• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.76.2021.tde-02092021-160416
Documento
Autor
Nome completo
Thereza Cury Fortunato
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2021
Orientador
Banca examinadora
Moriyama, Lilian Tan (Presidente)
Bachmann, Luciano
Daghastanli, Nasser Ali
Misoguti, Lino
Yoshimura, Elisabeth Mateus
Título em inglês
Monte Carlo simulations to investigate light coupling with optical skin phantom
Palavras-chave em inglês
Light distribution
Monte Carlo eXtreme
Monte Carlo simulations
Photodiagnosis
Phototherapies
Turbid media
Resumo em inglês
The effects observed during the light interaction with the most varied biological tissues make light an interesting tool for both diagnostic and therapeutic purposes. For a particular biomedical optical technique to be successful, it is essential to know and understand how the light interacts with the target tissue. Experimental measurements, theoretical modeling and computational simulations are widely used to improve the understanding of how light can interact with a tissue. The Monte Carlo simulations are considered important and reliable tools for detailed studies on the light propagation in tissue. It is known that to analyze the propagation of light in biological tissues we should take into account many factors, such as tissue optical properties, light source characteristics, interface roughness and illuminated tissue composition. In this context, in this thesis we used an optimized computational simulation method, Monte Carlo eXtreme (MCX), to predict the changes in the propagation of 630 nm light beam when a layer of a transparent material with different refraction indexes and thicknesses is added between the air and the surface of a homogeneous turbid medium (human dermis phantom) and a multi-layer (human skin phantom). We explored the effects caused by the transparent material when the light beam angle of incidence was varied and also when multiple sources are combined. Lastly, the material´s refractive index was extrapolated in order to obtain a mirror-like object on the skin phantom surface. The simulations demonstrated that the phantom structures and optical properties, as well as the incident light beam geometry (angle of incidence) highly influence the light propagation, and that using a transparent material between the air and the phantom we can create a more uniform field of illumination, however, the observed effects are also dependent on the material thickness and refractive index. A mirror-like object also led to a significant change in the photon flux. The observed results are due, in large part, to the phenomena of refraction and total internal reflection of the light scattered by the phantom. The presented results showed that MCX is a useful tool for more fundamental studies towards a better understanding on the light propagation in biological tissues according to different irradiation strategies. It can also help to path the way to the personalization of light dosimetry dosimetry in clinics.
Título em português
Simulações de Monte Carlo para investigação de acoplamento de luz a phantom óptico de pele
Palavras-chave em português
Distribuição de luz
Fotodiagnóstico
Fototerapias
Meios túrbidos
Monte Carlo eXtreme
Simulações de Monte Carlo
Resumo em português
Os efeitos observados durante a interação da luz com os mais diversos tecidos biológicos tornam a luz uma ferramenta interessante tanto para fins diagnósticos quanto terapêuticos. Para que uma determinada técnica ótica biomédica tenha sucesso, é essencial conhecer e compreender como de com a luz interage com o tecido-alvo. Medidas experimentais, modelagem teórica e simulações computacionais são amplamente utilizadas para melhorar a compreensão de como a luz pode interagir com um tecido. As simulações de Monte Carlo são consideradas ferramentas importantes e confiáveis para estudos detalhados sobre a propagação da luz no tecido. Sabe-se que para analisar a propagação da luz em tecidos biológicos devemos levar em consideração diversos fatores, como propriedades ópticas do tecido, características da fonte de luz, rugosidade da interface e composição do tecido iluminado. Neste contexto, nesta tese foi utilizado um método de simulação computacional otimizado, Monte Carlo eXtreme (MCX), para prever as mudanças na propagação do feixe de luz com o comprimento de onda de 630 nm quando uma camada de um material transparente com diferentes índices de refração e espessuras é adicionada entre o ar e a superfície de um meio túrbido homogêneo (phantom da derme humana) e de um multicamadas (phantom da pele humana). Exploramos os efeitos causados pelo material transparente quando o ângulo de incidência do feixe de luz era variado e quando fontes múltiplas são combinadas. Por último, o índice de refração do material foi extrapolado a fim de obter um objeto semelhante a um espelho na superfície do phantom de pele. As simulações demonstraram que as estruturas e propriedades ópticas do phantom, bem como a geometria do feixe de luz incidente (ângulo de incidência) influenciam fortemente a propagação da luz e que usando um material transparente entre o ar e o phantom podemos criar um campo de iluminação mais uniforme, no entanto, os efeitos observados também dependem da espessura desse material e do índice de refração. O objeto semelhante a espelho também levou a uma mudança significativa no fluxo de fótons. Os resultados observados são devidos, em grande parte, aos fenômenos de refração e reflexão interna total da luz espalhada no phantom. Os resultados apresentados mostraram que o MCX é uma ferramenta útil em estudos mais fundamentais para um melhor entendimento da propagação da luz em tecidos biológicos de acordo com diferentes estratégias de irradiação. Também pode ajudar a traçar o caminho para a personalização da dosimetria da luz na clínica.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-09-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.