metic-
ulously crafted models, optimized to deliver exceptional speed and controlled accuracy
for linear and quantum-truncated regimes. Our primary aim is to empower researchers,
enabling them to work more efficiently within this domain, especially for newcomers in the
field, who need an entry-point with tested and validated resources. The resulting pack-
age was written in Julia language given its unique characteristic of being as fast (when
properly optimized) as C or Fortran, and its friendly syntax akin to Python or Matlab.

The speed aspect influences directly productivity on a personal computer, and, if
scientists migrate to Cloud Computing to develop their research on CDE, it will further
reduce the computational cost. For this reason, we had two core objectives driving our
methodology. First, to identify the different simulations utilized in this area, and write a
systematic documentation of equations in a standardized notation to enhance clarity and
reproducibility. Second, to develop specialized methods tailored to meet the unique de-
mands of these simulations. To ensure the optimization process is thorough and effective,
we continually scrutinize and compare various computational tools, relying on profiling
and benchmarking as our guiding principles.

Also, we will present the strategies employed to enhance the speed and accuracy of



23

these equations, offering detailed insights into the decision-making process that influenced
our results. Importantly, our approach is geared towards improving existing fundamental
equations rather than introducing entirely new algorithms. While we aim to provide a
valuable reference and benchmarking platform, we do not intend to replicate the existing
literature. Last, we will not consider outcomes stemming from packages that deliver results
at a slower pace.

This thesis elucidates the theoretical foundations, focusing on the origins of fun-
damental equations in Chapter 2. Chapter 3 offers insight into the inner mechanisms
of our package, outlining its core principles. In Chapter 4, we present a comprehensive
array of optimization techniques designed to improve efficiency. Shifting our focus to
practical applications, Chapter 5 reveals new physical results in the field of subradiance
and localization. Lastly, in Chapter 6, we provide practical resources, including real code
implementations and valuable tips for the seamless daily utilization of our package.
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2 THEORETICAL BACKGROUND

Our goal is to explore how light interacts with a medium at a macroscopic scale,
while taking into account the quantum behavior of the atomic emitters. To do this, we
need to use a microscopic model that describes how a collection of atoms interacts with
the electromagnetic field. A common example of this phenomenon is induced polarization,
which is often discussed in electromagnetism textbooks. When a material is exposed to an
external electromagnetic field, it exerts a force on the charged particles inside the material.
These particles then oscillate, creating dipole moments within the material. The dipoles
generate electric fields that modify the propagation of the total field by interfering with
the incident field. To fully understand the atom-light interaction, we have to use quantum
mechanics, not just classical electromagnetism. Quantum mechanics explains how atoms
and electromagnetic fields interact to produce spectral lines, spontaneous decay, and atom
saturation. These effects arise from the specific quantum properties of atoms, such as
discrete energy levels, transitions, and stochastic processes like spontaneous emission.

Lehmberg7 treats the problem starting from a light-matter Hamiltonian, with
atoms interacting with quantized modes of the electromagnetic field, and after some ap-
proximations, traces out the degrees of freedom of the light, thus reaching a Coupled
Dipole Model. We will present a different mathematical approach, using density matrix,
to derive the same model, which is a powerful approach to studying ultra-cold physics in
both experimental and theoretical settings.

2.1 Model

Consider N identical atoms arranged at different positions rj. Each atom is treated
as having two states: lower state |gj⟩ and upper state |ej⟩. The atoms are characterized
by a transition frequency ωa, a decay rate Γ, and a lifetime τ = 1/Γ. The system is
illuminated by a monochromatic laser field EL with amplitude E0, wave vector k0 = ẑ,
and frequency ω, leading to a pump-atom detuning ∆ = ω0 − ωa. Atoms are indirectly
linked to each other by the electromagnetic field, causing an effective interaction between
their electric dipoles.24

Figure 1 illustrates a homogeneous spherical distribution of atoms driven by a
Gaussian laser field. The shape of the atomic cloud can affect some results, but model
used is not restricted to a specific geometry.
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Figure 1 – Cloud of N atoms, each containing |gj⟩ and |ej⟩ states, driven by a Gaussian
beam of frequency ω. The observable of the system is the scattered intensity,
which is measured at some detectors, represented by the ring of points around
the cloud.

Source: By the author.

2.1.1 Effective Hamiltonian

Each atom follows the algebra of spin-1/2 angular momentum. To switch between
states |e⟩ and |g⟩, jump operators σ̂− = |g⟩⟨e| and σ̂+ = |e⟩⟨g| are used. Our study relies
on these operators because they play a key role in dipole moment formation.25 Let us
first introduce Bienaimé et al.26’s Effective Hamiltonian, which simplifies the problem by
tracing out the modes of the electromagnetic field7 and single-excitation approximation.7

The Effective Hamiltonian is given by:

H(t) =
N∑

j=1

Hj(t)︷ ︸︸ ︷
−ℏ∆j

2
σ̂z

j + ℏ
Ωj(t)

2
(σ̂+

j + σ̂−
j ) +

N∑
j,m̸=j

ℏ∆jmσ̂
+
j σ̂

−
m, (2.1)

where Hj refers to the single-atom Hamiltonian for atom j. The first term represents the
detuning between the frequency of the driving laser and of the transition of atom j, with
σ̂z representing the Pauli matrix (population inversion). The second term describes the
interaction between the atom and the laser field (drive), where σ̂+ and σ̂− are the raising
and lowering operators, respectively. The drive of this interaction is modulated by the
time-dependent Rabi frequency Ωj(t), which governs the absorption and emission of pho-
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tons from the laser by the atom. The last term accounts for the dipole-dipole interaction
between the j-th and m-th atoms, with ∆jm representing the interaction strength.

The time evolution of an open system is governed by the master equation:

dρ

dt
= − i

ℏ
[H(t), ρ(t)] + L[ρ(t)], (2.2)

where ρ is the density matrix and L is the Lindblad operator describing the dissipative
dynamics of the system

L[ρ(t)] = 1
2
∑
j,m

Γjm[2σ̂−
j ρ(t)σ̂+

m − ρ(t)σ̂+
j σ̂

−
m − σ̂+

j σ̂
−
mρ(t)]. (2.3)

The Lindblad operator is decomposed in a series of collapse operators, with both
single-atom and coupled decay terms. These represent the interaction between the system
and its environment. Analytical solutions for Equation 2.2 typically exist only for systems
consisting of one and two atoms. For larger systems, one typically uses packages such as
QuTiP22 or QuantumOptics.jl,23 or approximated methods. Norambuena, Tancara and
Coto27 provide a comprehensive overview of numerical techniques in this field. It is worth
noting that numerical approaches rely on matrices and vectors to represent states and
operators. For example, considering three dipoles labeled as ˆ̂σ1, ˆ̂σ2, and ˆ̂σ3, their fictitious
Hamiltonian can be expressed:

Ĥ = σ̂−
1 + σ̂−

2 + σ̂−
3 . (2.4)

In the case of a two-level system, the Pauli matrices are a practical representation.
However, when dealing with a tensor product of spins, the explicit representation of the
tensor product is required. Therefore, Equation 2.4 can be rewritten as:

Ĥ = [σ̂−
1 ⊗ 12 ⊗ 13] + [11 ⊗ σ̂−

2 ⊗ 13] + [11 ⊗ 12 ⊗ σ̂−
3 ]. (2.5)

where 1n represents the identity matrix for the n-th spin. The size of the Pauli matrices
being 2 × 2, the tensor product operation for N spins yields 2N elements. Norambuena,
Tancara and Coto27 also estimate the memory requirement for storing a dense matrix as
M = (2N)2 × (8 bytes) × (10−9 Gb/bytes). To only represent Equation 2.4, without any
dynamics (this is usually not an interesting scenario), and considering a computer with
16Gb of RAM, N = 14 or N = 15 would represent the upper limit for full quantum
mechanical simulations, without employing specialized techniques. In practice, one’s in-
terest lies in the quantum state evolving over time, which requires a greater allocation of
resources. As a result, in practice, the upper limit is always smaller than predicted.

To overcome the limitations posed by the number of atoms, one can simplify the
mathematical framework while retaining relevant information. In particular, if the atomic
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dipoles linked to the scattered electric field are the only properties of interest, monitoring
the full quantum state of the system may not be necessary. In the following section, we will
derive the expectation values of the atomic states using the master equation approach.

2.2 Scalar Coupled Dipoles Equations

Alan Costa dos Santos gave valuable insights about the approximations for the
equations and derivations in this work. Our collaboration focused on refining and ex-
panding upon the intermediary steps to enhance clarity and facilitate comprehension for
the reader.

The solution of Equation 2.2 corresponds to a density matrix at a given time, from
which any physical quantity can be computed. Nonetheless, our goal is at first to obtain
the equations of motion only for the expectation value of ⟨σ̂±⟩ using the trace with the
density matrix, because they provide the electric field emitted by the atom. For each atom
j, the expected value of ⟨σ̂−

j ⟩ will be denoted as βj:

β̇j(t) = ⟨ ˙̂σ−
j ⟩ = Tr{ρ̇(t)σ̂−

j } = Tr{[H, ρ(t)]σ̂−
j }+ Tr{L[ρ(t)]σ̂−

j }, (2.6)

where H and L denote the unitary and non-unitary part of the dynamics, respectively,
defined as26

H[ρ(t)] = − i
ℏ

N∑
j=1

[Hj(t), ρ(t)]− i
N∑

j,m̸=j

∆jm[σ̂+
j σ̂

−
m, ρ(t)], (2.7)

L[ρ(t)] = 1
2
∑
j,m

Γjm[2σ̂−
j ρ(t)σ̂+

m − ρ(t)σ̂+
mσ̂

−
j − σ̂+

mσ̂
−
j ρ(t)], (2.8)

with

∆jm = −Γ
2

cos(k0|rj − rm|)
k0|rj − rm|

, (2.9)

Γjm = Γsin(k0|rj − rm|)
k0|rj − rm|

. (2.10)

In order to clarify the numerical implementation of Equation 2.6 and to better motivate
the approximations which can then be applied to the underlying equations, we dedicate the
following subsections to their derivation. The specific form of the interaction, incorporated
in Γjm and ∆jm, will be used only at the end, to make the final equations explicit.

2.2.1 Unitary Part

Our convention is to consistently use j as the primary index for the dynamics of
a given atom, while summations describing the interaction are operated on indices l and
m. Consequently, only the σ̂−

j term will retain the j label, while in Equation 2.7 and
Equation 2.8, there will be a change of index from j to l.
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Tr{H[ρ(t)]σ̂−
j } = − i

ℏ

N∑
l=1

Tr{[Hl(t), ρ(t)]σ̂−
j } − i

N∑
l,m ̸=l

∆lmTr{[σ̂+
l σ̂

−
m, ρ(t)]σ̂−

j }

= − i
ℏ

N∑
l=1

Tr{Hl(t)ρ(t)σ̂−
j − ρ(t)Hl(t)σ̂−

j } − i
N∑

l,m ̸=l

∆lmTr{[σ̂+
l σ̂

−
m, ρ(t)]σ̂−

j }.

(2.11)

Moving forward, we will omit the explicit dependence on time. Regarding the first term
in the above equation, we can express it as follows:

N∑
l=1

Tr{Hlρσ̂
−
j − ρHlσ̂

−
j } =

N∑
l=1

Tr{ρσ̂−
j Hl − ρHlσ̂

−
j } = Tr{ρ[σ̂−

j , Hj]}. (2.12)

For the final step, we utilized the commutation relation [σ̂−
j , Hl] = δjl[σ̂−

j , Hl]. The ex-
pression for Hj are the first and second terms on Equation 2.1

Tr{ρ[σ̂−
j , Hj]} = Tr

{
ρ

[
σ̂−

j ,−ℏ
∆j

2
σ̂z

j + ℏ
Ωj

2
(σ̂+

j + σ̂−
j )
]}

= −ℏ
2

∆jTr{ρ[σ̂−
j , σ̂

z
j ]}+ ℏ

2
ΩjTr{ρ[σ̂−

j , (σ̂+
j + σ̂−

j )]}

= −ℏ
2

∆jTr{ρ[σ̂−
j , σ̂

z
j ]}+ ℏ

2
ΩjTr{ρ[σ̂−

j , σ̂
+
j ]}. (2.13)

In the following steps, we will perform various operations involving Pauli matrices for
indices j and m. The following relations are used:

[σ̂±
j , σ̂

±
m] = 0; {σ̂±

j , σ̂
±
m} = 2σ̂±

j σ̂
±
m,

[σ̂±
j , σ̂

∓
m] = ±δmjσ̂

z
j ; {σ̂±

j , σ̂
±
m} = 2(1− δmj)σ̂±

mσ̂
±
j ,

and lastly, 2σ̂±
j σ̂

∓
j − 1 = ±σ̂z

j , one may proof that

[σ̂z
j , σ̂

±
m] = ±2δmjσ̂

±
j ; {σ̂z

j , σ̂
±
m} = 2[σ̂z

mσ̂
±
j ∓ δmj]σ̂±

j .

These relations allow us to rewrite Equation 2.13 as follows:

Tr{ρ[σ̂−
l , Hl]} = −ℏ

2
∆jTr{ρ[σ̂−

j , σ̂
z
j ]}+ ℏ

2
ΩjTr{ρ[σ̂−

j , σ̂
+
j ]}

= −ℏ
2

∆lTr{ρ(2σ̂−
j )}+ ℏ

2
ΩlTr{ρ(−σ̂z

j )}

= −ℏ∆lTr{ρσ̂−
j } −

ℏ
2

ΩjTr{ρσ̂z
j}. (2.14)

To complete the derivation of the unitary dynamics, we still need to calculate the
second term in Equation 2.11. However, since we have already demonstrated the general
procedure, we can now proceed more efficiently by omitting the justification of each step:

N∑
l,m ̸=l

∆lmTr{[σ̂+
l σ̂

−
m, ρ]σ̂−

j } =
N∑

l,m ̸=l

∆lm[Tr{σ̂+
l σ̂

−
mρσ̂

−
j } − Tr{ρσ̂+

l σ̂
−
mσ̂

−
j }]
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=
N∑

l,m ̸=l

∆lm[Tr{ρσ̂−
j σ̂

+
l σ̂

−
m} − Tr{ρσ̂+

l σ̂
−
j σ̂

−
m}]

=
N∑

l,m ̸=l

∆lmTr{ρ[σ̂−
j , σ̂

+
l ]σ̂−

m}

=
N∑

l,m ̸=l

∆lmTr{ρ(−δljσ̂
z
j )σ̂−

m}

= −
N∑

m̸=j

∆jmTr{ρσ̂z
j σ̂

−
m}. (2.15)

In summary, the unitary component of the evolution of σ̂−
j is given by:

Tr{H[ρ(t)]σ̂−
j } = − i

ℏ

(
−ℏ∆jTr{ρσ̂−

j } −
ℏ
2

ΩjTr{ρσ̂z
j}
)
− i

− N∑
j,m̸=j

∆jmTr{ρσ̂z
j σ̂

−
m}


= i

(
∆jTr{ρσ̂−

j }+ 1
2

ΩjTr{ρσ̂z
j}
)

+ i
N∑

m ̸=j

∆jmTr{ρσ̂z
j σ̂

−
m}. (2.16)

2.2.2 Lindbladian component

The dissipative part of the system evolution is obtained by plugging the Equa-
tion 2.8 into Equation 2.6. Once again, the expressions can be considerably simplified by
using the relations between Pauli matrices mentioned previously.

