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ABSTRACT

MALAVAZI, A. H. A. On the energetic analysis of autonomous quantum
systems. 2022. 135p. Thesis (Doctor in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2022.

During the last decades, there have been many theoretical and experimental advances both
in the extension of thermodynamics to comprise microscopic systems out-of-equilibrium
and in the understanding of quantum mechanics. Along with the state-of-the-art capability
of controlling fragile quantum systems in a wide variety of physical platforms, this context
has paved the way for the current strategic efforts to develop a thermodynamic theory
of quantum systems. In this sense, the research field coined as quantum thermodynamics
(QT) already plays a key role in the design and development of future quantum-based
technologies. More specifically, QT aims both to apply the usual thermodynamic concepts
and notions to describe arbitrary non-equilibrium quantum systems and to understand
the emergence of classical thermodynamic behaviour from the underlying fundamentally
quantum dynamics. However, despite all current progress, there is still no consolidated
formalism for a general thermodynamic description of fully autonomous quantum objects.
Besides, the lack of consensus on some central aspects, such as the definitions of quan-
tum counterparts of thermodynamic quantities, is particularly notorious. In this thesis,
we focus on the energetic analysis within autonomous quantum systems. To this aim, we
propose a novel and general formalism for a dynamic description of the energy exchanges
between interacting subsystems. From the Schmidt decomposition approach, we identify
effective Hamiltonians as the representative operators for characterizing the local inter-
nal energies, whose expectation values satisfy the usual thermodynamic notion of energy
additivity. In contrast to the currently used methodologies, such procedure treats the sub-
systems with equal footing and do not rely on any sort of approximations and additional
hypotheses, e.g., semi-classical description, weak-coupling regime, strict energy conserva-
tion and Markovian dynamics. In short, our proposal contributes to the development of
QT by providing a new formalism that does not suffer from the usual restrictive short-
comings and establishes a new and exact route for defining other general thermodynamic
quantities to the quantum regime.

Keywords: Quantum thermodynamics. Open quantum systems.





RESUMO

MALAVAZI, A. H. A. Sobre a análise energética de sistemas quânticos
autônomos. 2022. 135p. Tese (Doutorado em Ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2022.

Durante as últimas décadas, houve muitos avanços teóricos e experimentais tanto na ex-
tensão da termodinâmica para abranger sistemas microscópicos fora de equilíbrio quanto
na compreensão da mecânica quântica. Somada a capacidade de última geração de con-
trolar sistemas quânticos frágeis em uma ampla variedade de plataformas físicas, esse
contexto abriu caminho para os atuais esforços estratégicos para desenvolver uma teo-
ria termodinâmica de sistemas quânticos. Nesse sentido, o campo de pesquisa cunhado
como termodinâmica quântica (TQ) já desempenha um papel fundamental no projeto e
desenvolvimento de futuras tecnologias baseadas em fenômenos quânticos. Mais especi-
ficamente, a TQ visa tanto aplicar os conceitos e as noções termodinâmicas usuais para
descrever sistemas quânticos arbitrários fora do equilíbrio quanto entender o surgimento do
comportamento termodinâmico clássico a partir da dinâmica fundamentalmente quântica
subjacente. No entanto, apesar de todo o progresso atual, ainda não existe um formal-
ismo consolidado para uma descrição termodinâmica geral de objetos quânticos totalmente
autônomos. Além disso, é particularmente notória a falta de consenso em relação a alguns
aspectos centrais, como as definições de análogos quânticos de grandezas termodinâmicas.
Nesta tese, focamos na análise energética em sistemas quânticos autônomos. Para isso,
propomos um novo formalismo geral para uma descrição dinâmica das trocas energéticas
entre subsistemas interagentes. A partir da abordagem da decomposição de Schmidt, iden-
tificamos Hamiltonianos efetivos como os operadores representativos para caracterização
das energias internas locais, cujos valores esperados satisfazem a noção termodinâmica
usual da aditividade de energia. Ao contrário das metodologias atualmente utilizadas,
tal procedimento trata os subsistemas em pé de igualdade e não depende de nenhum
tipo de aproximações e hipóteses adicionais, por exemplo, descrição semiclássica, regime
de acoplamento fraco, conservação de energia estrita e dinâmica Markoviana. Em suma,
nossa proposta contribui para o desenvolvimento da TQ fornecendo um novo formalismo
que não sofre das restrições usuais e estabelece uma nova e exata rota para definir outras
grandezas termodinâmicas gerais para o regime quântico.

Palavras-chave: Termodinâmica quântica. Sistemas quânticos abertos.
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1 INTRODUCTION

Quantum thermodynamics is a rapidly growing and promising field of research,
accumulating efforts from several distinct perspectives. Its flourishing is inextricably linked
to recent technological advances and current independent theoretical progress in the fields
of nonequilibrium thermodynamics and quantum mechanics. On the one hand, state-of-
the-art experiments allow the precise control of small, and possibly quantum, systems in
several platforms. On the other, yet the laws of thermodynamics have been successfully
verified to microscopic scales when considering ensemble realizations of the experiment,
and studies on quantum information elucidated the technological potential of harnessing
genuine quantum phenomena. However, the task of developing a consistent and somehow
meaningful thermodynamic theory of quantum systems proved to be non-trivial and far
from being straightforward. In this sense, the most current approaches are restricted
to specific scenarios of approximative descriptions and semi-classical treatments, i.e., it
is commonly assumed externally driven systems (by means of classical agents), weak-
coupling regime and Markovian dynamics. Along these lines, there is no unifying formalism
for characterizing the thermodynamics within general autonomous quantum systems, and
many fundamental open questions remain unanswered. Remarkably, it is unclear how to
define quantum counterparts of the most basic thermodynamic quantities. This context
highlights the importance of further research, especially on conceptual aspects of the
theory. The work in question falls within this scopea.

This thesis is organized as follows: Chapter (2) contextualizes the field of quantum
thermodynamics. It initially introduces the basic concepts and formalism of thermody-
namics and quantum mechanics separately. Then it provides a brief overview of quantum
thermodynamics and discusses its current status and open problems; Chapter (3) contains
the main sections of the thesis. It develops and proposes a novel framework for analyz-
ing the energetics within autonomous pure bipartite quantum systems. This proposal
is exact, symmetrical and based on a well-established mathematical tool: the Schmidt
decomposition procedure. More specifically, it introduces time-dependent local effective
Hamiltonians interpreted as the representative operators for characterizing the physi-
cal local internal energies. This identification allows the description of the subsystems
effective dynamics within general interacting subsystems, regardless of their particular
properties and coupling regimes, and also recovers the usual thermodynamic property
of energy additivity. Besides, it briefly discusses the current approaches and difficulties
for defining general quantum versions of core thermodynamic quantities. After that, the

a The main discussions and results introduced in this thesis were presented in (1) after its
defense.
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introduced formalism is extended for mixed states; Finally, the conclusions of this thesis
are addressed in Chapter (4). It summarizes its main messages and provides a perspective
for future work considering the general context of quantum thermodynamics.



19

2 CONTEXTUALIZATION

This chapter aims to contextualize the field of research in which this work is
inserted, known as quantum thermodynamics. To this end, a brief detour is necessary
to introduce its main ingredients, namely thermodynamics and quantum mechanics. Of
course, this is not an extensive review of both areas. Instead, these notes intend to provide
an overview of the context and main motivations for the development of a thermodynamic
theory of quantum systems.

In this sense, Section (2.1) presents the basic concepts of classical equilibrium
thermodynamics and the recently established research area of stochastic thermodynamics.
Then, Section (2.2) discusses the formalism of quantum mechanics. Finally, Section (2.3)
formally introduces quantum thermodynamics and its current status.

2.1 Thermodynamics

Thermodynamics is, undoubtedly, one of the most successful physical theories
in the history of science. It is no overstating to say that the foundations of modern
society were significantly influenced by the technological innovations brought by it. Its
range of predictions and applicability is surprisingly far-reaching, especially if considering
its restrictions and the circumstances of its developments. In this sense, all branches of
modern science and engineering function accordingly to the laws of thermodynamics.
Nevertheless, even after centuries of discussions, its results and statements continue to
inspire and instigate novel research and surprising connections.

Despite earlier developments, the theory of thermodynamics was born during the
17th century and flourished as an influential branch of physics during the 18th and 19th
centuriesa. Since its early days, thermodynamics was developed as a phenomenological
discipline and approached semi-empirically. It initially progressed through scientists’ ef-
forts to understand better the behaviour of gases and the "abhors" nature of the vacuumb.
Then, it proceeded as a fundamental way to characterize different aspects of energy ex-
change through work and heat, along with the notions of irreversibility and entropy. As
often happens in science, these investigations were partially motivated by the techno-
logical advancements of the time: the development of new instruments, such as vacuum
pumps, the thermometer and steam engines, provided the necessary means to perform
novel and better measurements and push even further the progress of the theory. Surpris-
ingly, this context also triggered the unprecedented technological transformation that led
western society toward the Industrial Revolution and, eventually, the thriving of mod-
a For a historical perspective on the development of thermodynamics, see. (2)
b "Natura abhorret vacuum"
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ern machinery. In fact, the progress of thermodynamics was driven considerably by the
attempts to understand and develop efficient machines. In this sense, despite the prag-
matical and sober motivation, it is remarkable how these studies guided scientists toward
the establishment of general and fundamental laws of nature.

Seeing from the privilege of modern science, the phenomenological approach to
thermodynamics could hardly have been different. The microscopic behaviour of matter
remained hidden from scientists’ eyes for a long time, and the tools of analytical me-
chanics, along with its mechanistic view of nature, were being developed in parallel to
thermodynamics. In this sense, its history is also intrinsically connected to the concomi-
tant developments of chemistry and classical mechanics. Along these lines, at that time,
the empirical observation that massc, momentum and energy were conserved quantities
in isolated systems was still under scrutiny and far from consensus. In fact, even these
individual notions - including "isolated systems" - were not entirely established. Heat, for
instance, was not directly associated with the mechanical motions of particles or the "vis
viva", the earlier version of kinetic energy, until the efforts of Joule, when he established
the relationship between energy, work and heat. Instead, the orthodox explanation was
given by the so-called caloric theory. Interestingly, this was also the context for the devel-
opment of heat engines and the theoretical studies concerning their performances, which
set the stage for the works of Sadi Carnot (1796 - 1832) - and later Rudolf Clausius (1822
- 1888) - on what we know today as the second law of thermodynamics and the concept
of entropy.

After that, names like James Clerk Maxwell (1831 - 1879), Ludwig Boltzmann
(1844 - 1906) and Josiah Willard Gibbs (1839 - 1903) were responsible for providing
the microscopic and mechanical basis of phenomenological equilibrium thermodynamics.
Such progress is depicted by the kinetic theory of gases and the following foundation of
statistical mechanics. Most importantly, these developments represent a crucial paradigm
shift concerning the understanding of the macroscopic nature, i.e., the introduction of
probabilistic reasoning and thermodynamic ensembles provided the necessary tools for -
at least partially - bridging the gap between the underlying microscopic motion and the
observed macroscopic behaviour. More recently, during the 20th century, physicists, such
as Lars Onsager (1903 - 1976) and Ilya Prigogine (1917 - 2003), began to extrapolate
thermodynamics to the uncharted territory of non-equilibrium regimes. After all, most
natural processes occur under these conditions. Along these lines, the analysis of systems
close to equilibrium, known as the linear regime, provided the formalism for investigating
several physical phenomena and represented the starting point of the characterization of
non-equilibrium states.

c Strictly speaking, mass does not conserve due to the mass-energy equivalence. However, in
the present thermodynamic context, this difference is negligible.
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As mentioned earlier, thermodynamics has still been an active field of research.
During the last decades, one can find great efforts to extend the theory and its results
to even broader scenarios, namely microscopic and far-from-equilibrium settings. In such
regimes, thermal fluctuations play a critical role in the dynamics of the desired physical
system, and the usual thermodynamic quantities are updated to random variables. In
this sense, stochastic thermodynamics and its fluctuation theorems have been providing
seminal results concerning non-equilibrium processes and irreversibility.

2.1.1 Classical equilibrium thermodynamics

Let us briefly present and review the classical equilibrium thermodynamics and its
main statements. Of course, there are several traditional textbooks written on the subject.
For a comprehensive discussion of thermodynamics see. (3–7)

Classical thermodynamics restricts itself to a specific, though meaningful, phys-
ical regime and scope. Essentially, it was developed to describe the behaviour of large
scale properties of classical macroscopic objects and their general relationships. Since
it is a phenomenological description, it does not require any microscopic consideration
concerning the structure of matter. Instead, it provides a macroscopic and fully general
characterization in terms of a few measurable gross variables {Xj}, known as thermody-
namic coordinates, such as volume (V ), pressure (P ) and temperature (T ). In this sense,
once obtained the relevant coordinates for describing a system, one has specified its physi-
cal state and, along with it, has access to all thermodynamic properties that are functions
of it, referred to as state functions, i.e., F ({Xj}). Such a procedure is only possible be-
cause classical thermodynamics revolves around the concept of states in thermodynamic
equilibrium. These states are characterized by their static, or time-invariant, nature, such
that all possible thermodynamic coordinates remain fixedd. In contrast, non-equilibrium
states might not even have specified values for them. It is an empirical fact that many
physical systems naturally (spontaneously) evolve in time from non-equilibrium states to-
wards these constant states. It is worth mentioning that everything that happens during
this dynamic process is outside the scope of classical equilibrium thermodynamics.

Along these lines, it is also possible to define a succession of changes connecting
different equilibrium states, which establishes a thermodynamic process. If the initial and
final states are the same, the whole process is known as a thermodynamic cycle, which
represents the building blocks of any heat engine. Visually, thermodynamic processes and
cycles are usually depicted by trajectories in the space of equilibrium states defined in
terms of the thermodynamic coordinates {Xj}. Of course, any change presupposes some
degree of variation of a macroscopic variable that, in general, would perturb the system

d One can also refer to equilibrium states relative to specific macroscopic coordinates, such as
mechanical, chemical and thermal.
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and kick it out of equilibrium until it reaches a novel one in terms of the new setting.
Nevertheless, as long as the changes are kept infinitesimal, the system is weakly perturbed
and maintained close to equilibrium. Such a convenient condition characterizes a so-called
quasi-static process. Notice that any ideal thermodynamic process would require an infinite
amount of time to be performed. However, in many realistic scenarios, this theoretical
abstraction represents a satisfactory approximation. Interestingly, the rate of processes is
not addressed by classical equilibrium thermodynamics, which highlights that the theory
is not a truly dynamic one, at least not in the usual sense.

2.1.1.1 The laws of thermodynamics

The physical object under scrutiny, or the thermodynamics system, is usually
classified according to the ways it interacts with its exterior, especially concerning the
possibility of exchanging matter or energy with its surroundings. In this sense, isolated
systems, as the name suggests, do not interact with other objects and, therefore, exchange
neither things. Closed systems only exchange energy, while open systems exchange both
energy and matter. Naturally, these interactions are accompanied by thermodynamic pro-
cesses, both from the system and its surroundings. The possible state transformations are
described, and constrained, by a set of empirical and mathematical statements known as
the laws of thermodynamics. Let us now briefly introduce them.

2.1.1.1.1 Zeroth law of thermodynamics

As mentioned earlier, thermodynamic systems eventually reach equilibrium states.
It implies that if two independent systems are allowed to interact, the single entity con-
stituted by both individuals will also equilibrate. Thus, it is an experimental fact that
interacting bodies that are specified by distinct temperatures will reach thermal equilib-
rium. Along these lines, if systems A and B are individually in thermal equilibrium with
system C, then A and B are also in equilibrium. Such transitivity property is known as
the zeroth law of thermodynamics.

2.1.1.1.2 First law of thermodynamics

Essentially, the first law of thermodynamics refers to the conservation of energy
within thermodynamic systems. However, instead of being written in terms of the sum
of all the kinetic and potential contributions of its microscopic constituents, the internal
energy relative to state k, Uk, is a state function specified by the relevant macroscopic
variables {Xk

j }, i.e.,
Uk ≡ U({Xk

j }) + U0, (2.1)

where U0 is the energy of a reference state. Notice that it means that the internal energy
change Ub − Ua from a state a to b is independent of the thermodynamic process, γ,
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connecting them, such that ∫
γ
dU =

∫
γ′
dU = Ub − Ua, (2.2)

where dU is an exact differential, and ∮
dU = 0 (2.3)

for any cyclic transformation.

It is clear that isolated system, by construction, maintains its internal energy
fixed since any energetic change requires the system to be submitted to a thermodynamic
process. Thus, let us now consider closed systems. Thermodynamics, and the first law
specifically, not only state energy conservation but also splits its possible changes into
two different "flavours": heat, Q, is the type of energy exchanged once systems of different
temperatures are interacting or, as commonly said, put into thermal contact; work, W ,
in contrast, is the energy transferred (not stochastically) by the external change of the
thermodynamic coordinates. Along these lines, in the simplest scenario consisting of two
interacting bodies reaching thermal equilibrium, the energetic exchange of the system
under consideration is completely due to heat, or

∆U = Q. (2.4)

However, for a thermally insulated system, one can perform work and modify the system’s
state simply by externally controlling its macroscopic variables, such that

∆U = W. (2.5)

This kind of procedure where no heat is involved, is characterized as an adiabatic pro-
cess. Nevertheless, considering general interactions, both contributions might be present
for arbitrary processes. Thus, for an infinitesimal energy change, dU , the first law of
thermodynamics is stated as

dU ≡ δQ+ δW, (2.6)

where δW and δQ are the infinitesimal work performed on the system and the heat
transferred into it, respectively. In contrast with internal energy, both individual quantities
are not state functions. Instead, they are intrinsic to thermodynamic processes. Such path
dependency is mathematically represented by the inexact differentials δW and δQ. Thus,
given two possible trajectories, γ and γ′, connecting different states a and b, we have

Wγ ≡
∫

γ
δW ̸=

∫
γ′
δW ≡ Wγ′ , (2.7)

Qγ ≡
∫

γ
δQ ̸=

∫
γ′
δQ ≡ Qγ′ , (2.8)

even though
Ub − Ua = Wγ +Qγ = Wγ′ +Qγ′ . (2.9)

It is worth mentioning that, for open systems, one just must consider an additional term
dUmatter for the energy flow due to matter exchange.
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2.1.1.1.3 Second law of thermodynamics

Interestingly, there are several distinct, though ultimately equivalent, ways for
formulating the second law of thermodynamics. In this sense, according to Lord Kelvin
(William Thomson, 1824 - 1907) (3):

"It is impossible by means of inanimate material agency to derive mechan-
ical effect from any portion of matter by cooling it below the temperature of
the coldest of the surrounding objects."

On the same matter, Max Planck (1858 - 1947) wrote:

"It is impossible to construct an engine which, working in a complete cycle,
will produce no effect other than the raising of a weight and the cooling of a
heat reservoir."

However, both statements above are often combined into the so-called Kelvin-Planck
statement of the second law:

"It is impossible to construct an engine that, operating in a cycle, will
produce no effect other than the extraction of heat from a reservoir and the
performance of an equivalent amount of work."

Also, in the words of Clausius:

"It is impossible to construct a device that, operating in a cycle, will produce
no effect other than the transference of heat from a cooler to a hotter body."

Finally, Carnot’s theorem states:

"No heat engine operating between two heat reservoirs can be more efficient
than a reversible heat engine operating between the same two reservoirs."

Thus, according to these words, the second law of thermodynamics is a statement of what
is impossible to achieve in the attempt of interchanging heat and work. However, these
statements transcend the context of heat engines and refrigerators and have surprisingly
far-reaching and less down-to-earth consequences. Essentially, the second law captures a
fundamental feature of natural phenomena not covered by the first law, i.e., there are
classes of processes not prohibitive from the perspective of the conservation of energy
that still does not happen in nature. In this sense, the second law is an independent and
complementary statement that also portrays a fundamental natural restriction. Moreover,
it constrains even further the set of possible thermodynamic processes.
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At the core of the second law also lies the concepts of reversibility and irreversibil-
ity. Suppose a thermodynamic system that interacts with its surroundings. Naturally, both
work and heat may be exchanged during any change of the macroscopic variables. Never-
theless, a reversible process is, by definition, a process that, once realized, the system and
its surroundings must be returned to their previous states, without any other change, by
restoring the settings to their initial conditions. However, this is only achievable - a priori
- by requiring processes executed by slow infinitesimal transformations (quasi-statically)e

and in the absence of dissipative effects, such as friction. Along these lines, it is clear that
reversible processes are theoretical idealizations and, consequently, every natural process
occurs in a finite time and is irreversible to some extent.

Along with (ir)reversibility, entropy is a cornerstone of the second law. By in-
troducing it, Clausius provided the means for a consistent mathematical formulation of
the previous statements. Interestingly, the notion of entropy transcended thermodynamics
and soon achieved the status of one of the most fundamental quantities of modern physics.
As a direct extension of the work of Carnot on heat engines and cyclic thermodynamic
processes (8), Clausius showed what we know today as Clausius’s theorem (9),

∮ δQ

T
= 0, (2.10)

where T is the temperature at which the heat exchange took placef. Eq. (2.10) is valid
for arbitrary cyclic and reversible processes and also hints at the existence of a state
function specified by the macroscopic variables {Xj}, i.e., δQ

T
which depends only on

the thermodynamic coordinates and its integral between two different states a and b is
independent of the path (similar to Eq. (2.3)). Thus, Clausius proposed a new quantity
S and named it entropyg, such that

dS ≡ δQ

T
(2.11)

and, therefore, the entropic change is

∆S ≡ Sb − Sa =
∫ b

a

δQ

T
. (2.12)

Notice that, despite δQ being a path-dependent quantity, the ratio δQ
T

is an exact dif-
ferential, dS. It is imperative to highlight both the close relationship between entropy
and heat and the importance of the reversibility hypotheses. Let us suppose a system of
interest interacting with a reservoir at temperature T . During any reversible process the
heat exchanged, Q, between the system and reservoir happens at the same temperature,
e In fact, every reversible process is necessarily quasi-static, while the converse is not true.
f This equality is obtained by noticing that any thermodynamic cycle can be seen as a com-

position of infinitesimal Carnot cycles and summing up all the ratios Qi
Ti

.
g Entropy means transformation, from the Greek word τρπη. (7)
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in such a way that their local entropic changes are the opposite, i.e.,

∆Ssystem = −∆Sreservoir. (2.13)

The equality above is true for every reversible process and sketches an even more gen-
eral result: The sum of the entropies of the system of interest and all its surroundings,
also known as the universeh, is invariant over reversible processes, i.e., given Suniverse ≡
Ssystem + Ssurroundings, we have

∆Suniverse = 0. (2.14)

Of course, as mentioned earlier, reversible processes do not represent the typical
behaviour in nature. Since entropy is a state function, given a system at equilibrium, any
possible cyclic process, reversible or not, would still satisfy

∮
dSsystem = 0. However, if

any irreversibility is taken into account, such as friction and other dissipative effects, Eq.
(2.10) should be updated to the following inequality∮ δQ

T
≤ 0, (2.15)

which also implies that
dSsystem ≥

δQ

T
. (2.16)

Besides, in these cases, the entropic change from the system of interest is not completely
compensated by the changes that occur in the surroundings. In fact, in general, one has
for the second law of thermodynamics

∆Suniverse ≥ 0. (2.17)

Clearly, these expressions automatically include the previous ones: if no irreversible pro-
cesses take place, then the equalities are recovered. Eq. (2.17) above is the most common
mathematical statement of the second law: the entropy of the universe always increases or
remains constant. It is also directly related to the notion of the arrow of time, i.e., since
every natural process inexorably increases the entropy, one can distinguish the past from
the future.

Note that the entropic change of an irreversible process is higher than a reversible
one with the same exchanged heat, Q, and temperature T . More modern approaches often
rewrite the inequality from Eq.(2.16) into the following equality:

dSsystem = dΦ+ dΣ, (2.18)

where dΦ ≡ δQ
T

is recognized as the entropy change due to the external energy flowi, known
as entropy flux, and dΣ, or the entropy production, is the change due to the irreversible
h In the context of thermodynamics, the word universe does not have a cosmological sense.
i If the system is open, there is also an energetic contribution due to matter flow.
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processes. Along these lines, it is clear that entropy dSsystem and dΦ might acquire positive
or negative values, while entropy production is always a positive quantity,

dΣ ≥ 0. (2.19)

Interestingly, while the first law states that the energy of an isolated system is conserved,
the second implies that its entropy is not and, more importantly, can only increase during
natural processes. Of course, both fundamental quantities are intrinsically connected, and
many applications of thermodynamics intend to characterize their changes.

2.1.1.1.4 Third law of thermodynamic

Finally, the third law of thermodynamics is mathematically stated as

T → 0+ ⇒ S → S0, (2.20)

i.e., when the temperature T approaches the limiting absolute zero, the entropy ap-
proaches a constant value, S0, independent of all macroscopic variables.

2.1.1.1.5 Brief remarks

In the context of thermodynamics, physical properties are commonly separated
into two distinct categories: On the one hand, intensive quantities are independent of the
mass or the size and number of constituents of the system; On the other, extensive ones
are those proportional to the system’s mass, number of constituents, or size. Along these
lines, let us consider a thermodynamic system in equilibrium described by the macroscopic
variables temperature T , volume V and pressure P . Naturally, one can also prescribe an
internal energy U and entropy S. Then, suppose one can split the whole system into two
equal smaller subsystems. Both partitions will maintain their previous temperature T and
pressure P , while their new volume, internal energy and entropy will be divided by two
(V/2, U/2 and S/2). Thus, it is clear that T and P are intensive quantities, while V ,
U and S are extensive ones. In particular, notice that extensivity also means that these
properties are additive, i.e., the whole energy and entropy, for instance, are the sum of
the subsystem’s energy and entropy, respectively.

Finally, it is worth emphasizing - once again - that the laws of thermodynamics
were developed and established for macroscopic systems in equilibrium. It was not nec-
essary any considerations concerning the microscopic behaviour of matter. Surprisingly,
however, it does not mean that these laws are not valid in other regimes.

2.1.2 Stochastic thermodynamics

The microscopic foundations of classical equilibrium thermodynamics were pro-
vided by the advent of statistical mechanics. It also brought a new probabilistic per-
spective to the understanding of natural phenomena at the molecular level. These efforts
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allowed the field to shift from purely phenomenological reasoning to more solid ground.
Later, linear response theory contributed to the first expeditions outside the equilibrium
context. More recently, however, the scenarios are even more extreme: the current high de-
gree of control of systems and devices below the microscopic scale urged a thermodynamic
description of small systems far from equilibrium. In such circumstances, essentially, one
is interested in characterizing the energetics of finite objects at finite times. Biological
systems at the cellular level, molecular machines, and colloidal particles trapped by opti-
cal tweezers, for instance, are paradigmatic examples of physical objects operating under
these conditions. In contrast with macroscopic scenarios, the energy within small systems
is of the order of kBT and its fluctuations are not negligible. In fact, deviations from the
average behaviour are typical features of such regimes and carry valuable thermodynamic
information.

In general, these discussions belong to the recent field of stochastic thermodynam-
ics (10–15), whose developments has been successfully helping to bridge the gap between
the well known macroscopic laws and the small-scale behaviour of matter. In this frame-
work, thermodynamic systems are both driven by external classical forces and constantly
influenced by the fluctuations induced by their environments. Along these lines, thermo-
dynamic quantities, such as work, heat and entropy production, are understood as fluctu-
ating entities specified at the phase space trajectory level and characterized by stochastic
dynamical processes, often depicted by Markovian master equations. Despite the shared
probabilistic spirit, stochastic thermodynamics exceeds the scope of equilibrium statis-
tical mechanics and the linear response regime, i.e., it allows the description of general
microscopic scenarios and the consideration of arbitrary non-equilibrium processes, in
such a way that the connection with the well established macroscopic laws and conclu-
sions are directly obtained once considered the statistical ensemble level. Furthermore,
this perspective provided novel insights on the relationship between irreversibility and
the second law of thermodynamics. Interestingly, although predicting the positivity of the
average of entropy production, stochastic thermodynamics highlighted the existence of
trajectories with negative entropy production and provided the mathematical formalism
for quantifying their probabilities of occurrence.

2.1.2.1 Fluctuations theorems

Along with a more refined view of thermodynamics, the so-called f luctuation
theorems (FTs) represent the most influential results of the field. Initially discovered
during the ’90s (16–24) and later experimentally verified in several setups (15, 25–35),
the FTs were instrumental in triggering further studies on non-equilibrium systems and
fostering the foundation of stochastic thermodynamics. Essentially, the FTs are general
mathematical statements concerning the probability distributions of the relevant thermo-
dynamic quantities over an ensemble of identically prepared systems. They are usually
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expressed according to their integral (IFTs) or detailed (DFTs) forms, given, respectively,
by (12)

⟨e−ζ⟩ =
∫
dζ P (ζ)e−ζ = 1 (2.21)

and
P (ζ)
P (−ζ) = e−ζ , (2.22)

where ζ is a functional of the stochastic trajectory, e.g., fluctuating work and heat, and
P (ζ) is its respective distribution. From Eq. (2.21), one can easily use Jensen’s inequalityj

and unveil the hidden inequality
⟨ζ⟩ ≥ 0. (2.23)

For instance, suppose a system initially prepared in thermal equilibrium at tem-
perature T and then decoupled with its surroundings. If the system’s Hamiltonian is
parametrized as H(λ), where λ is an externally controlled parameter, work w can be
performed by simply changing it from λi to λf since w ≡

∫ ∂H(λ)
∂λ

dλ. By defining the
dissipated work along with a specific work protocol λi → λf as wdiss ≡ w −∆Ffi, where
∆F ≡ Ff−Fi is the Helmholtz free energy difference for the equilibrium states associated
with H(λi) and H(λf ), one can show the following IFT

⟨e−βwdiss⟩ = 1 ⇐⇒ ⟨e−βw⟩ = e−β∆F (2.24)

and, therefore,
⟨wdiss⟩ ≥ 0 ⇐⇒ ⟨w⟩ ≥ ∆Ffi, (2.25)

where β−1 ≡ kBT with kB the Boltzmann constant and the ensemble averages ⟨.⟩ are
computed after performing the same protocol several - ideally infinite - times. Interestingly,
these expressions make no mention of the protocol’s execution speed or its specific details.
In fact, it just depends on the final and initial values λf and λi. Eq. (2.24) is the emblematic
- and surprising - Jarzynski equality (19) relating arbitrary non-equilibrium processes,
λi → λf , with genuine equilibrium quantities ∆Ffi, while the Eq. (2.25) implied by
Eq. (2.24) is one of the well-known forms of the second law of thermodynamics. Notice,
however, that ⟨w⟩ ≥ ∆Ffi is even more revealing than the classical thermodynamic one
since it is the average value of work that is higher than the difference of free energy, which
also means that for individual elements of the ensemble such inequality may be violated.
Of course, this conclusion does not represent a contradiction with the classical result: for
macroscopic systems and their energy scales, the fluctuations are not easily observed, in a
way that the work performed by the execution of the same protocol are essentially equal
and, consequently, their distributions are mathematically depicted by delta functions.
Additionally, if PΛ(w) is the probability distribution of performing some work w along
the trajectory defined by the protocol Λ : λi → λf and PΛ̃(w) is the distribution related to
j For the exponential function, Jensen’s inequality becomes e−⟨ζ⟩ ≥ ⟨e−ζ⟩.



30

the trajectory obtained by the time-reversed protocol, Λ̃ : λf → λi, under the assumption
of Markovian dynamics and initial equilibrium states for both protocols, one can show
the following DFTs-like expression

PΛ(w)
PΛ̃(−w) = e−βwdiss = e−β(w−∆Ffi), (2.26)

also known as the Crooks theorem. (23) Interestingly, Eq. (2.26) means the probability
of observing trajectories whose work spent along with Λ is given by w is exponentially
more likely than the probability of observing work −w along with the reverse protocol
Λ̃. In fact, their probabilities are equal iff the work performed is equal to the free energy
difference, w = ∆Ffi ⇐⇒ PΛ(w) = PΛ̃(−w). Moreover, it is easy to see that Eq. (2.26)
directly implies the Jarzynski equality, Eq. (2.24)k.

Finally, by properly identifying entropy production, Σ, along with stochastic tra-
jectories, one can also show the following IFT for arbitrary protocols and initial conditions
(12,13)

⟨e− Σ
kB ⟩ = 1. (2.27)

Again, it also implies what can be seen as a more refined version of the second law of ther-
modynamics depicted by Eq. (2.19) concerning the average value of entropy production,
such that

⟨Σ⟩ ≥ 0. (2.28)

In short, these theorems are simple equalities concerning the distributions of
stochastic thermodynamic quantities. Surprisingly, they are valid even for general pro-
cesses far from equilibrium. In this sense, despite their simplicity, they represented gener-
alizations of the classical macroscopic thermodynamic results and provided novel insights
on the underlying statistical nature of the laws of thermodynamics.

