• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.76.2002.tde-27092007-100001
Document
Auteur
Nom complet
Paulo Alexandre de Castro
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2002
Directeur
Jury
Onody, Roberto Nicolau (Président)
Felício, José Roberto Drugowich de
Nogueira Junior, Edvaldo
Titre en portugais
Algoritmos de otimização e criticalidade auto-organizada
Mots-clés en portugais
Algoritmos de otimização
Criticalidade auto-organizada
Modelo Bak-Sneppen
Modelo do relógio quiral
Otimização externa
Resumé en portugais
As teorias científicas surgiram da necessidade do homem entender o funcionamento das coisas. Novos métodos e técnicas são então criados com o objetivo não só de melhor compreender, mas também de desenvolver essas próprias teorias. Nesta dissertação, vamos estudar várias dessas técnicas (aqui chamadas de algoritmos) com o objetivo de obter estados fundamentais em sistemas de spin e de revelar suas possíveis propriedades de auto-organização crítica. No segundo capítulo desta dissertação, apresentamos os algoritmos de otimização: simulated annealing, algoritmo genético, otimização extrema (EO) e evolutivo de Bak-Sneppen (BS). No terceiro capítulo apresentamos o conceito de criticalidade auto-organizada (SOC), usando como exemplo o modelo da pilha de areia. Para uma melhor compreensão da importância da criticalidade auto-organizada, apresentamos vários outros exemplos de onde o fenômeno é observado. No quarto capítulo apresentamos o modelo de relógio quiral de p-estados que será nosso sistema de testes. No caso unidimensional, determinamos a matriz de transferência e utilizamos o teorema de Perron-Frobenius para provar a inexistência de transição de fase a temperaturas finitas a temperaturas finitas. Esboçamos os diagramas de fases dos estados fundamentais que obtivemos de maneira analítica e numérica para os casos de p = 2, 3, 4, 5 e 6, no caso numérico fazendo uso do algoritmo de Bak-Sneppen com sorteio (BSS). Apresentamos ainda um breve estudo do número de mínimos locais para o modelo de relógio quiral de p-estados, para os casos de p = 3 e 4. Por último, no quinto capítulo, propomos uma dinâmica Bak-Sneppen com ruído (BSR) como uma nova técnica de otimização para tratar sistemas discretos. O ruído é introduzido diretamente no espaço de configuração de spins. Conseqüentemente, o fitness (adaptabilidade) passa a assumir valores contínuos, num pequeno intervalo em torno do seu valor original (discreto). Os resultados dessa dinâmica indicam a presença de criticalidade auto-organizada, evidenciada pelo decaimento em leis de potências das correlações espacial e temporal. Também estudamos o método EO e obtivemos uma confirmação numérica de que sua dinâmica exibe um comportamento não crítico com alcance espacial infinito e decaimento exponencial das avalanches. Finalmente, para o modelo de relógio quiral, comparamos a eficiência das três dinâmicas (EO, BSS e BSR) no que tange às suas habilidades de encontrar o estado fundamental do sistema.
Titre en anglais
Optimization algorithms and self-organized criticality
Mots-clés en anglais
Bak-Sneppen model
Chiral clock model
Extremal optmization
Optimization algorithms
Self-organized criticality
Resumé en anglais
In order to understand how things work, man has formulated scientific theories. New methods and techniques have been created not only to increase our understanding on the subject but also to develop and even expand those theories. In this thesis, we study several techniques (here called algorithms) designed with the objective to get the ground states of some spin systems and eventually to reveal possible properties of critical self-organization. In the second chapter, we introduce four fundamental optimization algorithms: simulated annealing, genetics algorithms, extremal optimization (EO) and Bak-Sneppen (BS). In the third chapter we present the concept of self-organized criticality (SOC), using as an example the sandpile model. To understand the importance of the self-organized criticality, we show many other situations where the phenomenon can be observed. In the fourth chapter, we introduce the p-states chiral clock model. This will be our test or toy system. For the one-dimensional case, we first determined the corresponding transfer-matrix and then proved the nonexistence of phase transitions by using the Perron-Frobenius theorem. We calculate the ground state phase diagrams both analytically and numerically in the cases of p = 2, 3, 4, 5 and 6. We also present a brief study of the number of local minima for the cases p = 3 and 4 of the chiral clock model. Finally, in the fifth chapter, we propose a Bak-Sneppen dynamics with noise (BSN) as a new technique of optimization to treat discrete systems. The noise is directly introduced into the spin configuration space. Consequently, the fitness now take values in a continuum but small interval around its original value (discrete). The results of this dynamics indicate the presence of self-organized criticality, which becomes evident with the power law scaling of the spacial and temporal correlations. We also study the EO algorithm and found a numerical con_rmation that it does not show a critical behavior since it has an in_nite space range and an exponential decay of the avalanches. At the end, we compare the e_ciency of the three dynamics (EO, BSD and BSN) for the chiral clock model, concerning their abilities to _nd the system's ground state.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
PauloCastro.pdf (736.62 Kbytes)
Date de Publication
2007-09-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.