Tr{L[ρ]σ̂−
j } = 1

2
∑

l,m ̸=l

Γlm[2 · Tr{σ̂−
l ρσ̂

+
mσ̂

−
j } − Tr{ρσ̂+

mσ̂
−
l σ̂

−
j } − Tr{σ̂+

mσ̂
−
l ρσ̂

−
j }]

= 1
2
∑

l,m ̸=l

Γlm[2 · Tr{ρσ̂+
mσ̂

−
j σ̂

−
l } − Tr{ρσ̂+

mσ̂
−
l σ̂

−
j } − Tr{σ̂+

mσ̂
−
l ρσ̂

−
j }]

= 1
2
∑

l,m ̸=l

Γlm[Tr{ρσ̂+
mσ̂

−
j σ̂

−
l }+ Tr{ρσ̂+

mσ̂
−
j σ̂

−
l } − Tr{ρσ̂+

mσ̂
−
j σ̂

−
l } − Tr{σ̂+

mσ̂
−
j ρσ̂

−
l }]

= 1
2
∑

l,m ̸=l

Γlm[Tr{σ̂−
l ρσ̂

+
mσ̂

−
j } − Tr{σ̂−

l ρσ̂
+
mσ̂

−
j }+ Tr{ρσ̂+

mσ̂
−
j σ̂

−
l } − Tr{ρσ̂+

mσ̂
−
j σ̂

−
l }]

= 1
2
∑

l,m ̸=l

Γlm[Tr{σ̂−
l ρ[σ̂+

m, σ̂
−
j ]}+ Tr{ρσ̂−

m[σ̂−
l , σ̂

−
j ]}]

= 1
2
∑

l,m ̸=l

Γlm[Tr{σ̂−
l ρδjmσ̂

z
m}]

= 1
2
∑

l

Γlj[Tr{σ̂−
l ρσ̂

z
j}]

= Γjj

2
Tr{σ̂−

j ρσ̂
z
j}+ 1

2
∑
l ̸=j

Γlj[Tr{σ̂−
l ρσ̂

z
j}]

= Γjj

2
Tr{ρ(−σ̂−

j )}+ 1
2
∑
l ̸=j

Γlj[Tr{ρσ̂−
l σ̂

z
j}]
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= −Γjj

2
Tr{ρσ̂−

j }+ 1
2
∑
j ̸=l

Γjl[Tr{ρσ̂−
l σ̂

z
j}]. (2.17)

2.2.3 Gathering Results

By joining Equation 2.16 and Equation 2.17, we get an explicit form of Equa-
tion 2.6. For convenience, we retain the primary index into j, and change all secondary
indices as m, so we get

⟨ ˙̂σ−
j ⟩ = i

(
∆jTr{ρσ̂−

j }+ 1
2

ΩjTr{ρσ̂z
j}
)

+ i
N∑

m̸=j

∆jmTr{ρσ̂z
j σ̂

−
m} −

Γjj

2
Tr{ρσ̂−

j }

+ 1
2
∑
m ̸=j

Γjm[Tr{ρσ̂−
mσ̂

z
j} (2.18)

=
(
i∆j −

Γjj

2

)
Tr{ρσ̂−

j }+ i
Ωj

2
Tr{ρσ̂z

j}+ i
N∑

m ̸=j

[
∆jm − i

Γjm

2

]
Tr{ρσ̂z

j σ̂
−
m}. (2.19)

Now, we will introduce the already mentioned notation ⟨ ˙̂σ−
j ⟩ = βj. Additionally, we will

make the approximations that the laser pump has weak saturation, resulting in the excited
population (1+σ̂z

j )/2 = σ̂+
j σ̂

−
j being close to zero, i.e., σ̂z

j ≈ −1. Consequently, Tr{ρσ̂z
l σ̂

−
m}

can be substituted by −Tr{ρσ̂−
m}, resulting in

β̇j(t) =
(
i∆j −

Γjj

2

)
βj + i

Ωj

2
(−1) + i

N∑
m ̸=j

[
∆jm − i

Γjm

2

]
(−1)Tr{ρσ̂−

m}

=
(
i∆j −

Γjj

2

)
βl−i

Ωj

2
−i

N∑
m̸=j

[
∆jm − i

Γjm

2

]
βm. (2.20)

Substituting Γjj = Γ, ∆j = ∆ and using Equation 2.9

dβj(t)
dt

=
(
i∆− Γ

2

)
βj(t)− i

Ωj(t)
2
− i

N∑
m ̸=j

[
−Γ
2

cos(k0rjm)
k0rjm

− i

2
Γsin(k0rjm)

k0rjm

]
βm(t).

=
(
i∆− Γ

2

)
βj(t)− i

Ωj(t)
2

+iΓ
2

N∑
m̸=j

[
cos(k0rjm)
k0rjm

+isin(k0rjm)
k0rjm

]
βm(t),

We obtain the Coupled-Dipole Equation

dβj(t)
dt

=
(
i∆− Γ

2

)
βj(t)− i

Ωj(t)
2

+ i
Γ
2

N∑
m̸=j

eik0rjm

k0rjm

βm(t). (2.21)

We note that Svidzinsky, Chang and Scully28 obtained Equation 2.21 from pure classical
arguments, meaning that Equation 2.21 neglects any quantum fluctuations interpretation
between the atoms. The impact of such simplifications was studied by Williamson and
Ruostekoski.29 Due to its linear nature, Equation 2.21 is more suitable for simulation in
a matrix format

dβ⃗

dt
= Gβ⃗ + Ω⃗ (2.22)
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with

Gjm =
(
−Γ

2
+ i∆

)
1jm + i

Γ
2

N∑
j

N∑
m ̸=j

eik0rjm

k0rjm

, (2.23)

Ω⃗(t) = −iΩj(t)
2

. (2.24)

We will refer to the Coupled-Dipole Model and its equations Tr{ρσ̂−
j } as Scalar

Model. To consider polarization along the direction µ = [x, y, z], the Vectorial Model
uses 3N coupled-dipole equations for the system30

dβµ
j (t)
dt

=
(
i∆− Γ

2

)
βµ

j (t)− i
Ωµ

j (t)
2

+ i
Γ
2

N∑
m̸=j

Gµ,η(rjm)βη
m(t). (2.25)

where the interaction matrix Gµ,η(r) has two usual representations given by

Gµ,η(r) = 3
2
eik0r

k0r

[
(δµ,η − r̂µr̂η) + (δµ,η − 3r̂µr̂η)

(
i

k0r
− 1

(k0r)2

)]
, (2.26)

←→
G (r) = 3

2
eik0r

k0r

[(
1 + i

k0r
− 1

(k0r)2

)
←→
I +

(
−1− 3i

k0r
+ 3

(k0r)2

)
r⊗ r
r2

]
, (2.27)

with unit vector r̂ = r/r = [r̂x, r̂y, r̂z]. The Identify Operator
←→
I has the same dimensions

of the tensor product r⊗ r. Also, the laser field, Ωµ
j , has a constraint that its polarization

and direction of propagation must be orthogonal.

2.3 Observable

One physical quantity of interest is the radiated electric field at a given position in
space, denoted as Ê(r, t). This field allows us to calculate the measurable light intensity,
I = ⟨ÊÊ+⟩ >, which, in the single-photon approximation, is obtained from the sets of
βj. The Effective Hamiltonian in Equation 2.1 is a simplification, where the quantized
electromagnetic fields have been traced out from the dynamics, yet it can be used to
recover the field E. See the works of Bienaime et al.31 and Castro30 for details. According
to their findings, the electric field E can be expressed as the sum of individual fields
scattered by the N atoms located at positions rj.

E(r, t) = i
Γ
2

N∑
j

eik0|r−rj |

k0|r− rj|
βj(t). (2.28)

The intensity can be calculated from Equation 2.28 as follows:

I(r, t) = |E(r, t)|2

=

∣∣∣∣∣∣iΓ2
N∑
j

eik0|r−rj |

k0|r− rj|
βj(t)

∣∣∣∣∣∣
2

(2.29)
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Figure 2 – Comparison of Scalar and Vectorial radiated fields. The former shows the
angular dependence of radiation expected from a dipole emission.

Source: By the author.

= Γ2

4k2
0

N∑
j

N∑
m

eik0(|r−rj |−|r−rm|)

|r− rj||r− rm|
β∗

j (t)βm(t). (2.30)

Note that evaluating the double sum in Equation 2.30 requires O(N2) operations, whereas
computing Equation 2.29 only requires O(N). Thus, using Equation 2.30 is a slower
approach, and should be avoided due to its computational complexity.

For Vectorial Model the equations are similar, they just take into consideration
each component30

Eµ(r, t) = i
Γ
2
∑

j

∑
η

Gµ,η(r− rj)βη
j (t), (2.31)

I(r, t) = |E|2 =
∑

µ

|Eµ|2. (2.32)

2.4 Higher Order Correlation

The Coupled Dipole Equation in Equation (2.21) assumes a weak external pump,
so a single photon can be assumed to be present in the system. However, as the saturation
parameter increases, the linear regime approximation no longer holds, and the simplifi-
cation ⟨σ̂z⟩ ≈ −1 is no longer valid. In such cases, the first step would be to compute
the dynamics for Tr{ρσ̂z

l σ̂
−
m} using a similar process as the one used for Tr{ρσ̂−

j }. The
result also will depend on another joint expectation value, in this case, ⟨σ̂z

j ⟩ will depend
on ⟨σ̂+

j σ̂
−
m⟩.
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We denote ⟨σ̂z⟩ as a single-atom expectation value since it depends on a single
operator. The two-atom expectation has a joint expectation value of two operators, such
as ⟨σ̂+

j σ̂
−
m⟩. If one derives the dynamical equations for ⟨σ̂+

j σ̂
−
m⟩, one would find that it also

depends on a three-body correlation, and so on. This procedure produces a hierarchy of
coupled linear differential equations32 similar to the scheme

d⟨1⟩
dt

= ⟨1⟩+ ⟨2⟩,

d⟨2⟩
dt

= ⟨1⟩+ ⟨2⟩+ ⟨3⟩,
...

d⟨n⟩
dt

= ⟨1⟩+ ⟨2⟩ . . .+ ⟨n⟩+ ⟨n+ 1⟩,
...

where ⟨n⟩ here refers to n-body correlation. The Coupled Dipoles Equation considered
only the single-atom expectation value and neglected higher-order terms. To achieve this,
the terms of order ⟨n ≥ 2⟩ were assumed to be negligible, and the hierarchy was truncated
by setting ⟨n = 2⟩ = 0. This truncation technique is known as the Cumulant Expansion.33

In summary, the method allows one to compute cumulants of an operator, ⟨A⟩c, using its
expectation values, creating what are called Ursell functions34 in statistical physics:

⟨A⟩c = ⟨A⟩, (2.33)

⟨AB⟩c = ⟨AB⟩ − ⟨A⟩⟨B⟩, (2.34)

⟨ABC⟩c = ⟨ABC⟩ − ⟨AB⟩⟨C⟩ − ⟨AC⟩⟨B⟩ − ⟨BC⟩⟨A⟩+ 2⟨A⟩⟨B⟩⟨C⟩. (2.35)
...

The truncation procedure involves selecting a maximum order, denoted as ⟨n + 1⟩c, and
setting it to zero. This truncation effectively eliminates terms of higher order, resulting
in a combination of lower-order expectation values:

⟨AB⟩ ≈ ⟨A⟩⟨B⟩, (2.36)

⟨ABC⟩ ≈ ⟨AB⟩⟨C⟩+ ⟨AC⟩⟨B⟩+ ⟨BC⟩⟨A⟩ − 2⟨A⟩⟨B⟩⟨C⟩, (2.37)
...

We stress that Equations (2.36) and Equation 2.37 are different approximations.
For example, if one uses Equation (2.36), one automatically sets Equation (2.37) to zero
- next subsections exemplifies this point. Also, when considering higher degrees of cor-
relation, the system’s complexity increases as the number of coupled equations grows.
However, it is not always evident how these additional equations affect the system’s over-
all behavior. In a study by Sánchez-Barquilla, Silva and Feist,35 it was found that incor-
porating even higher correlations did not enhance the accuracy of the results in certain
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scenarios, but produced an unstable system of equations. Consequently, there is a need
to strike a balance between computational complexity and the potential gain in accuracy
when dealing with higher degrees of correlation. Nevertheless, a dedicated study needs to
be performed for each system and regime.

Furthermore, the computation of these expressions can be error-prone, and there
have been recent developments in performing symbolic computations to mitigate this
issue.36

2.4.1 Mean Field Equations

We referred to the Coupled-Dipole Model, in Equation 2.21, as Scalar Model, and
its natural extension, where one computes ⟨σ̂z

j ⟩ = Tr{ρσ̂z
j} and ⟨σ̂−

j σ̂
z
m⟩ ≈ ⟨σ̂−

j ⟩⟨σ̂z
m⟩, will

be referred as MeanField Model. The set of 2N equations for the latter reads37,38

Wj = Ωj

2
+ i

Γ
2

N∑
m̸=j

eik0|rj−rm|

k0|rj − rm|
⟨σ̂−

m⟩,

d⟨σ̂−
j ⟩

dt
=
(
i∆− Γ

2

)
⟨σ̂−

j ⟩+ iWj⟨σ̂z
j ⟩, (2.38)

d⟨σ̂z
j ⟩

dt
= −Γ(1 + ⟨σ̂z

j ⟩)− 4ℑ(⟨σ̂−
j ⟩W ∗

j ), (2.39)

where the symbol ’ℑ(x)’ represents the imaginary part of x.