2.2 Quantum mechanics

Quantum mechanics (QM) is one of the main pillars of modern science, not only
because of its remarkable accuracy and outstanding success in predicting physical phe-
nomena but also because it represents, along with Einstein’s theory of general relativity
and Maxwell’s of electrodynamics, our best attempt to understand the very fundamental
aspects of nature. Since its early days, at the beginning of the 20th century, it became clear
that the development of QM would require a novel and courageous change in the tradi-
tional way of thinking. After all, physics - as was commonly believed at the time - was not
complete, and the failure of classical theories to explain the contemporary experimental
observations was undeniable evidence of this defeat. Hence, despite centuries of immense
accomplishment, physicists were forced to adapt in the face of empirical confrontation.
k ∫

dw PΛ̃(−w)e−βw = e−β∆F
∫

dw PΛ(w)⇒ ⟨e−βw⟩ = e−β∆F .
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Along these lines, the so-called ultraviolet catastrophe is a paradigmatic example of how
nature’s behaviour contradicted classical intuition and, in contrast, radical new hypothe-
ses were suddenly necessary. This interesting episode is commonly seen as the birth of the
quantum theory, and Max Planck (1858 - 1947) is regarded as one of its founding fathers.
Latter, seminal works by Albert Einstein (1879 - 1955), Niels Bohr (1885 - 1962), Louis de
Broglie (1892 - 1987), Erwin Schrödinger (1887 - 1961), Werner Heisenberg (1901 - 1976)
and many others helped develop and establish the basis and mathematical structure of
the theory.

During the first decades of the last century, QM flourished both from a theoretical
perspective and experimental validation. The revolutionary ideas of energy quantization,
particle-wave duality and the intrinsic probabilistic behaviour at the atomic scale, al-
though highly non-intuitive, seemed to be a superior way to describe how nature works.
This early progress was of fundamental importance to pave the way for the later devel-
opment of quantum field theory and the conception of modern technologies, such as the
groundbreaking developments of the transistor, the laser and, more recently, magnetic
resonance machines. However, despite this great success, QM remained challenging con-
ceptually. On the one hand, it was unclear how to physically interpret some fundamental
aspects of the theory, such as the wave function and non-local correlations. On the other,
there was a debate to understand if it was indeed a complete description of reality. In-
terestingly, even after one century of development and crucial progress, some of these
foundational questions remain open, which, in a sense, preserve these old debates echoing
throughout modern research. This, however, did not prevent the field from expanding
and developing. Applications of QM to specific questions gave rise to new and exciting
research fields. The birth of quantum information and computation in the ’80s and their
first progress during the ’90s, for instance, are recent and fascinating ramifications of the
quantum theory in the context of information processing.

Nowadays, QM maintains its influence as one of the most fundamental theories of
modern physics and keeps changing the world consistently in several aspects ranging from
the production of new materials to the development of novel - and unique - technologies.
Along these lines, this section will be dedicated to briefly introducing - or reviewing - the
elementary aspects of the theory and its particular mathematical formalism. Of course,
it does not aim for an extensive presentation of the subject and its most modern tools. A
comprehensive discussion of QM can be found in the excellent textbooks that also guided
the following introduction. (36–40)

2.2.1 Mathematical description of quantum systems

Quantum theory, essentially, is mathematically written and stated with the vo-
cabulary provided by linear algebra. In fact, the whole formalism of QM, and its basic
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elements, can be described by vectors and linear transformations. In this sense, complex
vector spaces with inner product, known as Hilbert spaces, are the most fundamental
underlying structures setting the stage for describing quantum systems, whose physical
states are simply represented by vectors within these abstract entities.

Along these lines, for every quantum system, there is an associated Hilbert space
H with the appropriate dimensionality d := dim(H) - possibly infinity - such that its
vector state is fully characterized and labelled by, according to Dirac’s notation, the so-
called ket |Ψ⟩ ∈ H. From now on, let us assume only finite-dimensional Hilbert spaces.
These vectors, or kets, encode all possible information concerning the physical system in
question and are the quantum analogous to the usual notion of classical states in the phase
space, given by (−→p ,−→q )l. Just like any regular vector, every ket |Ψ⟩ can be represented in
terms of a basis, i.e., given a set {|bj⟩, j = 1, ..., d} of d linearly independent kets spanning
H, one can describe the state as the following superposition (linear combination)

|Ψ⟩ =
d∑

j=1
αj|bj⟩, (2.29)

where the coefficients {αj, j = 1, ..., d} are complex numbers. Besides, it is worth mention-
ing that Hilbert spaces inherit all properties and basic operations defined for arbitrary
vector spaces. Along with H, we should also define the so-called dual vector space H∗,
whose for every possible element |Ψ⟩ of H, there is a single component ⟨Ψ| - known as
bra - from H∗, such that

|Ψ⟩ =
d∑

j=1
αj|bj⟩ ←→ ⟨Ψ| =

d∑
j=1

α∗
j⟨bj|, (2.30)

where α∗
j denotes the complex conjugate of αj. Now we have all the necessary ingredients

to properly define the inner product between two elements |ψ⟩ and |ϕ⟩ of H as simply as

⟨ψ|ϕ⟩, (2.31)

where ⟨ψ|ϕ⟩ = (⟨ϕ|ψ⟩)∗ and ⟨ψ|ψ⟩ ≥ 0. Thus, two non-null kets are orthogonal, relative
to Eq. (2.31), iff ⟨ψ|ϕ⟩ = 0. Also, it allows the identification of the norm of a ket |ψ⟩
as |||ψ⟩|| ≡

√
⟨ψ|ψ⟩. In this sense, every possible basis {|bj⟩, j = 1, ..., d} of H should

contain orthogonal and normalized (unit norm) elements, i.e., they should satisfy the
orthonormality condition stated by ⟨bj|bk⟩ = δjk, where δjk is the usual Kronecker delta.

In QM, the system’s state is encoded only in the "direction" of |ψ⟩. In fact, any ket
from the set {c|Ψ⟩ ∈ H|c ∈ C ̸=0} represents the same physical state. For this reason, and
latter interpretative convenience, it is commonly assumed normalized kets for describing
l Of course, the analogy only corresponds to their similar descriptive roles inside their partic-

ular theoretical frameworks.
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quantum systems, ⟨Ψ|Ψ⟩ = 1, which also implies that, given Eq. (2.29),

d∑
j=1

α∗
jαj =

d∑
j=1
|αj|2 = 1. (2.32)

Interestingly, one could add a complex phase c = eiθ with unit modulus such that |Ψ⟩ →
eiθ|Ψ⟩, in such a way that ⟨Ψ|Ψ⟩ = 1 is still satisfied. Nevertheless, this phase, often called
as global phase, does not affect any physical prediction obtained from |Ψ⟩.

2.2.1.1 Operators and observables

In the following sections, we denote operators by (̂.). In this context, operators
refer to linear transformations T̂ : H → H′ mapping one element |Ψ⟩ from a particular
Hilbert space H to another |Φ⟩ from H′, such that T̂ |Ψ⟩ = |Φ⟩ and

T̂

 d∑
j=1

αj|bj⟩

 =
d∑

j=1
αj(T̂ |bj⟩). (2.33)

Nevertheless, most of the time, we are interested in operators Ô acting within a specific
Hilbert space, such that Ô : H → H. From now on, the set of linear operators satisfying
this is denominated by L(H). Without any loss of generality, let us restrain our discussion
for such cases.

As shown earlier, kets can be represented in terms of any basis {|bj⟩, j = 1, ..., d}
of H. Similarly, operators might be depicted by d×d matrices. In this sense, any operator
Ô ∈ L(H) is fully characterized by the complex matrix elements okj ≡ ⟨bk|Ô|bj⟩ and
written in terms of the outer products defined by |bk⟩⟨bj|, such that

Ô =
d∑

k=1

d∑
j=1

okj|bk⟩⟨bj|. (2.34)

It is worth mentioning that any orthonormal basis ofH is a valid and equivalent basis of de-
scription, in the sense that all possible representations are directly connected via similarity
transformations. This fact gives us the freedom to perform calculations in the most suit-
able one. Thus, given Eqs. (2.29, 2.34), we have - in general - Ô|Ψ⟩ = ∑d

k=1
∑d

j=1 αjokj|bk⟩.
In particular, the so-called identity operator 1̂ ∈ L(H) that maps any ket to itself, such
that 1̂|Ψ⟩ = |Ψ⟩, is clearly obtained iff okj = δkj in the equation above. Hence,

1̂ =
d∑

j=1
|bj⟩⟨bj| (2.35)

This important equality is true for any possible basis, and it is known as the completeness
relation. Often, we are interested in the applications of different operators in a given
ket, such as Ô2Ô1|Ψ⟩. Since they are depicted by matrices, the general non-commutative
property is, naturally, inherited, i.e., Ô1Ô2 ̸= Ô2Ô1. Sometimes, however, operators might



34

commute and, for this reason, it is convenient to define the commutator [, ] between two
operators as

[Ô1, Ô2] ≡ Ô1Ô2 − Ô2Ô1. (2.36)

Let us present some import classes of linear operators. The Hermitian conjugate
of Ô - or simply adjoint - defined by Ô†, is the unique operator which guarantees that
the bra (⟨Ψ|Ô†) is the dual vector of the ket (Ô|Ψ⟩). Operationally, the matrix Ô† is the
conjugate transpose of Ô, which means that ⟨bk|Ô|bj⟩ = (⟨bj|Ô†|bk⟩)∗. Nevertheless, if

Ô = Ô†, (2.37)

then Ô is denominated as a Hermitian operator. Additionally, Unitary operators Û are
those who satisfy the following equality

Û Û † = Û †Û = 1̂, (2.38)

which also implies that they preserve the inner product, such that ⟨ψ|ϕ⟩ = (⟨ψ|Û †)(Û |ϕ⟩).
Both Hermitian and Unitary linear operators are examples of a broader class of operators,
known as Normal ones. A Normal operators N̂ , by definition, commutes with its own
Hermitian conjugate, i.e.,

[N̂ , N̂ †] = 0 (2.39)

or N̂N̂ † = N̂ †N̂ . Along these lines, this class of operators are accompanied by the spectral
theorem, which states that (39): if N̂ ∈ L(H) is normal, then it is unitarily diagonalizable,
i.e., there is a basis {|Nj⟩, j = 1, ..., d} of H such that

N̂ =
d∑

j=1
nj|Nj⟩⟨Nj|, (2.40)

where {nj, j = 1, ..., d} and {|Nj⟩, j = 1, ..., d} are the respective eigenvalues and eigen-
vectors of N̂ , since N̂ |Nj⟩ = nj|Nj⟩. The form of Eq. (2.40) above is commonly referred to
as the spectral decomposition of N̂ . Interestingly, if two different normal operators N̂1 and
N̂2 have spectral decompositions according to the same basis, they must commute, i.e.,
if N̂k = ∑d

j=1 nk,j|Nj⟩⟨Nj| for k = 1, 2 share the same eigenvectors, then it is guaranteed
that [N̂1, N̂2] = 0.

In QM, meaningful physical quantities, such as position, momentum and spin, are
known as observables and mathematically described by hermitian linear operators and
the machinery presented above. Along these lines, given an observable Ô ∈ L(H), its
eigenvalues {oj}j=1,...,d are understood as the possible outcomes of an eventual measure-
ment performed on the quantum system. The hermiticity condition, stated by Eq. (2.37),
guarantee that these values are real numbersm.
m Given Eq. (2.40), if N̂ = N̂ †, then {nj}j ∈ R.
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2.2.1.2 Projective measurements

Suppose that B̂ ∈ L(H) is the observable we are interested in measuring, with the
following spectral decomposition

B̂ =
d∑

j=1
bj|bj⟩⟨bj|. (2.41)

If |Ψ⟩ is the system’s state, and since {|bj⟩, j = 1, ..., d} constitute a valid basis of H, let
us write it in the following representation |Ψ⟩ = ∑d

j=1 αj|bj⟩, where αk ≡ ⟨bk|Ψ⟩. Notice
that, in general, |Ψ⟩ is in a superposition of the eigenvectors of B̂. Once a measurement is
performed, two things happen: i) as a result of the process, the measurement apparatus
obtains one of the possible eigenvalues of B̂; ii) the system’s state immediately collapses
into one of the superposition elements. Such state update corresponds to the eigenvector
relative to the measurement outcome, i.e., if bk is measured, then

|Ψ⟩ → |Ψ′⟩ ≡ |bk⟩. (2.42)

This whole event - known as a projective measurement - is seen as fundamentally proba-
bilistic, i.e., in the orthodox presentation of QM, all information encoded by |Ψ⟩ are the
statistics of the outcomes, which are characterized by the coefficients {αj, j = 1, ..., d}
playing the role of probability amplitudes. In this sense, by defining the so-called projec-
tors Π̂k ≡ |bk⟩⟨bk| ∈ L(H), the probability of measuring bk and the system collapsing to
|bk⟩ is given by

Prob(bk) ≡ ⟨Ψ|Πk|Ψ⟩ = |αk|2 ≥ 0, (2.43)

while the collapse itself is mathematically written as

|Ψ′⟩ = Πk|Ψ⟩√
⟨Ψ|Πk|Ψ⟩

. (2.44)

Notice that, it means that if any posterior measurement of B̂ is performed right after the
first one, the system would still be found at the same state |Ψ′⟩ = |bk⟩ with Prob(bk) = 1.
Also, as expected, the normalization ⟨Ψ|Ψ⟩ = 1 guarantees that

d∑
k=1

Prob(bk) = 1. (2.45)

It is clear that the physical act of measuring is not being modelled at all, and the treatment
above is, essentially, phenomenological. In fact, Eq. (2.43) is a fundamental postulate of
QM and, therefore, it is not demonstrable from first principlesn.
n Still today, there are several discussions on this matter, especially on foundational questions

of QM. (41)
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From the measurement statistics of B̂ above, one can compute its average value
simply as ∑d

k=1 bkProb(bk). Thus, it is easy to see that the expectation value of any given
observable Ô ∈ L(H) relative to the state |Ψ⟩ can be defined as

⟨Ô⟩ ≡ ⟨Ψ|Ô|Ψ⟩. (2.46)

It is worth mentioning that, even though |Ψ⟩ might represent a single physical
quantum system, in practice, such probabilities are only accessible at an ensemble level
analysis, in a way that it is implicitly assumed several identical copies of the same physical
ket. This identical copy setting is known as a pure ensemble.

2.2.1.3 Composite systems

Let us now generalize the previous formalism to include the description of - pos-
sibly - several quantum systemso. In many cases, the quantum system being described is
composed of two or more, non necessarily equal, subsystems. If H(k) is the Hilbert space of
the kth element of a group of N subsystems, the whole Hilbert space H(0) is constituted
by the following tensor product H(0) = H(1) ⊗ H(2)... ⊗ H(N). Of course, each subsys-
tem might have its own dimensionality d(k) := dim(H(k)), such that d(0) = ΠN

k=1d
(k).

The representation of possible states in H(0) is given by the tensor product structure
|ψ(1)⟩ ⊗ |ψ(2)⟩... ⊗ |ψ(N)⟩ = |ψ(1)ψ(2)...ψ(N)⟩, where |ψ(k)⟩ ∈ H(k) stands for an indi-
vidual ket belonging to the kth subsystem. It means that, in the particular case in
which every subsystem is prepared in the state |Ψ(k)⟩, the whole system is described
by |Ψ⟩ = |Ψ(1)⟩ ⊗ |Ψ(2)⟩...⊗ |Ψ(N)⟩.

For simplicity, let us focus on bipartite systems, i.e., quantum systems composed
of two individual subsystems. Thus, let H(0) = H(1) ⊗ H(2) and {|b(1,2)

j ⟩, j = 1, ..., d(1,2)}
be a possible basis of H(1,2). Then any bipartite state can be written as

|Ψ⟩ =
d(1)∑
j=1

d(2)∑
k=1

ajk|b(1)
j ⟩ ⊗ |b

(2)
k ⟩, (2.47)

where ajk ≡ ⟨b(1)
j , b

(2)
k |Ψ⟩ is the probability amplitude of finding each individual subsystem

into the states |b(1)
j ⟩ and |b(2)

k ⟩. Eq. (2.47) above is very general. In some cases, if ajk = cjdk,
then the whole system can be written as

|Ψ⟩ = |ϕ(1)⟩ ⊗ |ϕ(2)⟩, (2.48)

where |ϕ(1)⟩ = ∑d(1)

j=1 cj|b(1)
j ⟩ and |ϕ(2)⟩ = ∑d(2)

k=1 dk|b(2)
k ⟩, i.e., for each subsystem, one can

attribute an individual local state |ϕ(1,2)⟩ that it is independent of the other. Whenever
the previous form of Eq. (2.48) is obtained, the whole system is denominated separable,
o Notice that the majority of the machinery presented here also works for a single quantum

systems that has several degrees of freedom, such as orbital motion, spin, etc.
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and we have a product state. Otherwise, the subsystems are non-separable and, therefore,
called entangled. Entanglement is a genuine quantum property that, essentially, means
the different quantum systems have fundamentally correlated states, regardless of their
physical spatial distance. Interestingly, it implies that the whole entangled system is not
understood as the simple composition of individual subsystems but an indivisible entity
instead.

In this context, local operators Ô(k) ∈ L(H(k)) are the ones that act on individual
subsystems and, therefore, specific Hilbert spaces. In a global perspective, however, a local
operator acting in the subsystem (2) of |ψ(1)⟩ ⊗ |ψ(2)⟩, for instance, translates to

(
1̂(1) ⊗ Ô(2)

)
|ψ(1)⟩ ⊗ |ψ(2)⟩ = |ψ(1)⟩ ⊗ Ô(2)|ψ(2)⟩, (2.49)

which means that Ô(2) acts on |ψ(2)⟩, while |ψ(1)⟩ remains unchanged due to the identity
operator 1̂(1). Besides, one could also be interested in applying the operators Ô(1) and Ô(2)

simultaneously. In this case, the whole operator is written as Ô(1) ⊗ Ô(2) and
(
Ô(1) ⊗ Ô(2)

)
|ψ(1)⟩ ⊗ |ψ(2)⟩ = Ô(1)|ψ(1)⟩ ⊗ Ô(2)|ψ(2)⟩. (2.50)

Along these lines, bipartite states can be cast in a very convenient and special
form, given by the Schmidt decomposition. Since this procedure is the basis of this work,
let us discuss it in more detail.

2.2.1.3.1 The Schmidt decomposition

The Schmidt decomposition is a very useful theorem concerning the representation
form of pure bipartite quantum states (or any composite one with a bipartite separation,
actually). Its convenience has far-reaching consequences and applications in quantum
theory, especially in the context of quantum information and quantum computation. Es-
sentially, it claims that any pure bipartite state can be written compactly as a single
sum of correlated orthonormal basis. In fact, as briefly sketched below, this is a direct
consequence of a more general result concerning matrix factorization, known as Singular
Value Decomposition (SVD for short). Despite its simplicity and aesthetical appeal, the
Schmidt decomposition facilitates both the entanglement analysis and the computation
of reduced statesp when dealing with such systems. It is also worth mentioning that this
tool is closely related to the concept of state purification.

Consider a pure bipartite quantum state |Ψ⟩ ∈ H(0) = H(1) ⊗ H(2), such that
dim(H(1,2)) = d(1,2) and, without any loss of generality, d(1) ≤ d(2). Given a pair of
local orthonormal basis {|b(1,2)

j ⟩, j = 1, ..., d(1,2)} for H(1,2), we know that |Ψ⟩ can be
written according to Eq. (2.47). Notice that this general expression contains a double
p Formally presented in Section (2.2.1.4.2).



38

sum ∑d(1)

j=1
∑d(2)

k=1, each one relative to its respective subsystem’s Hilbert space. Clearly,
this represents a superposition over all possible combination of basis elements, where
|ajk|2 quantify the probability associated with the ket |b(1)

j ⟩ ⊗ |b
(2)
k ⟩. Alternatively, the

coefficients ajk can be seen as the entries of a d(1)×d(2) matrix←→A , such that ajk = [←→A ]jk.
The SVD guarantee the following matrix factorization below

←→
A =←→L←→Λ←→R †, (2.51)

where ←→L and ←→R are matrices with orthogonal columns, i.e., ←→L †←→L =←→R †←→R =←→1 , and
←→Λ is a diagonal positive semi-definite matrix. Since we are assuming d(1) ≤ d(2), both
←→
L and ←→Λ are square d(1) × d(1) matrices, while ←→R is a d(2) × d(1) oneq. The diagonal
elements {λj, j = 1, ..., d(1)} of ←→Λ are called its singular values, and the number n ≤ d(1)

of non-zero λj is known as the Schmidt rank. Thus,

ajk =
n∑

η=1
LjηληR

∗
kη, (2.52)

and, therefore,

|Ψ⟩ =
n∑

η=1
λη|φ(1)

η ⟩ ⊗ |φ(2)
η ⟩, (2.53)

where |φ(1)
η ⟩ ≡

∑d(1)

j=1 Ljη|b(1)
j ⟩ and |φ(2)

η ⟩ ≡
∑d(2)

k=1 R
∗
kη|b

(2)
k ⟩. Additionally, the normality

condition of |Ψ⟩ and the ←→L (←→R ) column’s orthogonality guarantee that ∑n
j=1 λ

2
j = 1 and

⟨φ(1,2)
m |φ(1,2)

n ⟩ = δmn, respectively. Eq. (2.53) is the well known Schmidt decomposition of
|Ψ⟩ in its full glory, where the local kets {|φ(1)

j ⟩, j = 1, ..., d(1)} and {|φ(2)
j ⟩, j = 1, ..., d(2)}

form an orthonormal basis for H(1) and H(2), called Schmidt basis, and the singular values
λj are also known as the Schmidt coefficients of |Ψ⟩r. These coefficients are unambigu-
ously defined, while the Schmidt basis are unique up to eventual degenerate coefficients
and phases. Such form is general and far from being intuitive, and, despite the obvious
simplification compared with Eq. (2.47), it has many interesting features that justify its
use: notice that the double sum is changed for a single one bounded by the Schmidt rank
n ≤ d(1), which means that regardless the dimension d(2) only an n-dimensional subspace
of H(2) is relevant for the whole state description; besides, it becomes evident that in order
to have entangled bipartite systems, or non-separable |Ψ⟩ ≠ |φ(1)⟩ ⊗ |φ(2)⟩, it is required
at least two non-zero Schmidt coefficients, i.e., |Ψ⟩ is an entangled state iff n >1; plus,
it gives all necessary information for writing the reduced states (as discussed in Section
(2.2.1.4.2)).

q If d(1) ≥ d(2), their forms would be altered: ←→R would be a square matrix while ←→L would be
rectangular.

r Depending on the reference, sometimes the square of the singular values are denominated as
the Schmidt coefficients.
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2.2.1.4 Density operator

The framework presented until now was built to describe pure states |Ψ⟩ ∈ H. As
mentioned earlier, every physical ket encodes the probabilities associated with measure-
ments performed on a chosen basis. Such statistics, however, is only observed at the ensem-
ble level, i.e., after the access of a collection of identical copies of |Ψ⟩. Although feasible, it
is clear that this is a particular case of a more general ensemble. In most realistic scenarios,
one has access to a statistical mixture of N arbitrary states {Pη, |Ψη⟩ ∈ H, η = 1, ..., N},
where {Pη} ≥ 0 with ∑N

η=1 Pη = 1 characterizes the distribution of pure states |Ψη⟩. The
mathematical entity representing quantum ensembles is known as density operators or
density matrices and written as

ρ̂ ≡
N∑

η=1
Pη|Ψη⟩⟨Ψη| ∈ L(H). (2.54)

If Pj = 1 and Pη = 0 for all η ̸= j, then the quantum state ρ̂ = |Ψj⟩⟨Ψj| is called pure.
Otherwise, it is referred to as a mixed state. Eq. (2.54) is the most general representation of
a quantum system. In fact, the whole formalism of QM can be stated in terms of density
operators ρ̂. Notice that, instead of being represented by kets, states are depicted by
operators according to this framework. Also, in contrast with the probabilities mentioned
in the context of pure ensembles, the distribution of states {Pη} is fully classical, in the
sense that it only captures our ignorance concerning the preparation - or access - of
possible quantum states. It is worth mentioning the pure states within the set {|Ψη⟩}
are not necessarily orthogonal. Nevertheless, since ρ̂ is clearly hermitian, one can write it
conforming to its spectral decomposition, such that

ρ̂ =
d∑

j=1
pj|φj⟩⟨φj|, (2.55)

where {|φj⟩, j = 1, ..., d} is a basis of H and {pj} ≥ 0 with ∑d
j pj = 1. Along these lines,

it is clear that density matrices correspond to a particular class of operators within L(H),
satisfying some properties to characterize physical systems. The corresponding density
matrices’ subset will be represented by D(H). Mathematically, any ρ̂ ∈ D(H) should
meet the following conditions:

1. Hermitian: ρ̂ = ρ̂†;

2. Unit trace: tr{ρ̂} = 1s;

3. Positive semi-definite: ρ̂ ≥ 0 or {pj} ≥ 0.

s The trace tr{Ô} of any operator Ô is simply the sum of its diagonal elements. Since this
quantity is independent of the representation choice, one can use any basis to compute it.
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While condition 1. implies real eigenvalues, condition 2. states the normalization of ρ̂ or∑d
j=1 pj = 1 and condition 3. guarantee positive probabilities, pj ≥ 0 for all j. Besides,

every density matrix ρ̂ satisfies the following inequality

tr{ρ̂2} ≤ 1. (2.56)

Interestingly, by computing Eq. (2.56), one can easily verify if the state ρ̂ is pure or mixed.
Notice that tr{ρ̂2} = 1 iff ρ̂ = |Ψ⟩⟨Ψ| is pure. Otherwise, it is mixed. For this reason, Eq.
(2.56) is commonly known as state purity.

2.2.1.4.1 Projective measurements

Concerning measurements and observables. Let us suppose, again, the observable
B̂ = ∑d

j=1 bj|bj⟩⟨bj|. If a projective measurement is performed in an ensemble characterized
by Eq. (2.55), the probability of obtaining bk is

Prob(bk) ≡ tr{Π̂kρ̂} =
d∑

j=1
pj|⟨bk|φj⟩|2 ≥ 0, (2.57)

which is, essentially, a sum over the probability of observing bk conditioned by each
possible element of the mixture {pj, |φj⟩, j = 1, ..., d}. After the measurement, as expected,
the new state is pure and given by

ρ̂′ ≡ Π̂kρ̂Π̂†
k

tr{Π̂kρ̂}
= |bk⟩⟨bk|. (2.58)

From the expressions above, the average value of these measurements, ⟨B̂⟩, can be
easily computed by ∑d

k=1 bkProb(bk). It is straightforward to check that ⟨B̂⟩ = tr{B̂ρ̂}.
This previous relation can be generalized to any observable Ô ∈ L(H), such that its
expectation value ⟨Ô⟩ relative to the ensemble ρ̂ is defined ast

⟨Ô⟩ ≡ tr{Ôρ̂} = tr{ρ̂Ô}. (2.59)

2.2.1.4.2 Reduced states

If the quantum system of interest is composed of different subsystems, the density
operator formalism provide a straightforward manner to describe them. Often, one has
access only to a part of a much broader quantum system, in a way that it is impossible
to obtain the whole state description. In this sense, the reduced density operators are the
representative ones for describing local states.
t Due to the cyclic property of the trace, the equality tr{ÂB̂} = tr{B̂Â} is satisfied for any

pair of operators Â and B̂.
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Let us suppose a bipartite system, represented by ρ̂(0) ∈ D(H(0)) and H(0) =
H(1) ⊗H(2). The reduced density operators are defined by

ρ̂(1) ≡ tr2{ρ̂(0)} ∈ D(H(1)), (2.60)

ρ̂(2) ≡ tr1{ρ̂(0)} ∈ D(H(2)), (2.61)

where trk{(.)} is the partial trace over subspace k. Of course, these quantities are genuine
density operators and, therefore, inherit all desired properties. In this sense, the statis-
tics of local observables agrees with the expected behaviour, i.e., suppose one perform
measurements of an observable Ô(1) in the subsystem (1), then

⟨Ô(1)⟩ ≡ tr
{(
Ô(1) ⊗ 1̂(2)

)
ρ̂(0)

}
= tr1

{
Ô(1)ρ̂(1)

}
. (2.62)

If the whole system is described by ρ̂(0) = ρ̂(1) ⊗ ρ̂(2), the state is separable, such
that the reduced density matrices are clearly ρ̂(1,2) = tr2,1{ρ̂(0)}. In these cases, access
to the local descriptions is enough to characterize the whole system. Nevertheless, if
ρ̂(0) ̸= ρ̂(1)⊗ ρ̂(2), then the subsystems are somehow correlated, in a way that even knowing
both individual local states, ρ̂(1,2), one still cannot infer the whole state ρ̂(0).

Let us now consider the particular case in which the whole bipartite system is
described by a pure state, such that ρ̂(0) = |Ψ⟩⟨Ψ| and, without any loss of generality,
d(1) ≤ d(2). Thus, there is no classical uncertainty concerning the ensemble. Interestingly,
as will be shown below, this is not necessarily true for the subsystems. As we saw, in
general, any ket |Ψ⟩ can be written as Eq. (2.47). However, the Schmidt decomposition
presented in Eq. (2.53) provides a more convenient form. Along these lines, the whole
state can be cast in the following form

ρ̂(0) =
n∑

η,α=1
ληλα|φ(1)

η ⟩⟨φ(1)
α | ⊗ |φ(2)

η ⟩⟨φ(2)
α |, (2.63)

such that the local states can be immediately computed,

ρ̂(1) =
n∑

η=1
λ2

η|φ(1)
η ⟩⟨φ(1)

η |, (2.64)

ρ̂(2) =
n∑

η=1
λ2

η|φ(2)
η ⟩⟨φ(2)

η |. (2.65)

Hence, as long the whole system is pure, its Schmidt decomposition gives all necessary
information for inferring the local spectral decompositions above, i.e., the square of the
Schmidt coefficients, {λ2

η(t), η = 1, ..., n}, characterize the distributions across the pure
states given by the Schmidt basis, {|φ(1,2)

η (t)⟩, η = 1, ..., n}. Notice that, despite having
no uncertainty from a global perspective, the local subsystems are represented by mixed
states with identical probabilities. In particular, since by hypotheses, d(2) ≥ d(1) the
subsystem (2) must necessarily contain (d(2) − n) null eigenvalues. Interestingly, this is



42

true for any conceivable bipartite system, regardless of the dimensions in question. Such
a non-intuitive result is a direct consequence of entanglement: as mentioned earlier in
Section (2.2.1.3.1), for |Ψ⟩ to be entangled it is required at least two non-zero Schmidt
coefficients, i.e., the Schmidt rank n > 1. In contrast, if n = 1 such that λη = δkη, then
ρ̂(1,2) = |φ(1,2)

k ⟩⟨φ(1,2)
k |, and the whole system is clearly separable,

|Ψ⟩ = |φ(1)
k ⟩ ⊗ |φ

(2)
k ⟩ → ρ̂(0) = |φ(1)

k ⟩⟨φ
(1)
k | ⊗ |φ

(2)
k ⟩⟨φ

(2)
k |. (2.66)

It is worth mentioning that the reasoning above is also commonly explored the
other way around. Given a quantum system (1) described by ρ̂(1) ∈ D(H(1)), by adding
an auxiliary system (2), the former can be seen as a subsystem of a bigger pure one
depicted by |Ψ⟩, i.e., ρ̂(1) = tr2{|Ψ⟩⟨Ψ|}. This procedure is known as purification of ρ̂(1).

2.2.2 Quantum dynamics

In the previous subsection, we presented the mathematical tools and formalism
for describing quantum systems. Let us now briefly discuss how to express their time
evolution considering the different possible contexts.

2.2.2.1 Isolated and closed system dynamics

The most simple dynamical scenario consists of isolated and closed quantum sys-
tems. By definition, isolated systems do not interact - in any way - with any other kind
of object, classical or quantum. In these cases, the described system is fully quantized,
and no other external entity is included - implicitly or explicitly - in the picture, i.e.,
the system in question represents the totality of elements in the context under scrutiny.
Consequently, an isolated quantum system evolves autonomously in time, uninfluenced
by anything else outside its own existence. Of course, the whole system itself may be con-
stituted by individual interacting parts. In contrast, closed quantum systems represent
less restrictive scenarios. It is allowed the presence of external interaction with classical
agents, which is often justified by semi-classical reasoning. In these cases, the considered
influences are implicit, and the totality of elements is not fully quantized. In general, such
situations portray quantum systems evolving in time according to externally controlled
(deterministic) fields driving its dynamics.

Mathematically, both cases are differentiated by the eventual time-dependency of
their time-translation generator. On the one hand, isolated systems have fixed Hamilto-
nians. On the other hand, the external interaction considered in closed systems induces
time-dependent ones. Interestingly, despite the fundamental - and subtle - differences,
their dynamic behaviour is described by the same functional form.

