• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.76.2020.tde-13052020-134715
Document
Author
Full name
Gustavo Solcia
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2020
Supervisor
Committee
Paiva, Fernando Fernandes (President)
Carneiro, Antonio Adilton Oliveira
Carvalho Neto, João Teles de
Title in Portuguese
Dinâmica de fluidos computacional através de imagens por ressonância magnética: fluxo em wormholes
Keywords in Portuguese
Dinâmica de fluidos computacional
Imagens por ressonância magnética
Petrofísica
Abstract in Portuguese
A técnica de acidificação em poços de petróleo cria canais de alta permeabilidade denominados wormholes com o objetivo de aumento em sua produtividade. Entretanto, a variabilidade de estrutura e as consequências em seu fluxo são dependentes da injeção de ácido empregada. O objetivo desse trabalho é utilizar técnicas não invasivas de imagens por ressonância magnética para a reconstrução dos wormholes e simulação da dinâmica de fluidos para estimativas de vazão. Foram utilizadas imagens volumétricas de ressonância magnética ponderadas por T2 que passaram por um processo de segmentação estatístico. A reconstrução e suavização tridimensional foi feita através da biblioteca Vascular Modeling Toolkit para a aplicação da dinâmica de fluídos computacional em volumes finitos pelo software OpenFOAM. O estudo da estrutura resultante da segmentação em conjunto com as simulações de linhas de corrente e vazão revelou que o afunilamento do caminho principal restringe o fluxo global. Além disso, os canais de calibres mais regulares e menos tortuosos facilitam a maximização da vazão. O maior fluxo de injeção de ácido mostrou ramificar e interconectar o wormhole. Este trabalho mostrou a perspectiva de complementaridade das imagens de ressonância magnética e análise de parâmetros estruturais do meio poroso para determinação indireta de vazão.
Title in English
Computational fluid dynamics through magnetic resonance imaging: flow in wormholes
Keywords in English
Computational fluid dynamics
Magnetic resonance imaging
Petrophysics
Abstract in English
The reservoir acidification is a technique that creates high permeability channels called wormholes to increase their productivity. However, the structure variability and its flow results are dependent on the acid injection employed. The objective of this study is to use noninvasive magnetic resonance imaging techniques for wormholes reconstruction and simulation of fluid dynamics for flow estimates. Volumetric magnetic resonance images weighted by T2 that experienced a statistical segmentation process were used. The three-dimensional reconstruction and smoothing were done through the Vascular Modeling Toolkit library for the application of computational fluid dynamics in finite volumes by OpenFOAM software. Studying the structure resulting from segmentation in conjunction with current and flow line simulations revealed that the main path reduction restricts the overall flow. Besides, more regular and less tortuous gauge channels facilitate flow maximization. The largest acid injection flow was shown to branch and interconnect the wormhole. This study showed the perspective of complementarity of magnetic resonance images and structural parameters analysis of the porous medium for indirect flow determination.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2020-05-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.