The Electric Field is carried out using ⟨σ̂−
j ⟩ from Equation 2.38 into (2.28). How-

ever, the intensity demands ⟨σ̂z
j ⟩, and since ⟨σ̂z

j ⟩ = 2⟨σ̂+
j ⟩⟨σ̂−

j ⟩ − 1, we can make a substi-
tution for j = m:

I(r) = Γ2

4k2
0

 N∑
j

N∑
m̸=j

eik0(|r−rj |−|r−rm|)

|r− rj||r− rm|
⟨σ̂+

j ⟩⟨σ̂−
j ⟩+

N∑
j

1 + ⟨σ̂z
j ⟩

2|r− rj|2

 . (2.40)

We prefer to re-write Equation 2.40 into Equation 2.29 format, which allows also
allows to define the Coherent and Incoherent components of the light as

I = Icoh + Iinc =

∣∣∣∣∣∣iΓ2
N∑
j

eik0|r−rj |

k0|r− rj|
⟨σ̂−

j ⟩

∣∣∣∣∣∣
2

+ Γ2

4k2
0

 N∑
j

−
|⟨σ̂−

j ⟩|2

|r− rj|2
+

1 + ⟨σ̂z
j ⟩

2|r− rj|2

 . (2.41)

2.4.2 Quantum Pair Correlation Equations

Turning our attention to the two-atom correlators, we show how the complexity
of the equations grows as the order of the correlator increases. These equations used in
this project were computed by Nicolla Umberto Cesare during a prior collaboration.

We refer to the set of a set of 2N + 4N2 equations as PairCorrelation Model.
Using j ̸= m for all equations, Gjm = −ie−ik0|rjm|/k0|rjm|, Γjm = ℜ(Gjm), Ω−

j = Ωj, and
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Ω+
j = (Ω−

j )∗ the equations are given as follows:

d

dt
⟨σ−

j ⟩ =
(
i∆− Γ

2

)
⟨σ−

j ⟩+
iΩ−

j

2
⟨σz

j ⟩+ Γ
2

N∑
m̸=j

Gjm⟨σz
jσ

−
m⟩, (2.42)

d

dt
⟨σz

j ⟩ = i
(
Ω+

j ⟨σ−
j ⟩ − c.c.

)
− Γ(1 + ⟨σz

j ⟩)− Γ
N∑

m ̸=j

[Gjm⟨σ+
j σ

−
m⟩+ c.c.], (2.43)

d

dt
⟨σz

jσ
−
m⟩ = (i∆− 3Γ/2)⟨σz

jσ
−
m⟩ − Γ⟨σ−

m⟩+ iΩ+
j ⟨σ−

j σ
−
m⟩ − iΩ−

j ⟨σ+
j σ

−
m⟩+ i

Ω−
m

2
⟨σz

jσ
z
m⟩

− Γ
∑

k ̸={j,m}

[
Gjk⟨σ+

j σ
−
mσ

−
k ⟩+G†

jk⟨σ+
k σ

−
mσ

−
j ⟩
]

+ Γ
2

∑
k ̸={j,m}

Gmk⟨σz
mσ

z
jσ

−
k ⟩

− ΓΓjm⟨σ−
j σ

z
m⟩ −

Γ
2
G†

jm⟨σ−
j ⟩, (2.44)

d

dt
⟨σ+

j σ
−
m⟩ = −Γ⟨σ+

j σ
−
m⟩ −

i

2
(
Ω+

j ⟨σz
jσ

−
m⟩ − Ω−

m⟨σ+
j σ

z
m⟩
)

+ Γ
2

∑
k ̸={j,m}

[
G†

jk⟨σ+
k σ

−
mσ

z
j ⟩+Gmk⟨σ+

j σ
−
k σ

z
m⟩
]

+ Γ
4

(Gjm⟨σz
m⟩+G†

jm⟨σz
j ⟩) + Γ

2
Γjm⟨σz

jσ
z
m⟩, (2.45)

d

dt
⟨σ−

j σ
−
m⟩ = (2i∆− Γ)⟨σ−

j σ
−
m⟩+ i

2
(
Ω−

j ⟨σz
jσ

−
m⟩+ Ω−

m⟨σz
mσ

−
j ⟩
)

+ Γ
2

∑
k ̸={j,m}

[
Gjk⟨σz

jσ
−
mσ

−
k ⟩+Gmk⟨σz

mσ
−
j σ

−
k ⟩
]
, (2.46)

d

dt
⟨σz

jσ
z
m⟩ = −Γ(⟨σz

j ⟩+ ⟨σz
m⟩+ 2⟨σz

jσ
z
m⟩) + i

(
Ω+

j ⟨σz
mσ

−
j ⟩+ Ω+

m⟨σz
jσ

−
m⟩+ c.c.

)
− Γ

∑
k ̸={j,m}

[
Gjk⟨σ+

j σ
z
mσ

−
k ⟩+Gmk⟨σz

jσ
+
j σ

−
k ⟩+ c.c.

]
+ 2ΓΓjm

(
⟨σ+

j σ
−
m⟩+ c.c.

)
. (2.47)

All correlations of three operators are then simplified using Equation 2.37, and the evo-
lution of some correlators is not defined explicitly as differential equations since they are
available from simple properties:

⟨σ−
j σ

z
m⟩ = ⟨σz

mσ
−
j ⟩, (2.48)

⟨σ+
j σ

z
m⟩ = ⟨σz

mσ
−
j ⟩∗, (2.49)

⟨σ+
z σ

+
m⟩ = ⟨σ+

mσ
z
j ⟩ = ⟨σ−

j σ
z
m⟩∗. (2.50)

The electric field can be calculated similarly to the Mean Field approach by using
the values of ⟨σ−

j ⟩ obtained from Equation 2.42 and inserting them into Equation 2.28.
On the other hand, the intensity field requires the use of Equation 2.30 along with Equa-
tion 2.43 and Equation 2.45, since two-body correlators are no longer factorized

I(r, t) = Γ2

4k2
0

 N∑
j

N∑
m ̸=j

eik0(|r−rj |−|r−rm|)

|r− rj||r− rm|
⟨σ+

j σ
−
m⟩+

N∑
j

1 + ⟨σz
j ⟩

2|r− rj|2

 . (2.51)
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We note that since the intensity is no longer the square of the electric field, as it was
in the single-photon regime, the computation of the intensity is now of complexity O(N2).
Since Equation 2.51 has larger memory requirements, due to the number of equations,
the number of atoms is typically N < 200, and there are no benefits to optimizations
with parallelism, for example. A last comment about the implementation is that j ̸= m

implies that the matrix Gjm has a diagonal with zeros.
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3 PACKAGE ARCHITECTURE

3.1 Why Julia

The choice of programming language is extremely important in scientific and com-
putational programming. Due to its practicality, Julia has gained popularity among dif-
ferent projects, such as Fluid Mechanics Modelling,39 High Energy Physics,40 Dynamical
Systems,41 Differentiable Programming.42 It intends to solve the industry’s known prob-
lem of using different programming languages on a project. Usually, a typical project
starts with user-friendly languages like Python or R and then switches to languages like
C/C++ or Fortran for better performance. Julia makes it easy for developers to move
from creating prototypes to deploying them using one language framework.

Compilers excel in optimizing fundamental data types, like Float64, which adhere
to the IEEE 754 standard.43 Julia uses a frond-end to LLVM compiler44 and compiles codes
during its execution, a process known as JIT (Just-in-time) Compilation. Julias secret key
element for speed is a combination of JIT compilation with a strong type system.45 In
a nutshell, a data type system ensures that a function and any function calls within
it maintain stable types throughout their execution. Let us look at the multiplication
operator * in the expression c = a*b. It is a type-stable function. In Julia, * can mean
different things depending on the input types, but the compiler can choose the right
method for * since it knows the types of a and b beforehand. By using the cascade effect,
the compiler can propagate type information and optimize the code like C or Fortran.
Developers can check the compilation stages at any time and verify the machine code
produced using @code_llvm or @code_native.

Julia also offers meta-programming and code inspection to give developers more
flexibility. The ModellingToolkit.jl package is an example of how useful this feature can
be. It simplifies equations before compiling code, resulting in substantial performance im-
provements. When MATLAB Simulink was converted to Julia code, it resulted in a speedup
of over 15,000x for Modeling Spacecraft Separation Dynamics, according to NASA.46

The installation process is easy and saves developers the trouble of managing
dependencies and setting up toolchains.47 This is especially helpful for Windows users.
Also, Julia makes it easy-to-use Unicode and LaTeX characters for math projects. These
features help scientists communicate better by enabling them to translate algorithms and
equations directly into Julia’s code.

Last, Julia is renowned for implementing the Multiple Dispatch programming
paradigm. Within this paradigm, the functions behaviors are determined based on two or
more argument types. This feature makes it easier for different packages to collaborate,
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even if they were not originally meant to. The code example in Figure 3 demonstrates
how to apply these principles to determine the volume of different atomic cloud shapes.

Establishing data types involves creating both Abstract types and Concrete
structures.48 Two concrete structures, namely Cube and Sphere, are derived from the
abstract type AtomicCloud. Abstract types cannot be instantiated, they serve as the basis
for a conceptual hierarchy, while Concrete Types are created with structs keyword and
organize data of each object. Cubes and spheres are defined by their side length and
radius, respectively, as shown in the code.

The <: operator is employed to denote subtype relationships between different
types. It serves as a tool for establishing inheritance and helps to structure the type
hierarchy. For instance, A <: B means A is a subtype of B and objects of type A can be
used wherever objects of type B are expected.

The :: operator is used to specify the expected type of variable, expression, or
function return value. By appending x::T to an expression or variable x, it asserts that x
should be of type T. The function eltype is commonly used to help programmers specify
type expectations and debug more easily. It makes Julias code clearer and safer and allows
querying the element type of an object or abstract type.

The function compute_volume uses a traditional programming method that checks
types and uses branching to decide what operation to perform. Unlike single dispatch,
multiple dispatch selects the appropriate method based on the object type given as an
argument. This approach streamlines the code by defining specialized methods for each
data type.

However, using the procedural approach in the compute_volume function becomes
more problematic with an increase in the number of atomic cloud types. The compute_-
volume function would have to be recreated if a new data structure, like Cylinder, is
introduced. In more intricate scenarios, this could potentially disrupt existing functional-
ities, making maintenance challenging.

3.2 Constructors

Given the significance of data types in Julia, it becomes evident that we need to
create our own types to leverage the language. The data types within this project can
be categorized into three main groups. Dimensions for atomic geometry, Pump for laser
types, and Physics for types and equations. The diagram in Figure 4 summarizes the
abstract types as white-filled boxes. The diagram highlights concrete types denoted by
yellow-filled boxes.

The project’s main aim is to ensure that 3D simulations are fully functional. Some
parts of the code for 2D types are awaiting for future improvements - these are stated
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Figure 3 – Comparison of Standard Procedural style of programming against Multiple-
Dispatch approach.

Source: By the author.
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in grey and serve as a testament to the projects potential for further development and
improvement.

One needs to use Atom, Laser, LinearOptics, or NonLinearOptics constructors49

as starting points for a simulation, see Figure 6. Constructors are important for setting
up simulations, as the library requires either a LinearOptics or NonLinearOptics data
type to work well. Figure 5 shows their respective data type definition, similar to object
properties in object-oriented programming. Note that in Julia, the constructor is the only
method that can be defined inside the struct scope. Other methods that use it are defined
outside of it. This was shown in the code example for the Cube data type, in Figure 3.

Both users and developers of the package can gain knowledge from the information
presented in figures such as Figure 4 and Figure 5. Users can access valuable hidden
information using these diagrams, and propose new kernelFunctions for their needs,
for example. For developers, these visual representations form the basis upon which the
library can be further expanded. The current data types in the library can be easily
integrated in new ones.

The process of defining various concrete types is shown in the code snippet in
Figure 6. In order to create atomic distributions, the Atom constructor must be employed.
Its first argument corresponds to the data type, while the subsequent arguments vary
depending on the geometric shape. For the user’s convenience, there are functions available
to calculate the dimensions of the cloud if the density is already known. These functions
are called cube_inputs, sphere_inputs, and cylinder_inputs.

3.3 Functions

We optimize some core functions, which implement equations derived in the Theo-
retical Background section. Table 1 refers to the base functions related to the computation
of the evolution of the atomic state over time.

Table 1 – Dynamics related functions

LinearOptics NonLinearOptics
Scalar Vectorial MeanField PairCorrelation

default_initial_condition ✓ ✓ ✓ ✓
time_evolution ✓ ✓ ✓ ✓
steady_state ✓ ✓ ✓(a) ✓(a)

Source: By the author.

The (a) mark on the Table 1 shows that users might need to change settings in
MeanField and PairCorrelation to get a solution with steady_state function. In such
cases, we recommend fine-tuning adjustments by the user, as there is no known analytical
solution available for benchmarking. Finding semi-analytical methods for the steady state
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Figure 4 – Abstract types are in white, and all concrete data types are available in yellow-
filled boxes.

Source: By the author.
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Figure 5 – Definition of the base package constructors.

Source: By the author.

remains an open question, and our suggestion is to compute Adomian Decomposition,50

which would require some dedicated effort with symbolic and metaprogramming.

More information on time_evolution and steady_state will be presented shortly.
The default initial conditions vectors u0 for each model are:

u(t = 0)Scalar =
[⃗
0N

]
, (3.1)

u(t = 0)Vectorial =
[⃗
0N | 0⃗N | 0⃗N

]
, (3.2)

u(t = 0)MeanField =
[⃗
0N | − 1⃗N

]
, (3.3)

u(t = 0)PairCorrelation =
[⃗
0N | − 1⃗N | 0⃗N2 | 0⃗N2 | 0⃗N2 | 1⃗N2(zero on diagonal)

]
. (3.4)

The symbol 0⃗N represents a vector comprising zeros with a length of N (number of atoms).
Similarly, the same logic applies to 1⃗N and 0⃗N2 . All initial conditions use ComplexF64 -
complex numbers with Float64 precision. Using lower precision was not investigated, and
it is not recommended unless users understand its risk and/or trade-offs.

Table 2 summarizes all the functions pertaining to the scattering properties of the
system. The scattered_field and scattered_intensity match the previous chapter
definitions. One key implementation decision that significantly impacted these functions
is regarding the memory layout of the data. We opted to represent all fields as matrices
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Figure 6 – Code example to initialize a simulation with specific geometry, laser, and phys-
ical model.