Thus, let us proceed considering a closed quantum system at time t represented
by |Ψ(t)⟩ ∈ H. In general, given the initial state |Ψ(t0)⟩, we are interested in describing
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|Ψ(t)⟩ at any subsequent time t ≥ t0. Formally, this task is performed by the so-called
time-evolution operator Û(t, t0) ∈ L(H), such that

|Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩. (2.67)

Essentially, Û(t, t0) is the linear operator that maps any initial physical ket to a time-
evolved one. Under the general requirements of lim

t→t0
Û(t, t0) = 1̂, the state normalization

⟨Ψ(t)|Ψ(t)⟩ = 1 for all t and map composition Û(t2, t0) = Û(t2, t1)Û(t1, t0), one can show
that Û(t, t0) must be unitary, Û(t, t0)Û †(t, t0) = 1̂, and satisfies the following differential
equation

iℏ
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0), (2.68)

where ℏ is the Planck’s constant, and Ĥ(t) = Ĥ†(t) ∈ L(H) is the - possibly - time-
dependent Hamiltonian and the time-translation generator of this dynamics. The general
solution of Eq. (2.68) above is given by

Û(t, t0) =←−T e− i
ℏ

∫ t

t0
ds Ĥ(s) (2.69)

where ←−T is the chronological time-ordering operator. Of course, as mentioned earlier, if
the system is isolated then Ĥ is constant, and the time-evolution operator is considerably
simpler:

Û(t, t0) = e− i
ℏ Ĥ(t−t0). (2.70)

Finally, combining Eqs. (2.67, 2.68) one obtains the usual Schrödinger equation for
describing the state’s dynamics,

iℏ
d

dt
|Ψ(t)⟩ = Ĥ(t)|Ψ(t)⟩. (2.71)

Alternatively, if the system of interest is initially described by a mixed state ρ̂(t0) =∑d
j=1 pj|φj(t0)⟩⟨φj(t0)| ∈ D(H), each element of the ensemble will certainly time evolve

according to Eq. (2.71) above, such that |φj(t)⟩ = Û(t, t0)|φj(t0)⟩. Thus, at any later time
t ≥ t0, the density matrix is given by

ρ̂(t) ≡ Φ̂t,t0 ρ̂(t0) = Û(t, t0)ρ̂(t0)Û †(t, t0), (2.72)

where
Φ̂t,t0 : D(H)→ D(H) (2.73)

is the so-called (linear) dynamical map representing the unitary time evolutionu. Along
these lines, it is straightforward to obtain the density matrix counterpart of Eq. (2.71) for
the equation of motion, given by the so-called Liouville-von Neumann equation,

iℏ
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)]. (2.74)

u Notice that Φ̂t,t0 acts on an operator instead of a ket. For this reason, these linear operators
are commonly known as superoperators.
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It is important to highlight that the eigenvalues {pj, j = 1, ..., d} of ρ̂(t) remain invariant
for this class of time evolution.

In short, the whole dynamics of both isolated and closed systems are fully char-
acterized once having access to initial conditions and the unitaries Û(t, t0), written as
functionals of the Hamiltonians, mapping states at different instants of time.

2.2.2.2 Open systems dynamics

This class of dynamics is fundamentally distinct from the isolated and closed ones.
As the name suggests, open quantum systems consist of physical systems that explicitly
interact with other - possibly many - quantum objects. Differently from the other cases, as
a consequence of the interaction, the dynamics of open systems are unavoidably coupled
and correlated to their environments, which directly affect their time evolutions and lead
to the phenomena of decoherence and dissipation. More specifically, their equation of
motion is no longer unitary nor described by Eq. (2.74) in such a way that a more general
description formalism is required. Along these lines, an individual subsystem of a larger
entity is - in general - treated as an open quantum system. As discussed earlier in Section
(2.2.1.4.2), subsystems are characterized by reduced states. Therefore, essentially, we are
interested in finding their dynamical equations. Solving this task is the most fundamental
objective of the subfield known as open quantum systems and is of imperative importance
for understanding the complex behaviour of quantum matter and the development of
future quantum devices. It is worth mentioning that open systems represent the standard
approach for many realistic scenarios: the intrinsic fragility of quantum systems means
that they are easily disturbed by external influences. Nevertheless, if the interactions are
sufficiently weak, the system might be treated as approximately isolated. Let us focus on
the general aspects of open system dynamics.

Suppose the system of interest is described, at any time t, by ρ̂(1)(t) ∈ D(H(1))
and corresponds to a subsystem of a larger isolated quantum system depicted by ρ̂(0) ∈
D(H(0)), such that H(0) = H(1) ⊗H(2), where H(2) is the Hilbert space that encompasses
the environment of (1). Notice this configuration establishes a bipartition between the
described system and "everything else". Since the total system is isolated - by hypotheses
- given an initial state ρ̂(0)(t0), its time evolution is guaranteed to be unitary, such that

ρ̂(0)(t) = Û (0)(t, t0)ρ̂(0)(t0)Û (0)†(t, t0), (2.75)

where Û (0)(t, t0) = e− i
ℏ Ĥ(0)(t−t0) ∈ L(H(0)) is its time evolution operator, and Ĥ(0) ∈

L(H(0)) is the Hamiltonian relative to the whole bipartition. This Hamiltonian have the
following structure

Ĥ(0) := Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2) + Ĥint, (2.76)

where Ĥ(1,2) ∈ L(H(1,2)) are the bare Hamiltonians for each subsystem, and Ĥint ∈ L(H(0))
is the term representing all the physical interactions between (1) and (2). It is important to
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highlight the fact the bare Hamiltonians are local operators restricted to their individual
subspaces while the interaction is clearly non-local, in the sense that it acts on the total
Hilbert space.

According to Section (2.2.1.4.2), at any time t, the local states are simply

ρ̂(1,2)(t) = tr2,1{Û (0)(t, t0)ρ̂(0)(t0)Û (0)†(t, t0)}. (2.77)

Thus, using Eqs. (2.74, 2.76, 2.77), it is straightforward to show that their exact dynamical
equations are

iℏ
d

dt
ρ̂(1,2)(t) = tr2,1{[Ĥ(0), ρ̂(0)]} = [Ĥ(1,2), ρ̂(1,2)(t)] + tr2,1{[Ĥint, ρ̂

(0)]}, (2.78)

where the commutator [Ĥ(1,2), ρ̂(1,2)(t)] resembles the contribution that appears in Eq.
(2.74) and tr2,1{[Ĥint, ρ̂

(0)]} is an extra component due to the interaction term, Ĥint.
While the former is the unitary part of the dynamics, the latter contains non-unitary
contributionsv. It is clear that the role played by the interaction is of extreme relevance to
the local dynamics. In fact, one can easily check that its absence would imply that both
subsystems would be individually isolated and, therefore, evolving in time independently,
i.e., Ĥ(0) = Ĥ(1)⊗ 1̂(2) +1̂(1)⊗ Ĥ(2) and iℏ d

dt
ρ̂(1,2)(t) = [Ĥ(1,2), ρ̂(1,2)(t)]. Also, from a global

perspective, the interaction is responsible for inducing the formation of both classical and
quantum correlations within the system in a way that ρ̂(0)(t) ̸= ρ̂(1)(t)⊗ ρ̂(2)(t) for general
situations. Of course, the resulting local dynamics of subsystem (1) fundamentally depends
on the nature of (2) that, in principle, could be as simple as a single qubit or a complex
many-body system. Nevertheless, in many scenarios involving open quantum systems, it
is commonly assumed that (2) is a reservoir with an infinite number of degrees of freedom
or a large heat bath. These situations, as expected, might be very complicated to be
analysed by the exact expressions above or even treated numerically. For this reason, the
usual approaches and techniques rely on approximative methods and different hypotheses
aiming to simplify the description, which also restrains the analysis for specific regimes
of validity. Along these lines, initial uncorrelated states, weak-coupling and Markovian
dynamics represent the most common assumptions leading to the orthodox microscopic
derivations of the phenomenological master equations.

As we can see, the interaction breaks the unitary mapping given by Eq. (2.72).
This relationship, however, might be generalized by defining the dynamical map Λ̂(1)

t,t0 :
D(H(1))→ D(H(1)), such that

ρ̂(1)(t) ≡ Λ̂(1)
t,t0 ρ̂

(1)(t0) = tr2{Û (0)(t, t0)ρ̂(0)(t0)Û (0)†(t, t0)}. (2.79)

Any physical dynamical map of this kind should be completely positive and trace-preserving,
also known as a CPTP-map, i.e.,
v This operator might contain terms of the following form [(.), ρ̂(1,2)(t)] as well. The remaining

part, however, is non-unitary.
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1. Completely positive: Λ̂(1)
t,t0 ρ̂

(1)(t0) ≥ 0;

2. Trace-preserving: tr{Λ̂(1)
t,t0 ρ̂

(1)(t0)} = tr{ρ̂(1)(t0)} = 1.

Similarly to the time evolution operator when considering physical kets, these conditions
are the most basic requirements that guarantee a linear mapping between proper density
matrices. Thus, the whole dynamics is fully characterized by a set of CPTP dynamical
maps, {Λ̂(1)

t,t0 , t ≥ t0}, describing the density matrix throughout the time evolution. In some
scenarios, the set of dynamical maps satisfies the so-called semigroup property Λ̂(1)

t2,t0 =
Λ̂(1)

t2,t1Λ̂(1)
t1,t0 for t2 ≥ t1 ≥ t0 which also implies the usual Lindblad-like form for master

equations.

For instance, let us consider initially uncorrelated systems, such that the whole
bipartite system is depicted by a product state ρ̂(0)(t0) = ρ̂(1)(t0)⊗ ρ̂(2)(t0). If the spectral
decomposition of subsystem (2) at time t0 is given by

ρ̂(2)(t0) =
d(2)∑
α=1

pα(t0)|φ(2)
α (t0)⟩⟨φ(2)

α (t0)|, (2.80)

then Eq. (2.79) becomes

ρ̂(1)(t) = Λ̂(1)
t,t0 ρ̂

(1)(t0) =
d(2)∑
α=1

d(2)∑
β=1

K̂
(1)
βα (t, t0)ρ̂(1)(t0)K̂(1)†

βα (t, t0), (2.81)

where
K̂

(1)
βα (t, t0) ≡

√
pα(t0)⟨φ(2)

β (t0)|Û (0)(t, t0)|φ(2)
α (t0)⟩ ∈ L(H(1)) (2.82)

and ∑d(2)

α,β=1 K̂
(1)†
βα (t, t0)K̂(1)

βα (t, t0) = 1̂(1). The form of Eq. (2.81) is known as the Kraus
representation - or operator sum representation - and is the general structure of a dy-
namical map, where the operators {K̂(1)

βα (t, t0), β, α = 1, ..., d(2)} are the Kraus opera-
tors. In particular, if there is only one Kraus operator K̂(1)

j (t, t0), then the map simpli-
fies to Λ̂(1)

t,t0 ρ̂
(1)(t0) = K̂

(1)
j (t, t0)ρ̂(1)(t0)K̂(1)†

j (t, t0) and the time evolution is unitary, since
K̂

(1)†
j (t, t0)K̂(1)

j (t, t0) = 1̂(1).

In short, the dynamics of open systems are considerably more complicated than
the isolated and closed ones and require a more general approach for treating them. As
mentioned earlier, in realistic scenarios, any object is unavoidable coupled to its external
environment. Its interactions often lead to an intricate non-unitary time evolution that is
not easily described by analytic means. In this sense, all the formalism and approximations
developed within the context of open quantum systems are useful tools for understanding
the behaviour of interacting systems.

2.3 Quantum thermodynamics

Given the previous introductions from Sections (2.1) and (2.2), it is clear that
thermodynamics and quantum mechanics are both successful and well established physical
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theories developed and applied to different aspects of natural phenomena. However, it is
not a priori obvious to understand how they connect. The research program coined as
quantum thermodynamics (QT) is relatively young and has been emerging as a meaningful
scientific field during the last couple of decades. Its name is self-explanatoryw since QT has
the ambition to develop a consistent theory that both extends and applies thermodynamics
for general, and possibly nonequilibrium, quantum systems and to describe the classical
thermodynamic behaviour from the underlying fundamental quantum dynamics. Both
major goals are clearly complementary and represent different valid perspectives on the
same subject, which partially explains the diverse community forming around QT and
the plethora of approaches and ideas coming from distinct - but closely related - areas,
especially from quantum information theory and open quantum systems. For a general
introduction to this topic, see. (42–46) A more detailed discussion on QT can be found
in. (47–49)

Although the recent impressive booming of the field, it is interesting to notice
that, historically, thermodynamics has always been assisting quantum mechanics. In fact,
it was present at the birth of quantum theory (50, 51) and, during the last century, sup-
ported some crucial technological advances, in particular in the development of the lasers
and masers. (52–55) However, despite being centenary theories, it is no surprise, nor co-
incidence, that questions concerning the thermodynamics of quantum systems have been
rapidly coming to light during present days: On the one hand, since the early 90s seminal
results on nonequilibrium thermodynamics (16–19, 21), the field of stochastic thermody-
namics flourished and has been successfully bridging the gap between the understanding of
macroscopic and microscopic thermodynamic processes (10, 12); On the other hand, the
current state-of-the-art technology allows the precise fabrication, control and measure-
ment of truly quantum objects in a wide variety of platforms, ranging from solid-state
systems to trapped ions and optical setups. In this context, questions concerning whether
or not it is possible to expand the laws of thermodynamics to even smaller - and pos-
sibly quantum - systems is both a logical step and a current technological urgency. In
fact, along with quantum computation and quantum information, QT is an important
player in the contemporary technological revolution, the so-called quantum technologies
2.0. Its primary purpose is to design quantum devices capable of intentionally harvesting
quantum properties, such as coherence and entanglement, to outperform their classical
counterparts and - hopefully - execute functions that no classical machines could do, even
in principle. At the core of these technologies, it is necessary to understand the underlying
interplay between work, heat and information. On this wise, QT provides the most natural
framework to deal with the design and manipulation of quantum heat engines (53,55–67),
which is a fundamental step toward the development of efficient and stable functioning
quantum machines. However, it is important to emphasize that, to this date, it is still
w Interestingly, this is not the case for many things in science.
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not clear to what extent such kinds of devices would be feasible in practical scenarios.
Physicists are optimistic, though. Currently, QT investigations are already accessible and
performed in the traditional experimental setups for quantum mechanics studies, e.g., su-
perconducting devices (68–76), nitrogen-vacancy (NV) centers (77,78), nuclear magnetic
resonance (NMR) (79–82), trapped ions (83–86), ultracold atoms (87–89) and others. In
this sense, much experimental research in QT is driven by questions concerning cyclic
processes, quantum heat engines and quantum refrigerators. (77, 80, 81, 84–86, 90) For
more details and further references, see. (91) Additionally, from a theoretical perspective,
QT has the potential to shed some light on fundamental questions on the foundations of
quantum mechanics and statistical physics, especially those concerning the emergence of
macroscopic behaviour from first principles, e.g., the transition from quantum to classical
mechanics, irreversibility, thermalisation and the measurement problem.

As briefly mentioned earlier, QT has been approached from many different perspec-
tives and attitudes, each one tackling particular problems with its own set of tools. This
diversity gave rise to smaller communities and several research branches within QT. Along
these lines, in addition to studies with quantum heat engines, one can find investigations
on quantum thermometry (92–98), quantum batteries (99–103), stochastic quantum ther-
modynamics (104–109) and thermodynamics of quantum information (71, 110–114), just
to name a few. All these subareas have been reporting interesting and relevant theoretical
progress, although not in a cohesive manner yet. In particular, pertinent developments are
being achieved by resource theoretic notions imported from quantum information theory
and applied to QT. (115–120) Resource theories are robust axiomatic and operational
mathematical descriptions of the so-called resources and free operations: while the former
refers to desired - and possibly scarce (just like any resource) - physical properties, like en-
tanglement and coherence, the latter refers to the set of feasible and accessible operations.
Interestingly, using this framework, one can derive general results concerning possible state
transformation under a given set of constraints. At present, there is a plethora of different
resource theories, each one dealing with its particular resources and set of operational
restrictions. (121, 122) In the thermodynamic context, nonequilibrium states are seen as
resources, while free operations include the addition of thermal baths and global unitaries
preserving energy. (123, 124) It is interesting to appreciate how similar such reasoning is
compared with the usual phenomenological approach to thermodynamics.

Alternatively, instead of knowing whether or not a given transformation is pos-
sible, one might be interested in the process itself (125, 126), i.e., in all the dynamical
aspects within a time-dependent transformation, which certainly includes both energetic
and entropic changes. In this sense, describing the dynamics of any desired property in
a given protocol is of fundamental importance for a complete quantum thermodynamic
theory. Furthermore, such knowledge is clearly necessary for technological applications
where is expected a high degree of control during the preparation and manipulation of



49

sophisticated and fragile quantum states. In fact, the most promising - and interesting
- applications will demand local descriptions of interacting quantum systems, especially
when dealing with quantum heat engines and contexts like quantum control and quantum
sensing. For these reasons, the framework of open quantum systems (40) is a natural - and
unavoidable - candidate to approach quantum thermodynamics and has been extensively
used in several contexts. Along these lines, both the understanding of open quantum
systems and the tools used to describe them are slowly pushing the usual orthodox ther-
modynamic scenario to a wide range of situations.

Given the relatively young age of QT, there is no surprise to notice the presence
of several open problems. In fact, considering its stage, this is expected. However, despite
all current advances and efforts, the lack of consensus on central aspects of the theory is
particularly notorious. This situation can be explained, at least partially, by the still un-
known thermodynamic role of quantum properties, i.e., once considered interacting quan-
tum systems, subtleties concerning entanglement, coherence, and the interaction should
be carefully scrutinized. Of course, classical thermodynamics give us some expectations of
how things should occur. Nevertheless, such properties vanish at the appropriate classical
limit: while genuine quantum phenomena are absent in any classical setting, the inter-
action is negligible for macroscopic systems. In this sense, (remarkably) there is still no
acceptable general definitions for the quantum counterparts of the most basic thermody-
namic quantities, which highlights the need for further investigations at the foundational
and conceptual levels.

Along these lines, the obtention of a general quantum thermodynamic entropy
remains elusive. Different alternatives can be found in the literature (127–131), but, un-
surprisingly, most current approaches are based on information-theoretic perspectives.
(132) Despite its success for microscopic classical systems (133) and particular - orthodox
- quantum scenarios (56, 134), it does not satisfy the expected properties for a proper
generalization of thermodynamic entropy and the second law. Unfortunately, this is also
the case for internal energy and the first law. There is no ambiguity in identifying the
internal energy of isolated quantum systems, i.e., this role is unambiguously assigned to
the expectation value of its Hamiltonian. However, it is not clear how to proceed once
considering arbitrary open quantum systems. In such cases, the notion of physical local
internal energy is clouded by existing non-negligible interactions and correlations between
the system of interest and its surroundings. Naturally, any attempt description of energy
exchanges inherits such basic dubiety. In this sense, classical thermodynamics states that
energy flow is divided into two complementary and fundamentally distinct categories,
work and heat. Such splitting for the quantum case also carries some intrinsic difficulties.
As mentioned earlier in Section (2.1.1), work and heat are defined along with trajectories,
which establish an extra conceptual barrier for directly translating them to the quantum
realm. (135) More importantly, it is uncertain how to account for the energetic contribu-
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tions of coherence and quantum correlations into these elements. Still, most of the current
strategies are grounded on the classical - and pragmatical - reasoning that work is associ-
ated with the energy transferred in a controllable and deterministic fashion via the precise
control of external parameters, and heat is linked to randomly exchanged energy during a
given process and entropic variation. This perspective has been explored in different ways
and with distinct frameworks. On the one hand, many efforts were driven by the quest for
the quantum versions of FTs and measurement-based approaches. (104, 105, 136) On the
other hand, a fully quantum dynamic description is also sought from a less operational
point of view. (56, 125, 126) Interestingly, it should be emphasized that despite all the
above discussion, even the usual assumption of splitting the energy flow solely in terms
of work and heat can be debatable for the quantum case. (137)

Additionally, another critical aspect concerns the enormous difficulty of describing
the dynamics of open quantum systems. As briefly mentioned in the overview of Section
(2.2.2.2), the time-evolution of reduced states may be extremely convoluted and rarely
solvable exactly. Besides, unless we are dealing with simple physical systems, this type
of description and analysis is a formidable task, even for numerical methods. Thus, most
procedures assume several approximations for microscopically deriving more tractable
dynamical equations, which inevitably restrains its validity for specific conditions and
scenarios. In particular, it is often considered weak-coupling regimes and Markovian dy-
namics leading to the usual Lindblad-like form of master equations.x (56, 126, 138–142)
For more complex situations, when several interacting subsystems are being described,
alternative approaches also consider the so-called local master equations by strategically
neglecting some interaction terms, which simplifies the analysis even further. (143, 144)
Nevertheless, these approximations can lead to thermodynamic inconsistency or unphys-
ical situations when not taken into account carefully. (145–149) Alternatively, it was
recently shown the possibility to derive thermodynamically compatible master equations
by employing additional selective hypotheses. (150) However, it is clear that relying on
approximations and other restrictive assumptions also poses a critical limitation to the de-
velopment of a general thermodynamic description of quantum systems, especially if one
intends to characterize strongly-coupled systems and further arbitrary contexts. In this
sense, there are efforts to extend the usual approach for broader scenarios. (109,151–164)

In addition to the approximate treatment commonly employed in QT, a semi-
classical description is also implicitly assumed, i.e., although not usually highlighted, the
addition of a classical external agent is a fundamental part of the standard formalism, es-
pecially for closed quantum systems. Essentially, this agent is responsible for controlling
the dynamics of the system of interest and inducing its Hamiltonian time-dependency,
which yield the energy exchange directly interpreted as work. It is also the relevant party
x In the literature, it is also commonly referred to as Gorini, Kossakowski, Lindblad, and

Sudarshan (GKLS) equation.
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for measuring the system and, eventually, processing the accessible information. From
a physical point of view, this control is mediated by the use of external fields interact-
ing with the system in question in such a way that it maintains its quantum properties.
However, they are not explicitly included in the physical description. Instead, they are
regarded as classical fields whose interaction induces an effective time-dependency in the
system’s Hamiltonian. Despite its practical relevance, this perspective of the so-called
"coherent control" (165) does not contemplate autonomous quantum systems and, there-
fore, limits ourselves to the thermodynamic description of classically driven devices, where
both the quantum nature of the fields is unimportant relative to the system of interest
and the system itself does not affect the control’s state. In contrast to a semi-classical
approach, autonomous quantum systems are isolated and do not have Hamiltonian time-
dependency, which means that all relevant parties - including the control agent - are
quantized. Of course, it also implies that the semi-classical description is a limit regime.
Along with this more general and fundamental picture, one is interested in understanding
the thermodynamics within isolated quantum systems, which would enable the design and
characterization of autonomous quantum machines. In this sense, any attempt of devel-
oping a thermodynamic description of quantum systems that assumes a time-dependent
Hamiltonian a priori is not fully quantum and, essentially, a phenomenological approach.
Interestingly, this fundamental - and conceptual - issue is not mentioned very often in the
literature of QT. For some discussions on autonomous quantum machines, see. (166–181)
More recently, (182) presented a formal treatment (although restricted to the usual ther-
modynamic scenario) on this topic. It is worth mentioning that these questions are also
at the heart of quantum (optimal) control theory. See (183–186) for more discussions on
this matter.

Finally, the recent global interest in developing a quantum thermodynamic the-
ory is growing fast each year. The contemporary version of the industrial revolution is
spearheaded by current progress in understanding and developing genuine quantum tech-
nologies for information processing, communication and sensing. In this context, a fully
matured framework of QT will certainly play a leading role in the design and operation
of functional quantum devices. Nevertheless, despite being a promising field, considering
its actual stage of achievements and open questions, it is still in its infancy. More specifi-
cally, additional investigations are needed at the conceptual level, as several fundamental
aspects are still under scrutiny. In short, QT is an interesting, stimulating and young
research field whose investigations and potential scientific breakthroughs will, in one way
or another, help to shape future technologies and the understanding of quantum mechan-
ics. Hopefully, future historians of physics will view this chapter of science as we see past
developments today.
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3 SCHMIDT DECOMPOSITION APPROACH TO QUANTUM THERMODY-
NAMICS

In Section (2.3), we briefly introduced the current efforts and growing progress on
the development of a self-consistent thermodynamic theory of quantum systems. Despite
clear advancements toward this goal, the field of quantum thermodynamics (QT) still
has some fundamental issues to be addressed. In this sense, most theoretical frameworks
inherit some of the phenomenological spirit of the classical theory and do not provide
suitable tools to characterize and understand thermodynamic processes within genuine
autonomous quantum machines, i.e., most modern approaches are built on the top of
semi-classical descriptions and approximative regimes, which clearly limit their range of
applicability.

In this chapter, we are interested to address and contribute to such more foun-
dational aspects of the theory. In the following pages, we are going to present a novel
approach to the thermodynamic analysis of autonomous quantum systems. Our proposal
is exact and based on the well-known procedure of the Schmidt decomposition for bipartite
systemsa. Interestingly, despite being simple and providing a powerful statement, it is still
not explicitly explored in the context of QT. This framework will allow us to describe the
dynamics and energetics within generic interacting subsystems in a symmetrical fashion,
i.e., regardless of their individual properties, details and dimension, they will be treated
on equal footing. In addition, it will not require any complementary hypotheses and ap-
proximations, such as the commonly used ones concerning the Hamiltonian structure,
interaction regimes and type of dynamics, i.e., strict energy conservation, weak-coupling,
markovianity, etc. Formally, we will introduce time-dependent local effective Hamilto-
nians that naturally embrace both their respective bare ones and the contributions of
the interaction term. These elements will be identified as the representative operators for
characterizing the subsystem’s physical internal energies, in a way that will allow us to ex-
tend the usual classical thermodynamic notion of energy additivity to general interacting
quantum systemsb.

The outline of this chapter is the following: Section (3.1) formally introduces and
details the main setup of analysis, which consists of an isolated pure bipartite quantum
system. Also, it establishes the mathematical notation used throughout the chapter. Then,
Section (3.2) presents the foundations of our formalism. More specifically, it discusses and
describes the Schmidt basis dynamics and identifies their time-translation generators as

a Or single systems where there is coupling between diferent degrees of freedom, e.g., spin-orbit
interaction.

b The following main discussions and results can be found in (1), submitted after this thesis
defense.
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the so-called local effective Hamiltonians. The following Section (3.3) briefly mentions
how the local dynamics are represented relative to these operators and the Schmidt ba-
sis/coefficients. Then, in Section (3.4), the notion of local internal energies is discussed in
the context of QT. Also, it is argued that the effective operators previously defined are suit-
able candidates for characterizing the subsystem’s physical internal energy. Along these
lines, Section (3.5) introduces and discusses the consequences of the intrinsic phase/frame
gauge degree of freedom underlying the Schmidt decomposition and, therefore, inherited
by our formalism. More importantly, it is presented a procedure for fixing it. Section (3.6)
focuses on the analysis of current approaches for defining quantum versions of thermo-
dynamic quantities. After that, Section (3.7) shows a proof of principle of the proposed
formalism. Then, Section (3.8) generalizes the previous results to mixed bipartite states.
And, finally, Section (3.9) briefly discusses these results and summarizes the chapter.

3.1 The setting

As mentioned earlier, we consider a finite, isolated and nondegenerate pure quan-
tum system composed of two smaller interacting subsystems. Throughout this thesis, the
whole system and its global quantities will be labelled by (0), while the parts and their
relative local properties will be identified by (1) and (2). Let H(k), with k = 0, 1, 2, be
their Hilbert spaces with dimensions d(k) := dim(H(k)), such that d(0) = (d(1) + d(2)) and
- without any loss of generality - d(1) ≤ d(2). Since we are interested in describing a fully
quantum autonomous object, the whole system Hamiltonian Ĥ(0) generating its dynamics
is time-independent and given by

Ĥ(0) := Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2) + Ĥint, (3.1)

where 1̂(1,2) ∈ L(H(1,2)) are the identity operators, Ĥ(1,2) ∈ L(H(1,2)) are the local bare
Hamiltonians of each subsystem and Ĥint ∈ L(H(0)) is the term that encompasses all
the internal interactions between them. It is important to emphasize that no additional
hypothesis will be considered, especially concerning dynamical features or the Hamilto-
nian/interaction structure, e.g., markovianity, uncorrelated states, weak coupling, specific
interaction Hamiltonian, etc. The following description is general and exact.

At any time t the whole pure system is described by a ket |Ψ(t)⟩ ∈ H(0) = H(1) ⊗
H(2). Besides, since it is isolated, its dynamics is governed by the usual Schrödinger
equation iℏ d

dt
|Ψ(t)⟩ = Ĥ(0)|Ψ(t)⟩; thereby, for any initial state |Ψ(t0)⟩ and t ≥ t0 we have

|Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩, (3.2)

where Û(t, t0) = e− i
ℏ Ĥ(0)(t−t0) ∈ L(H(0)) is the time-evolution operator of the whole.

As usual, such bipartite state could be written in any conceivable basis, e.g., |Ψ(t)⟩ =∑d(1)

i=1
∑d(2)

j=1 ψij(t)|b(1)
i , b

(2)
j ⟩, nevertheless the well known Schmidt decomposition guarantee
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the following specific and convenient form (see (2.2.1.3.1))

|Ψ(t)⟩ =
d(1)∑
j=1

λj(t)|φ(1)
j (t)⟩ ⊗ |φ(2)

j (t)⟩, (3.3)

for every instant t, where {λj(t) ≥ 0; j = 1, ..., d(1)} and {|φ(k)
j (t)⟩; j = 1, ..., d(1)}c∈

H(k) are the time-local Schmidt coefficients and local Schmidt basis of subsystem (k),
respectively. The normalization condition ⟨Ψ(t)|Ψ(t)⟩ = 1 implies that ∑d(1)

j=1 λ
2
j(t) = 1,

and the orthonormality of the local basis elements assure that ⟨φ(α)
m (t)|φ(β)

n (t)⟩ = δαβδmn.
From now on, the Schmidt decomposition form showed in Eq. (3.3) will be the standard
description of |Ψ(t)⟩.

As already mentioned in chapter (2), the representation above is compelling and
useful for a number of reasons: notice that despite a potential huge discrepancy between
d(1) and d(2) there is a single sum bounded by the smallest dimension in question, by
hypothesis d(1)d; apart from that, it is symmetrical in the sense that for each ket |φ(1)

j (t)⟩
from subsystem (1) there is a related ket |φ(2)

j (t)⟩ from (2); additionally, as we are going
to present below, it turns out that it gives all necessary information for representing the
subsystem’s local states; also, it is guaranteed that the Schmidt coefficients are unambigu-
ously defined, while the Schmidt basis are unique up to eventual degenerate coefficients
and a phase degree of freedom, in the sense that Eq. (3.3) is invariant over simultaneous
local phases changes (this point will be discussed later in Section (3.5)); finally, it makes
easy to verify whether the subsystems are entangled or not, i.e., a product state will be
obtained iff there is a single non-zero Schmidt coefficiente such that λj(t) = 1, λm(t) = 0
for all m ̸= j and |Ψ(t)⟩ = |φ(1)

j (t)⟩ ⊗ |φ(2)
j (t)⟩. As a last remark, it is important to

highlight the fact that the set {|φ(2)
j (t)⟩}j of Schmidt basis is not formally complete since

we only have d(1) elements, still we are always allowed to find the remaining (d(2) − d(1))
orthonormal kets to form a complete basis of H(2).

Let us now turn our attention to the parts: the individual state description of each
subsystem is represented by the reduced density matrix of the whole, whose own pure
state density matrix is

ρ̂(0)(t) ≡ |Ψ(t)⟩⟨Ψ(t)|. (3.4)

Formally, these local states are obtained by the usual procedure of partial tracing Eq.
(3.4) such that ρ̂(1,2)(t) ≡ tr2,1{ρ̂(0)(t)}. Thus, given Eq. (3.3) it is easy to see that, for all

c Unless it is necessary, from now on, any set will be represented simply as {aj}j where j is
the index counting its elements, and the range is implicit.

d Even though the sum extends up to d(1) we may have null Schmidt coefficients thus, in
practice, the sum goes until the Schmidt rank, defined as the number of non-zero coefficients.
To keep track of these dimensions, we will maintain d(1) in the sums.

e Schmidt rank equal to one.



56

t,

ρ̂(1)(t) =
d(1)∑
j=1

λ2
j(t)|φ

(1)
j (t)⟩⟨φ(1)

j (t)|, (3.5)

ρ̂(2)(t) =
d(1)∑
j=1

λ2
j(t)|φ

(2)
j (t)⟩⟨φ(2)

j (t)|. (3.6)

Hopefully, the expressions above are sufficient to further elucidate how convenient the
Schmidt decomposition really is. As briefly mentioned earlier, its provides all necessary
information for inferring the spectral decomposition of these states, i.e., their eigenval-
ues (also referred as populations) and eigenvectors are given by the Schmidt coefficients
squared {λ2

j(t)}j and Schmidt basis {|φ(1,2)
j (t)⟩}j, respectively. In particular, notice that

both local states are represented - in general - by mixed density matricesf and necessarily
have the same spectrum whenever the whole bipartite system is pure; more precisely, since
d(2) ≥ d(1) the spectrum of subsystem (2) cointains the set {λ2

j(t)}j plus (d(2) − d(1)) null
eigenvalues, whose respective eigenvectors form the nullspace of ρ̂(2)(t)g. Additionally, this
also implies that both subsystems will have the same values for any local functional of
their populations, most notably purity and von-Neumann entropy.

3.2 Schmidt basis dynamics and local effective Hamiltonians

In this section, we are particularly interested in a local dynamical description of
the Schmidt basis {|φ(1,2)

j (t)⟩}j, whereas by local we mean a description solely based in
terms relative to their respective Hilbert space H(1,2). Firstly, it is important to emphasize
that both sets of Schmidt coefficients and pair of basis are intrinsically connected to the
whole system state, in the sense that for every ket |Ψ(t)⟩ there is a single decomposition.
Having that in mind, a pictorial representation might by useful: at any time interval [t0, t1]
the autonomous time evolution performed by the whole can be visualized as a curve P(0) :
|Ψ(t)⟩, t ∈ [t0, t1] in the total Hilbert space H(0); nevertheless, given Eq. (3.3) such path
can be mapped into the simultaneous coupled trajectories P(1,2)

j : |φ(1,2)
j (t)⟩, t ∈ [t0, t1]

followed by the Schmidt basis in their own Hilbert spaces, and the paths of the Schmidt
coefficients, Pλ

j : λj(t) ≥ 0, t ∈ [t0, t1], such that λ2
j(t) ∈ [0, 1] for all j, and ∑d(1)

j=1 λ
2
j(t) = 1.