Source: By the author.

rather than vectors. Standardizing all fields as matrices simplifies the maintenance of the
package’s source code and ensures consistency across different physical models. It also
makes adding new features easier. While this choice may require some attention from
users when accessing elements, it was a necessary decision. The reason behind this choice
is that the Vectorial output includes polarization, and the desired output format is a
matrix. The intensity is still represented as a vector in all physical models.

Table 2 – All scattering-related functions available.

LinearOptics NonLinearOptics
Scalar Vectorial MeanField PairCorrelation

scattered_electric_field ✓ ✓(b) ✓ ✓
scattered_intensity ✓ ✓(b) ✓ ✓
laser_field ✓ ✓ ✓ ✓
laser_intensity ✓ ✓ ✓ ✓
laser_and_scattered_electric_field ✓ ✓ ✓ ✓
laser_and_scattered_intensity ✓ ✓ ✓ ✓
transmission ✓ ✓(b) ✓ ✓
scattered_power ✓ 7 ✓ 7

get_intensity_over_an_angle ✓ ✓(c) ✓ ✓
Source: By the author.
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Also, regarding the Vectorial Model, comment (b) on the table, indicated a word
of caution on the Vectorial electric field scattering and its correspondent intensity. Our
Vectorial code works well for most cases, but it does not match the literature in a par-
ticular scenario that involves light statistics, a point that will be discussed in a dedicated
chapter. This is a challenge due to the relative lack of information on this topic, and the
other tests give the result predicted by the literature. For mark (c), get_intensity_-
over_an_angle does not have an analytical solution. It is explained in a separate section.

Figure 7 illustrates the interrelationship among some functions in Table 2. The full
hierarchy of dependencies is more intricate, and you can refer to the Appendix section
for a comprehensive overview. Once the scattered_electric_field function is set up,
other complex functions become accessible. When implementing new physical models, it
is important to start with this function.

As a final observation, each function incorporates Julias native multi-threading
execution mechanisms at their respective code bottlenecks. To improve performance, users
can use parallelism with packages like Distributed.jl or MPI.jl. This recommendation
stems from the fact that each process will operate within an independent memory space.
Although multi-threading can be done with these functions, it may negatively impact the
code’s performance.

Figure 7 – Overview of some scattering related function and their connections.

Source: By the author.
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4 OPTIMIZATIONS

Many tests were realized with different packages and techniques to make sure all
the codes ran smoothly in different situations. As a result, the source code has various
intricacies that may be challenging to understand. This may raise several questions if the
effort of running many tests was needed since simpler options were available. For example,
storing matrices in column-major51 format was adopted because it makes accessing the
memory with higher cache hits52 - increases the likelihood of data being readily avail-
able in the cache, which results in faster data access. Our commitment to profiling and
investigation drove us to optimize functions with multiple tools. In the following discus-
sion, we detail this optimization process, while also sharing the corresponding theoretical
background.

4.1 Laser Direction

The Laser function currently accepts PlaneWave3D according to textbooks defi-
nition, that is, given a measurement position, or sensor, at position r, and a plane wave
with wave vector k = k0k̂, the electric field is

E(r; k) = E⃗0e
ik·r. (4.1)

The Gaussian3D laser geometry, which describes a Gaussian beam, reads53

E⃗(ρ, z) = E⃗0
w0

w(z)
e

− ρ2

w2(z) ei[k0z−η(z)+kρ2/2R(z)], (4.2)

with
ρ = x2 + y2,

w(z) = w0

√
1 + z2/z2

0 ,

R(z) = z(1 + z2
0/z

2),

η(z) = arctan(z/z0),

z0 = k0w
2
0/2.

w0 is the waist radius and a parameter that can be controlled on the package. The
other functions have geometric interpretation, which we do not use, because even though
Equation 4.2 is correct, it has an artifact of the cylindrical representation, that is, it is
undefined at z = 0, R(0) = 0 · (1 +∞). To avoid such a scenario, we use the Cartesian
representation, also adopted by Novotny53

E⃗(x, y, z) = E⃗0e
ik0z

(1 + 2iz/k0w2
0)
e

− x2+y2

w2
0

1
1+2iz/k0w2

0 . (4.3)
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Equation 4.3 describes a laser beam in the z-direction and we need a laser that can
propagate in any direction. A solution is to rotate all values of (x, y, z) through a linear
transformation. Then, we can apply Equation 4.2 to the new variables. This solution
depends on creating and multiplying rotation matrices, which allocates memory. The
size of the rotation matrices is small, but since is a recurrent operation, by profiling we
identified that it was producing some stress on the garbage collector to free this memory.
Our alternative was to have a code without memory allocations modifying the beam
equation, but the explanation needs some geometry argumentation. First, we recognize
the exponential, eik0z, is a plane wave propagating at z-direction, and its generalization
to any direction is Equation 4.1.

Regarding the second exponential on Equation 4.3, the argument x2+y2 represents
the distance from a point r = (x, y, z) to the direction of propagation, ẑ. To extend this
notion for an arbitrary propagation direction, we rely on geometric guidance from Figure 8
to find the distance |A⃗B|. By projecting r onto the direction vector k we get

p = (r · k̂)k̂ =
(

r · k
|k|

)
k
|k|

Figure 8 – A is an arbitrary point in space, and we are interested in the minimum distance
from A to the line generated from vector k.

Source: Adapted from MATHEMATICS STACK EXCHANGE.54

The length of the new vector A⃗B comes from Pythagorean’s Theorem:

|AB|2 = |r|2 − |p|2

= |r|2 −
(

r · k
|k|

)
k
|k|

= |r|2 − |r · k|
2

|k|2

(4.4)
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Finally Equation 4.3 is refactored as equation for the Gaussian3D laser

E⃗(r; k) = E⃗0e
ik·r

(1 + 2ik · r/k0w2
0)
e

−
|r|2− |r·k|2

|k|2

w2
0

1
1+2ik·r/k0w2

0 .

4.2 Parallelism

Parallelism can be explored from different perspectives, from data communication
patterns, to multi-stage distributed algorithms. We highlight some of our findings that
have an impact on the source code.

4.2.1 Memory Access

The efficient handling of matrices is often a critical performance bottleneck. Effi-
cient memory access plays a pivotal role in optimizing matrix operations, as it significantly
impacts the execution time of algorithms. Before delving into parallel memory access, let
us summarize how elements of matrices are stored in the memory. In most program-
ming languages, matrices are stored in a row-major or column-major order. In row-major
order, elements of a row are stored sequentially in memory, followed by the next rows
elements. Conversely, Julia is column-major, and matrices store elements of their columns
sequentially. This storage scheme ensures that neighboring elements of a matrix are stored
contiguously in memory.

Sequential memory access is a well-established technique for optimizing matrix
operations. When a program sequentially accesses elements of a matrix, it benefits from
spatial locality. Memory locations close to each other are likely to be accessed together.
Matrices are faster to retrieve from memory when accessed sequentially in alignment with
memory storage order.

4.2.2 SIMD

Single Instruction Multiple Data, SIMD, parallelism applies one fine-grained in-
struction to multiple data elements simultaneously to improve computational speed by
using data-level parallelism.55 In Julia, we can benefit from the memory layout to explore
vectorized operations for data-level parallelism. The LoopVectorization.jl56 package
handles Single SIMD instructions, but we did not see advantages in using them because
the bottleneck in simulations was the time evolution or eigendecomposition operations,
and also, some operations lack complex number support.

4.2.3 Multi-threading

Multi-threading is a technique for running various tasks simultaneously on one
computer or node in a cluster. In this paradigm, multiple threads, which are lightweight
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Figure 9 – Matrices were accessed via their column positions because is a natural choice
to read data with spatial locality. As such, multi-threading occurred through
columns of data, and not with blocks of indices.

Source: By the author.

units of execution, share the same memory space. Threads can be considered as subtasks
within a larger program, and they can communicate and synchronize with one another.
It is well-suited for tasks that require shared memory, where threads can easily exchange
data and coordinate their efforts.

In Julia, multi-threading is facilitated by the native Threads.@threads macro. It
has two main benefits. First, it speeds up the composing of the interaction matrices —
as pairwise distances are easily computed, then further operations that depend on them,
are embarrassingly parallel. We found that the best scenario for domain partition was to
assign row segments into different threads, as represented on Figure 9, where each color
indicates the thread responsible for processing part of the matrix.

The second scenario includes calculating any observable (e.g. electric fields) at
different positions. Computing different observations simultaneously was faster than using
a parallel merging operation (e.g. parallel mapreduce) of a single element.

4.2.4 Distributed

Distributed parallelism operates across multiple computational units, often dis-
tributed geographically. Each unit, referred to as a node, typically has its own memory
and computational resources. In this model, tasks are divided into smaller portions, and
each portion is executed on a separate node. Nodes use a network to communicate and
coordinate, and they can scale horizontally for resource-intensive tasks. Sharing data in
this parallelism is harder because it needs direct communication through a network.

Distributed.jl uses SSH to connect remote workers to a master-worker setup
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and split tasks among workers. No internal component of the CoupledDipole.jl package
depends on this type of parallelism, only multi-threading, and it is up to the User to make
the best decision on how to load balance their tasks. To reduce memory communication,
one should use DistributedArrays.jl package and balance node loads by shuffling input
parameters randomly.

4.3 Far-Field Radiation

By observing the electric field’s intensity, we can compare experimental and theo-
retical outcomes. The field’s exact expression is model-dependent. Our equations, inspired
by Samoylova et al.57 and Castro,30 were introduced in the background chapter. If we mea-
sure the field at position k0r = rn̂ far from the system dimensions, rj, r ≫ rj, we can
simplify the exponential in the scalar model of scattered light as

eik0|r−rj |

k0|r− rj|
≈ eik0re−ik0n̂·rj

k0r
. (4.5)

We call this estimation the Far Field Approximation, in which near-field terms are thus
neglected — the equations without approximations are referenced as Near Field Equations.

The electric field is identical for Scalar, MeanField and PairCorrelation within
the far-field approximation.

E(r, t)scalar ≈ i
Γ
2
eik0r

k0r

∑
j

e−ik0n̂·rjβj(t) (4.6)

whereas Vectorial expression is

Eµ(r, t) ≈ i
3Γ
4
eik0r

k0r

∑
j

∑
η

(δµ,η − n̂µn̂
∗
η)e−ik0n̂·rjβη

j (t). (4.7)

The intensity is slightly different in each model, for the scalar

I(r)Scalar =

∣∣∣∣∣∣iΓ2 e
ik0r

k0r

∑
j

e−ik0n̂·rjβj(t)

∣∣∣∣∣∣
2

(4.8)

I(r)MeanField = I(r)Scalar + Γ2

4k2
0r

2

∑
j

−|⟨σ−
j ⟩|2 +

1 + ⟨σz
j ⟩

2

 (4.9)

I(r)PairCorrelation = Γ2

4k2
0r

2

 N∑
j

N∑
m̸=j

eik0n̂·(rj−rm)⟨σ+
j σ

−
m⟩+

N∑
j

1 + ⟨σz
j ⟩

2

 (4.10)

In simulations involving intensity, results are often normalized, such as with sub-
super radiance,58,59 since its dynamical behavior which its relevant rather than its absolute
value. As a result, multiplicative factors become irrelevant in practical applications. De-
spite that, the question about the value of r is fundamentally relevant for the validity of
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the far-field approximation, and we want a precise number since it is used in the electric
field definition. In this section, we then discuss the limitation of the far-field approximation
in the scalar approximation.

4.3.1 Where exactly is the far field?

Here, we argue that choosing r = 50r2
j is a suitable definition to quantify the

far-field approximation. We begin by recalling the far field approximation, which involves
calculating |r−rj|2 (the unit k0 is omitted, since they are already factored in Equation 4.5
to Equation 4.10).

|r− rj|2 = (r− rj) · (r− rj) = r · r− 2r · rj + rj · rj

= r2 − 2r · r + r2
j

= r2
(

1− 2r · rj

r2 +
r2

j

r2

)
.

Next, we take the square root and use first order approximation (1+ε)1/2 ≈ 1+ε/2
to write

|r− rj| =
√
|r− rj|2 = r

(
1− 2r · rj

r2 +
r2

j

r2

)1/2

≈ r

(
1− r · rj

r2 + 1
2
r2

j

r2

)

= r − r · rj

r
+ 1

2
r2

j

r

= r − r
r
· rj + 1

2
r2

j

r

= r − n̂ · rj + 1
2
r2

j

r
.

To obtain the far field approximation, the third term should be negligible

1
2
r2

j

r
≪ k0. (4.11)

Equation 4.11 is correct but does not give a value for r. To address this, we propose
two reasonable conditions:

1. r should be a function of the atomic system size, which we will call rj by abuse of
notation: r(rj) = s · r2

j , where s is a scaling factor to be determined.

2. The relative error should be within an arbitrary tolerance, and we set it to be 0.1%.

Applying these conditions into Equation 4.11 (r2
j/(2sr(rj) = 0.001) and solving

for the scaling factor (s = 500/k0) results in our numerical far field condition:

r(k0rj) = 500r2
j . (4.12)
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For consistency test, we need numerical results from Equation 4.5. We created
a random cube of size k0L = 10, and sensors at the surface of a sphere of radius r =
s×L, then, we computed the relative error of the exact exponential and its approximated
expression in Equation 4.5.

The error was too dispersed to present a reliable data of averages and standard
deviations. Figure 10 shows the probability distribution of all configurations at certain
scaling factors. All curves have a similar distribution with their mean near the 0.1% target
error, but this is not a meaningful piece of information, since its variance is large. Notably,
the s = 50r was the scaling with the lowest maximum errors, therefore, it was chosen as
our package parameter.

Figure 10 – Distribution of relative errors for scaling values proportional to atomic system
size. Our target error for the far field approximation (dashed line) is valid for
the average of any distribution, therefore, we opted to use s = 50r since it
has the lowest variance.

Source: By the author.