Obviously, once one has access to the initial state |Ψ(t0)⟩, P(0) is fully characterized by
the unitary operator Û(t, t0) and Eq. (3.2), while the correlated behaviours of {P(1,2)

j }j

and {Pλ
j }j are direct byproducts of the former. For instance, at any time t we have the

following expression for the coefficients

λj(t) =
d(1)∑
k=1

λk(t0)⟨φ(1)
j (t), φ(2)

j (t)|Û(t, t0)|φ(1)
k (t0), φ(2)

k (t0)⟩, (3.7)

f Iff the Schmidt rank is equal to one we have non-entangled systems and pure local states.
g Obviously, if d(2) > d(1) the density matrix ρ̂(2)(t) is automatically singular.
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where it clearly depends on the initial state of the whole, its time-evolution operator and
the instantaneous Schmidt basis. However, such global knowledge is rarely accessible in
most realistic scenarios, thus what we are really interested in is to inferring and describing
the individual effective dynamics portrayed by P(1,2)

j such that defining local thermody-
namic quantities is meaningful and universal, in the sense that the theoretical machinery
can be applied for both parts without any further adjustments. Such a procedure will
prove very useful in describing the subsystems dynamics and their energetic flux.

Let us now put it more formally: initially, we define the local dynamical map
Ũ (k) : H(k) → H(k) (k = 1, 2) that serves as a time-evolution operator and reproduces the
paths {P(k)

j }j in a way that every Schmidt basis ket continuously follows

|φ(k)
j (t)⟩ = Ũ (k)(t, t0)|φ(k)

j (t0)⟩, (3.8)

for any t ≥ t0, with lim
t→t0
|φ(k)

j (t)⟩ = |φ(k)
j (t0)⟩ or lim

t→t0
Ũ (k)(t, t0) = 1̂(k). Since the Schmidt

basis at distinct times corresponds to a different orthonormal basis for the same Hilbert
space, the relationship above is trivially guaranteedh. Additionally, it is required both
that

⟨φ(k)
l (t)|φ(k)

j (t)⟩ = ⟨φ(k)
l (t0)|φ(k)

j (t0)⟩ = δlj, (3.9)

and
Ũ (k)(t2, t0) = Ũ (k)(t2, t1)Ũ (k)(t1, t0), (3.10)

for t2 > t1 > t0, where the former condition guarantees the orthonormality during the
entire dynamics, and the latter demands the composition of the maps for intermediate
times. It is worth mentioning that, in general, these local maps are not directly related
to the whole time-evolution operator, such that Û(t, t0) ̸= Ũ (1)(t, t0) ⊗ Ũ (2)(t, t0). The
previous conditions are automatically fulfilled if the time evolution operator Ũ (k)(t, t0) is
unitary, i.e., Ũ (k)†(t, t0)Ũ (k)(t, t0) = 1̂(k), and have the form presented below for infinitesi-
mal temporal displacements dt,

Ũ (k)(t+ dt, t) = 1̂(k) − i

ℏ
H̃(k)(t)dt, (3.11)

where H̃(k)(t) = H̃(k)†(t) ∈ L(H(k)) is a hermitian and possibly time-dependent operator.
Thus, one can show that

iℏ
d

dt
Ũ (k)(t, t0) = H̃(k)(t)Ũ (k)(t, t0), (3.12)

and, therefore,
iℏ
d

dt
|φ(k)

j (t)⟩ = H̃(k)(t)|φ(k)
j (t)⟩, (3.13)

for all j. The Eq. (3.13) describes exactly what we wanted, where the new operator
H̃(k)(t) introduced above plays the role of the time-translation generator of the Schmidt
h In fact, we already know it should be unitary.
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basis {|φ(k)
j (t)⟩}j along with {P(k)

j }j, and, from now on, will be referred to as the local
effective Hamiltonian of subsystem (k).

Now, the most natural question is "What exactly is the form of H̃(k)(t)?". It cer-
tainly should depend on the context, in the sense that different initial conditions will give
rise to distinct Schmidt basis trajectories and, therefore, a new effective Hamiltonian. In
fact, this is clear once noticed that the equality above can be reversed such that

H̃(k)(t) ≡ iℏ
d(k)∑
j=1

d

dt
|φ(k)

j (t)⟩⟨φ(k)
j (t)|, (3.14)

in other words, knowing the Schmidt basis and its dynamics one could obtain its respective
local effective Hamiltonian. Interestingly, despite this convoluted nature with the whole
pure quantum system state, such operator is locally accessible in principle, since the
Schmidt basis are exactly the eigenbasis of the local state ρ̂(k)(t) in question. Nevertheless,
we can go one step further and show that Eq. (3.14) can be directly related to the local
bare Hamiltonian Ĥ(k). To do so, we first explicitly write down the latter in its spectral
decomposition

Ĥ(k) ≡
d(k)∑
j=1

b
(k)
j |b

(k)
j ⟩⟨b

(k)
j |, (3.15)

where {b(k)
j }j and {|b(k)

j ⟩}j are its respective bare eigenenergies and eigenbasis. Then we
define the projection ⟨b(k)

j |φ
(k)
l (t)⟩ := r

(k)
jl (t)e− i

ℏ b
(k)
j t, in such a way that

⟨b(k)
j |

d

dt
|φ(k)

l (t)⟩ =
(
d

dt
r

(k)
jl (t)

)
e− i

ℏ b
(k)
j t − i

ℏ
b

(k)
j r

(k)
jl (t)e− i

ℏ b
(k)
j t. (3.16)

Besides, given the basis orthonormality ⟨b(k)
α |b

(k)
β ⟩ = δαβ, we also have

d(k)∑
l=1

r
(k)
αl (t)

(
r

(k)
βl (t)

)∗
e

i
ℏ

(
b

(k)
β

−b
(k)
α

)
t = δαβ. (3.17)

Finally, by casting H̃(k)(t) in the bare eigenbasis representation and using the previous
relations, one can rewrite the local effective Hamiltonian as follows

H̃(k)(t) = Ĥ(k) + Ĥ
(k)
LS (t) + Ĥ

(k)
X (t), (3.18)

where

Ĥ
(k)
LS (t) := iℏ

d(k)∑
j=1

d(k)∑
l=1

(
d

dt
r

(k)
jl (t)

)
r

(k)∗
jl (t)

 |b(k)
j ⟩⟨b

(k)
j |, (3.19)

Ĥ
(k)
X (t) :=iℏ

d(k)∑
j=1

d(k)∑
m ̸=j

d(k)∑
l=1

d

dt
r

(k)
jl (t)r(k)∗

ml (t)
 e i

ℏ

(
b

(k)
m −b

(k)
j

)
t
|b(k)

j ⟩⟨b(k)
m |. (3.20)

Thus, the local effective Hamiltonian can be split into the sum of three distinct elements,
including the bare Hamiltonian. Note that the additional operators are responsible for the
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time-dependency of H̃(k)(t), where Ĥ(k)
LS (t) is a general Lamb-shift like term, in the sense

that it is diagonal in the bare eigenbasis, i.e., [Ĥ(k)
LS (t), Ĥ(k)] = 0 for all t, and Ĥ

(k)
X (t)

contains only non-diagonal elements. Intuitively, such extra quantities are expected to
be somehow related to the interaction term. Notice that in its absence, each subsystem
would unitarily evolve in time according to their individual bare Hamiltonians, since
Û(t, t0) = e− i

ℏ Ĥ(0)(t−t0) = e− i
ℏ Ĥ(1)(t−t0)e− i

ℏ Ĥ(2)(t−t0) for this scenario. Thus, for a initial state
|Ψ(t0)⟩ we would have

|Ψ(t)⟩bare =
d(1)∑
j=1

λj(t0)|φ(1)
j (t)⟩bare ⊗ |φ(2)

j (t)⟩bare, (3.21)

where |φ(k)
j (t)⟩bare = e− i

ℏ Ĥ(k)(t−t0)|φ(k)
j (t0)⟩ represents the free evolution of the initial

Schmidt basis, for t ≥ t0. Hence, in this case, the Schmidt coefficients {λj(t0)}j are
constant and the local effective Hamiltonians are simply identified as the bare ones, i.e,
H̃(k)(t) = Ĥ(k). This, however, can be seen from the usual time-independent theory ap-
proach. Let us now add a dimensionless parameter ε ∈ [0, 1] and make Ĥint → εĤint, such
that we can write the following formal perturbative series

λj(t) = λj(t0) + ελj,1(t) +Oλ(ε2), (3.22)

|φ(k)
j (t)⟩ = |φ(k)

j (t)⟩bare + ε|φ(k)
j (t)⟩1 +O(k)(ε2), (3.23)

where λj,1(t) and |φ(k)
j (t)⟩1 are the respective first order perturbation elements for the

Schmidt coefficients and basis, and Oλ(ε2) and O(k)(ε2) are the terms including higher
orders corrections. Thus, for sufficiently small ε, the first order approximation for the
whole bipartite state is simply

|Ψ(t)⟩ ≈ |Ψ(t)⟩bare + ε|Ψ(t)⟩1, (3.24)

and, given Eq. (3.14),
H̃(k)(t) ≈ Ĥ(k) + εĤ

(k)
1 (t), (3.25)

where |Ψ(t)⟩1 and Ĥ
(k)
1 are their first order components. Hence, any deviation from the

bare Hamiltonian is due to the interaction between the subsystems and, as expected,
if ε → 0 it is clear that H̃(k)(t) → Ĥ(k). In short, both additional quantities are the
local effective by-products of the interaction term Ĥint. In fact, later will be shown the
functional relationship between their expectation values.

3.3 Local states dynamics

In Section (3.1) we obtained the exact form of the reduced density matrices of
our pure bipartite system. We also emphasize how remarkably symmetrical their rep-
resentation are despite any eventual dimensional difference: we might be dealing with
two interacting qubits or a single qubit interacting with a highly complex reservoir, in



60

both scenarios, we would obtain density matrices with equal spectrum, identified by the
Schmidt coefficients. Now, we are interested in describing their time-evolution, i.e., to
write down the dynamical equation d

dt
ρ̂(1,2)(t) for both subsystems.

As a starting point, recall that the whole isolated bipartite system dynamics is
unitary and described by the Schrödinger equation. The equivalent description for its
density matrix is expressed by the Liouville-von Neumann equation

iℏ
d

dt
ρ̂(0)(t) = [Ĥ(0), ρ̂(0)(t)]. (3.26)

Of course, when dealing with the subsystems dynamics such behaviour is not expected,
and additional terms should be taken into account to properly describe non-unitary fea-
tures commonly observed in open quantum systems, e.g., dissipation and decoherence.
The first obvious approach for our goal is partial tracing the previous equation and using
the total Hamiltonian expression (3.1), such that

iℏ
d

dt
ρ̂(k)(t) = [Ĥ(k), ρ̂(k)(t)] + trk̄{[Ĥint, ρ̂

(0)(t)]}, (3.27)

where k = 1, 2, and k̄ is its complement (if k = 1 we have k̄ = 2 and vice versa). As we
can see, the local time-evolutions are clearly separated into a unitary part, guided by the
bare Hamiltonians, and a non-unitary part, represented by the partial trace. Also note
that the latter explicitly depends on global properties, represented by the commutation
relation between the interaction term and the state of the whole quantum system. It is
well known that in some particular scenarios and under specific hypotheses the previous
expression can be cast in more relatable forms, usually into time-local master equations
with the canonical Lindblad form. Until very recently, a similar simplification for broad
dynamics, constraints and initial conditions was elusive, however, S. Alipour et. al. (187)
showed that the general exact expression for the dynamics of the reduced states, presented
in Eq. (3.27), can, in fact, be cast in a universal Lindblad-like form.

Nevertheless, from Eq. (3.13) and the direct derivative of Eqs. (3.5), (3.6) we can
write an alternative dynamical expression for both subsystems in terms of their local
effective Hamiltonians, and the Schmidt basis and coefficients:

iℏ
d

dt
ρ̂(k)(t) = [H̃(k)(t), ρ̂(k)(t)] + iℏ

d(1)∑
j=1

d

dt
λ2

j(t)|φ
(k)
j (t)⟩⟨φ(k)

j (t)|. (3.28)

Interestingly, by defining the operators Ĝ(k)
αβ (t) ≡ |φ(k)

α (t)⟩⟨φ(k)
β (t)| and rates γαβ(t) ≡

1
d(1)λ2

β
(t)

d
dt
λ2

α(t) we can also put it into a non-linear (the rates γαβ(t) do depend on the
state of the whole) Lindblad-like form

iℏ
d

dt
ρ̂(k)(t) = [H̃(k)(t), ρ̂(k)(t)] + D̂

(k)
t ρ̂(k)(t), (3.29)
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where

D̂
(k)
t ρ̂(k)(t) := iℏ

d(1)∑
α,β=1

γαβ(t)
(
Ĝ

(k)
αβ (t)ρ̂(k)(t)Ĝ(k)†

αβ (t)− 1
2
{
Ĝ

(k)†
αβ (t)Ĝ(k)

αβ (t), ρ̂(k)(t)
})

.

(3.30)
In these expressions, the unitary part is governed by the local effective Hamiltonian instead
of the bare one, while the non-unitary part explicitly depends on the population time
dependency and, therefore, is directly related to the entanglement change during the time
evolution. Eq. (3.28) can be seen as a parametric expression for the curve C(k) : ρ̂(k)(t), t ∈
[t0, t1] followed by the subsystem (k) in its respective density operator space D(H(k)), such
that the unitary contribution is due to the generator of the Schmidt basis paths {P(k)

j }j,
and the non-unitary factor is given by the population’s trajectories {P(λ)

j }j. Thus, it is
important to highlight that C(k) is a byproduct of the whole system dynamics, in the sense
that different trajectories P(0) of |Ψ(t)⟩ originated from distinct initial states, will result
in distinct density matrices curves and parametric descriptions.

Finally, since both Eqs. (3.27) and (3.28) are exact expressions for dealing with
the same dynamics they can be directly associated. In fact, given Eq. (3.18), both unitary
contributions satisfy

[H̃(k)(t), ρ̂(k)(t)] = [Ĥ(k), ρ̂(k)(t)] + [Ĥ(k)
LS (t), ρ̂(k)(t)] + [Ĥ(k)

X (t), ρ̂(k)(t)], (3.31)

which leads to the following equality for all time t

trk̄{[Ĥint, ρ̂
(0)(t)]} = iℏ

d(1)∑
j=1

d

dt
λ2

j(t)|φ
(k)
j (t)⟩⟨φ(k)

j (t)|+ [Ĥ(k)
LS (t) + Ĥ

(k)
X (t), ρ̂(k)(t)]. (3.32)

3.3.1 Unitary dynamics

The previous equations are exact, nevertheless, note that whenever the second
term of Eq. (3.28) is negligible compared with the first one, the state dynamics is ap-
proximately unitary. Hence, it is valuable to identify - at least qualitatively - what
conditions are necessary for having such behaviour. Suppose an arbitrary initial state
|Ψ(t0)⟩ = ∑d(1)

k=1 λk(t0)|φ(1)
k (t0)⟩ ⊗ |φ(2)

k (t0)⟩, the Schmidt coefficients at any time t are
simply λj(t) = ⟨φ(1)

j (t), φ(2)
j (t)|Ψ(t)⟩ and

iℏ
d

dt
λj(t) = λj(t)⟨φ(1)

j (t), φ(2)
j (t)|

(
Ĥint − Ĥ(1)

LSX(t)− Ĥ(2)
LSX(t)

)
|φ(1)

j (t), φ(2)
j (t)⟩

+
d(1)∑
k ̸=j

λk(t)⟨φ(1)
j (t), φ(2)

j (t)|Ĥint|φ(1)
k (t), φ(2)

k (t)⟩, (3.33)

where Ĥ(k)
LSX(t) := Ĥ

(k)
LS (t)+Ĥ(k)

X (t) and ⟨φ(1)
j (t), φ(2)

j (t)|Ĥint|φ(1)
k (t), φ(2)

k (t)⟩ with k ̸= j are
the factors responsible for coupling distinct λ’s. If these terms have a minor contribution
to the coefficients dynamics, we can write the following approximative solution

λj(t) ≈ λj(t0)
←−
T e

− i
ℏ

∫ t

t0
ds ⟨φ(1)

j (s),φ(2)
j (s)|

(
Ĥint−Ĥ

(1)
LSX(s)−Ĥ

(2)
LSX(s)

)
|φ(1)

j (s),φ(2)
j (s)⟩

, (3.34)
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where ←−T is the usual chronological time-ordering operator. However, since {λj(t)}j are
real numbers we must also have

⟨φ(1)
j (t), φ(2)

j (t)|
(
Ĥint − Ĥ(1)

LSX(t)− Ĥ(2)
LSX(t)

)
|φ(1)

j (t), φ(2)
j (t)⟩ = 0 (3.35)

for all j and t, therefore,
λj(t) ≈ λj(t0), (3.36)

and

|Ψ(t)⟩ ≈ Ũ (1)(t, t0)Ũ (2)(t, t0)|Ψ(t0)⟩ ⇒ iℏ
d

dt
ρ̂(k)(t) ≈ [H̃(k)(t), ρ̂(k)(t)]. (3.37)

Thus, as long as ⟨φ(1)
j (t), φ(2)

j (t)|Ĥint|φ(1)
k (t), φ(2)

k (t)⟩ ≈ 0 is satisfied for all j ̸= k both
subsystems evolves approximately unitarily and the degree of entanglement remains con-
served. Interestingly, observe that this is true despite the other matrix elements of Ĥint.

3.3.1.1 Semi-classical external drive

Under the previous approximation, if the initial Schmidt rank is equal to one, such
that |Ψ(t0)⟩ = |φ(1)

η (t0)⟩ ⊗ |φ(2)
η (t0)⟩, we would guarantee uncorrelated local pure states

for all t, i.e.,
|Ψ(t)⟩ ≈ |φ(1)

η (t)⟩ ⊗ |φ(2)
η (t)⟩, (3.38)

where |φ(k)
η (t)⟩ = ⟨φ(k̄)

η (t)|Ψ(t)⟩ and

iℏ
d

dt
|φ(k)

η (t)⟩ ≈ (Ĥ(k) + ⟨φ(k̄)
η (t)|Ĥint|φ(k̄)

η (t)⟩ − ⟨φ(k̄)
η (t)|Ĥ(k̄)

LSX(t)|φ(k̄)
η (t)⟩)|φ(k)

η (t)⟩. (3.39)

Thus, from Eq. (3.13) it is clear that, in such cases, the local effective Hamiltonian simply
becomes

H̃(k)(t) ≈ Ĥ(k) + trk̄{(Ĥint − Ĥ(k̄)
LSX(t))ρ̂(k̄)(t)}, (3.40)

where Ĥ(k)
LSX(t) ≈ trk̄{(Ĥint − Ĥ

(k̄)
LSX(t))ρ̂(k̄)(t)}, and ⟨φ(k̄)

η (t)|X̂|φ(k̄)
η (t)⟩ = trk̄{X̂ρ̂(k̄)(t)}

for any operator X̂. Note that these approximative equations are still symmetrical for
both subsystems, nevertheless, it is easier to see how asymmetrical physical systems
might lead to distinct effective behaviours. For instance, if subsystem (2) is sufficiently
large to be regarded as a macroscopic system, it is expected that both the interaction
and subsystem (1) dynamics would have a negligible effect on (2), in such a way that
tr1{(Ĥint − Ĥ(1)

LSX(t))ρ̂(1)(t)} ≈ Ĥ
(2)
LSX(t) ≈ 0, and its local effective Hamiltonian is indis-

tinguishable from the bare one:

H̃(2)(t) ≈ Ĥ(2). (3.41)

This, however, still not true for the subsystem (1), since

H̃(1)(t) ≈ Ĥ(1) + tr2{Ĥintρ̂
(2)(t)}, (3.42)
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i.e., its local effective Hamiltonian is determined by the macroscopic state of (2) and the
interaction term. In particular, if the former is somehow controllable by a set of time-
dependent parameters {Rt}, such that ρ̂(2)(t) = ρ̂(2)(Rt), we obtain an approximative
description of a quantum system whose dynamics is driven by an external semi-classical
agent, where

iℏ
d

dt
ρ̂(1)(t) ≈ [H̃(1)(Rt), ρ̂(1)(t)] (3.43)

and
H̃(1)(Rt) ≈ Ĥ(1) + tr2{Ĥintρ̂

(2)(Rt)}. (3.44)

Hence, as expected, from a fully autonomous quantum description one might obtain an
- approximative - asymmetric effective behaviour, under the right conditions. This is
exactly the case of a single spin weakly interacting with a magnetic field, for instance,
whose controllable parameter is the field intensity. In such cases, the full quantization is
possible and desirable, yet, this description level corresponds to a highly complex task
for many realistic scenarios, and the expressions above correspond to valid approximative
characterization of the local dynamics. Nevertheless, from a quantum thermodynamic
point of view, it is important to highlight that outside this specific scope the neglected
energetic contributions will result in incomplete thermodynamic descriptions.

3.4 Internal energy and additivity

As mentioned earlier, there is no ambiguity in identifying the internal energy of
isolated quantum systems: this role is naturally assigned to the expectation value of the
Hamiltonian generating its dynamics. However, it is not entirely clear how to obtain a
consistent and meaningful analogous to arbitrary open quantum systems. In such cases,
the notion of local internal energy is blurred by non-negligible interactions and correla-
tions that might exist within the whole. Thus, any general and coherent definition should
somehow account for these elements. Additionally, it is important to emphasize that a
clear understanding of internal energy is the most obvious first step toward proper defini-
tions of other fundamental thermodynamic quantities in the quantum regime, especially
quantum heat and work. In this section, we argue that the local effective Hamiltonians are
the representative physical operators for characterizing the subsystems internal energies.
Furthermore, given this identification, we show that the thermodynamic notion of energy
additivity is naturally recovered.

3.4.1 The whole and the parts internal energies

By hypothesis, the whole system is closed and autonomous, which means that no
energy flows inward or outward. Thus, we immediately identify the total internal energy
U (0) as the expectation value of the total Hamiltonian Ĥ(0), i.e.,

U (0) ≡ ⟨Ĥ(0)⟩ = ⟨Ψ(t)|Ĥ(0)|Ψ(t)⟩, (3.45)
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where |Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩ and Û(t, t0) = e− i
ℏ Ĥ(0)(t−t0). Moreover, it is easy to see that

this quantity is indeed conservedi,

d

dt
U (0) = 0. (3.46)

However, since we are dealing with a bipartite system, from Eq. (3.1) we are able to
rewrite U (0) as

U (0) = ⟨Ĥ(1)⟩(t) + ⟨Ĥ(2)⟩(t) + ⟨Ĥint⟩(t) (3.47)

where ⟨.⟩ ≡ ⟨Ψ(t)|(.)|Ψ(t)⟩ and, therefore,

⟨Ĥ(k)⟩(t) = trk{Ĥ(k)ρ̂(k)(t)} =
d(1)∑
j=1

λ2
j(t)⟨φ

(k)
j (t)|Ĥ(k)|φ(k)

j (t)⟩. (3.48)

Notice that the total internal energy is the sum of the expectation values of the bare
Hamiltonians plus the interaction between the subsystems. It is worth mentioning that,
even though these operators are constant, the time-dependency of their expectation values
is due to the state dynamics, in such a way that any change in ⟨Ĥ(1)⟩(t)+⟨Ĥ(2)⟩(t) induces
the negative variation in ⟨Ĥint⟩(t), i.e.,

d

dt
⟨Ĥ(1)⟩(t) + d

dt
⟨Ĥ(2)⟩(t) = − d

dt
⟨Ĥint⟩(t). (3.49)

From the previous equations, it is not clear how to properly assign internal energies for
each subsystem. Given that the interaction term actively influences their local dynamics,
it is reasonable to assume that its contribution should be somehow shared between them.
Besides, it is also desirable two relevant properties for the local energies: (i) be obtained
by local measurements, i.e., associated with the expectation value of local operators; (ii)
be an additive quantity (extensive property). While the first condition guarantees a local
description and accessibility, the second also allows the intuitive picture of energy flowing
from one system to another without including energetic sinks or sources, i.e., the sum of
the local internal energies is a conserved quantity. These features, of course, are not trivial,
especially because the interaction term acts on the whole Hilbert space, which means that
it is a global property per se. This fact, however, suggests that an effective approach for
describing local internal energy provides the most promising route. Otherwise, a global
picture would be necessary for fully characterizing the energetic flux, which is impractical
for most realistic scenarios.

Different approaches for how accounting the interaction input can be found in
the literature. (156, 162, 164, 188–190) Nevertheless, the most common route in quantum
thermodynamics is to directly identify local internal energies as the expectation values of
the bare Hamiltonians. Consequently, the sum of the parts is not equal to the whole, and
i The unitary evolution and constant Hamiltonian guarantee the following equality for all t:
⟨Ψ(t)|Ĥ(0)|Ψ(t)⟩ = ⟨Ψ(t0)|Ĥ(0)|Ψ(t0)⟩.
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the total internal energy is not additive, in general (in contrast with classical scenarios).
To circumvent this issue, it is also usually necessary to assume additional hypothesesj

on the form and/or strength of the interaction operator. After all, if the interaction
could be ignored the recognition of local internal energies would be immediate, and the
two desired properties would be automatically satisfied. In this sense, the so-called weak-
coupling approximation is the most frequent assumption when dealing with open quantum
systems dynamics. It explicitly assumes that the interaction term is small enough to be
treated as a perturbation. The formal procedure follows the usual perturbative recipe:
which consists in scaling the interaction term, such that Ĥint → αĤint, then expanding
the local states in a series of α and, finally, discarding high order terms, i.e.,

ρ̂(k)(t) = e
i
ℏ Ĥ(k)(t−t0)ρ̂(k)(t0)e− i

ℏ Ĥ(k)(t−t0) + αρ̂
(k)
1 (t) + α2ρ̂

(k)
2 (t) +O(α3), (3.50)

where ρ̂(k)
n (t) is the n-th order correction. In such expansion, the zeroth-order component

is simply the initial state time-evolved under the local bare Hamiltonian. Thus non-trivial
behaviour is only achieved if considered at least first-order contributions, especially for
obtaining non-unitary dynamics. This reasoning alone, nevertheless, is not enough to jus-
tify the previous local internal energy identification, given that the interaction term itself
is also in the first order and, consequently, it is still relevant in the energetic balance,
i.e., U (0) = ⟨Ĥ(1)⟩(t) + ⟨Ĥ(2)⟩(t) + α⟨Ĥint⟩(t). Interestingly, in the classical macroscopic
thermodynamic setting - a priori - we would also have U (0) = U (1) +U (2) +Uint, however,
the interaction input is several orders of magnitude smaller than the other two individual
elements, which supports its prompt negligencek. It is worth mentioning that the usual
derivation of master equations in the Lindblad-like form is based on the second-order ex-
pansions and also relies on other restrictive approximations, like Markov and secular ones.
(40) Still, even in such cases, there is no reason for not considering the interaction. As an
alternative, another common approach is to assign the role of local internal energy for the
operator arising in the unitary part of the dynamical equation, which may automatically
contain the local bare Hamiltonian plus a correction due to the interaction. (191) In this
context, the generator usually has the following superoperator structure L̂t = Ĥt + D̂t,
where Htρ̂

(k)(t) = [ĥ(t), ρ̂(k)(t)] is the desired unitary element and D̂t is the dissipator.
Such procedure, however, should be carefully considered since Ĥt may change over trans-
formations that keep the generator invariant. Thus complementary hypothesis may be
required for unambiguously fixing ĥ(t). For a recent proposal, see. (164)

Instead of focusing on the interaction strength, one might assume specific Hamil-
tonian structures. For instance, given the expectation value ⟨Ĥint⟩(t) = ⟨Ψ(t)|Ĥint|Ψ(t)⟩

j Although sometimes not explicitly.
k In the paradigmatic example of two ideal gases separated by a partition, the interaction

is intermediated by the former, and its energy is proportional to its surface. This energy,
however, is negligible compared with the ones stored in each gas.
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it is easy to see that its time-evolution obeys the following equation

iℏ
d

dt
⟨Ĥint⟩(t) = ⟨[Ĥint, (Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2))]⟩. (3.51)

The strict energy conservation (SEC) condition is the assumption that the commutator
above is null, i.e., [Ĥint, (Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2))] = 0 (150), which leads to a constant
expectation value of ⟨Ĥint⟩(t) = cte and, therefore,

SEC : d

dt
⟨Ĥ(1)⟩(t) = − d

dt
⟨Ĥ(2)⟩(t). (3.52)

Hence, if we accept the bare Hamiltonians as the representative operators, despite the
local internal energies still not being additive, the energy flowing from one subsystem is
necessarily obtained by the other, i.e., the interaction neither captures nor releases any
additional energy. This fact justifies neglecting the interaction term into the dynamical
energetic analysis within this quantum system. Besides, the SEC condition also implies
that Û(t, t0) is a so-called energy-preserving unitary (EPU)l, i.e.,

SEC ⇒ [Û(t, t0), (Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2))] = 0, (3.53)

which constitute a free operation in the context of resource theory of thermal operations
(192). Even though both SEC and EPU represents useful scenarios, they also serve as
very restrictive conditions in the form of Ĥint.

Despite its versatility and relevance, it is clear that approximative procedures and
particular hypotheses are only suitable for especific regimes, and a general approach is
necessary for developing a fully quantum thermodynamic description of arbitrary systems.

3.4.1.1 Local effective internal energy

In Section (3.2), we obtained the local effective Hamiltonian H̃(k)(t) as the gener-
ator of the local Schmidt basis dynamics of subsystem (k) (Eq. (3.13)), and showed that
it can be directly related to the bare Hamiltonian through Eq. (3.18). In Section (3.3), we
also showed that the unitary part of the local state dynamics iℏ d

dt
ρ̂(k)(t) is parametrized

by H̃(k)(t). Let us now argue that such Hamiltonians can be seen as the representative
local operators for characterizing the physical internal energy.

First, by definition, both H̃(1)(t) and H̃(2)(t) are local objects, which means that
they can be accessible by local measurements, such that their expectation values are
simply ⟨H̃(k)(t)⟩ = ⟨Ψ(t)|H̃(k)(t)|Ψ(t)⟩ = trk{H̃(k)(t)ρ̂(k)(t)}. Now, we are interested to
investigate their relationship with the whole internal energy U (0). Given Eq. (3.3) and
l It also implies that simultaneous local Gibbs states are fixed points of the dynamics, since
Û(t, t0)(e−βĤ(1) ⊗ e−βĤ(2))Û†(t, t0) = e−βĤ(1) ⊗ e−βĤ(2) . In fact, any state that is a function
of its bare Hamiltonian would be.
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Eq. (3.13) for the Schmidt decomposition and the Schmidt basis dynamics, we have the
following equation

iℏ
d

dt
|Ψ(t)⟩ =

d(1)∑
j=1

(
iℏ
d

dt
λj(t)

)
|φ(1)

j (t)⟩ ⊗ |φ(2)
j (t)⟩+

(
H̃(1)(t) + H̃(2)(t)

)
|Ψ(t)⟩. (3.54)

Thus, since iℏ d
dt
|Ψ(t)⟩ = Ĥ(0)|Ψ(t)⟩, it is easy to see that

⟨Ψ(t)|Ĥ(0)|Ψ(t)⟩ = ⟨Ψ(t)|
d(1)∑
j=1

(
iℏ
d

dt
λj(t)

)
|φ(1)

j (t)⟩ ⊗ |φ(2)
j (t)⟩

+ ⟨Ψ(t)|H̃(1)(t)|Ψ(t)⟩+ ⟨Ψ(t)|H̃(2)(t)|Ψ(t)⟩. (3.55)

However, notice that due to normalization of |Ψ(t)⟩, the first contribution is necessarily
null,

⟨Ψ(t)|
d(1)∑
j=1

(
iℏ
d

dt
λj(t)

)
|φ(1)

j (t)⟩ ⊗ |φ(2)
j (t)⟩ = iℏ

d(1)∑
j=1

λj(t)
d

dt
λj(t) = 0, (3.56)

since ∑d(1)

j=1 λ
2
j(t) = 1, and ∑d(1)

j=1 λj(t) d
dt
λj(t) = 1

2
d
dt

∑d(1)

j=1 λ
2
j(t). Hence, surprisingly, the

expectation value of the whole Hamiltonian Ĥ(0) is exactly equal to the sum of the ex-
pectation values of the local effective ones, i.e.,

⟨Ĥ(0)⟩ = ⟨H̃(1)(t)⟩+ ⟨H̃(2)(t)⟩ = U (0). (3.57)

If we identify ⟨H̃(1)(t)⟩ and ⟨H̃(2)(t)⟩ as the physical local (effective) internal energies
along the respective paths {P(1)

j }j and {P(2)
j }j, such that

U (k)(t) := ⟨H̃(k)(t)⟩ = iℏ
d(1)∑
j=1

λ2
j(t)⟨φ

(k)
j (t)| d

dt
|φ(k)

j (t)⟩, (3.58)

we automatically account for both the bare and interaction contributions,

U (k) = ⟨Ĥ(k)⟩(t) + ⟨Ĥ(k)
LS (t)⟩+ ⟨Ĥ(k)

X (t)⟩, (3.59)

in such a way that we directly guarantee the additivity of energy (extensive property),

U (0) = U (1)(t) + U (2)(t), (3.60)

and, consequently, that the energy flowing from subsystem (1) is fully captured by sub-
system (2) and vice versa, i.e.,

d

dt
U (1)(t) = − d

dt
U (2)(t). (3.61)

It is important to emphasize that such equalities are exact, and no additional hypotheses
were requiredm.
m While in classical thermodynamics energy additivity is an approximative idealization (jus-

tified by the negligible interaction), in this context, this is an exact statement.
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Furthermore, it was mentioned earlier that, intuitively, both operators Ĥ
(k)
LS (t)

and Ĥ
(k)
X (t) are byproducts of the interaction term. In fact, it is possible to show that

their expectation values are directly related. From Eq. (3.47) and Eq.(3.57), we have the
following equality

⟨Ĥ(1)⟩(t) + ⟨Ĥ(2)⟩(t) + ⟨Ĥint⟩(t) = ⟨H̃(1)(t)⟩+ ⟨H̃(2)(t)⟩, (3.62)

and, therefore, since Eq. (3.59),

⟨Ĥint⟩(t) = ⟨Ĥ(1)
LS(t)⟩+ ⟨Ĥ(1)

X (t)⟩+ ⟨Ĥ(2)
LS(t)⟩+ ⟨Ĥ(2)

X (t)⟩. (3.63)

The previous equation states how the energetic contribution coming from the interaction
term is symmetrically shared between the subsystemsn, and how its change affects the local
internal energies. Interestingly, notice that the SEC condition, Eq. (3.51), is analogous to
supposing that

SEC : d

dt
⟨Ĥ(1)

LS(t) + Ĥ
(1)
X (t)⟩ = − d

dt
⟨Ĥ(2)

LS(t) + Ĥ
(2)
X (t)⟩, (3.64)

i.e., the change of the subsystem (1) local internal energy due to Ĥ(1)
LS(t)+Ĥ(1)

X (t) dynamics
is perfectly balanced by Ĥ(2)

LS(t) + Ĥ
(2)
X (t), in a way that their net change is null.

In summary, the recognition of the local effective Hamiltonians as the representa-
tive operators for describing the physical internal energies allow us to consistently refer to
these local quantities without explicitly mentioning global properties. Most importantly,
this procedure is exact and general and, thus, applicable to any setting and regime. We
consider this as one of our main results.

3.5 Local phase gauge

It was mentioned earlier that even though the Schmidt coefficients {λj(t)}j are
unambiguously defined by the Schmidt decomposition, its basis {|φ(k)

j (t)⟩}j,k are unique
up to degeneracy and a phase component. In this section, we will present and investigate
how the latter ambiguity influences our local effective description. Then we will discuss
and emphasize its consequences at the energetic level and argue how to, possibly, fix such
a freedom.

Generally speaking, phases are intrinsic to the mathematical formalism of quantum
mechanics. In fact, it is a direct consequence of representing physical quantum states in
Hilbert spaces. It is often common to introduce the concept of global and relative phases.
While the former is usually treated as simply artefacts, the latter are viewed as sources of
fundamentally quantum behaviour, e.g., coherence. However, it is worth mentioning that
despite being superfluous for any physical description and measurement, global phases
n Of course, this does not imply that their modulus cannot be extremely different.
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are deeply connected with the underlying geometry of these abstract structures and far
from being unimportanto. More specifically, given a Hilbert space H, physical states are
not uniquely related to kets from H, i.e., both |Ψ⟩ ∈ H and |Ψ′⟩ = eiθ|Ψ⟩ ∈ H, simply
differing by eiθ, represents the same physical system for any θ real. Given the measurement
postulate, note that all possible extractable information from |Ψ⟩ is also equally encoded
by |Ψ′⟩. Such phases invariance illustrates a fundamental gauge transformation inbuilt in
the core of the theory. That said, let us now consider an arbitrary Schmidt decomposition,
presented by Eq. (2.53). It is clear that the simultaneous addition of local phases {θη}η,
such that

|φ(1)
η ⟩ → |φ′(1)

η ⟩ = eiθη |φ(1)
η ⟩, (3.65)

|φ(2)
η ⟩ → |φ′(2)

η ⟩ = e−iθη |φ(2)
η ⟩, (3.66)

maintains the whole quantum state structure unchanged since the phases cancel out and,
therefore,

|Ψ⟩ =
n∑

η=1
λη|φ(1)

η ⟩ ⊗ |φ(2)
η ⟩ =

n∑
η=1

λη|φ′(1)
η ⟩ ⊗ |φ′(2)

η ⟩ = |Ψ′⟩. (3.67)

Interestingly, from a local point of view, any phase gauge transformation is valid in the
sense that it keeps describing the same physical state. Nevertheless, from a global per-
spective, the same phases (in modulus) should be included in the remaining Schmidt basis
to guarantee consistency. Otherwise, we would be adding relative phases and changing
the whole system state |Ψ⟩. Such "flexibility" corresponds to an internal freedom within
the Schmidt decomposition itselfp that, naturally, will be inherited by our description.
Along these lines, considering the set of simultaneous coupled trajectories P(1,2)

j followed
by the Schmidt basis |φ(1,2)

j (t)⟩ in H(1,2), we might define a set of real functions {θj(t)}j

for t ∈ [t0, t1] that transform the curves {P(1,2)
j }j into a new phase gauge {P ′(1,2)

j }j that
still represent the whole state trajectory P(0) of |Ψ(t)⟩ in the total Hilbert space H(0), i.e.,

P(1)
j → P ′(1)

j : |φ′(1)
j (t)⟩ = eiθj(t)|φ(1)

j (t)⟩, t ∈ [t0, t1], (3.68)

P(2)
j → P ′(2)

j : |φ′(2)
j (t)⟩ = e−iθj(t)|φ(2)

j (t)⟩, t ∈ [t0, t1], (3.69)

such that P(0) → P ′(0) = P(0) and ⟨φ′(k)
α (t)|φ′(k)

β (t)⟩ = e(−1)k−1i(θβ(t)−θα(t))δαβ. Of course,
given that the physical kets are invariant under such transformations, it is clear that both
local density operators ρ̂(1,2)(t) (Eqs. (3.5, 3.6)) and their trajectories C(1,2) : ρ̂(1,2)(t), t ∈
[t0, t1] along the state space D(H(k)) are not sensible to phase changes, ρ̂′(1,2)(t) = ρ̂(1,2)(t).
Nevertheless, since the local effective Hamiltonians H̃(1,2)(t), given by Eq. (3.14), are
functionals of the Schmidt basis, it is straightforward to see that they intrinsically depend
o The notion of geometric phase, for instance, arises in such context and, since initial devel-

opments by Berry (193), it became clear its importance for the complete understanding of
quantum mechanics.

p More fundamentally, it comes from the singular value decomposition.
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on the chosen gauge. If we perform the transformations P(1,2)
j → P ′(1,2)

j above and use the
expression iℏ d

dt
|φ(k)

j (t)⟩ = H̃(k)(t)|φ(k)
j (t)⟩ we obtain

iℏ
d

dt
|φ′(1)

j (t)⟩ =
(
H̃(1)(t)− ℏ

dθj(t)
dt

)
|φ′(1)

j (t)⟩, (3.70)

iℏ
d

dt
|φ′(2)

j (t)⟩ =
(
H̃(2)(t) + ℏ

dθj(t)
dt

)
|φ′(2)

j (t)⟩, (3.71)

for the Schmidt basis dynamics. Then, it is clear that the local effective Hamiltonians in
the new gauge, H̃ ′(1,2)(t), might be directly related to those from the old ones, such that

H̃ ′(1)(t) ≡ iℏ
d(1)∑
j=1

d

dt
|φ′(1)

j (t)⟩⟨φ′(1)
j (t)| = H̃(1)(t)− ℏ

d(1)∑
j=1

(
dθj(t)
dt

)
|φ(1)

j (t)⟩⟨φ(1)
j (t)|, (3.72)

H̃ ′(2)(t) ≡ iℏ
d(2)∑
j=1

d

dt
|φ′(2)

j (t)⟩⟨φ′(2)
j (t)| = H̃(2)(t) + ℏ

d(2)∑
j=1

(
dθj(t)
dt

)
|φ(2)

j (t)⟩⟨φ(2)
j (t)|. (3.73)

Observe that a gauge change adds an extra term, ℏ∑d(1,2)

j=1

(
dθj(t)

dt

)
|φ(1,2)

j (t)⟩⟨φ(1,2)
j (t)|, that

only depends on the time derivative of the phases and are diagonal on their respective
Schmidt basis. In general, these additional quantities will change the operator structure
in a way that both their eigenbasis and eigenvalues will be affected. This implies that,
for most cases, the spectral gaps will not maintain fixedq and [H̃ ′(k)(t), H̃(k)(t)] ̸= 0.
Besides, the extra term form means that [∑d(1,2)

j=1

(
dθj(t)

dt

)
|φ(1,2)

j (t)⟩⟨φ(1,2)
j (t)|, ρ̂(1,2)(t)] = 0

for all t, which also guarantees the invariance of the local state dynamics written in Eq.
(3.28). Concerning the expectation values of H̃ ′(1,2)(t), by directly computing ⟨H̃ ′(k)(t)⟩ =
⟨Ψ′(t)|H̃ ′(k)(t)|Ψ′(t)⟩ we see that a phase gauge transformation just perform a shift in the
mean value obtained from the previous gauge, i.e.,

⟨H̃ ′(1)(t)⟩ = ⟨H̃(1)(t)⟩ − ℏ
d(1)∑
j=1

λ2
j(t)

(
dθj(t)
dt

)
, (3.74)

⟨H̃ ′(2)(t)⟩ = ⟨H̃(2)(t)⟩+ ℏ
d(1)∑
j=1

λ2
j(t)

(
dθj(t)
dt

)
. (3.75)

Interestingly, the shift accumulated by subsystem (1), ℏ∑d(1)

j=1 λ
2
j(t)

(
dθj(t)

dt

)
, is compen-

sated by the one acquired by subsystem (2)r. Hence, as expected, such a phase gauge
automatically ensures that the additivity property obtained in Eq. (3.57) is still satisfied
for any transformation:

U (0) = ⟨Ĥ(0)⟩ = ⟨H̃(1)(t)⟩+ ⟨H̃(2)(t)⟩ = ⟨H̃ ′(1)(t)⟩+ ⟨H̃ ′(2)(t)⟩, (3.76)
q If {ϵ(k)

j (t)}j and {ϵ′(k)
j (t)}j are the eigenvalues of H̃(k)(t) and H̃ ′(k)(t), respectively. Then,

the gaps are simply defined by the changes ℏω
(k)
αβ (t) = ϵ

(k)
β (t) − ϵ

(k)
α (t). And, in general, for

two different gauges, we have ℏω
′(k)
αβ (t) = ϵ′(k)

β (t)− ϵ′(k)
α (t) ̸= ϵ

(k)
β (t)− ϵ

(k)
α (t) = ℏω

(k)
αβ (t).

r Since there are only d(1) Schmidt coefficients, we have λη(t) = 0 for d(1) < η ≤ d(2), and the
following equality

∑d(2)
j=1 λ2

j (t)
(

dθj(t)
dt

)
=
∑d(1)

j=1 λ2
j (t)

(
dθj(t)

dt

)
is satisfied.
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and, therefore,
d

dt
⟨H̃ ′(1)(t)⟩ = − d

dt
⟨H̃ ′(2)(t)⟩. (3.77)

Finally, it is clear that for every phase gauge, there is a pair of local effective
Hamiltonians H̃ ′(1,2)(t) attained to it. However, this poses a fundamental obstacle for
interpreting their expectation values as the physical local effective internal energies: after
all, if all gauges correspond to the same physical state, which one is the representative
one for characterizing the internal energies?

Of course, different choices may lead to very distinct conclusions. Yet, not all
possibilities preserve some of the desired properties. For instance, since any set {θj(t)}j

represents a valid gauge (as long as it is a real function), let us strategically choose

ℏ
d

dt
θj(t) = ⟨φ(1)

j (t)|H̃(1)(t)|φ(1)
j (t)⟩, (3.78)

for all j. Thus, Eq. (3.72) becomes

H̃ ′(1)(t) = H̃(1)(t)−
d(1)∑
j=1
⟨φ(1)

j (t)|H̃(1)(t)|φ(1)
j (t)⟩|φ(1)

j (t)⟩⟨φ(1)
j (t)|, (3.79)

which, essentially, subtracts from H̃(1)(t) its diagonal elements in the instantaneous Schmidt
basis representation, ⟨φ(1)

j (t)|H̃(1)(t)|φ(1)
j (t)⟩. Also, notice it implies the mean value from

Eq. (3.74) is null for all t,
⟨H̃ ′(1)(t)⟩ = 0 (3.80)

since ℏ∑d(1)

j=1 λ
2
j(t)

(
dθj(t)

dt

)
= ⟨H̃(1)(t)⟩. Nevertheless, this difference is compensated by

subsystem (2), such that

⟨H̃ ′(2)(t)⟩ = ⟨H̃(2)(t)⟩+ ⟨H̃(1)(t)⟩, (3.81)

and U (0) = ⟨H̃ ′(2)(t)⟩ = ⟨H̃(1)(t)⟩+⟨H̃(2)(t)⟩ remains invariant. As we can see, according to
this phase gauge choice, if we identify U (k)(t) := ⟨H̃ ′(k)(t)⟩, there is no energetic flow since
d
dt
⟨H̃ ′(1,2)(t)⟩ = 0, and all the internal energy of the whole bipartite system is gathered

exclusively by the subsystem (2), which eliminates our symmetrical perspective. More-
over, the opposite conclusion is obtained if considered ℏ d

dt
θj(t) = −⟨φ(2)

j (t)|H̃(2)(t)|φ(2)
j (t)⟩

instead. Interestingly, given Eq. (3.72), the assumption from Eq. (3.78) translates to
⟨φ′(1)

j (t)| d
dt
|φ′(1)

j (t)⟩ = 0 for all j, i.e., we are dealing with the gauge where all kets
{|φ′(1)

j (t)⟩}j are parallel transported. (194)

Alternatively, we may also assume the following gauge

ℏ
dθj(t)
dt

= ⟨φ(1)
j (t)|Ĥ(1)

LS(t)|φ(1)
j (t)⟩+ ⟨φ(1)

j (t)|Ĥ(1)
X (t)|φ(1)

j (t)⟩. (3.82)

In this case, we have ⟨φ′(1)
j (t)|H̃ ′(1)(t)|φ′(1)

j (t)⟩ = ⟨φ(1)
j (t)|Ĥ(1)|φ(1)

j (t)⟩ for all j and, there-
fore,

ℏ
d(1)∑
j=1

λ2
j(t)

(
dθj(t)
dt

)
= ⟨Ĥ(1)

LS(t)⟩+ ⟨Ĥ(1)
X (t)⟩, (3.83)
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which also implies that all energetic contributions for subsystem (1) except coming from
its bare Hamiltonian are eliminated, such that

⟨H̃ ′(1)(t)⟩ = ⟨Ĥ(1)⟩(t), (3.84)

and, consequently, ⟨H̃ ′(2)(t)⟩ = ⟨H̃(2)(t)⟩+⟨Ĥ(1)
LS(t)⟩+⟨Ĥ(1)

X (t)⟩. However, given Eq. (3.63),
we obtain that

⟨H̃ ′(2)(t)⟩ = ⟨Ĥ(2)⟩(t) + ⟨Ĥint⟩(t), (3.85)

i.e., if we identify U (k)(t) := ⟨H̃ ′(k)(t)⟩, it would be concluded that the local internal
energy of subsystem (1) is fully characterized by its bare Hamiltonian, Ĥ(1), and all
the interaction contributions belong entirely to subsystem (2). Again, this perspective
also breaks our desired symmetrical description, and, clearly, by correctly changing the
gauge, the opposite roles can be easily obtained. Moreover, it is interesting to notice that,
essentially, this gauge corresponds to the usual identification of the local internal energies.

3.5.1 Frame change

Before attempting to answer the earlier questioning, let us now recast the previous
discussion in the language of frame changes. In general, frame changes are represented by
unitary operators Θ̂(t) that map - in a convenient way - a given physical state from one
representation to another, i.e., |ψ⟩ → |ψ′⟩ = Θ̂(t)|ψ⟩s. Such unitaries keep observation
outcomes from different frames invariant, i.e., the observables also change in a way that
maintains their spectra unaffected. This behaviour, however, is not observed for the whole
Hamiltonian in particular, since the Schrödinger equation must be covariant under these
frame transformations. This result is analogous to changing the frame of reference and,
consequently, the potential energy in classical mechanics: the internal energy computed
by different external observers will depend on their particular frames, and despite ob-
serving distinct dynamics on their subjective perspective, they will agree with the mean
values. Additionally, this also implies there is no fundamental privileged frame since all
possibilities are equally valid for describing the system of interest. Thus, by defining the
following phase operators

Θ̂(1)(t) =
d(1)∑
j=1

eiθj(t)|φ(1)
j (t)⟩⟨φ(1)

j (t)|, (3.86)

Θ̂(2)(t) =
d(2)∑
j=1

e−iθj(t)|φ(2)
j (t)⟩⟨φ(2)

j (t)|, (3.87)

and
Θ̂(0)(t) = Θ̂(1)(t)⊗ Θ̂(2)(t), (3.88)

s Essentially, the well known Heisenberg and interaction pictures are specific cases of these
kinds of transformations. The usual "rotating frame" is also an example.
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such that Θ̂(k)(t)Θ̂(k)†(t) = 1̂(k) for k ∈ [0, 2], we can write the whole state transformation
as

|Ψ′(t)⟩ =
d(1)∑
j=1

λj(t)|φ′(1)
j (t)⟩ ⊗ |φ′(2)

j (t)⟩ = Θ̂(0)(t)|Ψ(t)⟩, (3.89)

while the Schmidt basis phase gauge transformation that are shown in Eqs. (3.68, 3.69)
become

|φ′(1)
j (t)⟩ = Θ̂(1)(t)|φ(1)

j (t)⟩, (3.90)

|φ′(2)
j (t)⟩ = Θ̂(2)(t)|φ(2)

j (t)⟩. (3.91)

Thus, given the basis time-evolution in the old frame |φ(k)
j (t)⟩ = Ũ (k)(t, t0)|φ(k)

j (t0)⟩, the
time evolution operator in the new frame is simply

|φ′(k)
j (t)⟩ = Θ̂(k)(t)Ũ (k)(t, t0)Θ̂(k)†(t0)|φ′(k)

j (t0)⟩, (3.92)

where Ũ ′(k)(t, t0) = Θ̂(k)(t)Ũ (k)(t, t0)Θ̂(k)†(t0) and the inverse transformation |φ(k)
j (t0)⟩ =

Θ̂(k)†(t0)|φ′(k)
j (t0)⟩ is automatically guaranteed by the unitarity of the frame change op-

erator. Besides, given the Schrödinger equation iℏ d
dt
|Ψ(t)⟩ = Ĥ(0)|Ψ(t)⟩ and the basis

dynamical equations Eq. (3.13), it is straightforward to show that their forms are covari-
ant over these frame transformations, in a way that

iℏ
d

dt
|Ψ′(t)⟩ = Ĥ ′(0)(t)|Ψ′(t)⟩ (3.93)

and
iℏ
d

dt
|φ′(k)

j (t)⟩ = H̃ ′(k)(t)|φ′(k)
j (t)⟩, (3.94)

where

Ĥ ′(0)(t) ≡ Θ̂(0)(t)Ĥ(0)Θ̂(0)†(t) + iℏ
(
d

dt
Θ̂(0)(t)

)
Θ̂(0)†(t), (3.95)

H̃ ′(1,2)(t) ≡ Θ̂(1,2)(t)H̃(1,2)(t)Θ̂(1,2)†(t) + iℏ
(
d

dt
Θ̂(1,2)(t)

)
Θ̂(1,2)†(t) (3.96)

are the global and local effective Hamiltonians represented in the new frame, respectively.
Interestingly, notice that the - once time-independent - global Hamiltonian explicitly de-
pends on time in the transformed frame, in a way that ⟨Ψ′(t)|

(
d
dt

Θ̂(0)(t)
)

Θ̂(0)†(t)|Ψ′(t)⟩ =
0 and, therefore,

⟨Ĥ ′(0)(t)⟩ = ⟨Ĥ(0)⟩ = U (0), (3.97)

i.e., despite Ĥ ′(0)(t) being time-dependent, its mean value is constant and the conservation
of the whole internal energy is still satisfied, as expected. Furthermore, for the mean values
of the local effective Hamiltonians in the new frame we have

⟨H̃ ′(1,2)(t)⟩ = ⟨H̃(1,2)(t)⟩+ iℏ
〈(

d

dt
Θ̂(1,2)(t)

)
Θ̂(1,2)†(t)

〉
. (3.98)
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It is easy to check that the frame change expressions above, Eqs. (3.96, 3.98), are the
same as the ones presented previously in Eqs. (3.72, 3.73, 3.74, 3.75)t.

Thus, the internal phase gauge freedom corresponds to a family of frames that
consistently describe the whole and the local dynamics. In a way that each possible
frame characterizes different Schmidt basis dynamics and, therefore, distinct local effective
Hamiltonians, i.e., they are not frame-invariant. Nevertheless, this set of allowed frame
transformations guarantees that the whole internal energy remains the same. Hence, the
question previously posed becomes: which frame (or frames) is (are) the relevant ones for
characterizing the local internal energies?

3.5.2 Recap and gauge fixing proposal

In retrospect, during Section (3.4.1.1), we argued that the local effective Hamilto-
nians H̃(1,2)(t) are interesting candidates for being the representative operators for char-
acterizing the physical internal energies in an exact and complete general way. More
specifically, it was shown that these operators are hermitian, local - by construction
- and also satisfy the usual notion of energy additivity (or extensivity). Then, in the
current Section, we just identified that for a unique bipartite physical system there is
an intrinsic phase gauge freedom within the Schmidt decomposition structure (see Eq.
(3.67)). Such ambiguity translates into a degeneracy for defining those local operators
and might be interpreted as the result of the existence of a set of possible frames that
consistently describes the subsystems dynamics and the global energetics. In short, for the
same physical system and behaviour, we can identify a large family of frames, each one
with a particular pair of coupled local effective Hamiltonians {H̃ ′(1)(t), H̃ ′(2)(t)} satisfying
d
dt
⟨H̃ ′(1)(t)⟩ = − d

dt
⟨H̃ ′(2)(t)⟩, in a way that it is not clear which one should be considered

for quantifying the internal energies U (1,2)(t).

Interestingly, this kind of ambiguity is not exclusive to our discussion since it also
happens in the classical mechanics context, so let us digress a little bit to the classical
realm. In a very general sense, once established the usual Lagrangian formulation of
mechanics one may restructure the theory to a Hamiltonian picture simply by performing
the following Legendre transformation

H(q,p, t) = q̇.p− L(q, q̇, t), (3.99)

where q̇ = dq
dt

, and q = {qj}N
j and p = {pj = ∂L

∂q̇j
}N

j are the respective N -dimensional set
of generalized coordinates and conjugate momenta, while L(q, q̇, t) and H(q,p, t) are the
t It is straightforward to see that

⟨Ψ′(t)|
(

d

dt
Θ̂(k)(t)

)
Θ̂(k)†(t)|Ψ′(t)⟩ = (−1)k−1i

d(k)∑
j=1

(
dθj(t)

dt

)
λ2

j (t).
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Lagrangian describing the system and its Hamiltonian, respectively. Thus, to obtain the
Hamiltonian of a given problem, it is just required to follow a specific set of mathematical
steps. Although straightforward, at least in theory, this might be a very complex proce-
dure. Interestingly, for particular circumstances, there is a formal and justifiable shortcut
to this recipe: if the generalized coordinates q do not explicitly depend on time and there
are only conservative potentials, the Hamiltonian is necessarily equal to the system’s total
energy U , i.e.,

H = K + V = U, (3.100)

where K and V are the kinetic and potential energies, respectively. Therefore, if one of
these conditions is unfulfilled the Hamiltonian is not automatically equal to the internal
energy. This, nevertheless, represents the most generic situation, with Eq. (3.100) being
the particular case. Also, in contrast to the Lagrangian, it is clear that the Hamilto-
nian description is intrinsically bound to the generalized coordinates, i.e., L(q, q̇, t) may
functionally depend on this choice but its numerical value (magnitude) maintains fixed
for generalized coordinate changes, while, as emphasized by H. Goldstein in (195), "the
Hamiltonian is dependent both in magnitude and in functional form upon the initial choice
of generalized coordinates". Hence, for the same physical system, one may construct dis-
tinct Hamiltonians by employing different sets of generalized coordinates in the definition
presented by Eq. (3.99). In particular, a conserved Hamiltonian described by one set of
coordinates might be time-dependent in another, which illustrates the fact that the con-
ditions required for the Hamiltonian be the total energy are not the same for being a
conserved quantity. For a detailed discussion and examples on these matters, see Chapter
8 of. (195)

So, from the discussion above, it is now clear that the relationship between Hamil-
tonian and total energy is not always straightforward, even in classical mechanics. In
such a context, the existence of different possible generalized coordinates for represent-
ing a given system produces an ambiguity that might generate Hamiltonians of different
forms, time-dependency and magnitude. Of course, despite not being necessarily equal to
the system’s total energy, any choice is suitable for consistently describing the dynamics.
That said, this situation is analogous to what we obtained before: in both cases, there
is a set of valid Hamiltonians and a source of ambiguity, where the frames/phase gauge
plays a similar role played by the classical coordinates. However, in the classical scenario,
the identification of the Hamiltonian that correctly describes the internal energy is easily
checked, i.e., Eq. (3.100) provides an independent prescription for calculating this quantity
and comparing the results. Interestingly, even though there is no comparable straightfor-
ward manner to inspecting the relationship between the local effective Hamiltonians and
energy, we can still identify the set of physically consistent phases and fix the relevant
gauges.
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First, let us emphasize that the addition of local phases is a consequence of the
mathematical freedom within the Schmidt decomposition and does not depend on the
Hamiltonian structure of the whole system, i.e., the phases are arbitrary and are indepen-
dent of the local bare Hamiltonians Ĥ(1,2) and, more importantly, of the interaction term
Ĥint. Then, as shown earlier in Section (3.2), given the following form for the local effec-
tive Hamiltonian H̃(k)(t) = Ĥ(k) + Ĥ

(k)
LS (t) + Ĥ

(k)
X (t), it is clear that the additional terms

Ĥ
(k)
LS (t) and Ĥ

(k)
X (t) are by-products of the existing interaction between the subsystems,

i.e., in the absence of Ĥint both subsystems would behave independently as isolated ob-
jects and their local effective Hamiltonians would be simply identified as their bare ones,
H̃(k)(t) = Ĥ(k). Note that a similar conclusion should be true regardless of the chosen
gauge. To see how to guarantee this, let us rewrite Eqs. (3.72, 3.73) as follows:

H̃ ′(1)(t) = Ĥ(1) + Ĥ
(1)
LS(t) + Ĥ

(1)
X (t)− ℏ

d(1)∑
j=1

(
dθj(t)
dt

)
|φ(1)

j (t)⟩⟨φ(1)
j (t)|, (3.101)

H̃ ′(2)(t) = Ĥ(2) + Ĥ
(2)
LS(t) + Ĥ

(2)
X (t) + ℏ

d(2)∑
j=1

(
dθj(t)
dt

)
|φ(2)

j (t)⟩⟨φ(2)
j (t)|. (3.102)

If we add a dimensionless parameter ε ∈ [0, 1], such that Ĥint → εĤint and make ε→ 0,
for the new gauge we would obtain

H̃ ′(1)(t) = Ĥ(1) − ℏ
d(1)∑
j=1

(
dθj(t)
dt

)
|φ(1)

j (t)⟩bare⟨φ(1)
j (t)|bare, (3.103)

H̃ ′(2)(t) = Ĥ(2) + ℏ
d(2)∑
j=1

(
dθj(t)
dt

)
|φ(2)

j (t)⟩bare⟨φ(2)
j (t)|bare. (3.104)

where |φ(k)
j (t)⟩bare = e− i

ℏ Ĥ(k)(t−t0)|φ(k)
j (t0)⟩ is the free evolution of the initial Schmidt basis

for t ≥ t0
u. Observe that the phases are still relevant, but, despite being mathematically

allowed, not all sets of phases are necessarily physically consistent with the expected
behaviour in the absence of the interaction. Of course, if we constrain d

dt
θj(t) = 0 for all j,

we automatically obtain H̃ ′(k)(t) = Ĥ(k). However, we can be more general: instead, if we
require d

dt
θj(t) = α ∈ R for all j, the limiting expressions above would provide equivalent

conclusions, in the sense that they would still consistently describe the same local energy
measurement differences since

H̃ ′(1)(t) = Ĥ(1) − ℏα1̂(1), (3.105)

H̃ ′(2)(t) = Ĥ(2) + ℏα1̂(2), (3.106)

and the additive constant ℏα1̂(k) just equally shifts the energy spectrum, i.e., as long the
phases are linear functions of time, such that θj(t) = αt+c0 with c0 ∈ R being an arbitrary
constant for all j, the expected compatibility with the limiting behaviour is guaranteed.
u As shown in Section (3.2), the perturbative series of the Schmidt basis elements are given

by |φ(k)
j (t)⟩ = |φ(k)

j (t)⟩bare + ε|φ(k)
j (t)⟩1 +O(k)(ε2).
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Hence, in order to assure physical consistency, we must only consider gauges such
that

{
d
dt
θj(t) = α

}
j

with α ∈ R. In this scenario, Eqs. (3.72, 3.73, 3.74, 3.75) simplify to

H̃ ′(1)(t) = H̃(1)(t)− ℏα1̂(1), (3.107)

H̃ ′(2)(t) = H̃(2)(t) + ℏα1̂(2), (3.108)

and

⟨H̃ ′(1)(t)⟩ = ⟨H̃(1)(t)⟩ − ℏα, (3.109)

⟨H̃ ′(2)(t)⟩ = ⟨H̃(2)(t)⟩+ ℏα, (3.110)

respectively. Interestingly, notice that, within this set of gauges, all the local effective
Hamiltonians possess the same gap structure, while their expectation values simply differ
from one another by an additive constant. Under these circumstances, if we identify
the local physical internal energies as ⟨H̃(k)(t)⟩ = U (k)(t), even though different gauges
would provide distinct absolute energy values, we guarantee identical energy measurement
differences. Along these lines, the remaining freedom α just shifts the energy by ±ℏα and
is analogous to the classical thermodynamic freedom in the definition of internal energy.
(7)

In summary, despite the broad mathematical freedom, we were able to identify
and fix the set of physically consistent phases,

{
d
dt
θj(t) = α ∈ R

}
j
, that recovers the ex-

pected limiting behaviour. In this sense, it is worth mentioning that such a procedure
and reasoning explicitly demanded knowledge about the interaction Ĥint to obtain the
correct physical phase gauge. Thus, in order to construct a local and consistent energy
description for the subsystems, one cannot rely solely on local features (see (196) for a
recent discussion). Finally, as long it is chosen a gauge that belongs to this relevant set,
one can identify physical local internal energies up to an additive constant, such that the
physical local effective Hamiltonians are guaranteed to possess invariant (unambiguous)
spectral gaps.

3.6 Thermodynamics

In Section (2.3), we briefly introduced the general context and main motivations
underlying the formulation of a thermodynamic theory for non-equilibrium quantum sys-
tems. We also stressed that its development is, currently, a work in progress and that
several fundamental issues are still under scrutiny. In fact, the lack of consensus and
understanding on some key aspects emphasize a real challenge to establishing the founda-
tions of the theory and highlights the urgency of fostering discussion at the fundamental
level. Along these lines, the most critical barrier lies in the proper identification of general
quantum versions of the most basic classical thermodynamic quantities, such as inter-
nal energy, work, heat and entropy. On the one hand, the definitions of work and heat
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require both the previous recognition of physical internal energy and the understanding
of the essential features that characterize these quantities; on the other, the concept of
entropy and irreversibility, despite being a central concept in modern physics and several
branches of science, remains elusive for general scenarios. Hence, it is unclear how to
state the well-known laws of thermodynamics for situations whose both non-equilibrium
processes and quantum features play essential roles. While the former is consistently con-
templated in the formalism of stochastic thermodynamics, the latter is still obscure. One
can find in the literature several proposals for accounting for these questions. However,
most current approaches still rely on thermal states and baths, semi-classical asymmetri-
cal descriptions and approximative regimes, which makes them not suitable for describing
the thermodynamics within fully quantum (autonomous) systems.

Let us now briefly present and discuss part of the current efforts concerning the
generalization of the usual equilibrium thermodynamic concepts and results to arbitrary
non-equilibrium quantum systems. Also, when possible, we will consider our pure bipartite
setup and mention how our approach fits into this context.