4.4 Integration over ϕ

In some scenarios (typically when the system has, statistically, a rotational sym-
metry), we are interested in the average intensity at a certain polar angle θ and not in
a specific direction (θ, ϕ). Since the electric field was already defined previously, one can
convert the measurement point into spherical coordinate r = r[sin(θ) cos(ϕ), sin(θ) sin(ϕ),
cos(θ)] and eliminate the azimuthal angle dependence, ϕ, with an integration

I(θ) =
∫ 2π

0
|E(θ, ϕ)|2dϕ. (4.13)
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In practice the integral is evaluated with some quadrature algorithm, where the
range ϕ is broken into chunks of size ∆ϕ in such a manner that the resulting sum is
equivalent, up to a certain precision, to the continuous integral, that is, Equation 4.13
becomes

I(θ) ≈
∑

∆ϕ∈[0,2π]
|E(θ,∆ϕ)|2. (4.14)

Note that for any quadrature method, its accuracy impacts the execution time
to evaluate it, and we seek possible trade-offs between accuracy and performance. To
measure the accuracy in a concrete example we will evaluate the Equation 4.13 with the
Scalar model and Far Field approximation, which is a simplification of Equation 2.30:

I(r) = Γ2

4k2
0r

2

N∑
j=1

N∑
m=1

β∗
jβme

ik0m̂·rjm

The dot product of the exponential reads

n̂ · r⃗jm = [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)] · [xjm, yjm, zjm]

= sin(θ)[cos(ϕ)xjm + sin(ϕ)yjm] + cos(θ)zjm,

with r⃗jm = r⃗j − r⃗m.Consequently,

I(θ, ϕ) = Γ2

4k2
0r

2

N∑
j=1

N∑
m=1

β∗
jβme

ik0 cos(θ)zjmeik0 sin(θ)[cos(ϕ)xjm+sin(ϕ)yjm], (4.15)

and one integrates over ϕ:

I(θ) =
∫ 2π

0
I(θ, ϕ)dϕ = Γ2

4k2
0r

2

N∑
j=1

N∑
m=1

β∗
jβme

ik0 cos(θ)zjm

∫ 2π

0
eik0 sin(θ)[cos(ϕ)xjm+sin(ϕ)yjm]dϕ.

By utilizing the expression eix = cos(x) + i sin(x) and with the help of a symbolic
calculator,∫ 2π

0
cos(k0 sin(θ)[cos(ϕ)xjm + sin(ϕ)yjm])dϕ = 2πJ0

(
|k0 sin(θ)|

√
x2

jm + y2
jm

)
∫ 2π

0
sin(k0 sin(θ)[cos(ϕ)xjm + sin(ϕ)yjm])dϕ = 0,

where J0(x) is the Bessel function of the first kind and zeroth order. Finally, I(θ) reads

I(θ) = 2π Γ2

4k2
0r

2

N∑
j=1

N∑
m=1

β∗
nβme

ik0 cos(θ)zjmJ0
(
|k0 sin(θ)|

√
x2

jm + y2
jm

)
(4.16)

Note that Equation 4.16 has complexity is O(N2) and it should not used in prac-
tice. Instead, Equation 4.16 is used to benchmark against different tolerances while using
Equation 4.14, whose complexity is linear, O(N).
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For numerical integration, we utilize the Cubature-Quadrature algorithm proposed
by Genz and Malik,60 which is available in the HCubature.jl package.61 This algorithm
allows us to adjust the tolerance for convergence, and Figure 11 explores this feature.
We observe the difference between the exact value from Equation 4.16 and the numerical
approximation from Equation 4.14 as the tolerance is increased.

However, Figure 11 only provides a partial view because it represents a single angle
θ. When testing different cloud configurations and angles, we find that the relative error
exhibits outliers with orders of magnitude larger than the average. Figure 12 illustrates one
example of an outlier highlighted within a green box. To address this issue, we estimate the
smallest tolerance, based on Figure 11, that is both smaller than 10−7 (to avoid outliers)
and results in the largest execution time difference.

Thus, we choose the implementation of get_intensity_over_an_angle to have
the first value where the execution time exhibits a significant jump, marked with a dotted
line in Figure 11, at tol = 10−7.4. This choice was made since these parameters were rep-
resentative of typical simulations. If one wants to change this parameter, use the variable
tol, or use the analytical solution Equation 4.16, set exact_solution=true.

Figure 11 – The relative error and execution times have jumps, showing the stability of
the algorithm. Simulation with N = 1200, ρk−1

0 = 0.1, ∆ = 0, θ = 50◦ - other
values of N presented similar results.

Source: By the author.

4.5 Time Evolution

We will delve into the complexities of time evolution equations. Our goal is to
determine the most efficient numerical method for solving such equations, which depends
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Figure 12 – In this particular configuration, and tol = 10−7 there is one θ with a relative
error of order 10−1, a clear outlier result that cannot be overlooked.

Source: By the author.

on various system parameters.

4.5.1 Formal Solution of Linear Systems

Given a square matrix G ∈ C and vectors β⃗, Ω⃗ ∈ C that form an Ordinary Differ-
ential Equation of the form

dβ⃗

dt
= Gβ⃗ + Ω⃗. (4.17)

We aim for a formal solution to serve as a comparison of errors and running time against
numerical methods. Equation 4.17 is a standard problem in mathematics, and its solution
is well known (check Appendix A for an overview of the proof).

β⃗(t) = (ψetλψ−1)β⃗(0) + ψetλλ−1(e−tλ − I)ψ−1Ω⃗, (4.18)

where the eigenvalues and eigenvectors of the matrix G are denoted by λ and ψ, respec-
tively. We do not use our own eigendecomposition algorithm, we rely on Intel oneAPI
Math Kernel Library (MKL) instead. By reducing non-symmetric matrices to Hessen-
berg form and applying Schur factorization, the library can find eigenvalues. However,
the library’s documentation does not provide details about the specific implementation.62

We measured eigendecomposition computational cost to be O(N2.7) but the numerical
complexity of Equation 4.18 depends on hardware-specific details; see Appendix A for
examples.
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Let us emphasize that using Equation 4.18 is not advisable most times; it is mainly
meant for comparison with numerical methods. For time evolution problems, when the
laser is switched on (so called switch-on dynamics), no issues have been encountered.
Whereas, when the laser is switched off (decay dynamics), numerical errors affect the out-
comes. In Figure 13, we show the time evolution after reaching a steady state. The curve
ODE Solver (default) uses an Ordinary Differential Equation Solver to solve Equa-
tion 4.17 (more details in the next section). Since this curve does not show any divergence,
one might consider it as acceptable.

Missing values in the Formal Solution + Float64 curve are due to limits of
double precision arithmetic. These limitations become apparent as t becomes larger be-
cause of the extremely large or small values generated by e±λt. Changing the tolerance
to abstol=1e-15 can lessen the error, but still, it can not match the formal solution’s
accuracy.

The issue occurs for long time scales, that would be hard to measure, since there
is essentially zero scattered light, and perhaps only full quantum problems would benefit
to explore such a regime. Nevertheless, we still need to deliver a solution to the identified
issue. A natural approach would to use Quadruple Precision (Float128), but such solution
slows down all basic mathematical operations, turning the execution prohibitively slow.
The optimal solution lies in recognizing that in the switch-off scenario (Ω⃗ = 0⃗), the issue
of numerical precision can be resolved by simplifying Equation 4.18 into

β⃗(t) = (ψetλψ−1)β⃗(0). (4.19)

Equation 4.19 is important because it gives identical results as Float128, but uses
Float64 precision. Regarding execution times, Figure 14 displays a ratio of execution
time of Equation 4.19 (using diagonalization) and Equation 4.17 (using an ODE solver),
there is a cutoff ratio of 1.1 to make easier to visualize the line where the ratio is equal to
1. Values above 1 (in red) show that ODE is faster, which is where typical simulations are
expected to be run. Meanwhile, the region where diagonalization is faster (in blue) only
happens for longer time periods, tmax ≥ 400Γ−1. To optimize our results, if tmax ≤ 200Γ−1,
we use an ODE solver since Equation 4.19 is quicker than the formal solution.

4.5.2 ODE Solvers

As mentioned, computing Equation 4.18 is not fast compared to numerical methods
for solving the dynamics, but determining the fastest numerical method for our problem
remains an open question. The DifferentialEquations.jl package63,64 which offers a
variety of solvers for different categories of problems, allowing one to test various methods
with minimal effort. For example, the code to solve Equation 4.17 is shown in Figure 15.
At lines 3-8, the function ode_equation is a direct transcription of Equation 4.17. Once
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Figure 13 – For time evolution over longer times, numerical errors have a direct impact on
the results. This is relevant to switch-off decay dynamics for a system starting
from a steady state. Sphere with N = 150, k0R = 10 pumped by Plane Wave
with s = 10−5,∆ = 0.

Source: By the author.

all parameters are defined, the ODE solver can be changed at the last line and, in this
particular example, we used the Runge-Kutta 4th order solver with the command RK4().

To identify the fastest ODE solver, we assessed the speedup by comparing the
execution time of the ODE solver, denoted as tN , with the Formal Solution, denoted as
tF , presented in Equation 4.18. This speedup is expressed as follows

Speedup = tF
tN
. (4.20)

We want to emphasize that the results presented are strongly dependent on the
computer hardware, including the CPU model and RAM frequency, so they should not
be accepted at face value. However, the general order of magnitude for the speeds found
for these results remains valid.

For benchmarking purposes, we chose a value of N = 1500 atoms and computed
the time evolution within the time interval (t ∈ [0, 75]Γ−1). We utilized adaptive time
steps (adaptive = true) for all available non-stiff solvers,64 excluding solvers that proved
excessively slow or did not operate with complex numbers. In the following, we highlight
the top 10 ODE solvers based on their performance, but the full list can be found in the
Appendix section.

For the low-density regime, Figure 16 (a) shows that VCABM3 is the most efficient
solver. This method is a multistep solver based on the Adams-Moulton formula.65 When
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Figure 14 – Execution Time Ratio to compute the time evolution of switch-off dynamics
for different numbers of particles and maximum evolution time - starting
from steady state, and performing time evolution until time tmax. The line
indicates where the ratio is 1, that is, both methods have similar speeds. The
system consists of a Sphere with a constant density of ρk−3

0 = 0.2 and a
radius determined by N .

Source: By the author.

the atomic density is high, simulations take longer (strong interactions regime), causing a
slowdown, as seen in Figure 16 (b). The fastest solution was given by a specialized solver
called RDPK3SpFSAL35, which was initially developed for compressible fluid mechanics
simulations.66 Since the relative difference between RDPK3SpFSAL35 and VCABM3 is small
on the high-density regime, but not for the dilute one, we set up the VCABM3 as the default
ODE solver for LinearOptics.

We cannot provide a speedup comparison for our MeanField equations since they
do not have a formal solution, so we rely only on the execution time, tN . The fastest solver
for both dilute and high densities in Figure 16 is VCABM. Thus, it is now our preferred
ODE solver for NonLinearOptics.

An observation is that, despite the assumption that MeanField is equivalent to
Scalar with lower saturation, there is a noticeable difference, for example, in the scat-
tered intensity, see Figure 18, with saturation as low as s = 10−5. The solution is to set
abstol=1e-10 on the MeanField time evolution function.
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Figure 15 – Minimal working example to measure the execution time of an ODE problem
using standard Runke-Kutta of 4th order, RK4(). Our benchmarks focused
on changing the ODE Solver since the other parameters are representative of
typical simulations.

Source: By the author.

4.5.3 Steady State

4.5.3.1 CUDA implementation

The steady state, denoted as β⃗ss in Equation 4.17, has a formal solution presented
as follows:

β⃗ss = −G−1Ω⃗, (4.21)

= −G\Ω⃗. (4.22)

While various implementations of Equation 4.22 are possible, the most widely
used algorithm involves performing LU decomposition on matrix G. This process results
in a lower triangular matrix (L) and an upper triangular matrix (U), which are then
used for forward and backward substitutions. For larger matrices, it is recommended to
use iterative methods, such as Jacobi and Gauss-Seidel. These methods involve less data
communication between computational blocks. We have not encountered a scenario where
caching (saving) the LU decomposition or conducting simulations with a larger number
of atoms that do not fit within a single computer memory would be advantageous.
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Figure 16 – Speedup of the top 10 ODE solvers against the formal solution. Laser was
switch-on, on the time interval t ∈ [0, 75]Γ−1, averaged over 50 realizations.
In panel (a), the density is ρk−3

0 = 0.02, and in panel (b), ρk−3
0 = 0.2. Both

figures had N = 1500.

Source: By the author.

Figure 17 – Execution time to compute time evolution using MeanField model on the low
and high-density regimes. The parameters are the same as previous speedup
figures.

Source: By the author.

We are investigating the advantages of using Graphics Processing Units (GPUs),
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Figure 18 – Decay dynamics for a Cube with N = 500 shows the difference of Scalar and
MeanField models with low saturation, s = 10−5. The relative error highlights
the finding. Panel (a) correspond to density ρk−3

0 = 0.02, and panel (b) to
ρk−3

0 = 0.2.

Source: By the author.

particularly NVIDIA GPUs with the CUDA library.67,68 To conduct our experiments, we
used cloud resources provided by the website vast.ai.69 This platform allowed us to test
the solution on a variety of GPU models. Figure 19 displays the models and their average
execution times, for a fixed configuration. The machine configurations to which each GPU
was attached, as well as the details of the benchmark code, are outlined in Appendix D.

According to our findings, there is a strong correlation between the GPU’s theo-
retical GFLOPs (Giga Floating Point Operations Per Second), and the time it takes to
compute β⃗ss, as displayed in Figure 19(b). GPUs from the top-tier category (commonly
labeled as xx90, typically designed for high-end gaming applications, and server-grade
GPUs denoted as x100) demonstrate significantly faster execution times compared to
lower-end counterparts. These results are relevant and useful for deciding on future hard-
ware investments. For example, getting two computers with 3090 GPU might cost less
and perform the same as a single computer with 4090 GPU.

4.5.3.2 MeanField

The nonlinear MeanField equations require numerical optimization methods to
estimate their steady-state solutions. Within the Julia ecosystem, the main packages for
handling nonlinear systems are NLSolver.jl70 and SIAMFANLEquations.jl.71 However,
the latter package has certain limitations for operations involving complex numbers. As
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Figure 19 – Execution time to solve x = G\b for a system with N = 5000 atoms using
CUDA.

Source: By the author.

a result, it was not considered in our analysis.

NLSolver.jl has 3 methods to solve nonlinear equations: Trust region, Newton
with linesearch, and Anderson acceleration. We compared three methods in Fig-
ure 20 and found that the Anderson acceleration approach is faster in solving various
problems. We have identified that performing the Anderson acceleration method can
be enhanced by selecting an optimal initial condition. Specifically, we use the time-evolved
state results from t ∈ [0, 250]Γ−1 as the initial condition for the NLSolver.jl package.

The NLSolve.jl package does not consistently converge. Small system configura-
tions with less than 100 atoms are more likely to experience non-convergence, although the
reasons are unclear. Also, saturation values that are too high or too low can cause prob-
lems. We have experienced issues when saturation is above s ≈ 10−1 or below s ≈ 10−6.
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Figure 20 – Execution Time to find the steady state of MeanField equations using non-
linear methods.