3.6.1 Remarks on thermal states

In thermodynamics, both classical and quantum, we are most of the time interested
in describing and characterizing systems at equilibrium. These states are dynamical fixed
points attained asymptotically in time and constrained by conserved physical properties.
More frequently, however, it is focused on systems whose internal energy remains fixed.
In those cases, the usual Gibbs canonical ensemble, given by

ρ̂th = e−βĤ

Z
, (3.111)

is the appropriate steady-state, where Ĥ is the Hamiltonian, β = 1
kBT

is the inverse of
temperature T and Z ≡ tr{e−βĤ} is the partition functionv. Interestingly, by the usual
Lagrange multipliers method, one can easily show that Eq. (3.111) is exactly the state
that maximizes the von Neumann entropy SvN

w, once assumed that the expectation value
of the Hamiltonian, ⟨Ĥ⟩ = tr

{
ρ̂Ĥ

}
, is a constant quantity. From a more fundamental

perspective, nevertheless, such states might be derived and justified by the usual statis-
tical physics recipe of assuming that the system of interest is weakly interacting with a -
much larger - heat bath and invoking the equal a priori probability postulate, which ba-
sically assumes that the whole bipartition is statistically described by the microcanonical
ensemble. Essentially, assuming the total Hamiltonian given by Eq. (3.1), if the state of
the whole system is maximally mixed, ρ̂(0) = 1̂(0)

d(0) , and d(2) ≫ d(1) with Ĥint negligible,
v If more conserved quantities should be considered, then different steady-states are reached,

and a generalized Gibbs ensemble (GGE) takes place.
w This quantity will be properly defined below.
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one can show that

ρ̂(1) = tr2{ρ̂(0)} = e−βĤ(1)

Z(1) . (3.112)

Of course, once considered pure states for the whole system, it is not obvious if Eq. (3.112)
should also be true or not. Along these lines, arguments on canonical typicality show that,
in fact, the postulate above might be dismissed, i.e., if the whole system is restricted by
a given arbitrary condition R such that |Ψ⟩ ∈ H(R) ⊆ H(0) = H(1) ⊗H(2), it was shown
that for almost every pure state |Ψ⟩, the local state ρ̂(1) = tr2{|Ψ⟩⟨Ψ|} of a sufficiently
small subsystem (d(1) ≪ d(2)) is approximately equal to ρ̂(1) ≈ tr2

{
1̂(R)

d(R)

}
, where 1̂(R)

d(R) is
the maximally mixed state of the whole system, once considered the states consistent
with the restriction. This result is completely general but can be directly connected to
thermal states. One can show that as long R translates into the total internal energy
being close to a fixed value, the subsystems are weakly-coupled, and the density of states
of subsystem (2) increases approximately exponentially with energy, the local state ρ̂(1)

is approximately equal to the equilibrium state (197,198), i.e.,

ρ̂(1) = tr2{|Ψ⟩⟨Ψ|} ≈
e−βĤ(1)

Z(1) . (3.113)

Despite powerful statements, these results are still restrictive to a very asymmetrical
treatment and regime, and far from being applicable to many relevant scenarios within
QTx. Clearly, thermal states are extremely useful and important, and one might still as-
sume previous thermal states preparations regardless of the system’s nature. However, the
thermodynamic analysis of finite and quantum systems, in general, will have to deal with
non-equilibrium states. Strictly speaking, the classical setting of two interacting subsys-
tems in individual local thermal states are not allowed for pure bipartite systems: given
|Ψ⟩, the Schmidt decomposition, Eq. (3.3), guarantee that the local states - indepen-
dently of the subsystems - must have the same spectrum {λj}j, which means that the
number of non-zero populations are bounded by the smallest dimension in question, i.e.,
if Ĥ(1,2) ≡ ∑d(1,2)

j=1 b
(1,2)
j |b(1,2)

j ⟩⟨b(1,2)
j | are the local bare Hamiltonians, our framework clearly

shows that there is no pure state |Ψ⟩⟨Ψ| such that

ρ̂(1) = tr2{|Ψ⟩⟨Ψ|} =
d(1)∑

j

e−βb
(1)
j

Z1
|b(1)

j ⟩⟨b
(1)
j |, (3.114)

and

ρ̂(2) = tr1{|Ψ⟩⟨Ψ|} =
d(2)∑

j

e−βb
(2)
j

Z2
|b(2)

j ⟩⟨b
(2)
j |, (3.115)

simultaneously.

On the other hand, even if the whole system ρ̂(0) is assumed (or previously pre-
pared) to be mixed and thermal with a temperature T , once interaction within the biparti-
tion becomes appreciable local divergences from Eq. (3.111) are expected to appear. Along
x For instance, when considering systems of similar dimensionality d(2) ≈ d(1).
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these lines, the understanding of the thermodynamic behaviour at the (ultra)strong cou-
pling regime has also recently been investigated. The current approach is based on earlier
work by (199) and consists of the definition of a local effective Hamiltonian for a subsys-
tem interacting with a large reservoir, the so-called Hamiltonian of mean force (HMF),
that guarantee the usual canonical Gibbs state form (see (156,200) and (163) for further
references), i.e., assuming ρ̂(0) = ρ̂

(0)
th one can show that the local state ρ̂(1) can be cast as

ρ̂(1) = tr2{ρ̂(0)
th } ≡

e−βĤ
(1)
eff

Z
(1)
eff

(3.116)

where Z(1)
eff ≡ tr1{e−βĤ

(1)
eff} is the new partition function and

Ĥ
(1)
eff := −kBT ln(tr2{e−βĤ(0)}/tr2{e−βĤ(2)}), (3.117)

is the HMF, that clearly depends on the temperature T and the interaction Ĥint. Since the
functional thermal structure in Eq. (3.116) is preserved, this formalism allows a straight-
forward connection with the usual equilibrium thermodynamic expressions and mathe-
matical machinery, in particular the definition of effective versions of the thermodynamic
potentials, such as the Helmholtz free energy, given by F (1)

eff ≡ −β−1ln(Z(1)
eff ).

In short, despite omnipresence and undeniable importance in equilibrium thermo-
dynamics, the emergence and use of thermal states represent particular cases of more
broad scenarios of quantum dynamic processes. In this sense, there are many open ques-
tions and it is imperative to develop a quantum thermodynamic formalism able to deal
with arbitrary states, systems, non-thermal baths and general coupling regimes.

3.6.2 Remarks on quantum thermodynamic entropy

Along with the concept of energy, entropy has also reached the status of one of
the most fundamental quantities in modern physics. Interestingly, despite being initially
introduced in thermodynamics, its use transcended the scope of its initial conception, and
now it is being used across several disciplines. Despite this universality, its understanding
remains elusive, especially when considering questions regarding the second law and its
extension to describe non-equilibrium quantum systems. Let us now briefly discuss the
current status and approaches of entropy in the context of QT. For more discussions, see.
(132)

3.6.2.1 General context

In Section (2.1), we briefly introduced the second law of thermodynamics, the
notion of thermodynamic entropy and its intrinsic relationship with irreversibility. As we
saw, essentially, it states that the entropy production of an isolated system, Σ = ∆Sth,
along any path, should increase or remain the same, i.e., Σ ≥ 0, where the equality is
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satisfied if and only if reversible processes have taken place. From a pragmatical point of
view, such a powerful statement imposes fundamental and universal constraints on any
possible physical transformation. Further progress on the understanding of entropy, and
thermodynamics in general, came along with contemporary developments in the study
of non-equilibrium systems. In this sense, stochastic thermodynamics both pushed the
boundaries of thermodynamics to once uncharted regimes and provided novel insights into
the foundations of the theory. As mentioned earlier, in this context, entropy - and other
relevant thermodynamic quantities - are fluctuating quantities defined and characterized
at the individual phase space trajectory level. (10, 12, 133) If p(q, t) is the probability
of finding a given physical system in state q at time t, the stochastic entropy is simply
defined by the following expression (133)

s(t) ≡ −kBln(p(q, t)), (3.118)

Interestingly, such a formulation naturally implies that there will be some trajectories
with negative entropy production, which is also implicit in the Fluctuation Theorems,
in particular ⟨e− Σ

kB ⟩ = 1. Nevertheless, the usual second law statement is satisfied once
considered an ensemble analysis and mean values, such that

SGibbs(t) ≡ −kβ

∫
dq p(q, t)ln(p(q, t)) = ⟨s(t)⟩, (3.119)

where SGibbs(t) is the well known Gibbs entropy (or Shannon entropy if kB is not con-
sidered): this expression is well defined for any probability distribution p(q, t) and it
is commonly regarded as a proper choice for nonequilibrium extension of the thermo-
dynamic entropy, Sth; in fact, if the system is at thermal equilibrium with inverse of
temperature β, the probabilities are given by the equilibrium Boltzmann distribution
peq(q) = Z−1(T )e−βE(q), where E(q) is the energy for the qth state, and the Gibbs expres-
sion above becomes equal to the usual thermodynamic entropy relation

SGibbs = 1
T

(⟨E⟩ − F (T )) = Sth, (3.120)

where ⟨E⟩ is the system’s internal energy, F (T ) ≡ −β−1 ln(Z(T )) is the Helmholtz free
energy and Z(T ) ≡

∫
dq e−βE(q) is the partition function; in addition, considering a proper

identification of heat Q, one can show that

dSGibbs = Σ + dΦ, (3.121)

for arbitrary changes, where Σ ≥ 0 is the positive entropy production and dΦ = dQ
T

is
the entropy flux due to heat exchange with a heat bath with temperature T . In short,
once identified the Eq. (3.119) as the general quantifier of entropy, one recovers the usual
thermodynamic expressions and the second law behaviour for both equilibrium and non-
equilibrium scenarios.
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3.6.2.1.1 Fully informational perspective

From now on, let us explicitly assume that kB = 1y. The quantum counterpart of
the Gibbs/Shannon entropy is given by the von Neumann entropy

SvN [ρ̂] ≡ −tr {ρ̂ln (ρ̂)} , (3.122)

where ρ̂ is the system’s density matrix. Before discussing further, first, let us recall some
of the basic properties of the Eq. (3.122) (39):

1. Positivity: SvN [ρ̂] ≥ 0 for all ρ̂. The equality is obtained if and only if the state is
pure, i.e., ρ̂ = |ψ⟩⟨ψ|;

2. Unitary invariance: SvN [ρ̂] = SvN [Û ρ̂Û †] for any unitary Û ;

3. Subadditivity: For bipartite systems described by ρ̂(0) and reduced states ρ̂(1,2) =
tr2,1{ρ̂(0)} we have the following inequality, SvN [ρ̂(0)] ≤ SvN [ρ̂(1)]+SvN [ρ̂(2)]. Equality
is guaranteed only for uncorrelated systems, such that ρ̂(0) = ρ̂(1) ⊗ ρ̂(2).

In analogy with the classical definition of mutual information, from property 3. one might
define its quantum counterpart as the following difference

I12 ≡ S[ρ̂(0)||ρ̂(1) ⊗ ρ̂(2)] = SvN [ρ̂(1)] + SvN [ρ̂(2)]− SvN [ρ̂(0)] ≥ 0, (3.123)

where S[ρ̂||σ̂] = tr{ρ̂[ln(ρ̂) − ln(σ̂)]} is the quantum relative entropy. The expression
above is clearly positive (due to the subadditivity) and quantifies the total correlations -
classical and quantum - within the whole quantum system ρ̂(0).

In the context of QT, Eq. (3.122) is the most commonly chosen candidate for
quantifying quantum entropy. Its popularity is partially inherited by the success of Eq
(3.119) in the classical domain, but also because it behaves properly for some key scenarios:
again, if we consider thermal states, such the ones given by Eq. (3.111), it is easy to see
that the Eq (3.122) automatically satisfy the thermodynamic entropy relation below

SvN [ρ̂th] = −tr {ρ̂thln (ρ̂th)} = 1
T

(U − F ) = Sth, (3.124)

where U ≡ tr
{
ρ̂thĤ

}
= ⟨Ĥ⟩ is identified as the internal energy and F ≡ −β−1 ln(Z)

is the Helmholtz free energy; also, if we consider a quantum system initially described
by ρ̂(t0) and weakly coupled to a thermal bath with temperature T , such that ρ̂th is the
system’s asymptotic state, one can easily check the expression S[ρ̂(t)||ρ̂th] = −SvN [ρ̂(t)]+
1
T

(
⟨Ĥ⟩(t)− F

)
, where ⟨Ĥ⟩(t) = tr

{
ρ̂(t)Ĥ

}
. Then, if ρ̂(t) is the state at instant t, by

y At the end of the day, it does not influence our discussion.
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identifying entropy production and heat as Σ = −(S[ρ̂(t)||ρ̂th] − S[ρ̂(t0)||ρ̂th]) and Q =
tr
{
(ρ̂(t)− ρ̂(t0))Ĥ

}
, respectively, we obtain

∆SvN = Σ + 1
T
Q. (3.125)

The positivity of Σ is assured by the fact that S[Λ[ρ̂]||Λ[σ̂]] ≤ S[ρ̂||σ̂] for CPTP maps
Λ[(.)]: if ρ̂(t) = Λt,t0 [ρ̂(t0)] and since ρ̂th is a fixed point for this dynamics, i.e., Λt,t0 [ρ̂th] =
ρ̂th, we guarantee that S[Λt,t0 [ρ̂(t0)]||Λt,t0 [ρ̂th]] = S[ρ̂(t)||ρ̂th] ≤ S[ρ̂(t0)||ρ̂th] and, therefore,

Σ = −(S[ρ̂(t)||ρ̂th]− S[ρ̂(t0)||ρ̂th]) ≥ 0. (3.126)

Similar statements for entropy production can be made even if assuming slightly broader
cases, such as considering explicitly Hamiltonian time-dependency. (56,128)

Nevertheless, the use of the von Neumann entropy often comes along with a fully
information-theoretic perspective of entropy production, in which the thermodynamic
relevant scenarios mentioned above are seen as particular cases. Along these lines, irre-
versibility and, therefore, Σ, only appears once information is omitted (or becomes inac-
cessible) from a local point-of-view. Such reasoning was put forward by reference (127),
but see (132) for further discussions. More specifically, if at t = t0 a system of interest (1) is
put into contact with another arbitrary system (2), such that ρ̂(0)(t0) = ρ̂(1)(t0)⊗ ρ̂(2)(t0),
the local von Neumann entropy change ∆SvN [ρ̂(1)] = SvN [ρ̂(1)(t)] − SvN [ρ̂(1)(t0)] can be
separated into

∆SvN [ρ̂(1)] = S[ρ̂(0)(t)||ρ̂(1)(t)⊗ ρ̂(2)(t0)] + tr2{(ρ̂(2)(t)− ρ̂(2)(t0))ln(ρ̂(2)(t0))}, (3.127)

where ρ̂(1,2)(t) = tr2,1{ρ̂(0)(t)} and ρ̂(0)(t) evolves unitarily. While the second term from
the right-hand side is identified as entropy flux Φ(t), entropy production is defined as

Σ(t) = S[ρ̂(0)(t)||ρ̂(1)(t)⊗ ρ̂(2)(t0)], (3.128)

such that the usual thermodynamic form ∆SvN [ρ̂(1)] = Σ(t) + Φ(t) is recovered. By con-
struction, this quantity is non-negative Σ(t) ≥ 0 for all t, with equality being satisfied if
and only if the whole time-evolved state remains uncorrelated and subsystem (2) keeps
unchanged throughout the dynamics, i.e., ρ̂(0)(t) = ρ̂(1)(t)⊗ρ̂(2)(t0). Thus, essentially, Σ(t)
measures how far the actual whole system’s state ρ̂(0)(t) is from ρ̂(1)(t)⊗ρ̂(2)(t0). Neverthe-
less, an information-theoretic interpretation of entropy production becomes more explicit
if Eq. (3.128) above is cast as follows

Σ(t) = I12(t) + S[ρ̂(2)(t)||ρ̂(2)(t0)]. (3.129)

Along these lines, Σ(t) emerges from the lost information encoded both by the corre-
lations within the whole system and the time evolution of the inaccessible subsystem
(2), represented by I12(t) and S[ρ̂(2)(t)||ρ̂(2)(t0)], respectively. Notice that, ultimately, this
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perspective is very different from the classical second law notion: instead of focusing on
quantifying the entropy change of the whole system, one concentrate on the analysis of
the entropic dynamics - measured by the von Neumann entropy - of a local state. Having
that in mind, despite inheriting some of the desired properties for a possible candidate of
quantum thermodynamic entropy (at least for some paradigmatic scenarios), the use of
the von Neumann entropy has some fundamental and challenging issues.

3.6.2.2 Issues of the von Neumann entropy

As mentioned earlier, in the classic context, the thermodynamic entropy of the
whole system (commonly referred to as the universe), or the total entropy production,
increases or remains the same for arbitrary dynamical processes. Thus, it is expected that
any consistent quantum thermodynamic entropy definition, SQth, both generalizes the
classical notions and capture this very general statement, i.e., ∆SQth ≥ 0. Interestingly,
despite the prevailing use of the von Neumann entropy, it does not work as desired for
arbitrary scenarios.

The unitary invariance of SvN [ρ̂] (property 2.) implies that for any isolated system,
whose dynamics is fully characterized by the Schrödinger equation, the von Neumann
entropy remains fixed, i.e.,

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) ⇒ ∆SvN [ρ̂] = SvN [ρ̂(t)]− SvN [ρ̂(t0)] = 0, (3.130)

for all t. This strict equality is consistent with the second law, but there is no room for
global entropy increases. Thus, in order to observe any entropic variation, it is required
non-unitarity induced by some interaction with another system (at least in the first order
of the interaction term, Eq. (3.50)). In fact, as we saw earlier, the local von Neumann
entropies of subsystems within a bigger composite one might change in time. Along these
lines, the general subadditivity of SvN [ρ̂] (property 3.) also represents a fundamental
difference compared with the additivity observed in the thermodynamic entropy, i.e., the
sum of the local entropies is equal to the whole’s. For bipartite systems, for instance, along
with Eq. (3.123), we see that the sum of local variations in their von Neumann entropies
is equal to the change in the mutual information, such that

∆SvN [ρ̂(1)] + ∆SvN [ρ̂(2)] = ∆I12, (3.131)

where ∆I12 = I12(t) − I12(t0) - a priori - could assume positive or negative values. Since
I12(t) is necessarily positive for any t, in the special case of assuming initial uncorrelated
systems (ρ̂(0)(t0) = ρ̂(1)(t0) ⊗ ρ̂(2)(t0) and I12(t0) = 0), the expression above becomes
∆SvN [ρ̂(1)] + ∆SvN [ρ̂(2)] = I12(t) ≥ 0,which is similar to the thermodynamic statement
but not general enough.

Let us now consider the setup described in Section (3.1): a generic pure bipartite
system. In this context, the von Neumann entropy is commonly referred to as entanglement
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entropy since it directly measures the degree of entanglement between the partitions. First,
from property 1., we know that the von Neumann entropy of pure states is null, thus for
the whole system SvN [ρ̂(0)(t)] = 0 throughout any - unitary - dynamics; then, given the
symmetric description elucidated by the Schmidt decomposition (Eq. (3.3)), we have the
local mixed states ρ̂(1,2)(t) showed on Eqs. (3.5, 3.6), whose populations are given by the
Schmidt coefficients squared {λ2

j(t)}j and, therefore,

SvN [ρ̂(1)(t)] = −
d(1)∑
i=1

λ2
i (t)ln

(
λ2

i (t)
)

= SvN [ρ̂(2)(t)] (3.132)

for all tz. It is clear that if the Schmidt rank is equal to one, the whole system is separable
(|Ψ(t)⟩ = |φ(1)(t)⟩ ⊗ |φ(2)(t)⟩) and SvN [ρ̂(1,2)(t)] = 0. In fact, given Eq. (3.123), for ar-
bitrary bipartite systems, the local entropies are proportional to the mutual information
quantifying the total correlation

SvN [ρ̂(1)(t)] = SvN [ρ̂(2)(t)] = 1
2I12(t) ≥ 0, (3.133)

and
∆SvN [ρ̂(1)] = ∆SvN [ρ̂(2)] = 1

2∆I12, (3.134)

which also clearly contrasts with the second law statement applied to a classical bipartition

∆S(1)
th ≥ −∆S(2)

th . (3.135)

In addition, the thermodynamic entropy is also directly linked with the energetics
within a given process and, more specifically, the heat exchanged. Except for the cases
already mentioned, namely when the systems are functionals of the Hamiltonians, and
even more particular, for Gibbs states, it is not clear how to generalize a relationship
between von Neumann entropy variation with energy flux. In fact, as we are going to
discuss below, it also points-out a difficulty in identifying a candidate for quantum heat,
since in classical thermodynamics heat is often defined as the energy exchange that also
is accompanied by some entropic flux.

In short, despite the extensive use of the von Neumann entropy in QT and relative
success for particular scenarios, it does not satisfy the expected properties for a proper
microscopic generalization of the thermodynamic entropy, and it is not clear how to
proceed. This, however, is already stressed by some authors. Along these lines, alternative
proposals for a quantum thermodynamic entropy is represented by the observational (131,
201) and diagonal (129) ones, while the former relies on a coarse-graining process, the
latter uses the von Neumann entropy form calculated considering only the instantaneous
diagonal elements of the density matrix in the energy basis. In the end, such a lack
z Of course, as mentioned earlier, any local functionals purely dependent on the Schmidt

coefficients will be equal for both subsystems.
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of agreement and understanding on this very basic quantity highlights the necessity of
further investigations at the fundamental level. Otherwise, the thermodynamic role played
by genuine quantum features, such as coherence and entanglement, will remain elusive,
and developments of future quantum technologies will be affected.

3.6.3 Remarks on quantum work and heat

Once noticed that even the most basic concept of internal energy is still under
scrutiny in the QT community, it should not be surprising the fact that the quantum ver-
sions of energy-based thermodynamic quantities, such as work and heat, are also elusive.
Let us now briefly review work and heat in the general context of QT and, subsequently,
consider them according to our effective internal energy description.

3.6.3.1 General context

For pedagogical purposes, let us divide the current approaches for defining quan-
tum work and heat into two major distinct categories:

3.6.3.1.1 Operational approach

Among all thermodynamic quantities, quantum work is - by far - the most dis-
cussed one. On the one hand, given recent technological progress in the fabrication and
manipulation of quantum systems, it is no surprise to find the concept of work in the
spotlight of QT. Its complete understanding and control are one of the pinnacles of the
field and is expected to fuel all sorts of technological applications, just like its classical
counterpart did in the past. On the other hand, work has also been a central issue in
former - although still contemporary - fundamental discussions concerning the general-
ization of thermodynamics to classical microscopic settings and the genesis of stochastic
thermodynamics. (10,12)

Unsurprisingly, this context served as an important stage for a considerable amount
of efforts into the search for quantum work, especially for closed quantum systems. The
usual setting consists of a quantum object, depicted by a state ρ̂(t), submitted to an
externally controlled protocol, represented by a time-dependent Hamiltonian, such that
Ĥ(t0) → Ĥ(t1) with t1 ≥ t0. The closed time-evolution guarantees no other interactions
and unitary dynamics, which commonly justify the interpretation of any energetic change
as work W (t) from/to the external agent, ⟨Ĥ(t1)⟩ − ⟨Ĥ(t0)⟩ = W (t1). In particular, the
quest for quantum versions of FTs was a major driving force that helped to shed some
light on very important aspects. For instance, it was argued that work W is not a fun-
damentally time-local entity, instead, it is characterized by processes and trajectories.
Such reasoning is an extension of the classical thermodynamic conclusion that work is a
path-dependent quantity and not a state function. This is often stated in the literature by
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the phrase "work is not an observable" (135), which means that work should not be sim-
ply understood and represented by a Hermitian operator Ω̂ such that W := tr{Ω̂ρ̂} and
whose eigenvalues encode all the possible work measurements. Nevertheless, it is worth
mentioning that it is not entirely clear if whether or not the concept of "work operator" is
well-founded, which corresponds to an active debate in the field. (202–204) Furthermore,
this route also encouraged discussions about possible meaningful definitions of quantum
work fluctuations and the role of the measurement back-action: while the former de-
mands a consistent stochastic description, i.e., a set {wk}k of possible work outcomes and
its distribution P (w); the latter, highlight the invasive nature of measurements and its
potential thermodynamic cost. Of course, both questions have their subtleties concerning
foundational aspects of quantum mechanics. On the one hand, the definition of quantum
analogous of classical stochastic trajectories is challenging and far from being trivialaa;
on the other hand, discussions and criticisms concerning the underlying nature of the
measurement postulate of quantum mechanics are as old as the first developments of the
theory.

Along these lines, the orthodox approach of quantum stochastic trajectories in
QT is based on the sequential projective measurements of the externally driven quan-
tum system. Thus, stochasticity naturally emerges due to the probabilistic nature of the
measurement process, and the set of outcomes establishes the dynamical path that the
measured system follows during the intercalation of unitary time-evolution and measure-
ments. While the drive plays the role of the classical external parameters changes, the
measurement is analogous to random displacements due to noise. From this operational
perspective, it became clear the possibility of defining the fluctuating work of performing
a given protocol Ĥ(t0)→ Ĥ(t1), as the difference of two projective energy measurements
outcomes: if Ek(t) is the kth eigenenergy at time t, hence fluctuating work is simply
wji(t1) = Ej(t1)−Ei(t0). Therefore, the average work ⟨W (t1)⟩ is directly obtained from an
ensemble of protocol realizations. Interestingly, it was shown that the statistics PT P M(w)
associated with such procedure, commonly known as the Two Projective Measurement
protocol (TPM), both satisfy the classical FTs form (104, 206) and corresponds to the
classical work distribution under the semi-classical limit, PT P M(w)→ Pclass(w). (207,208)
Despite being the most popular approach and experimentally verifiable (73,78,79,83,88),
the TPM scheme has some very important issues once considered initial coherent states
(in the energy basis) and the unavoidable destructive effect of obtaining these informa-
tions. In such cases, the statistics of measurements (unsurprisingly) fail to capture the
expected internal energy change of the unperturbed close quantum time-evolution, i.e.,
the first measurement eliminates all initial coherence and, therefore, influences the future
state dynamics such that ∑i,j PT P M(wij)wij(t1) ̸= ⟨Ĥ(t1)⟩ − ⟨Ĥ(t0)⟩ab. Additionally, the

aa For instance, see (205) for a Bohmian perspective approach.
ab Of course, for non-coherent initial states, there is no such problem.
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identification of energy measurements differences as representative values of work is dis-
putable once considered open quantum systems. Such questions were partially addressed
by a no-go theorem presented in (209), which states that there is no fluctuating work
definition w and P (w) that simultaneously satisfy the TPM statistics for non-coherent
initial states (P (w) = PT P M(w)), and ∑w P (w)w(t1) = ⟨Ĥ(t1)⟩ − ⟨Ĥ(t0)⟩ for any initial
stateac. The former condition explicitly assumes that the success of the TPM protocol in
the FTs context is enough evidence for considering it as the correct distribution, while the
latter is motivated by the assumption that the system is closed and, therefore, any energy
exchange is due to work. Along these lines, other operational approaches are proposed in
the literature, considering weak measurements, POVMS, etc. (210)

Also, in this context, the concept of quantum heat was introduced to account
for the energetic price of performing a measurement. (105) In general, if a given state
|ψ⟩ is measured, it is induced an irreversible transformation |ψ⟩ → |ψ′⟩, such that
⟨ψ|Ĥ|ψ⟩ ≠ ⟨ψ′|Ĥ|ψ′⟩. This sudden change have no classical analogous and intrinsically
depends on the eventual coherence in the chosen basis: of course, if the system is already
in a given eigenstate of the measured observable, nothing will change. In this sense, the
measurement apparatus is treated as the source of stochasticity for the time-evolution
and plays a similar role played by thermal baths for the classical stochastic trajectories.
From a thermodynamic point of view, heat is usually associated with irreversibility and
entropic changes, which commonly justifies the identification of this energetic difference
as a fully quantum analogous of heat, q(t) := ⟨ψ′|Ĥ(t)|ψ′⟩ − ⟨ψ|Ĥ(t)|ψ⟩.

Finally, notice that operational perspectives of quantum thermodynamic quan-
tities fundamentally depends on the assumption of external classical agents capable of
performing certain protocols and measuring states. While the former is responsible for
inducing a deterministic Hamiltonian time dependency, the latter introduces irreversible
random outcomes. Consequently, and more importantly, such an approach prevents any
further discussions concerning work and heat within fully isolated interacting quantum
subsystems and, therefore, is not suitable for describing autonomous quantum machines
(at least in any straightforward manner).

3.6.3.1.2 Dynamical approach

Instead of focusing on stochastic trajectories and fluctuating variables in an op-
erational sense, one might be interested in a quantum dynamical description of these
thermodynamic entities. Along these lines, work and heat are treated from an ensemble
perspective and directly defined by changes in the internal energy, commonly identified
by the expectation value of a given Hamiltonian ⟨Ĥ(t)⟩ := tr{Ĥ(t)ρ̂(t)}. Thus, given the
ac In (210) there is a refinement and one more condition is considered, namely, the linearity

of the distributions associated with different measurement protocols.
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dynamical equation for both ρ̂(t) and Ĥ(t), in principle, one might be able to compute
the thermodynamic quantities related to the followed dynamics. In this sense, the open
quantum systems formalism provides a suitable mathematical framework for dealing both
with the dynamics and energetics of general scenarios of interacting quantum systems.

Nevertheless, as mentioned earlier, it is not clear how to unambiguously identify
quantum counterparts of work and heat. In fact, in the literature, there are several pro-
posals and strategies for approaching these definitions from a dynamical point of view.
However, most ideas are quantum versions of the following reasoning: consider a clas-
sical system with discrete states, indexed by j, the internal energy is simply given by
the ensemble average Ucla ≡

∑
j EjPj, where Ej is the energy of the jth state and Pj is

its occupation probability, with ∑
j Pj = 1 (14, 211); it is also assumed that the energy

states depends on the state of an external time-dependent control parameter η(t), such
that Ej = Ej(η); thus, the internal energy change rate can be separated into two distinct
categories

d

dt
Ucla =

∑
j

dEj

dt
Pj +

∑
j

Ej
dPj

dt
, (3.136)

i.e., a change due to the state’s energy alteration and a change coming from the occupation
probability adjustment. The first contribution is interpreted as work rate ( d

dt
Wcla(t)) since

it is the controlled energy transfering from/to the external agent, while the remaining
change is identified as heat flow ( d

dt
Qcla(t)) due to its relationship with transitioning

states. Hence,

Wcla(t) :=
∑

j

∫ t

t0
ds

(
dEj

ds

)
Pj =

∑
j

∫ t

t0
ds

(
dEj

dη

)(
dη

ds

)
Pj, (3.137)

Qcla(t) :=
∑

j

∫ t

t0
dsEj

(
dPj

ds

)
, (3.138)

and the first law of thermodynamics form is obtained d
dt
Ucla(t) = d

dt
Wcla(t) + d

dt
Qcla(t).

As just mentioned, such an approach provides an interesting route for defining the de-
sired quantities. Nevertheless, purely quantum features do not allow a direct and unique
analogy.

Along these lines, in (56) Alicki proposed a similar classification of quantum work
and heat for open quantum systems weakly coupled to - possibly - N thermal reservoirs. It
was also assumed a slowly driven Hamiltonian Ĥ(t) = Ĥ0 + ĥ(t), containing both the bare
one and a time-dependent contribution representing the externally controlled parameters,
given by Ĥ0 and ĥ(t) respectively. Under these conditions, the state ρ̂(t) dynamics is
described by a Markovian master equation in the usual Lindblad form, such that

iℏ
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
+

N∑
k

D̂
(k)
t ρ̂(t), (3.139)
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and D̂
(k)
t ρ̂βk

= 0 for all k, where D̂
(k)
t is the non-unitary superoperator (also refered as

dissipator) relative to the interaction with kth reservoir with inverse of temperature βk and
ρ̂βk

= Z−1e−βkĤ0 is the usual Gibbs (thermal) statead. The internal energy is recognized
by the expectation value of Ĥ(t), i.e.,

U(t) := tr{Ĥ(t)ρ̂(t)}, (3.140)

whose change rate is simply

d

dt
U(t) = tr

{
d

dt
Ĥ(t)ρ̂(t)

}
+ tr

{
Ĥ(t) d

dt
ρ̂(t)

}
. (3.141)

In complete analogy with the classical case depicted by Eqs. (3.136-3.138), work is asso-
ciated with the controlled energetic change, depicted by the Hamiltonian switch d

dt
Ĥ(t),

while heat is linked with the probabilities change encoded by the density operator dy-
namics d

dt
ρ̂(t), i.e.,

W1(t) :=
∫ t

t0
ds tr

{
d

ds
Ĥ(s)ρ̂(s)

}
, (3.142)

Q1(t) :=
∫ t

t0
ds tr

{
Ĥ(s) d

ds
ρ̂(s)

}
. (3.143)

It is clear that such identifications automatically fulfil a quantum dynamical version
of the first law, stated by U(t) − U(t0) = W1(t) + Q1(t)ae. Besides, notice that heat
Q1(t) does not depend on the unitary component of Eq. (3.139)af, in such a way that
Q1(t) = ∑N

k

∫ t
t0
ds tr{Ĥ(s)D̂(k)

t ρ̂(s)} = ∑N
k Q

(k)
1 (t), where Q

(k)
1 (t) ≡ tr{Ĥ(s)D̂(k)

t ρ̂(s)}
is understood as the energy supplied by the kth reservoir. Thus, as expected, heat is
the energy transferred due to the coupling with other systems, which also implies that
Q

(k)
1 (t) = 0 for all k iff the dynamics is unitary/closed. Work, on the other hand, ex-

plicitly relies on a semi-classical description for accounting for the external dynamical
control and Hamiltonian time-dependency, which is assimilated by ĥ(t). Thus, work is
simply W1(t) ≡

∫ t
t0
ds tr{ d

ds
ĥ(s)ρ̂(s)} and, therefore, vanishes iff the quantum system is

isolated. As we can see, those definitions are consistent with the intuition behind their
classical counterparts, however, it is not clear if they are still compatible with general
dynamics, and - more importantly - it also prevents further discussions concerning the
thermodynamics of autonomous quantum machines. Despite these issues, Alicki’s defini-
tion proposal is widely accepted and used in the literature since their entropic predictions
are consistent with the second law when considering weak-coupling and Markov approxi-
mations. Also, it is worth mentioning that alternative approaches of quantum work and
ad The equality D̂

(k)
t ρ̂βk

= 0 implies that ρ̂βk
is a fixed-point relative to the kth reservoir. Es-

sentially, it means that each reservoir alone would thermalize the system to its temperature.
ae The subscripts will be necessary to differentiate distinct work and heat definitions.
af Given the trace ciclic property, it is easy to see that tr

{
Ĥ(t)

[
Ĥ(t), ρ̂(t)

]}
= 0.
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heat also adopt the Eqs. (3.142, 3.143) forms, but instead of Ĥ(t) it is assumed different
sorts of effective Hamiltonians. (164,188–191,212,213)

Interestingly, note that the energy change rate splitting into two distinct terms
is not unique, i.e., one might perform the trace in Eq. (3.140) on any conceivable ba-
sis, and separate its time derivative into two arbitrary components. For instance, if
Ĥ(t) = ∑

j ϵj(t)|ϵj(t)⟩⟨ϵj(t)| is the instantaneous Hamiltonian spectral decomposition,
we can rewrite Eq. (3.140) in the following way

U(t) ≡
∑

j

ϵj(t)pj(t), (3.144)

where pj(t) := ⟨ϵj(t)|ρ̂(t)|ϵj(t)⟩ is the jth diagonal element of ρ̂(t) in the instantaneous
Hamiltonian eigenbasis representation and quantify the probability of the system being
in the state |ϵj(t)⟩. Then, in analogy with Eqs. (3.136-3.138), work and heat might be
defined after the internal energy change rate

d

dt
U(t) =

∑
j

dϵj(t)
dt

pj(t) +
∑

j

ϵj(t)
dpj(t)
dt

, (3.145)

such that,

W2(t) :=
∑

j

∫ t

t0
ds
dϵj(s)
ds

pj(s), (3.146)

Q2(t) :=
∑

j

∫ t

t0
ds ϵj(s)

dpj(s)
ds

, (3.147)

in a way that the first law equation form U(t) − U(t0) = W2(t) + Q2(t) is still satisfied.
In general, the expressions above are different from the ones presented in Eqs. (3.142,
3.143). In particular, instead of being associated with the whole Hamiltonian change,
work is only related to modifications in the energy spectrum dϵj(t)

dt
while heat depends on

the dynamics of both the whole state ρ̂(t) and the energy eigenstates {|ϵj(t)⟩}j, encoded
by the populations {pj(t)}j. These quantities are directly related to Alicki’s proposal in
the following way

W2(t) = W1(t)−
∑

j

∫ t

t0
ds ϵj(s)

(
d

ds
(⟨ϵj(s)|) ρ̂(s)|ϵj(s)⟩+ ⟨ϵj(s)|ρ̂(s)

d

ds
(|ϵj(s)⟩)

)
,

(3.148)

Q2(t) = Q1(t) +
∑

j

∫ t

t0
ds ϵj(s)

(
d

ds
(⟨ϵj(s)|) ρ̂(s)|ϵj(s)⟩+ ⟨ϵj(s)|ρ̂(s)

d

ds
(|ϵj(s)⟩)

)
,

(3.149)

where it is clear that the only difference between both definitions is where the Hamiltonian
basis change contribution is considered, and U(t)−U(t0) ≡ W1(t)+Q1(t) ≡ W2(t)+Q2(t).
Conceptually, however, such approaches are very distinct and might predict conflicting
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scenarios. For instance, while for unitary processes Q1(t) = 0 for all t, which implies that
there is no heat involved, Q2(t) does not necessarily vanish for closed systems dynamics. In
this sense, contrasting with the previous definition, the energy transferred by the external
agent is divided into heat and work. Still, both approaches fundamentally rely on the
classical picture that work is the energy externally provided in a controlled fashion.

Alternatively, instead of focusing on the energy basis with a prior role for work,
more recently in (214,215), it was suggested to use the instantaneous basis of the density
matrix {|ϕj(t)⟩}j and concentrate on the identification of heat. Along these lines, if ρ̂(t) =∑

j ϱj(t)|ϕj(t)⟩⟨ϕj(t)| is the time-local spectral decomposition of ρ̂(t), Eq. (3.140) can also
be written as

U(t) ≡
∑

j

εj(t)ϱj(t), (3.150)

where {ϱj(t)} are the instantaneous populations of ρ̂(t) and εj(t) := ⟨ϕj(t)|Ĥ(t)|ϕj(t)⟩ is
interpreted as the energy relative to the jth pure state |ϕj(t)⟩. Then, the energy change
rate can be divided into

d

dt
U(t) =

∑
j

dεj(t)
dt

ϱj(t) +
∑

j

εj(t)
dϱj(t)
dt

(3.151)

and, again in analogy with Eqs. (3.136-3.138), work and heat might be defined as

W3(t) :=
∑

j

∫ t

t0
ds
dεj(s)
ds

ϱj(s), (3.152)

Q3(t) :=
∑

j

∫ t

t0
ds εj(s)

dϱj(s)
ds

, (3.153)

such that U(t) − U(t0) = W3(t) + Q3(t). Hence, heat is associated with changes in the
distribution of pure states

{
d
dt
ϱj(t)

}
j

while the remaining part, depending on the dynam-
ics of both Hamiltonian Ĥ(t) and instantaneous basis {|ϕj(t)⟩}j, is identified as work.
Such division is motivated by the common recognition of the von Neumann entropy
SvN(t) := −∑j ϱj(t)ln(ϱj(t)) as the natural extension of thermodynamic entropy and
the classical relationship between heat flux and entropy variation. Classically, heat is the
portion of energy exchange accompanied by the flow of entropy into/from the system,
while work is the energetic contribution that does not generate any entropic changes.
Along these lines, since d

dt
SvN(t) := −∑j

dϱj(t)
dt

ln(ϱj(t)), heat is associated with the non-
unitary part of the system dynamics and, more specifically, identified by the energetic
change that also functionally depends on dϱj(t)

dt
. Thus, if the time-evolution is unitary we

would automatically have both d
dt
SvN(t) = 0 and Q3(t) = 0 and, therefore, all energetic

exchange would be due to work, U(t) − U(t0) = W3(t). Also, it would guarantee the
agreement between W3(t) and W1(t). Interestingly, this approach does not fundamentally
require a semi-classical picture: even if the Hamiltonian Ĥ(t) is kept constant, for general
open system dynamics the basis |ϕj(t)⟩ might change in such a way that dεj(t)

dt
̸= 0 and
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work W3(t) is not necessarily null for fully quantum interacting subsystems. It is worth
mentioning that in (216) was presented a simple example where Q3(t) = 0 for all t while
d
dt
SvN(t) ̸= 0, which motivate the authors to argue that this may constitute a possible

inadequacy between the thermodynamic argument and the definitions above.

Hence, despite having a similar thermodynamic grounding and interesting indi-
vidual characteristics, all these proposals do not agree with each other in most cases.
Naturally, different definitions may predict radically distinct thermodynamic scenarios.
In particular, notice that the root of their divergence is due to the initial arbitrary basis
representation choice for U(t), which affects the contributions splitting and identifica-
tion. Besides, it is also clear that coherence must be taken into account, i.e., in general
[ρ̂(t), Ĥ(t)] ̸= 0 and the quantum coherence - in any basis choice - plays an indispensable
role in the energetic changes. For instance, even though non-diagonal elements of ρ̂(t0) in
the Hamiltonian basis at a given instant t0, written as ⟨ϵj(t0)|ρ̂(t0)|ϵk(t0)⟩ with j ̸= k, do
not instantaneously contribute to the internal energy U(t0)ag, their dynamics are - in gen-
eral - coupled with the populations ⟨ϵj(t)|ρ̂(t)|ϵj(t)⟩ah, which means that they are relevant
for U(t) at latter times (t ≥ t0). In other words, all density matrix elements are essential
for accounting for the energetic change of any given quantum system. Interestingly, in
the classical limit, such contributions become negligible in a way that these ambiguities
disappear and the previous definitions converge to compatibility. In this sense, it is not
obvious if such additional quantities should be interpreted as work-like or heat-like vari-
ations and, since there is no classical analogous of coherence, classical thermodynamics
does not provide any direct instruction on how to deal with them. In fact, it is not even
clear if coherence should be tied to such roles. Most of the literature implicitly assumes
that either coherence is shared between both quantities or belongs to one of them, i.e.,
is commonly assumed a priori the classical thermodynamic structure of complementary
ingredients. The classical first law states that dU ≡ δW + δQ, in a way that once defined
work or heat, it is automatically established the remaining part. Thus, it is important
to highlight that there is still room for disputing this assumption at the quantum level.
Along these lines, as an alternative approach, (137) proposed a redefinition of the first law
where the coherence energetic contribution, given by δC, is completely separated from
the notions of work and heat, such that U ≡ δW + δQ+ δC.

In summary, discussions on quantum counterparts of thermodynamic quantities
are still in their early stages and far from being settled. This, of course, corresponds to
a core conceptual issue for the development of a fully quantum thermodynamics theory
ag Since Ĥ(t) =

∑
j ϵj(t)|ϵj(t)⟩⟨ϵj(t)|, it is easy to see that

U(t) = tr{Ĥ(t)ρ̂(t)} =
∑

j

ϵj(t)⟨ϵj(t)|ρ̂(t)|ϵj(t)⟩.

ah For some specific situations, their dynamics might be decoupled, e.g., Davies maps.



94

and has a direct impact on the design and operation of effective quantum devices. The
most popular routes offer either an operational framework or a semi-classical description,
which are - essentially - phenomenological approaches in spirit and do not consistently
apply for several scenarios of interest. Especially those that demand a more symmetrical
thermodynamic treatment of all considered parties.

3.6.3.2 Road to effective work and heat

As mentioned earlier, in addition to not being clear which thermodynamic role
is played by genuine quantum phenomena, it is also mandatory a previous identification
of internal energy in order to properly recognize quantum versions of work and heat.
Such fundamental ambiguities emphasize the urgency of careful examination of these
quantities at the conceptual level. In particular, it is imperative the identification of
the essential features of what exactly characterizes work and heat. Along these lines,
in Section (3.4.1.1), we argued that the local effective Hamiltonians H̃(1,2)(t) provide a
promising and suitable candidate for quantifying the subsystems internal energy U (k)(t) :=
⟨H̃(k)(t)⟩, in a way that is local, additive ( d

dt
U (1)(t) = − d

dt
U (2)(t)) and applicable to

arbitrary scenarios. Hence, it also provides a starting point for discussing a general, exact
and symmetrical understanding of work and heat along with any dynamical processes.
This approach naturally allows the energetic characterization that transcends the usual
asymmetric thermodynamic description and restrictive regimes, such as weakly coupled
systems and markovian dynamics. Here, nevertheless, we do not propose fixed definitions
for these quantities. Instead, we advocate that the previously presented work and heat
forms from a dynamical point of view might be well adapted for our local internal energy
identification.

The local internal energy dynamics for each subsystem is simply d
dt
U (k)(t) =

d
dt
trk{H̃(k)(t)ρ̂(k)(t)}. From previous discussions, it becomes clear that this kind of ex-

pression can be consistently divided into two components in several distinct ways that
still correspond to the first law structureai. Then, we are always allowed to write the
following expression

d

dt
U (k)(t) = d

dt
W(k)(t) + d

dt
Q(k)(t), (3.154)

where W(k)(t) and Q(k)(t) are identified as the effective work and effective heat flowing
from/to subsystem (k), respectively. Furthermore, the symmetrical treatment of both
parts and internal energy additivity imply that all net energetic exchange involved during
the whole system dynamics should sum up to zero, i.e.,

d

dt
W(t) + d

dt
Q(t) = 0, (3.155)

ai Here we will assume a priori the usual first law structure.
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where W(t) = W(1)(t) + W(2)(t) and Q(t) = Q(1)(t) + Q(2)(t) are the respective net work
and net heat transferred throughout the described process.

From Eqs. (3.142, 3.143) one might approach these quantities according to Alicki’s
proposal in the following straightforward way

W(k)
1 (t) :=

∫ t

t0
ds trk

{
d

ds
H̃(k)(s)ρ̂(k)(s)

}
=

d(1)∑
j=1

∫ t

t0
ds λ2

j(s)⟨φ
(k)
j (s)| d

ds
H̃(k)(s)|φ(k)

j (s)⟩,

(3.156)

Q(k)
1 (t) :=

∫ t

t0
ds trk

{
H̃(k)(s) d

ds
ρ̂(k)(s)

}
=

d(1)∑
j=1

∫ t

t0
ds
dλ2

j(s)
ds
⟨φ(k)

j (s)|H̃(k)(s)|φ(k)
j (s)⟩,

(3.157)

where work is the energy exchange associated with the local effective Hamiltonian dynam-
ics and heat is related to the local state change. Given Eq. (3.18), it is clear that work
W(k)

1 (t) is a direct outcome of the time-dependency induced by the interaction between
the subsystems and, therefore, does not require any ad hoc, external agent for describ-
ing it. In fact, the bare Hamiltonian Ĥ(k) plays no role in this energetic exchange since
Ĥ(k) = cte and W(k)

1 (t) :=
∫ t

t0
ds trk

{
d
ds

(
Ĥ

(k)
LS (s) + Ĥ

(k)
X (s)

)
ρ̂(k)(s)

}
. Also, it intrinsically

bound heat Q(k)
1 (t) with entanglement variation due to its explicitly functional depen-

dency on the population dynamics
{

dλ2
j (t)
dt

}
j
. Additionally, in contrast with the classical

equilibrium thermodynamic scenario, it is also clear that the net work W1(t) and net heat
Q1(t) are not individually null for general situations. Thus, for instance, the heat flowing
from subsystem (1) is not necessarily translated into the heat absorbed by subsystem (2),
i.e., Q1(t) = Q(1)

1 (t) + Q(2)
1 (t) ̸= 0. Finally, it is easy to show that

⟨φ(k)
j (t)| d

dt
H̃(k)(t)|φ(k)

j (t)⟩ = d

dt

(
⟨φ(k)

j (t)|H̃(k)(t)|φ(k)
j (t)⟩

)
, (3.158)

for all t and, therefore, that there is an equality between Alicki’s proposal and the form
presented in Eqs. (3.152, 3.153). In such a case, the heat Q(k)

3 (t) experienced by subsystem
(k) is directly related to changes in the populations of the local state ρ̂(k)(t), and work
is assigned to the remaining energetic contribution due to the local effective Hamiltonian
dynamics and instantaneous basis {|φ(k)

j (t)⟩}j variation. Hence

W(k)
1 (t) =

d(1)∑
j=1

∫ t

t0
ds λ2

j(s)
d

dt

(
⟨φ(k)

j (s)|H̃(k)(s)|φ(k)
j (s)⟩

)
= W(k)

3 (t), (3.159)

Q(k)
1 (t) =

d(1)∑
j=1

∫ t

t0
ds
dλ2

j(s)
ds
⟨φ(k)

j (s)|H̃(k)(s)|φ(k)
j (s)⟩ = Q(k)

3 (t), (3.160)

in contrast with what we would have obtained if we just had considered the local bare
Hamiltoniansaj.
aj By hypothesis, we consider constant local bare Hamiltonians Ĥ(k). Thus, the previous equal-

ity would not be satisfied, i.e., 0 = ⟨φ(k)
j (t)| d

dtĤ
(k)|φ(k)

j (t)⟩ ≠ d
dt

(
⟨φ(k)

j (t)|Ĥ(k)|φ(k)
j (t)⟩

)
.
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Alternatively, one might define work and heat in analogy with the procedure pre-
sented along with Eqs. (3.146, 3.147). If

H̃(k)(t) ≡
d(k)∑
j=1

ϵ̃
(k)
j (t)|ϵ̃(k)

j (t)⟩⟨ϵ̃(k)
j (t)| (3.161)

is the instantaneous local effective Hamiltonian spectral decomposition, where {ϵ̃(k)
j (t)}j

are the time-local effective eigenenergies and {|ϵ̃(k)
j (t)⟩}j are their eigenstates, it is clear

that the effective internal energy can be cast as

U (k)(t) = ⟨H̃(k)(t)⟩ =
d(k)∑
j=1

ϵ̃
(k)
j (t)⟨ϵ̃(k)

j (t)|ρ̂(k)(t)|ϵ̃(k)
j (t)⟩. (3.162)

Then, work W(k)
2 (t) and heat Q(k)

2 (t) could be identified as

W(k)
2 (t) =

d(k)∑
j=1

∫ t

t0
ds
dϵ̃

(k)
j (s)
ds

⟨ϵ̃(k)
j (s)|ρ̂(k)(s)|ϵ̃(k)

j (s)⟩, (3.163)

Q(k)
2 (t) =

d(k)∑
j=1

∫ t

t0
ds ϵ̃

(k)
j (s) d

ds

(
⟨ϵ̃(k)

j (s)|ρ̂(k)(s)|ϵ̃(k)
j (s)⟩

)
, (3.164)

such that the former is only associated with changes in the local effective Hamiltonian
spectrum, instead of the whole operator, and the latter is related to the dynamics of its
respective local state ρ̂(k)(t) and basis {|ϵ̃(k)

j (t)⟩}j. Again, the equality presented in Eq.
(3.155) above is guarateed by construction and there is no reason why the net work W2(t)
and net heat Q2(t) should be individually null for general cases.

Thus, as presented above, the definition of the local effective internal energies
U (k)(t) = ⟨H̃(k)(t)⟩ provides a consistent foundation for discussing work and heat and the
first law in an exact, symmetrical and general manner. This, however, is not enough. As
mentioned before, it is imperative to encourage in-depth investigations at the conceptual
level. In particular, a focus on questions concerning the identification of what are the
essential features that fundamentally characterizes work and heat is particularly needed.
Otherwise, the energetic contribution of coherence will remain elusive and arbitrarily
considered into potential candidates.

3.7 Proof of principle

To illustrate the concepts presented in this chapter, let us now apply our formalism
for describing the energetic exchange of a simple - but paradigmatic - example of two
interacting qubits as a proof of principle. Of course, a priori, this method applies to any
quantum system, as long we perform a bipartition.

Suppose the system is described by the following Hamiltonian

Ĥ(0) := ℏ
ω1

2 σ̂
(1)
z ⊗ 1̂(2) + 1̂(1) ⊗ ℏ

ω2

2 σ̂
(2)
y + ℏg

(
σ̂(1)

x ⊗ σ̂(2)
y

)
∈ L(H(0)), (3.165)
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where Ĥ(1) ≡ ℏω1
2 σ̂

(1)
z and Ĥ(2) ≡ ℏω2

2 σ̂
(2)
y are the local bare Hamiltonians, Ĥint ≡

ℏg
(
σ̂(1)

x ⊗ σ̂(2)
y

)
is the interaction term, σ̂x,y,z are the usual Pauli matrices, g is the cou-

pling constant, and ℏω1,2 are the energy gaps for Ĥ(1,2). Since we are dealing with two
qubits, we have d(0) := dim(H(0)) = 4 and d(1,2) := dim(H(1,2)) = 2. Hence, for every time
t, the whole system state will be written - in general - as

|Ψ(t)⟩ = λ1(t)|φ(1)
1 (t)⟩ ⊗ |φ(2)

1 (t)⟩+ λ2(t)|φ(1)
2 (t)⟩ ⊗ |φ(2)

2 (t)⟩. (3.166)

Given an initial state |Ψ(0)⟩, it will evolve in time according to |Ψ(t)⟩ = Û(t)|Ψ(0)⟩,
where Û(t) = e− i

ℏ Ĥ(0)t ∈ L(H(0)) is the time-evolution operator. Conveniently, since the
bare Hamiltonian of subsystem (2) commutes with the interaction term, [Ĥ(2), Ĥint] = 0,
Û(t) simplifies to

Û(t) = e
−i

(
ω1
2 σ̂

(1)
z ⊗1̂(2)+g

(
σ̂

(1)
x ⊗σ̂

(2)
y

))
t
e−i

ω2
2 σ̂

(2)
y t, (3.167)

which also implies that [Ĥ(2), Û(t)] = 0ak. Thus, if σ̂(2)
y |±(2)

y ⟩ = ±|±(2)
y ⟩ and V̂ (t) :=

e
−i

(
ω1
2 σ̂

(1)
z ⊗1̂(2)+g

(
σ̂

(1)
x ⊗σ̂

(2)
y

))
t, then

ρ̂(2)(t) = ei
ω2
2 σ̂

(2)
y ttr1{V̂ †(t)|Ψ(0)⟩⟨Ψ(0)|V̂ (t)}e−i

ω2
2 σ̂

(2)
y t (3.168)

and, therefore,
⟨±(2)

y |ρ̂(2)(t)|±(2)
y ⟩ = ⟨±(2)

y |ρ̂(2)(0)|±(2)
y ⟩ (3.169)

for all t, i.e., the populations of ρ̂(2)(t) in the σ̂(2)
y basis, {|±(2)

y ⟩}, are constant during the
whole dynamics, while the non-diagonal elements ⟨∓(2)

y |ρ̂(2)(t)|±(2)
y ⟩ may evolve indepen-

dently. Notice this is not true for qubit (1), since [Ĥ(1), Ĥint] ̸= 0, a priori, the change of
all of its density matrix elements are coupled intrinsically with one another. Interestingly,
despite their different dynamics, both qubits are guaranteed to maintain their equal pu-
rities during the whole time evolution. If P[σ̂] ≡ tr{σ̂2} is the purity of a state σ̂, then
it is clear that P[ρ̂(0)(t)] = 1 - given ρ̂(0)(t) ≡ |Ψ(t)⟩⟨Ψ(t)| is a pure state for all t - while
P[ρ̂(1)(t)] = P[ρ̂(2)(t)] = λ4

1(t) +λ4
2(t) ≤ 1. The local purity changes also reflect the modifi-

cation in the entanglement degree between the qubits. As mentioned in Section (3.6.2.2),
in this context, the von Neumann entropy (or entanglement entropy) represents a direct
measure of the entanglement within the bipartition. Under these circumstances, while the
whole system’s von Neumann entropy is null throughout the dynamics (since it is pure),
both subsystems are guaranteed to possess the same value for their von Neumann entropy,
i.e., SvN [ρ̂(0)(t)] = 0 and SvN [ρ̂(1)(t)] = SvN [ρ̂(2)(t)] = −λ2

1(t)ln (λ2
1(t))−λ2

2(t)ln (λ2
2(t)) for

all t.

The temporal evolution of this simple physical system can be easily checked by
numerical analysis. Let us suppose initial uncorrelated states, such that

|Ψ(0)⟩ = |φ(1)(0)⟩ ⊗ |φ(2)(0)⟩ (3.170)
ak If Â and B̂ commute, then eÂ+B̂ = eÂeB̂.
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with |φ(k)(0)⟩ = a(k)|+(k)
z ⟩+b(k)|−(k)

z ⟩al. Thus, Figure 1a shows how the qubits purity oscil-
lates between 1 and < 1, which indicates their continuously changing from pure to mixed
states. Additionally, it is clear that the whole system’s state also oscillates from the initial
product to entangled states. In this sense, Figure 1b depicts the dynamical behaviour of
the von Neumann entropies and illustrates that both quantities are, indeed, correlated.
As expected, whenever the local density matrices are pure, their von Neumann entropies
are equally null, while the maximum entanglement is obtained when their purities reach
their minimum values.

(a) Purity (b) von Neumann entropy

Figure 1 – (a) Purity dynamics for two interacting qubits. While the whole system main-
tains pure for all t, both qubits oscillate continuously between pure and mixed
states with equal purity; (b) Dynamical behaviour of the von Neumann en-
tropies. On the one hand, given ρ̂(0)(t) ≡ |Ψ(t)⟩⟨Ψ(t)|, the whole system’s
von Neumann entropy maintains null throughout the unitary dynamics. On
the other hand, the equal qubits’ von Neumann entropies illustrate the os-
cillation between the degree of entanglement within the bipartition. For the
computation of all the plots, it was assumed a(1) = (5)−1/2, b(1) = 2(5)−1/2,
a(2) = (10)−1/2 and b(2) = 3(10)−1/2 for the initial states, ℏ ≡ 1, ω1 = 1, ω2 = 5
and g = 1.3.

Source: By the author.

More importantly, given that the populations of ρ̂(2) in the Ĥ(2) basis are time-
invariant, the expectation value of the bare Hamiltonian, ⟨Ĥ(2)⟩(t) ≡ tr2{Ĥ(2)ρ̂(2)(t)} =
⟨Ψ(t)|Ĥ(2)|Ψ(t)⟩, is also guaranteed to be constant in time, i.e.,

⟨Ĥ(2)⟩ = ⟨Ψ(0)|Ĥ(2)|Ψ(0)⟩ ⇒ d

dt
⟨Ĥ(2)⟩ = 0. (3.171)

As expected, there is no such constraint for the mean value of the bare Hamiltonian of
qubit (1), ⟨Ĥ(1)⟩(t), and it is free to evolve in time. Notice that this conclusion is a very
general statement and does not depend on our particular physical system. It is a simple
consequence of the previous commutation relationsam. Figure 2 illustrates this behaviour
al It is worth mentioning this is a convenient simplifying hypothesis that does not limit the

computational analysis or the conclusions.
am That is what happens in the usual dephasing model, for instance.
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for the initially uncorrelated qubits: while ⟨Ĥ(1)⟩(t) continuously oscillates in time, ⟨Ĥ(2)⟩
maintains its initially null value and keeps constant throughout the whole dynamics. This
happens because the whole system’s internal energy, U (0), is shared between the local bare
Hamiltonians and the interaction term, such that

U (0) = ⟨Ĥ(1)⟩(t) + ⟨Ĥ(2)⟩(t) + ⟨Ĥint⟩(t). (3.172)

Thus, if Eq. (3.171) above is satisfied and given that d
dt
U (0) = 0, we automatically have

d

dt
⟨Ĥ(1)⟩(t) = − d

dt
⟨Ĥint⟩(t). (3.173)

Along these lines, if the local internal energies are solely associated with the bare Hamil-
tonian’s expectation values, ⟨Ĥ(1,2)⟩(t), we would be led to conclude that only qubit (1)
exchanges energy, even though both qubits continuously evolves in time. It would also
imply that the interaction term - essentially - works as an energetic source/sink for this
particular qubit since all the exchanges would be attributed only to the energy trapped
within its expectation value.

Figure 2 – Dynamical behaviour of the expectation values of the local bare Hamiltonians.
On the one hand, since [Ĥ(2), Ĥint] = 0, the populations of ρ̂(2) in the Ĥ(2)

basis are time-invariant and, therefore, d
dt
⟨Ĥ(2)⟩(t) = 0 for all t. On the other,

d
dt
⟨Ĥ(1)⟩(t) ̸= 0 and ⟨Ĥ(1)⟩(t) continuously oscillates in time.

Source: By the author.

Besides, considering the discussions presented in Section (3.6.3.1.2), this simple
example also provides an interesting scenario to analyze and compare the behaviours of
potential definitions of quantum work and heat. In this sense, given Alicki’s proposal,
shown in Eqs. (3.142, 3.143), work is associated with changes in the local bare Hamilto-
nian, while heat is linked with the time evolution of the density matrix. Thus, according
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to these expressions, it is clear that both qubits do not perform work since d
dt
Ĥ(1,2) = 0,

which implies that the all energy exchange of qubit (1) with the interaction term is en-
tirely interpreted as heat, while for qubit (2), this quantity is absent, i.e., d

dt
W

(1,2)
1 (t) = 0,

d
dt
Q

(1)
1 (t) = tr

{
Ĥ(1) d

dt
ρ̂(1)(t)

}
= − d

dt
⟨Ĥint⟩(t) and d

dt
Q

(2)
1 (t) = 0. Figure 3 reproduces the

fluxes of Alicki’s work and heat during the dynamics for both subsystems. Additionally,
we might perform the same analyses for the work and heat forms depicted by Eqs. (3.146,
3.147), where work is related to modifications in the bare Hamiltonian spectrum while
heat depends on the dynamics of both the density matrix and the bare Hamiltonian eigen-
states. Nevertheless, since, by hypothesis, Ĥ(1,2) are constant in time, we can show that
these expressions and Alicki’s proposal agree with each other for this particular scenario
(see Eqs. (3.148, 3.149)), i.e., Q(1,2)

2 (t) = Q
(1,2)
1 (t) and W

(1,2)
2 (t) = W

(1,2)
1 (t) for all t.

(a) Alicki’s proposal for qubit (1) (b) Alicki’s proposal for qubit (2)

Figure 3 – According to Alicki’s form of work and heat fluxes (see Eqs. (3.142,3.143)): (a)
Qubit (1) does not perform work, and all energy exchange with the interaction
term is interpreted as heat, i.e., d

dt
W

(1,2)
1 (t) = 0 and d

dt
Q

(1)
1 (t) = − d

dt
⟨Ĥint⟩(t);

(b) The energy of qubit (2) is neither submitted to work-like nor heat-like
energy changes.

Source: By the author.

Finally, we can also consider the expressions proposed by (214, 215) and shown
in Eqs. (3.152, 3.153). According to this proposal, heat is bound to modifications in the
populations of the density matrix, while work depends on the dynamics of both the local
bare Hamiltonian and the instantaneous basis of ρ̂(1,2), i.e., heat is directly associated with{

d
dt
λ2

j(t)
}

j
due to its relationship with d

dt
SvN [ρ̂(1,2)(t)], and work is linked to the remaining

terms
{

d
dt

(
⟨φ(1,2)

j (t)|Ĥ(1,2)|φ(1,2)
j (t)⟩

)}
j
. Figure 4 shows the behaviour of the work and heat

fluxes for both qubits. In comparison with the previous proposals, despite Ĥ(1) being time-
independent, part of the energy exchanged between qubit (1) and the interaction term
is identified as work performed due to the dynamics of the basis {|φ(1)

1,2(t)⟩}, i.e., both
work and heat are present such that d

dt
⟨Ĥ(1)⟩(t) = d

dt
W

(1)
3 (t) + d

dt
Q

(1)
3 (t) = − d

dt
⟨Ĥint⟩(t).

Interestingly, for qubit (2), the structure of the dynamics guarantees neither work nor heat
exchange during the interaction, d

dt
W

(2)
3 (t) = d

dt
Q

(2)
3 (t) = 0 for all t. It is worth emphasizing
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(a) (214,215) proposal for qubit (1) (b) (214,215) proposal for qubit (2)

Figure 4 – According to Eqs. (3.152, 3.153): (a) The energetics between qubit (1) and
the interaction term has separated contribution from both work and heat,
i.e., d

dt
⟨Ĥ(1)⟩(t) = d

dt
W

(1)
3 (t) + d

dt
Q

(1)
3 (t) = − d

dt
⟨Ĥint⟩(t); (b) Qubit (2) neither

performs work nor exchanges heat. Note this happens despite its dynamics and
the clear oscillation of its von Neumann entropy SvN [ρ̂(2)(t)] (see Figure 1b).

Source: By the author.

that this occurs even though its von Neumann entropy SvN [ρ̂(2)(t)] oscillates in time (see
Figure 1b), which is in clear contrast with the original thermodynamic motivation of
associating heat with energy modification accompanied by entropic changes. This context
is similar to the situation presented in. (216)

As we saw earlier, instead of focusing on the local bare Hamiltonians Ĥ(1,2), if we
use the local effective ones, H̃(1,2)(t), as the representative operators for quantifying local
internal energies, the energy becomes additive and, therefore, the whole internal energy
is simply written as

U (0) = ⟨H̃(1)(t)⟩+ ⟨H̃(2)(t)⟩. (3.174)

According to this formulation, both qubits exchange energy continuously, such that

d

dt
⟨H̃(1)(t)⟩ = − d

dt
⟨H̃(2)(t)⟩, (3.175)

and there is no space for additional elements working as energetic sources or sinks, i.e.,
the qubits are the only entities required for characterizing the energetics within |Ψ(t)⟩.
The dynamics of the expectation values of the local effective Hamiltonians of our example
are depicted in Figure 5a. Thus, it is clear that during the interaction, all energy flowing
outside qubit (1) is entirely acquired by qubit (2) and vice versa. Besides, Figure 5b shows
that the sum of both local quantities is constant and equal to the whole system’s internal
energy, which illustrates the additivity property presented in Eq. (3.174) above. Notice
that, while the time-dependency of ⟨Ĥ(1)⟩(t) is only due to the state ρ̂(1)(t) dynamics, the
H̃(1,2)(t) are explicitly time-dependent and play a significant role in the changes of their
mean values ⟨H̃(1,2)(t)⟩. In this sense, it is interesting to contrast the static nature of the
bare Hamiltonians with the dynamic behaviour of the local effective operators. In order
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(a) Local effective Hamiltonians (b) Whole’s internal energy

Figure 5 – Dynamical behaviour of the expectation values of the local effective Hamiltoni-
ans and its relationship with the whole’s internal energy. (a) Interplay between
⟨H̃(1)(t)⟩ and ⟨H̃(2)(t)⟩. If H̃(1,2)(t) are interpreted as the representative opera-
tors for quantifying local internal energies, then all energy lost from qubit (1)
is obtained by qubit (2), and vice versa; (b) The sum of the expectation values
of the local effective Hamiltonians is equal to the whole’s internal energy. This
plot illustrates the energy additivity.