Source: By the author.
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5 LIGHT STATISTICS AND LOCALIZATION

We now move to the physical cases to which the numerical schemes discussed
previously were applied to, considering light scattering in disordered media problems.

5.1 Anderson Localization

Anderson Localization is a fascinating phenomenon that occurs when a wave trav-
els through a disordered medium and experiences scattering events. As a result of inter-
ference effects, the wave becomes exponentially confined to certain regions of space. This
phenomenon was first proposed by Anderson in 195872 as a mechanism for the metal-
insulator transition for electrons. Over time, Anderson Localization has been recognized
as a general wave phenomenon and has been observed in various settings, including elec-
tronic systems,73 photonic structures,74 matter waves,75 and cold atom experiments.76 To
better understand this concept, one can refer to Schrödinger’s equation, which provides
a concrete mathematical framework for studying wave behavior

Ĥ|ϕ⟩ =
(
−1

2
∇2 + U

)
|ϕ⟩ = E|ϕ⟩, (5.1)

where U is a random potential. One then proceeds to study the system eigenspectrum. To
create a matrix representation of Equation 5.1, first, we discretize the space into N regular
bins. For convenience, we consider a 1D space. To each position, we associate a potential
Uj = U0Rj (j = 1..N), where Rj is drawn from a uniform distribution. Inspired by Kutz77

and Landau,78 the Schrodinger equation is rewritten using the matrix representation:

H =
(
−1

2
∇2 + U

)
= 1
δx2



−2 1 0 0 ... 0
1 −2 1 0 ... 0
0 1 −2 1 ... 0

...
... 1 −2 1

0 ... 0 1 −2


+U0



R1 0 0 0 ... 0
0 R2 0 0 ... 0
0 0 R3 0 ... 0

...
... 0 RN−1 0

0 ... 0 0 RN


.

(5.2)
δx2 is the size of the space bins. The Hamiltonian produced in Equation 5.2 is then
decomposed as H = ΨEΨ−1, that is, eigenvalues are stored as diagonal elements of
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matrix E, and their associated eigenstates are the columns of the matrix |Ψ⟩

E =



E1 0 0 ... 0
0 E2 0 ... 0

...
... EN−1 0

0 ... 0 EN


,Ψ =



Ψ11 Ψ12 Ψ13 ... Ψ1N

Ψ21 Ψ22 Ψ23 ... Ψ2N

Ψ31 Ψ32 Ψ33 ... Ψ3N

...
ΨN−11 ... ΨN−1N−1 ΨN−1N

ΨN1 ... ΨNN−1 ΨNN


. (5.3)

The eigenvectors Ψjn are concatenated as columns of a matrix Ψ = [Ψj1|Ψj2|...|ΨjN ],
and Figure 21 presents the Spatial Profile, |Ψ(x)|2, of the 3 eigenstates with lowest
eigenvalues, with and without random potential. For a free particle in a box (U = 0
and hard wall), the numerical solution tends to the known periodic solutions Ψ(x) =√

2/L sin(nπx/L) of the square box potential, panel (a). Differently, for a random poten-
tial, |Ψ(x)|2 exhibits an exponential decay, see panel (b), that is, the modes are said to
be localized.

Figure 21 – Eigenstates from Schrodinger’s equation in 1D with U0 = 105. In panel (a),
where no disorder is present, the eigenstates present a wave-like behavior
filling the entire box, therefore, these are named extended modes. In panel
(b), in the presence of disorder, the eigenstates are confined in some regions of
space, exhibiting an exponential decay (until numerical precision is reached,
and only numerical noise remains).

Source: By the author.

This exponential decay is characterized by the localization length ξ, correspond-
ing to |Ψ(r)|2 = Ae−r/ξ. Some experiments allow for direct inspection of the wave func-
tion,79–81 and monitoring its narrowing/spreading from which the localization length of
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the scattering mode can be extracted (the localization length for the system is defined,
strictly speaking, only in the thermodynamic limit). To increase the accuracy of the fitting
procedure, it is convenient to "linearize" the equation as ln(|Ψ(r)|2) = ln(A)− r/ξ, before
performing a linear fit as a function of r, for example using a linear least square fitting
procedure.

The spatial extension of Ψ can be further characterized by introducing the Inverse
Participation Ratio (IPR), a number between zero and one, which quantifies the number
of atoms contributing effectively to an eigenmode, ultimately giving an estimation of the
mode size. For a mode n, the IPRn is given by82

IPRn =
∑N

j |Ψnj|4(∑N
j |Ψnj|2

)2 . (5.4)

In particular, IPR reaches its maximum value, 1, when the mode is completely
localized on a single point x in space. Oppositely, the IPR reaches value 1/N , when all
spatial positions contribute equally to the mode (Ψnj = 1/

√
N), which corresponds to an

extended mode. It is worth mentioning that other signatures of localization include the
statistics of eigenenergies,83 and the fractal dimension of eigenstates.84 To compute IPRs
one should use the function get_IPRs, and its inverse with get_PRs.

The IPR is a quantity that requires access to the eigenstates of the system, but
the eigenstates are often not accessible experimentally, see a case where eigenstates are
inspected on Semeghini et al.85 To overcome this limitation, a more commonly used ap-
proach is to study the macroscopic transport properties of the system, particularly by
measuring the transmission, T , as a function of the sample thickness, L. In the diffuse
regime, the transmission is expected to follow Ohm’s Law, with T ∝ 1/L.86 As the sys-
tem undergoes disorder-induced changes,87,88 the transmission scaling transitions through
T ∝ 1/L2 before reaching the strongly localized regime with T ∝ exp(−L/ξ),87,88 ξ is the
localization length. The experimental observation of this change in transmission scaling
was used by Wiersma et al.89 to claim the observation of three-dimensional (3D) localiza-
tion of light. However, these findings were later challenged by Beek et al.,90 who provided
evidence suggesting that the exponential transmission could be attributed to weak light
absorption rather than localization effects.

A different experimental approach, pioneered by Chabanov, Stoytchev and Genack,91

involves measuring the fluctuations in transmission. Recently, Cottier et al.92 tested this
method using both Scalar and Vectorial models, and they successfully observed clear
signatures of localization. In this chapter, we aim to replicate and explore these results
and signatures. Specifically, we will investigate the impact of atom saturation using the
MeanField model, which has not been previously considered. Unlike earlier works that
focused solely on the single-photon regime, where only the atomic dipole moments are rel-
evant, we will also consider the influence of the atomic population. As a preliminary step,
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we will demonstrate how Anderson localization can be observed in the Coupled Dipole
Model.

5.2 Localized Scattering Modes using Scalar Model

Differently from Schrodinger’s equation discussed previously, the Coupled-Dipole
Equation does not represent directly a wave equation, so the meaning of its eigenenergies
and eigenstates still needs to be defined. We diagonalize the Green’s matrix representing
the atomic interaction which, for 3D Scalar case, was defined in Equation 2.23, which
reads

G3D−scalar
jm =

(
−Γ

2
+ i∆

)
1jm + i

Γ
2

N∑
j

N∑
m ̸=j

eik0rjm

k0rjm

. (5.5)

The function interaction_matrix computes the matrix for Scalar and Vectorial
models. We highlight that the density ρ = N/V is the driving force for localization in 3D
clouds, that is, systems with a density below some threshold (ρk−3

0 < 0.1) do not exhibit
localization,17 even in the large N limit. Indeed, the increasing density corresponds to
stronger scattering properties, and thus to an increase in disorder for the propagating
waves. The eigendecomposition of Equation 5.5,

G3D−scalar
jm = ΨλΨ−1, (5.6)

produces eigenvalues and eigenvectors similar to Equation 5.3, but the eigenvalues λn are
complex — because the interaction matrix is not Hermitian. Their real part corresponds
to the decay rate of each mode, Γn = −ℜ(λn), and the imaginary part provides the energy
shift from the single atom transition, ∆n = ℑ(λn) — since ∆n = ω0 − ωn, ωn = ω0 −∆n.
These computations are performed by the function get_spectrum. The spatial profile,
produced by the eigenvectors, can be interpreted as the excitation of the j-th atom, on
the n-th mode. Let us now illustrate this point by presenting the profiles of a localized
and an extended mode.

Let us imagine atoms randomly distributed inside a spherical cloud, with den-
sity chosen to produce localized eigenmodes. One could select a mode n |Ψjn|2, and plot
the value of each atom j according to some color scheme. However, visualizations inside
volumes are intrinsically more complicated to interpret, and one has to rely on some
creativity. In Figure 22(a)-(c) shows a spherical cloud where each marker size is propor-
tional to |Ψjn|2, the meaning of LOC, SUB, SUPER will be defined shortly, yet, this spatial
visualization is not insightful.

A better approach is to define the distance of the atoms from the mode center of
mass, rn

cm, using |Ψjn|2 as weights

rn
cm =

∑
j rj|Ψnj|2∑

j |Ψnj|2
. (5.7)
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Figure 22 – A sphere withN = 2000 atoms (density ρk−3
0 = 1.0) is excited by a plane wave

in the z direction with detuning ∆Γ−1 = 1.0. The marker size in plots (a)-(c)
represents |Ψjn|2, which spans orders of magnitude, causing some points to
be invisible on the plot. The yellow cross marker indicates the center of mass
positions of each mode. In plots (d)-(f), profiles of the mode excitation are
shown as a function of distance from the center of mass. For more details,
refer to the main text.

Source: By the author.

Then, we compute a new spatial profile, based upon the eigenvectors and the distance
between each atom rj from this center of mass. The results are presented in Figure 22(d)-
(f). Note that the localized mode exhibits an exponential decay, from which we extract
its localization length ξ of the scattering mode.

The distribution of eigenvalues in the complex plane exhibits interesting charac-
teristics. We classify modes with Γn > Γ as superradiant (or SUPER for short) because
they decay faster than the natural single-atom decay rate. On the other hand, modes with
Γn < Γ are referred to as subradiant (or SUB), and among them, some exhibit decay rates
Γn many orders of magnitude smaller than the single-atom decay rate, as illustrated in
Equation 5.2. These modes are termed localized (or LOC) since they usually correspond
to exponentially localized modes. However, distinguishing between SUB and LOC modes
relies on other metrics, such as the Inverse Participation Ratio. The classification of each
mode contains a degree of arbitrariness, and Appendix B provides further details on our
current implementation. It is sufficient to mention that the method classify_modes is
responsible for this task.
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Figure 23 – Examples of eigenmodes on the Complex Plane: (a) ρk−3
0 = 0.5, modes with

Γn/Γ < 10−4 also present higher IPRs, indicating localization. (b) ρk−3
0 =

0.02, modes densely accumulated in a small region.

Source: By the author.

5.3 Scattered Light as Localization Signature

The localization signatures we have discussed thus far rely on the properties of
eigenmodes. However, many experimental setups lack direct access to the eigenvalue statis-
tics shown in Figure 22. To address this limitation, Cottier et al.92 proposed an alternative
approach by studying the statistics of scattered light, which is generally a more accessible
observable. Their investigation revealed that the intensity fluctuations exhibit an increase
precisely in the parameter regime where localized scattering modes appear.

Figure 24 presents the scattered intensity I for high and low densities. Their spatial
profiles appear different, but more precise indicators are needed.

Cottier et al.92 quantified that at low density, the speckle pattern follows the
Rayleigh distribution, which reads

P (I) = 1
⟨I⟩

e−I/⟨I⟩, (5.8)

where the average ⟨⟩ is here taken on the polar angle. In fact, Equation 5.8 is an exponential
probability distribution for the intensity has been described by Goodman.93 However, in the
localized regime, with higher densities, these statistics are no longer valid. To characterize
the intensity fluctuations, the intensity variance, σ2, can be monitored. In particular, the
variance for the distribution Equation 5.8 is σ2 = ⟨I⟩2, since Equation 5.8 is normalized,
and one gets a unitary variance, σ2 = 1.
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Figure 24 – To visualize the scattering in all directions, we construct a spherical shell
around our atomic cloud using 15,000 grid points. At each position on the
shell, we measure the intensity and combine them to create a surface repre-
sentation. Both spheres enclose a cubic cloud of N = 3000 atoms. In (a), the
density is ρk−3

0 = 0.1, while in (b), the density is ρk−3
0 = 0.02.

Source: By the author.

The procedure to obtain sufficient statistics and compute the variance σ2 can be
summarized in 7 steps:

1. Create one atomic realization;

2. Compute the steady-state solution

3. Measure the light intensity at certain points in space;

4. Save the intensities into an Array;

5. Repeat steps 1-4 for a given number of realizations;

6. Compute the average from all the data, and divide each intensity by it;

7. Produce a scatter plot histogram of the data to facilitate interpretation.

Our analysis results, shown in Figure 25, are consistent with Cottier et al..92 The
white dots (low density) exhibit a variance of σ2 = 1.042, very close to unity. In contrast,
in the localized regime (high density), the variance is σ2 = 4.96. We acknowledge that the
precise variance value depends on various parameters, including laser waist and angle of
measurement. The following section will delve into exploring some of these aspects.
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Figure 25 – Scattered intensity probability distribution for two density regimes: white
dots represent Low Density with σ2 = 1.042, and blue diamond-markers rep-
resent High Density with σ2 = 4.954. Each curve has been obtained from
10 realizations of a Cube with a fixed side of k0L = 32.4 (Low Density
with N = 684 and High Density with N = 6066), excited by a laser with
w0 = k0L/4 and ∆Γ−1 = 1. The scattered intensity was measured in a ring
of 64 points at an angle of θ = 5π/12.

Source: By the author.

5.4 Fluctuations of the variance

Figure 25 provides an illustration of the increase in intensity fluctuations in the
localized regime. However, it offers only a partial view as it pertains to a specific measure-
ment position and atomic configuration. A more comprehensive analysis, like Figure 26,
demonstrates that the variance varies substantially for different angles and atomic distri-
butions. The vertical line in Figure 26 indicates θ = 5π/12, the angle used in Figure 25.
Nonetheless, Figure 26 represents a behavior of the fluctuations associated with a certain
set of parameters. For example, Figure 27 highlights a case where the same atomic con-
figuration yields different variance results when changing the laser waist and system size
ratio.

We conducted a study of variance across different angles for a fixed spherical
cloud and excited by three lasers with different laser waists. As observed in Figure 27,
the variance increases, consistent with our previous findings, only for laser waist half the
system size. Nonetheless, when the laser waist is comparable to the system size (indicated
by the blue and pink curves), the variance remains consistently below 1.

Figure 28 complements Figure 26 by considering the number of repetitions to
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Figure 26 – Variance dependence at observation angles and cloud shape - with N = 6066
and ρk−3

0 = 0.17. The Cubical shape has the largest variances, while the
Spherical does not even reach σ2 = 1 in most angles.

Source: By the author.

produce each data point. The results for all atomic distributions with 320 realizations
converge to values close to 3200, but their absolute values still do not match. Since the
absolute values of the variance are context-dependent, we had to make some ad hoc choices
and trade-offs. We note that even with 16-32 realizations, we can observe the increase of
fluctuations characteristic of the localization regime. Therefore, we perform simulations
within this range to reduce the execution time for our analysis.

5.5 Localization Signature with MeanField Model

Scalar model is valid for linear optics regime, that is, very low laser saturation.
Using MeanField model allows us to overcome such limitation, and may account for even-
tual nonlinearities in the experiments, due to the finite pump strength. Considering the
published literature, it is unclear if such nonlinearities would overshadow the localization
signature or not. To answer such question, Figure 29 compares Scalar and MeanField
models using different saturation. We found that increasing the saturation decreases the
variance, and only the lowest saturation values display variance above unity, leading us
to conclude that, for the system sizes that we consider, any future experiments should
have a maximum saturation level of s0 = 10−4 to capture the localization signature, with
a recommended saturation regime of s0 = 10−5.

Before delving into the study of the incoherent scattering component, it is cru-
cial to check its significance on the localization signatures, or if Figure 29 results were
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Figure 27 – We investigated the variance across different angles for spherical clouds (av-
eraging over 200 realizations) with a density of ρk−3

0 = 0.1 and a radius of
k0R = 4.5π. The clouds were excited with three different laser configurations,
with detuning ∆Γ−1 = 0.3 and strength s0 = 10−6, but each with a different
waist. The variance exhibits distinct values depending on the laser parame-
ters, which poses limitations on obtaining quantitative results.

Source: By the author.

Figure 28 – For all cloud shapes with N = 2000 and density ρk−3
0 = 0.1. The variance

peaks for the Cylinder and Sphere occur in a region around π/4. On the
other hand, the Cube exhibits a flat region of angles with similar variance
values from π/4 to π/2.

Source: By the author.

isolated cases. To investigate this point, we created a variance map, σ2(ρ,∆), displayed
in Figure 30, which shows the variance as a function of density and detuning. Our find-
ings demonstrate that σ2 < 1 occurs in the same region where Cottier et al.92 observed
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Figure 29 – Variance changes for different saturation levels shows the variance peak being
lost. Simulations had fixed density N = 2000, ρk−3

0 = 0.1 and 32 realizations.
The laser had w0 = R/2 and ∆Γ−1 = 0.3.

Source: By the author.

fluctuation larger than 1. The affected region expands with increasing saturation, but it
remains limited. This suggests that regions with large detuning are not influenced, indi-
cating that the incoherent component mainly affects the localization region, at least for
the parameters considered (which correspond to a rather weak saturation parameter).

To understand the decrease in variance and its implications, we first study the
probability distribution of intensity at various saturation levels. Figure 31 illustrates our
expectations for low densities, where σ2 ≈ 1 holds true for any saturation level. However,
at high densities, we observe that as saturation increases, the probability distribution
functions tend to have higher values, contrary to the expected behavior for independent
scatterers, where light intensity should approach zero (I ≈ 0), due to destructive inter-
ference. Therefore, the presence of an incoherent component from MeanField model had
a strong influence on intensity fluctuations.

To illustrate even further the direct link between the decrease in variance and
the population ⟨σz⟩, we compare the scattered intensity with and without incoherent
component, Iinc. For convenience, the intensity in the far field is re-written here as

I = Icoh + Iinc =

∣∣∣∣∣∣iΓ2 e
ik0R

k0R

∑
j

⟨σ−
j ⟩e−ik0n̂·r⃗j

∣∣∣∣∣∣
2

+ Γ2

(2k0R)2

∑
j

−|⟨σ−
j ⟩|2 +

1 + ⟨σz
j ⟩

2

 . (5.9)

Figure 32 shows that if one focuses solely on the coherent part of the intensity
yields similar patterns to those obtained from the Scalar Model. This suggests that
the population, represented by the incoherent part, plays a crucial role in shaping the
scattering characteristics observed in the system, and is detrimental to the observation of
Anderson localization of light.
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Figure 30 – Map of the intensity variance, as a function of the atomic density and laser
detuning. We used a cylinder with a fixed radius (k0R = 3λ0) and height
(k0H = 6λ0). The number of atoms and realizations varied depending on the
density. For smaller densities, we used 32 realizations and adjusted them to
16 for larger atomic clouds. The laser waist was fixed at w0 = 0.5k0R.

Source: By the author.

5.6 Coherent and Incoherent Powers

The saturation parameter used, up to 0.1, suggests that the incoherent component
should be rather weak, at least in the case of independent-atom scattering. Let us now
study more quantitatively the effect of the excited population and of incoherent scattering
on the intensity statistics, from the independent scatterer prediction.

We aim to explore the incoherent part verifying if it follows at least the expecta-
tions of the single-atom theory. Steck94 pointed out how the photon scattering rate Rsc,
which is the radiated power divided by the photon energy ℏω, can be split into coherent
and incoherent parts, namely,

Rcoh
sc = Γ

2
s

(1 + s)2 , (5.10)

Rinc
sc = Γ

2
s2

(1 + s)2 . (5.11)
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Figure 31 – Probability Distribution for low (a) and moderate (b) densities, comparing
Scalar and Meanfield models and their respective variance is shown on the
legend. Simulations had N = 1000 atoms, ρk−3

0 = 0.01 low density, and
ρk−3

0 = 0.1 for moderate density, over 320 realizations of Cylinders of fixed
radius k0R = 4.5π; the Gaussian beam had w0 = R/2 and ∆Γ−1 = 0.3.

Source: By the author.

Figure 32 – (a) Previous results as a reference, using the MeanField model with a satu-
ration parameter value of s = 0.1 . (b) The region of small variances vanishes
when considering only the coherent part of the intensity. (c) The scattering
behavior produced by Icoh qualitatively reproduces the results obtained from
the Scalar Model.

Source: By the author.
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Our goal is to verify if these relations still hold for MeanField, or if the interactions
lead to very different weights of these respective scattering contributions. In practice, one
needs to find the coherent and incoherent powers, P coh and P inc, and up for some constant,
we expect Equation 5.10 and Equation 5.11 to have the format

P coh
sc ×

2
Γ

(1 + s)2

s
= 1, (5.12)

P inc
sc ×

2
Γ

(1 + s)2

s2 = 1. (5.13)

The validity of Equation 5.12 and Equation 5.13 are limited to a single atom. In
systems with N independent atoms, we expect all atoms to emit the same power, requiring
a normalization by 1/N — this is true only in optically dilute clouds, where the interaction
between atoms is negligible. Furthermore, each atom may represent a different saturation
due to their positions (the local intensity changes in space), requiring the calculation of
an average saturation parameter ⟨sj⟩ across all atoms. In summary, as a quantifier of the
saturation in the interacting cloud, we aim to verify how much the following quantities,
valid for independent scatterers, deviate from the unity

P coh
sc

0.5ΓN⟨sj/(1 + sj)2⟩
?= 1, (5.14)

P inc
sc

0.5ΓN⟨s2
j/(1 + sj)2⟩

?= 1 (5.15)

The saturation in CoupledDipoles incorporates the local Rabi frequency of the
laser Ω(rj) within it. When considering a Gaussian laser, and given s0 as the local satu-
ration parameter at resonance, the expression for the saturation at different detunings is
as follows:

s(∆) = 2Ω(r⃗)2/Γ2

1 + (2∆/Γ)2

=

Γ
√
s0

2
eikze

− x2+y2

w2
0

1
1+2iz/kw2

0

(1 + 2iz/kw2
0)


2

2/Γ2

1 + (2∆/Γ)2

= s0

1 + (2∆/Γ)2

eikze
− x2+y2

w2
0

1
1+2iz/kw2

0

(1 + 2iz/kw2
0)

.


2

. (5.16)

To evaluate the Coherent and Incoherent Powers, one integrates the intensity Equa-
tion 5.9 overall space

Power =
∫
I(r̂)dr̂ =

∫ π

0

∫ 2π

0
I(r̂)r2 sin θdrdθdϕ. (5.17)
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The coherent part of the local radiated power has been computed by Araújo,
Guerin and Kaiser,95 and with our formulas and definitions, there are only two modifica-
tions to adapt it to the MeanField. The first is to include multiplicative constants, and
the second to decrease the number of operation in half

Pcoh = Γ2

(2k0R)2 4π
∑
j,m

sin(k0|rj − rm|)
k0|rj − rm|

⟨σ−
j ⟩⟨σ+

m⟩

= 4πΓ2

(2k0R)2

2ℜ

 ∑
j,m>j

sin(|rj − rm|)
|rj − rm|

⟨σ−
j ⟩⟨σ+

m⟩

+
∑

j

|⟨σ−
j ⟩|2

 . (5.18)

The incoherent part does not have any position dependence, and thus, no angular depen-
dence and the integral simplifies as

Pinc =
∫ π

0

∫ 2π

0

Γ2

(2k0R)2

∑
j

−|⟨σ−
j ⟩|2 +

1 + ⟨σz
j ⟩

2

 r2 sin θdrdθdϕ

= Γ2

(2k0R)2

∑
j

−|⟨σ−
j ⟩|2 +

1 + ⟨σz
j ⟩

2

 ∫ π

0

∫ 2π

0
r2 sin θdrdθdϕ

= Γ2

(2k0R)2 4π

∑
j

−|⟨σ−
j ⟩|2 +

1 + ⟨σz
j ⟩

2

 . (5.19)

For a sanity check, we plot Equation 5.12, Equation 5.13 and their ratios at Fig-
ure 33. For the case of N = 1, all detunings exhibit the expected behavior. Still, for
N = 500, a peak appears, originating from the interaction between the atoms.

Figure 34 summarizes how the coherent and incoherent parts behave for the same
data from Figure 30. The coherent power is influenced by the term sin(rjm)/rjm, which
approaches unity only for small densities. We found that such a condition is met for
densities ρk−3

0 < 10−4, which is not within the density range of our interest. Typically, we
work in the regime ρk−3

0 ∈ [10−2, 10−1], therefore, our coherent results will never be close
to unity.

We acknowledge that the results obtained from the simulations are unstable and
sensitive to the exact value of ⟨σz⟩ used — it can even produce nonphysical negative
results (which are not shown on Figure 34), or most commonly, exponential large values.
This is a consequence of the MeanField approach, which introduces a nonlinearity in the
equations (a consequence of factorizing quantum correlations), potentially leading to non
physical states, and often to numerical instabilities. While our fastest results utilized the
NLSolver.jl, to achieve more reliable outcomes, the steady states were computed by
the time evolution of the MeanField ODEs. Setting higher precision is an option, but it
is crucial for future works to find a more stable numerical method for the steady state.
The incoherent part of the saturation s0 = 10−1 is the most reliable dataset, and it has
similar results to variances maps from Figure 30. Only in the region ∆Γ−1 ∈ [0, 2] do
localization-related effects become noticeable, and these are stronger for higher densities.
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Figure 33 – The curves represent the scattering behavior of a single atom (shown in white)
and a cloud of N = 500 particles in a cylindrical shape at two different
densities. The system was pumped by a laser with a Gaussian Beam profile,
where the saturation parameter was s0 = 10−3 and the laser waist was w0 =
0.8R.

Source: By the author.
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Figure 34 – When using the same data as to compute the variances, the coherent part
remains stable across different saturation levels. Nevertheless, as the satura-
tion decreases, numerical precision issues in computing the steady-state have
a significant impact. The missing points on the figures (areas in black) corre-
spond to the neglected negative values, as explained in the main text.

Source: By the author.
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6 MISCELLANEOUS CODE APPLICATIONS

This chapter is devoted to showing some realistic codes. Keep in mind that the
exact syntax of the examples may change in future versions of the package, but the main
ideas should stay the same.

6.1 Comparing Models

If you want to explore a physical regime beyond the MeanField and the number of
atoms is not large, using the PairCorrelation model is a great option among the physical
models. Our aim is to show how to replicate results akin to those presented by Cipris et
al.96 Figure 2(a), which illustrates the disparities between different physical descriptions,
and showcase a scenario where both Scalar and MeanField models were not as reliable
as the PairCorrelation model to match decay rates experimental data.

This code snippet at Figure 35 performs a simulation involving a fixed set of
atoms and lasers but with different physical models (lines 13-15). The steady state of
each model is calculated at lines 18-20 because they will be used as the starting point for
the simulation of switch-off dynamics. We added extra parameters to line 20 to ensure
accurate results for the PairCorrelation model since it is not stable for every atomic
configuration and needs careful adjustments to be useful.

Then, the specialized function turn_laser_off! is used to switch off the lasers at
lines 23-25. This is the only function so far that alters any of our data types. As a result,
if users want a simulation with different parameters, for example, different detuning, a
new data type instance has to be created.

Next, in lines 31-33, the code simulates the switch-off dynamics over a specified
time interval and the final piece of the code computes and normalizes intensity at the
chosen angle of 75°. The code is an easy example that merges recurring commands, but
it cannot generate plots or compute averages from various outcomes. When all the extra
changes are made, the intensity curves should look like the ones in Figure 36. We used
this type of figure as the backbone of our Cipris et al.96 publication by analyzing it with
an exponential fitting to extract characteristic time lengths, rather than using the raw
intensity data.

6.2 Random Phases

Subradiant modes, even if not exponentially localized, find applications as po-
tential quantum memories in atomic systems. However, it is not entirely clear whether
subradiance, which is a collective and coherent effect, is the dominant factor, or if another
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Figure 35 – Code example to create and compare different physical models. Once different
models are created, their analysis follows the same commands.

Source: By the author.

effect, such as radiation trapping with incoherent physics, justifies the long lifetime. As
coherent effects depend on phases, a pulse of random values is added to the interaction
matrix to distinguish them from incoherent effects such as radiation trapping. Changing
the phase does not affect the atomic dynamics and observable if incoherent effects are the
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Figure 36 – Scalar and MeanField models have similar intensity over time, while
PairCorrelation model could bring new physics.

Source: By the author.

main factor. In what follows, we show an implementation of a random phase change (that
is, different for each atom) relying on the introduction of an external magnetic field.

The code in Figure 37 is a basic example that builds on the principles outlined in
Figure 35. Specifically, it encompasses the switch-off dynamics started from the steady
state. Notably, the innovative aspect lies within lines 22-43. Random values are added only
to the diagonal of the original interaction matrix between the time interval Γt ∈ [25, 26.5]
by the function new_interaction_matrix. The way we do this is by using a Rectangular
Function (rect) that has been built using two Heaviside step functions (H). The meaning
of this extra term would represent the influence of an external magnetic field applied over
the atomic system for a defined amount of time.

In addition to the interaction matrix, users must also specify a chain of auxiliary
functions within the package. For example, the ODE system needs to be rewritten to
consider the matrix’s time dependence, in lines 39-43. Next, lines 44 and 45 set up internal
functions for the time_evolution function to use our custom functions. Users have to
inspect the source code, and there is no easy solution to select the auxiliary functions
that require further changes. Finally, in line 48, we pass the argument interaction with
the result of new_interaction_matrix(scalar).

The outcome of the code (with average over repetitions) is plotted in Figure 38. A
peak is visible in the scattered power and an exact interpretation of the results demands
further analysis, studying the energy of the system for example. Researchers can use
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Figure 37 – Minimal Working Example of a code where the internals of the package had
to be altered to attend to the user’s needs.

Source: By the author.

other methods in the package for further analysis with no extra restrictions since the only
modification made from the defined work was the interaction matrix.



87

Figure 38 – Scattered power over time using default settings compared with an interaction
matrix time dependent.

Source: By the author.

6.3 Parallel Load Balancing

Parallel simulations usually require averaging over independent realizations. As
already mentioned in the Optimization Chapter, the benefit of parallelism appears with
Distributed.jl. This aspect has been avoided in previous discussions, but for instance,
the Variance map at Figure 30 is a real-world scenario where parallelism plays an impor-
tant role.

In a simulation with changes in densities, for a fixed system size, the number of
atoms varies accordingly to achieve a certain density. Therefore, parameters with high
density (stronger interactions) take more time to be computed. As an extreme solution, a
simplistic method would be to distribute different regions evenly among different nodes.
As a result, nodes with a smaller number of atoms would finish first, and be idle awaiting
the other nodes. The other extreme of task scheduling is to let each node act as a dea-
mon or micro-service, awaiting a request and executing on demand. Operational nodes
are assured, but data communication demand is high, especially when transferring large
matrices. The solution is then to shuffle the data prior to the task division into simple
blocks.

The fastest way to achieve this distribution is with the DistributedArrays.jl
package. The code in Figure 40 is not complete, but it highlights the cumbersome part
of identifying local indices for code operation. Note that the DistributedArrays.jl
package does not call the garbage collector to clean unsed memory, so the User has to
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Figure 39 – Task division, when each element of computation takes an uneven time of
execution, is a challenge to reduce idle processing. A simple division by blocks,
or on-demand computing, is easier to program but has its own drawbacks.
Our approach is an intermediary, where data is shuffled randomly at workers,
and on average, all workers have an equal load.

Source: By the author.

call it manually with the command GC.gc(true).
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Figure 40 – It is recommended to have two distributed matrices - one for parameters and
one for results. Therefore, when saving the data, reduces data communication.

Source: By the author.
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7 CONCLUSION

The investigation of cold atoms necessitates a meticulous and efficient numerical
methodology. Our journey began with the goal of understanding numerical intricacies
that affect simulating dipole equations in 3D systems with different models. This dedi-
cated effort has culminated in the development of a specialized Julia package, specifically
tailored to address the unique computational challenges posed by cold atom simulations.

The core of our endeavor revolved around achieving substantial performance en-
hancements. A big accomplishment was possible by picking the best computational tools
and algorithms. Equally important was understanding the algorithmic intricacies that
govern fundamental operations. Semi-analytical techniques helped us make better choices
for efficient computation and precise error estimation.

As a testament to the versatility of our developed package, we apply our tools to
the study of Anderson Localization, exploring how the statistics of the scattered light may
reveal experimental signatures of the localization transition. While the previous results
were based on the single-excitation approach, we investigated these statistics using our
numerical tools, using the non-linear set of equations (Mean-Field Equations) which takes
into account the excited population of the atoms and thus describes the moderate-drive
regime. This mean-field approach has allowed us to demonstrate that the presence of
multiple excitations in the system will not prevent the localization phenomenon, provided
that one monitors the elastically scattered light.

However, it is essential to acknowledge certain inherent limitations within our re-
search. Our focus remained squarely on 3D Systems, with other dimensions of physical
phenomena lying beyond our scope. Also, we did not investigate using mixed precision
(Float32) for quicker simulations, but one may want to consider this aspect in the fu-
ture. Last, comprehensive documentation is an ongoing process that needs the scientific
community’s feedback to improve it.

Currently, various numerical results are scattered across different research groups,
with the technical implementation often not provided, which can be considered a weakness
from a scientific point of view. The ultimate goal of this package is to stimulate more
unified behavior in the community, providing the first step of an adaptable package. By
providing a centralized resource, we aim to facilitate collaboration across groups and
stimulate new works and the exploration of new regimes in the field.
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APPENDIX A – TIME EVOLUTION

A.1 Formal Solution

Following the reasoning of Sethi and Thompson,97 while emphasizing the parts
that are relevant to our project, we here present in detail the derivation of the formal
solution of the linear equation discussed in the main text.

Let us start by multiplying both sides of 4.17 by e−Gt, and then combining the
terms containing β⃗ into the derivative:

e−Gtdβ⃗

dt
= e−Gtβ⃗ + e−GtΩ⃗

e−Gtdβ⃗

dt
− e−Gtβ⃗ = e−GtΩ⃗

d(β⃗e−Gt)
dt

= e−GtΩ⃗.

Integrating from 0 to t:

e−Gτ β⃗(τ)|t0 =
∫ t

0
e−Gτ Ω⃗dτ

e−Gtβ⃗(t)− e−G0β⃗(0) =
∫ t

0
e−τGΩ⃗dτ

e−Gtβ⃗(t) = β⃗(0) +
∫ t

0
e−Gτ Ω⃗dτ,

leads to the well-know solution

β⃗(t) = eGtβ⃗(0) + eGt
∫ t

0
e−Gτ Ω⃗dτ. (A.1)

As currently written, Equation A.1 still can be improved by using matrix diago-
nalization. Specifically, if we express G as ψλψ−1, the analytical solution can be further
refined, as also shown in Sethi and Thompson97

β⃗(t) = (ψetλψ−1)β⃗(0) + ψetλ
∫ t

0
e−tλψ−1Ω⃗dτ. (A.2)

While Equation A.2 is computationally efficient, integration is still required using
a numerical quadrature method. Nevertheless, this integral can be solved analytically, and
the proof is as follows. Expanding e−τ = in power series

∫ t

0
e−tλψ−1Ω⃗dτ = ψ−1Ω⃗

∫ t

0

[
I − λτ + 1

2!
λ2τ 2 − 1

3!
λ3τ 3 + ...

]
dτ.
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Integrating term by term
∫ t

0
e−tλψ−1Ω⃗dτ = ψ−1Ω⃗

[
t− λt

2

2
+ 1

2!
λ2 t

3

3
− 1

3!
λ3 t

4

4
+ ...

]
,

and multiplying by λ on both sides to adjust the exponent series to start at 1

−λ
(∫ t

0
e−tλψ−1Ω⃗dτ

)
= ψ−1Ω⃗

[
−1

1
(λt)1+ 1

2!
(λt)2− 1

3!
(λt)3+ 1

4!
(λt)4 − ...

]
.

To complete the power series, we include the term ψ−1Ω⃗(λt)0

−λ
(∫ t

0
e−tλψ−1Ω⃗dτ

)
+ ψ−1Ω⃗ = ψ−1Ω⃗

[
I − 1

1
(λt)1 + 1

2!
(λt)2 − 1

3!
(λt)3 + 1

4!
(λt)4 + ...

]
.

Converting the power series into an exponential form,

−λ
(∫ t

0
e−tλψ−1Ω⃗dτ

)
+ ψ−1Ω⃗ = ψ−1Ω⃗e−λt.

Finally, the integral term can be solved as∫ t

0
e−tλψ−1Ω⃗dτ = λ−1(e−tλ − I)ψ−1Ω⃗. (A.3)

By substituting equation A.2 into equation A.3, we obtain a numerical solution for
equation 4.17, at the cost of performing an eigen decomposition. The resulting expression
is as follows:

β⃗(t) = (ψetλψ−1)β⃗(0) + ψetλλ−1(e−tλ − I)ψ−1Ω⃗. (A.4)

The empirical numerical scaling discussed in Equation A.4 is not straightforward,
as different machines produced varying results ranging from O(N2.7−3.1). The dominant
operation comes from the eigendecomposition operation, and we found it to have a com-
plexity of O(N2.7). Figure 41 shows different algorithm complexity scalings for different
machines - using parameters where eigendecomposition is known to be the fastest ap-
proach as compared to a numerical ODE solver.

A.2 Solvers Comparison

In the main text, only the top 10 ODE solvers were presented. Here, we show all
36 results that we studied.
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Figure 41 – The dotted lines correspond to the formal solution using eigendecomposition,
while the solid lines represent the fastest known numerical ODE solver. The
abrupt spike on the EPYC 7443P is indeed a hardware outlier of that partic-
ular machine used for benchmarking.

Source: By the author.
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Figure 42 – All speed-ups for dilute density.

Source: By the author.
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Figure 43 – All speed-ups for high density.

Source: By the author.
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Figure 44 – All execution times for dilute density.

Source: By the author.
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Figure 45 – All execution times for high density.

Source: By the author.
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APPENDIX B – LOCALIZATION LENGTH OF SCATTERING MODES

Automatically classifying modes as localized or not is challenging because the
common fitting function of the form y = Ae−x/ξ is suitable for only a limited set of
spatial profiles, as depicted in Figure 46 (a) and (b). Many profiles require an ad hoc
pre-processing phase, which is not straightforward even for a trained human. Moreover,
automating this pre-processing step is even more complex and not well-defined, as it
involves making decisions and adjustments that are not easily programmable.

Figure 46 – Different spatial profiles demands different approach for an exponential fit-
ting. A fitting in (a) that takes in account all the values would be misleading,
the data has an uneven spread for small values. In (b) this is not the case and
a traditional least square fitting would be enough. For comparison, (c) is not
a localized mode.

Source: By the author.

Our approach to identify localized modes involves two stages. Firstly, we leverage
the eigenvector property that ∑j |Ψj|2 = 1, where we anticipate that atoms near the
center of mass would have the highest contribution. Secondly, we employ techniques to
identify outliers and eliminate them from the fitting procedure. These steps combined
enable us to more effectively pinpoint and characterize localized modes in our analysis.

B.1 Atom’s contribution to the mode

Our interpretation of the eigenvectors is that each atom j contributes with |Ψj|2

to the n-th mode. In the case of localized modes, certain atoms have a more substantial
influence and weight compared to others. To focus our analysis on the most influential
atoms and exclude less significant ones, we adopt an approach that selects only the atoms
representing a certain cumulative percentage of the overall distribution. Figure 47 shows
an example of points selected, in blue, based upon this argument. In practice, this is con-
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trolled setting the variable probability_threshold in the get_localization_length
function. Its default value is 0.999 and we chose this specific threshold value carefully
to ensure that it does not significantly alter any previously known interpretations of the
mode statistics, even though it may not be perfect to distinguish localized modes.

Figure 47 – Localized modes typically have most of their weight concentrated around only
a few atoms. In this example, the atoms marked in blue represent the selected
ones used to compute the fitting of the mode, the solid line.

Source: By the author.

B.2 Fitting with outliers

After selecting the atoms from the Spatial Profile, we observe that they exhibit
irregularities, which can affect the accuracy of the fitting process. To mitigate this is-
sue, we aim to downplay the influence of outliers in the fitting procedure. In a previ-
ous work,98 we utilized a fitting method that minimized the absolute difference of errors
rather than the usual squared error. However, for the current analysis, we chose to use the
LinRegOutliers.jl package, which effectively identifies outliers and excludes them from
the analysis. In the end result, describe on the next section, this approach has proven to
be more reliable to identify localized modes. Among various benchmarked algorithms, the
satman2015 method99 demonstrated the lowest error and is therefore set as the default
method. The second option, lta,100 while not as precise, offers faster execution times.

B.3 Localized Mode Selection

After completing the fitting procedure, we assess its accuracy using the Coefficient
of Determination, R2, which is given by the equation:
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R2 = 1−
∑

j(yj − ⟨y⟩)2∑(yj − ỹj)2 , (B.1)

where yj = |Ψn
j |2, and ỹj represents the estimated value obtained from the fitting process.

Based on the value of R2, we classify modes with R2 > 0.5 as localized. Although this
threshold is arbitrary, it is not unreasonable, as demonstrated in Figure 48, with modes
on dilute regime, top row, never reaching such value. To change this value, set the variable
fitting_threshold on the function classify_modes.

Figure 48 – The data comes from a cylindrical cloud with N = 2000 atoms and varying
densities. Panels (a) and (b) show low-density cases with ρk−3

0 = 0.04, result-
ing in ξn values consistently below R2 = 0.5. Panels (c) and (d) correspond
to high-density cases with ρk−3

0 = 1.0, showing ξn values above the threshold.

Source: By the author.
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APPENDIX C – GRAPHICAL CARDS UNITS

To make sure the tests can be repeated, we gave reference numbers for the machines
we used. You can find them on vast.ai. Its important to acknowledge that the machines
offered are part of a marketplace, and its possible for the host to withdraw a machine
from the network. Our main goal is to set the expectation from the hardware used for
future comparison if needed.

Table 3 – GPUs models and their respective host and machine on vast.ai market place.

GPU Model Host Machine CUDA version CPU Model
RTX 3060 48810 8888 12.0 Xeon E5-2680 v3
RTX 3070 23445 3510 11.4 Core i9-10940X
RTX 3080 43425 8114 11.6 Ryzen 9 5900X
RTX 3090 46971 8459 12.0 Xeon E5-2698 v3
RTX 4090 9656 8652 12.0 EPYC 7443
A10 32241 7710 12.0 EPYC 7413
A40 23806 3809 11.4 Xeon E5-2650 v4
A100 SXM4 23697 6062 11.6 EPYC 7763
A5000 47223 7471 11.7 EPYC 7252
A6000 47223 7458 11.7 EPYC 7252
V100 32241 7654 11.8 Xeon E5-2698 v4

Source: By the author.
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Figure 49 – Benchmark run of all remote nodes to acquire the data presented on the text.

Source: By the author.