Source: By the author.

to do that, let us cast their following spectral decompositions

Ĥ(1,2) ≡
∑
j=±

b
(1,2)
j |b(1,2)

j ⟩⟨b(1,2)
j | (3.176)

and
H̃(1,2)(t) ≡

∑
j=±

ϵ̃
(1,2)
j (t)|ϵ̃(1,2)

j (t)⟩⟨ϵ̃(1,2)
j (t)| (3.177)

where {b(1,2)
± = ±ℏω1,2

2 } and {ϵ̃(1,2)
± (t)} are the respective eigenvalues of Ĥ(1,2) and H̃(1,2)(t),

while {|b(1)
± ⟩ = |±(1)

z ⟩}, {|b
(2)
± ⟩ = |±(2)

y ⟩} and {|ϵ̃(1,2)
± (t)⟩} are the eigenbasis of Ĥ(1), Ĥ(2)

and H̃(1,2)(t), respectively. Figures 6a and 6b portray the dynamics of their energy levels.
The time dependency of {ϵ̃(1,2)

± (t)} is a direct consequence of the interaction term that is
automatically comprised within the local effective operators (see Eq. (3.18)). Interestingly,
not only these eigenvalues are time-dependent, but also the energy gaps are modulated
in time. Given ℏω1,2 = b

(1,2)
+ − b(1,2)

− and ℏω̃1,2(t) = ϵ̃
(1,2)
+ (t) − ϵ̃(1,2)

− (t), Figures 7a and 7b
illustrate how the local gaps ℏω̃1,2(t) change, while ℏω1,2 is maintained fixed during the
whole dynamics.

Finally, as mentioned earlier, the use of the local effective Hamiltonians also pro-
vides an interesting starting point for discussing a general, exact and symmetrical under-
standing of quantum work and heat. Hence, let us compare the potential approaches for
these quantities presented in Section (3.6.3.2). Along these lines, Eqs. (3.156, 3.157) are
similar to Alicki’s proposal. However, since the internal energy is computed by ⟨H̃(1,2)(t)⟩,
heat is associated with changes in the whole density matrix, and work is the energy ex-
change related to the local effective Hamiltonian dynamics. Thus, work is a direct outcome
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(a) Spectrum - Qubit (1) (b) Spectrum - Qubit (2)

Figure 6 – Dynamical behaviour of the spectrum of the bare and local effective Hamil-
tonians, for both qubits. The bare eigenvalues {b(1,2)

± } are constant, while the
local effective ones {ϵ̃(1,2)

± (t)} clearly change in time. (a) Qubit (1); (b) Qubit
(2).

Source: By the author.

(a) Spectral gaps - Qubit (1) (b) Spectral gaps - Qubit (2)

Figure 7 – Dynamical behaviour of the spectral gaps of the bare and local effective Hamil-
tonians, for both qubits. The changes in the spectrum modulate the local
gaps ω̃1,2(t) = ϵ̃

(1,2)
+ (t) − ϵ̃

(1,2)
− (t) between the effective energy levels while

ℏω1,2 = b
(1,2)
+ − b(1,2)

− is maintained fixed. (a) Qubit (1); (b) Qubit (2).
Source: By the author.

of the interactions between the qubits instead of being the result of the addition of classical
external control. Figures 8 and 9 reproduce the non-null work and heat fluxes, d

dt
W(1,2)

1 (t)
and d

dt
Q(1,2)

1 (t), during the dynamics for qubits (1) and (2), respectively. Additionally, Fig-
ure 10a shows the behaviour of the non-null net work and net heat fluxes involved during
the process, where W1(t) = W(1)

1 (t) + W(2)
1 (t) and Q1(t) = Q(1)

1 (t) + Q(2)
1 (t), while Figure

10b confirms that all net energetic exchanges sum up to zero, i.e., d
dt
W1(t) + d

dt
Q1(t) = 0

(see Eq. (3.155)). It is worth mentioning that earlier was shown that the analogue forms
of Eqs. (3.152, 3.153), considering the local effective Hamiltonians, are equivalent to the
previous ones, i.e., W(1,2)

1 (t) = W(1,2)
3 (t) and Q(1,2)

1 (t) = Q(1,2)
3 (t).
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(a) Alicki’s form of work flux for qubit (1) (b) Alicki’s form of heat flux for qubit (1)

Figure 8 – Work and heat fluxes according to Eqs. (3.156, 3.157) for qubit (1). (a) Work
flux; (b) Heat flux.

Source: By the author.

(a) Alicki’s form of work flux for qubit (2) (b) Alicki’s form of heat flux for qubit (2)

Figure 9 – Work and heat fluxes according to Eqs. (3.156, 3.157) for qubit (2). (a) Work
flux; (b) Heat flux.

Source: By the author.

Alternatively, we might define these quantities according to Eqs. (3.163, 3.164).
In this case, work is associated with changes in the local effective Hamiltonian spectrum,{

d
dt
ϵ̃

(1,2)
j (t)

}
j
, and heat depends both on the dynamics of the density matrix ρ̂(1,2)(t) and

the basis
{
|ϵ̃(1,2)

j (t)⟩
}
. Figures 11a and 11b show the interplay between work and heat

fluxes, d
dt
W(1,2)

2 (t) and d
dt
Q(1,2)

2 (t), for qubit (1) and (2), respectively. Similarly to the
previous proposal, Figure 12a presents the non-null dynamics of the net work and net
heat fluxes during the interaction, where W2(t) = W(1)

2 (t)+W(2)
2 (t) and Q2(t) = Q(1)

2 (t)+
Q(2)

2 (t). Besides, Figure 12b shows that all net energetic exchanges within the bipartition
computed with these expressions are also in accordance with Eq. (3.155), i.e., they sum
up to zero.

Therefore, it is clear that different work and heat proposals may represent rad-
ically distinct thermodynamic scenarios. Still, the use of H̃(1,2)(t) provides a consistent
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(a) Net work and net heat fluxes (b) Net energetic exchange

Figure 10 – Net energy fluxes according to Eqs. (3.156, 3.157). (a) The total work flux
performed and the total heat flux transferred throughout the dynamics; (b)
All net energetic exchanges involved during the whole system dynamics sum
up to zero, Eq. (3.155).

Source: By the author.

(a) Work and heat fluxes for qubit (1) (b) Work and heat fluxes for qubit (2)

Figure 11 – Energy fluxes according to Eqs. (3.163, 3.164). (a) Qubit (1); (b) Qubit (2).
Source: By the author.

foundation for advancing such discussions in an absolutely general manner.

In short, it was both illustrated a simple example of the application of our local
effective Hamiltonians formalism and highlighted a challenging issue of the usual iden-
tification of the bare Hamiltonians as the operators for representing the local internal
energies whenever the interaction term Ĥint is non-negligible (and the strict energy con-
servation is not applicable). While the latter identification requires the interpretation of
the interaction term as an additional energetic source or sink, the former only attributes
local internal energies for the described subsystems. In this particular physical system, the
global Hamiltonian structure guarantees that ⟨Ĥ(2)⟩ is a constant of motion, even though
ρ̂(2)(t) explicitly evolves in time (Figure 1), and the mean value ⟨Ĥ(1)⟩ changes (Figure 2).
This behaviour, of course, reflects the non-additivity of the expectation values of the bare
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(a) Net work and net heat fluxes (b) Net energetic exchange

Figure 12 – Net energy fluxes according to Eqs. (3.163, 3.164). (a) The total work flux
performed and the total heat flux transferred throughout the dynamics; (b)
All net energetic exchanges involved during the whole system dynamics sum
up to zero, Eq. (3.155).

Source: By the author.

Hamiltonians and the essential role played by the interaction in the total internal energy
computation. Naturally, such a role is also critical for characterizing energy exchanges
and must be appreciated, in one way or another, into any consistent and general defi-
nition of work and heat. Along these lines, since Alicki’s definition proposal in (56), the
bare Hamiltonians represent a common starting point for defining these thermodynamic
quantities, even when considered alternative forms, such as the presented in. (214,215) In
contrast, the use of the expectation values of the local effective Hamiltonians ⟨H̃(1,2)(t)⟩
as the representative operators for characterizing physical internal energies satisfies the
additivity property and offers an important interpretative advantage for the framework
of quantum thermodynamics.

3.8 Generalization for mixed states

In this section, we will take our approach one step further by allowing the pos-
sibility of describing mixed quantum states. During the previous sections, we explic-
itly assumed a finite, isolated and nondegenerate pure quantum system, depicted by
|Ψ(t)⟩⟨Ψ(t)|, composed of two arbitrary smaller interacting subsystems, (1) and (2), with
dimensions d(k) := dim(H(k)), such that d(0) = (d(1) + d(2)) and - without any loss of
generality - d(1) ≤ d(2). The fully quantum autonomous object is described by the time-
independent Hamiltonian Ĥ(0) that generates the whole system dynamics, such that

Ĥ(0) = Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2) + Ĥint, (3.178)

where Ĥ(1,2) ∈ L(H(1,2)) are the local bare Hamiltonians of each subsystem and Ĥint ∈
L(H(0)) is the interaction between them. Let us now generalize and expand our formal-
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ism to include a more comprehensive and realistic experimental descriptionan. From a
pragmatical point of view, this setting only characterizes specific situations. In real-world
scenarios, the quantum system must be somehow experimentally prepared, in a way that
it is inevitably distributed across an ensemble of possible states. This, of course, corre-
sponds to a classical lack of information due to the preparation procedure itself. In these
cases, the system in question is better described by a statistical mixture of pure states
{Pη, |Ψη(t)⟩ ∈ H(0) = H(1) ⊗H(2)}η=1,...,d(0) , such that

ρ̂(0)(t) ≡
d(0)∑
η=1

Pησ̂
(0)
η (t), (3.179)

where {σ̂(0)
η (t) ≡ |Ψη(t)⟩⟨Ψη(t)|}η are pure states, ⟨Ψα(t)|Ψβ(t)⟩ = δαβ and tr{ρ̂(0)(t)} =∑d(0)

η=1 Pη = 1. Note that such description also provides us with the means to represent and
characterize systems initially prepared at thermal states, i.e., if Ĥ(0) ≡ ∑d(0)

η=1 b
(0)
η |b(0)

η ⟩⟨b(0)
η |,

then Pη ≡ e
−βb

(0)
η

Z(0) and |Ψη(t0)⟩ ≡ |b(0)
η ⟩ in a way that ρ̂(0)(t0) = ∑d(0)

η=1
e

−βb
(0)
η

Z(0) |b(0)
η ⟩⟨b(0)

η |. Also,
since the whole system is isolated, the populations {Pη}η remains constant throughout
the unitary dynamics. Thus, it is clear that a single pure state, instead of the convex sum
above, is just a particular case of a much more broad representation, where Pη = δ0η and
ρ̂(0)(t) = σ̂

(0)
0 (t). Locally, as will be shown below, such a mixed state implies that both

subsystems will also be portrayed as ensembles themselves, although not of pure states.
It is worth mentioning that one may argue that there is a clear and noticeable ambiguity
in such a process: it is well-known that there are infinite possible ways to express the
same density matrix ρ̂(0)(t) as a convex sum of pure - and not necessarily orthogonal -
states. However, on the one hand, from a physical perspective, all possible representations
are indistinguishable, thus any observable or internal thermodynamic description should
not depend on this choice. On the other, there is a unique description in terms of an
orthonormal basis which is given by the spectral decomposition above. Thus, Eq. (3.179)
represents the most natural depiction choice for our purposes. Finally, from now on, the
addition of a label η will be necessary to identify which element of Eq. (3.179) we are
dealing with and to distinguish an ensemble or a pure-state-level treatment.

Now, let us proceed in complete analogy with what was previously shown in Sec-
tion (3.1). Every pure state dynamics is governed by the usual Schrödinger equation
iℏ d

dt
|Ψη(t)⟩ = Ĥ(0)|Ψη(t)⟩, such that for any initial state |Ψη(t0)⟩ and t ≥ t0 we have

|Ψη(t)⟩ = Û(t, t0)|Ψη(t0)⟩, (3.180)

where Û(t, t0) = e− i
ℏ Ĥ(0)(t−t0) ∈ L(H(0)) is the time-evolution operator of the whole bipar-

tite system. Then, let us represent them according to their respective Schmidt decompo-
an Many of the steps presented here - from now on - will be very similar to those shown in Sec-

tion (3.1). For completeness and for establishing the new notation, the essential features will
be repeated. However, to avoid redundancy, some discussions will be purposely suppressed.
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sition form

|Ψη(t)⟩ =
d(1)∑
j=1

ληj(t)|φ(1)
ηj (t)⟩ ⊗ |φ(2)

ηj (t)⟩, (3.181)

for every time t, where {ληj(t) ≥ 0}j and {|φ(k)
ηj (t)⟩}j ∈ H(k) are the ηth time-local

Schmidt coefficients and local Schmidt basis of subsystem (k), respectively. The pure states
{|Ψη(t)⟩}η orthonormality implies that∑d(1)

q,j=1 λβj(t)λαq(t)⟨φ(1)
αq (t)|φ(1)

βj (t)⟩⟨φ(2)
αq (t)|φ(2)

βj (t)⟩ =
δαβ and, therefore, the normalization ∑d(1)

j=1 λ
2
ηj(t) = 1 for all η, also the orthonormality

of the local basis elements assure that ⟨φ(k)
ηα (t)|φ(l)

ηβ(t)⟩ = δklδαβ. Besides, since each ηth
set {|φ(k)

ηj (t)⟩}j constitute a possible basis for the same Hilbert space H(k), any pair of
Schmidt basis for a given subsystem should be unitarily related, such that

|φ(k)
ηj (t)⟩ = T̂ (k)

ηα (t)|φ(k)
αj (t)⟩, (3.182)

where T̂ (k)
ηα (t) = ∑d(k)

m=1 |φ(k)
ηm(t)⟩⟨φ(k)

αm(t)|, T̂ (k)
αη (t) = T̂ (k)†

ηα (t) and T̂ (k)
ηα (t)T̂ (k)†

ηα (t) = 1̂(k).

Concerning the subsystems representations, for each possible pure state |Ψη(t)⟩ of
the whole, one can find the local states by the usual procedure of partial tracing their
complementary degrees of freedom, such that σ̂(1,2)

η (t) ≡ tr2,1{σ̂(0)
η (t)}. Thus, as expected,

σ̂(1)
η (t) =

d(1)∑
j=1

λ2
ηj(t)|φ

(1)
ηj (t)⟩⟨φ(1)

ηj (t)|, (3.183)

σ̂(2)
η (t) =

d(1)∑
j=1

λ2
ηj(t)|φ

(2)
ηj (t)⟩⟨φ(2)

ηj (t)|, (3.184)

where the eigenvalues and eigenvectors are given by the Schmidt coefficients squared
{λ2

ηj(t)}j and Schmidt basis {|φ(1,2)
ηj (t)⟩}j, respectively. Notice that Eqs. (3.183, 3.184)

above do not describe the total local states, in the sense that they only represent the possi-
ble local density operators obtained from the whole distribution of pure states {Pη, |Ψη(t)⟩}η.
This also characterizes a subensemble of local representations {Pη, σ̂

(1,2)
η (t)}η, such that

the total local states are simply given by the averages

ρ̂(1)(t) ≡ tr2{ρ̂(0)(t)} =
d(0)∑
η=1

Pησ̂
(1)
η (t), (3.185)

ρ̂(2)(t) ≡ tr1{ρ̂(0)(t)} =
d(0)∑
η=1

Pησ̂
(2)
η (t). (3.186)

In short, every possible pure bipartite state from the mixed ensemble presented in Eq.
(3.179), give rise to a pair of local density matrices σ̂(1,2)

η (t) in such a way that the entire
local states are given by the distribution portrayed in Eqs. (3.185, 3.186) above.

3.8.1 Schmidt basis dynamics and local effective Hamiltonians

Next, following the same reasoning used in Section (3.2), we are interested in a local
dynamical description for the set of Schmidt basis {|φ(1,2)

ηj (t)⟩}η,j. At any time interval
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[t0, t1], instead of having a single curve associated with the whole system time-evolution,
now we have an ensemble of possible trajectories {P(0)

η : |Ψη(t)⟩, t ∈ [t0, t1]}η in the total
Hilbert space H(0). Thus, just like before, each path can be mapped into two coupled
trajectories P(1,2)

ηj : |φ(1,2)
ηj (t)⟩, t ∈ [t0, t1] followed by the Schmidt basis in their own Hilbert

spaces H(1,2), and the paths of the Schmidt coefficients, Pλ
ηj : ληj(t) ≥ 0, t ∈ [t0, t1], such

that λ2
ηj(t) ∈ [0, 1] for all j and η, and ∑d(1)

j=1 λ
2
ηj(t) = 1. Clearly, the whole time-evolution

is fully characterized by the initial states {|Ψη(t0)⟩}η and the unitary operator Û(t, t0)
through Eq. (3.180), i.e., every possible initial condition will be time-evolved under the
same generator. Nevertheless, the local dynamical behaviours will definitely depend on
the whole pure state in question.

Let us define the local dynamical maps Ũ (k)
η : H(k) → H(k) (k = 1, 2) associated

with the time-evolution of each ηth path from {P(k)
ηj }j, in a way that every Schmidt basis

ket continuously follows
|φ(k)

ηj (t)⟩ = Ũ (k)
η (t, t0)|φ(k)

ηj (t0)⟩, (3.187)

for any t ≥ t0, with lim
t→t0
|φ(k)

ηj (t)⟩ = |φ(k)
ηj (t0)⟩ or lim

t→t0
Ũ (k)

η (t, t0) = 1̂(k). This time-evolution
operator is unitary, Ũ (k)†

η (t, t0)Ũ (k)
η (t, t0) = 1̂(k), and should satisfyao

iℏ
d

dt
Ũ (k)

η (t, t0) = H̃(k)
η (t)Ũ (k)

η (t, t0), (3.188)

where H̃(k)
η (t) = H̃(k)†

η (t) ∈ L(H(k)) is a hermitian and possibly time-dependent operator.
Then, from Eqs. (3.187, 3.188) we have

iℏ
d

dt
|φ(k)

ηj (t)⟩ = H̃(k)
η (t)|φ(k)

ηj (t)⟩, (3.189)

for all j and η. It is clear that H̃(k)
η (t) is the time-translation generator of the Schmidt

basis {|φ(k)
ηj (t)⟩}η,j and the ηth local effective Hamiltonian for subsystem (k) linked with

the state σ̂(k)
η (t). As before, this operator can be simply cast as

H̃(k)
η (t) ≡ iℏ

d(k)∑
j=1

d

dt
|φ(k)

ηj (t)⟩⟨φ(k)
ηj (t)|. (3.190)

Thus, essentially, we have a collection of local operators {H̃(k)
η (t)}η associated with the

subensemble of local states {σ̂(k)
η (t)}η. Interestingly, from Eq. (3.182), one can also show

that all possible local effective Hamiltonians can be directly related as follows

H̃(k)
η (t) = T̂ηα(t)H̃(k)

α (t)T̂ (k)†
ηα (t)− iℏT̂ηα(t) d

dt
T̂ (k)†

ηα (t). (3.191)

Also, for every η, one can break down Eq. (3.190) into the contributions of the local
bare Hamiltonian Ĥ(k) and the by-products of the interaction term Ĥint. Using the spectral
ao See Section (3.2) for more details.
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decomposition from Eq. (3.15) and defining the projection ⟨b(k)
j |φ

(k)
ηl (t)⟩ := r

(k)
jηl(t)e− i

ℏ b
(k)
j t,

one can rewrite the local effective Hamiltonians as

H̃(k)
η (t) = Ĥ(k) + Ĥ

(k)
LS;η(t) + Ĥ

(k)
X;η(t), (3.192)

where

Ĥ
(k)
LS;η(t) := iℏ

d(k)∑
j=1

d(k)∑
l=1

d

dt
r

(k)
jηl(t)r

(k)∗
jηl (t)

 |b(k)
j ⟩⟨b

(k)
j |, (3.193)

Ĥ
(k)
X;η(t) := iℏ

d(k)∑
j=1

d(k)∑
m̸=j

d(k)∑
l=1

d

dt
r

(k)
mηl(t)r

(k)∗
jηl (t)

 e i
ℏ

(
b

(k)
j −b

(k)
m

)
t
|b(k)

m ⟩⟨b
(k)
j |. (3.194)

Obviously, these expressions above have the same structure as the ones previously dis-
cussed. However, it is worth mentioning again that the local Hamiltonian time-dependency
is induced by Ĥ

(k)
LS;η(t) and Ĥ

(k)
X;η(t), where the former is a general Lamb-shift-like term

such that [Ĥ(k)
LS:η(t), Ĥ(k)] = 0 for all t and η, and the latter contain only non-diagonal

elements in the bare Hamiltonian basis {|b(k)
j ⟩}j.

3.8.2 Local states dynamics

Although mixed, the whole bipartite system is still assumed to be isolated. Thus,
its dynamic is unitary and expressed by the usual Liouville-von Neumann equation below

iℏ
d

dt
ρ̂(0)(t) = [Ĥ(0), ρ̂(0)(t)], (3.195)

which also implies - as already mentioned - that every pure state from the ensemble evolves
unitarily (Eq. (3.180)) and d

dt
Pη = 0 for all η. Locally, the subsystem’s dynamics is not

unitary and can be simply obtained by partial tracing the equation above, such that

iℏ
d

dt
ρ̂(k)(t) = [Ĥ(k), ρ̂(k)(t)] + trk̄{[Ĥint, ρ̂

(0)(t)]}. (3.196)

where it clearly depends on unitary and non-unitary parts. Nevertheless, given Eqs. (3.179,
3.185, 3.186) we might write similar expressions for each element of the local subensembles
{σ̂(k)

η (t)}η, i.e.,

iℏ
d

dt
σ̂(k)

η (t) = [Ĥ(k), σ̂(k)
η (t)] + trk̄{[Ĥint, σ̂

(0)
η (t)]}, (3.197)

which is similar to Eq. (3.27). Instead, the expression above might be analogously written
as Eq. (3.28), such that

iℏ
d

dt
σ̂(k)

η (t) = [H̃(k)
η (t), σ̂(k)

η (t)] + iℏ
d(1)∑
j=1

d

dt
λ2

ηj(t)|φ
(k)
ηj (t)⟩⟨φ(k)

ηj (t)|, (3.198)

where the commutator is the unitary part, in terms of the effective Hamiltonian - instead
of the bare one - and the remaining element is the non-unitary contribution represented
by the population changes. Along these lines, now, there is a set of parametric curves
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{C(k)
η : σ̂(k)

η (t), t ∈ [t0, t1]}η followed by the subsystem (k) in its respective density operator
space D(H(k)), where the unitary contribution is due to the generators of the Schmidt
basis paths {P(k)

ηj }η,j, and the non-unitary factor is given by the population’s trajectories
{P(λ)

ηj }η,j.

Finally, since both Eq. (3.197) and Eq. (3.198) describe the same dynamics, it
is clear that they must be directly associated. Hence, given Eq. (3.192), both unitary
contributions satisfy the following equality

[H̃(k)
η (t), σ̂(k)

η (t)] = [Ĥ(k), σ̂(k)
η (t)] + [Ĥ(k)

LS;η(t), σ̂(k)
η (t)] + [Ĥ(k)

X;η(t), σ̂(k)
η (t)] (3.199)

and, therefore,

trk̄{[Ĥint, σ̂
(0)
η (t)]} = iℏ

d(1)∑
j=1

d

dt
λ2

ηj(t)|φ
(k)
ηj (t)⟩⟨φ(k)

ηj (t)|+[Ĥ(k)
LS;η(t)+Ĥ(k)

X;η(t), σ̂(k)
η (t)], (3.200)

for all η.

3.8.3 Local effective internal energy

Let us now characterize the energetics within this mixed bipartite quantum system.
The whole system is isolated by hypothesis, thus it does not interact with any other
element, classical or quantum. From an energetic point of view, it means the energy must
be conserved inside the bipartition. Along these lines, the role of total internal energy is
naturally - and unambiguously - attributed to the expectation value of the Hamiltonian
Ĥ(0), i.e.,

U (0) ≡ ⟨Ĥ(0)⟩ = tr{Ĥ(0)ρ̂(0)(t)}. (3.201)

As expected, the unitary time evolution of ρ̂(0)(t) automatically guarantees that this
internal energy is a conserved quantity, such that

d

dt
U (0) = 0. (3.202)

Additionally, given that the whole state is mixed, as shown in Eq. (3.179), one can easily
cast the expectation value above as the following average over the ensemble of pure states

U (0) =
d(0)∑
η=1

PηU
(0)
η , (3.203)

where
U (0)

η ≡ tr{Ĥ(0)σ̂(0)
η (t)} = ⟨Ψη(t)|Ĥ(0)|Ψη(t)⟩ (3.204)

is immediately recognized as the whole’s internal energy relative to the ηth individual
state σ̂(0)

η (t), which also satisfy
d

dt
U (0)

η = 0 (3.205)
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for all η.

Nevertheless, we are interested to understand how exactly the internal energy is
distributed between the bipartition. In this sense, it is clear that we can refer to and
analyse the whole’s internal energy both from the ensemble (U (0)) and pure state (U (0)

η )
perspectives:

3.8.3.1 Pure state level

As discussed earlier, the direct use of the local bare Hamiltonians Ĥ(1,2) as the
proper operators for this task is not satisfactory for general scenarios. Thus, following
the exact same procedure from Subsection (3.4.1.1), we will recognize the local effec-
tive Hamiltonians, H̃(1,2)

η (t), as the representative local operators for characterizing the
physical internal energy of each possible pure state of the whole. Along these lines, since∑d(1)

j=1 λ
2
ηj(t) = 1 and ∑d(1)

j=1 ληj(t) d
dt
ληj(t) = 1

2
d
dt

∑d(1)

j=1 λ
2
ηj(t), we can show that

⟨Ψη(t)|Ĥ(0)|Ψη(t)⟩ = ⟨Ψη(t)|H̃(1)
η (t)|Ψη(t)⟩+ ⟨Ψη(t)|H̃(2)

η (t)|Ψη(t)⟩ (3.206)

for every η, where ⟨Ψη(t)|H̃(1,2)
η (t)|Ψη(t)⟩ = tr{H̃(1,2)

η (t)σ̂(0)
η (t)} = tr1,2{H̃(1,2)

η (t)σ̂(1,2)
η (t)}

is the expectation value of the local effective Hamiltonian concerning the ηth pure state.
Hence, as long we identify

U (1,2)
η (t) ≡ ⟨Ψη(t)|H̃(1,2)

η (t)|Ψη(t)⟩ (3.207)

as the proper local effective internal energy of subsystem (1, 2), every possible element of
the mixed ensemble ρ̂(0)(t) will individually satisfy the energy additivity, such that

U (0)
η = U (1)

η (t) + U (2)
η (t). (3.208)

Besides, given the energy conservation property (Eq. (3.205)), the equation above also
implies that the energy flowing from one subsystem is entirely obtained by the other, i.e.,

d

dt
U (1)

η (t) = − d

dt
U (2)

η (t). (3.209)

Also, since Ĥ(0) = Ĥ(1)⊗1̂(2)+1̂(1)⊗Ĥ(2)+Ĥint and Eq. (3.206), it is straightforward
to show that

⟨Ψη(t)|Ĥint|Ψη(t)⟩ =
∑

k=1,2
⟨Ψη(t)|

(
Ĥ

(k)
LS;η(t) + Ĥ

(k)
X;η(t)

)
|Ψη(t)⟩. (3.210)

3.8.3.2 Ensemble level

However, from the total ensemble perspective, the whole’s internal energy is char-
acterized by Eq. (3.203). Thus, along with Eq. (3.208), we obtain

U (0) = U (1)(t) + U (2)(t), (3.211)
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where the entire local internal energies U (1,2)(t) are simply identified as the averages of
its possible values

U (1,2)(t) ≡
d(0)∑
η=1

PηU
(1,2)
η (t), (3.212)

which is clearly an additive property, such that

d

dt
U (1)(t) = − d

dt
U (2)(t). (3.213)

As expected, these quantities automatically contain both the bare and interaction contri-
butions, i.e.,

U (k)(t) = ⟨Ĥ(k)⟩(t) +
d(0)∑
η=1

Pηtrk{(Ĥ(k)
LS;η(t) + Ĥ

(k)
X;η(t))σ̂(k)

η (t)} (3.214)

where ⟨Ĥ(k)⟩(t) = trk{Ĥ(k)ρ̂(k)(t)}. Additionally, one can generalize Eq. (3.210) and asso-
ciate the expectation value of the interaction term, ⟨Ĥint⟩(t) ≡ tr{Ĥintρ̂

(0)(t)}, with the
local operators Ĥ(1,2)

LS;η(t) and Ĥ
(1,2)
X;η (t), such that

⟨Ĥint⟩(t) =
d(0)∑
η=1

Pη

∑
k=1,2
⟨Ψη(t)|

(
Ĥ

(k)
LS;η(t) + Ĥ

(k)
X;η(t)

)
|Ψη(t)⟩. (3.215)

Notice that the entire local internal energies U (k)(t) showed in Eq. (3.212) are
fundamentally different from the ones presented in Eq. (3.207) associated with each pure
state, U (k)

η (t). While the latter is given by the mean values of local observables, the
former is represented by the averages of these quantities over the whole system’s ensemble.
Thus, even though the local effective Hamiltonians H̃(k)

η (t) represent suitable operators
for individually characterizing the energetics within possible elements of {σ̂(0)

η (t)}η, we
did not yet present appropriate local operators for the entire subsystem’s internal energy.
Along these lines, it is desired to define the operators H̃(k)(t), such that

⟨H̃(k)(t)⟩ = trk{H̃(k)(t)ρ̂(k)(t)} ≡
d(0)∑
η=1

Pηtrk{H̃(k)
η (t)σ̂(k)

η (t)}, (3.216)

or ∑d(0)

η=1 Pηtrk{(H̃(k)(t) − H̃(k)
η (t))σ̂(k)

η (t)} = 0. The simplest way to achieve this is to
guarantee

⟨φ(k)
ηj (t)|H̃(k)(t)|φ(k)

ηj (t)⟩ = ⟨φ(k)
ηj (t)|H̃(k)

η (t)|φ(k)
ηj (t)⟩, (3.217)

for all η and j. As long the equality above is satisfied, the operators H̃(1,2)(t) are qualified
to be the representative observables for quantifying the entire local internal energy, such
that

U (k)(t) = ⟨H̃(k)(t)⟩ = trk{H̃(k)(t)ρ̂(k)(t)}, (3.218)

and U (0) = U (1)(t) + U (2)(t).
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In short, by identifying the local effective Hamiltonians as the operators that char-
acterize the physical local internal energies, we were able to consistently generalize the
expressions presented in Section (3.4) and describe the energetics of general bipartite
mixed quantum systems, both at the individual pure state and ensemble levels. As re-
quired, these energies are additive and locally accessible. Finally, it is worth highlighting
that this procedure is exact and applicable to any setting and regime.

3.8.3.3 Brief remarks

In Section (3.5) it was presented the phase ambiguity inbuilt in the Schmidt de-
composition formalism and explained how this gauge freedom influences our calculations
and the local effective description. Clearly, it would also play a role in the previous expres-
sions. Nevertheless, considering the discussion shown in Section (3.5.2), we are implicitly
assuming the use of the gauges that maintain physical consistency for all the local effective
Hamiltonians.

Besides, as mentioned earlier, the identification of appropriate candidates for in-
ternal energy is a requirement for defining further thermodynamic quantities. Along these
lines, the discussion presented in Section (3.6.3.2) can be entirely imported to the present
context of mixed states. Even though we do not introduce work and heat definitions, it
provides a consistent framework for beginning a discussion concerning general, exact and
symmetrical understanding of work and heat along with any dynamical processes.

3.9 Discussion and summary

In this chapter, it was introduced a novel formalism for describing the energet-
ics within isolated bipartite quantum systems. The formal procedure is based on the
well-known Schmidt decomposition and provides a promising route for properly defining
effective Hamiltonians and characterizing the subsystem’s internal energies in a symmet-
rical fashion. In contrast with current methodology, such a framework is exact and do not
rely on any sort of approximations and additional hypotheses, such as particular coupling
regimes, convenient Hamiltonian structures and specific type of dynamics. Surprisingly,
despite such generality, this description allows the definition of local properties, i.e., quan-
tities accessible by local observations, that recovers the usual thermodynamic notion of
energy additivity. Besides, these expressions also establish a new route for defining further
general thermodynamic quantities to the quantum regime, which is also imperative for
the design and development of functional quantum devices.

Additionally, from a conceptual perspective, the most common procedures found
in the literature of QT are based on semi-classical approaches that are not entirely suit-
able for a general thermodynamic description of fully autonomous quantum objects. The
implicit assumption of a classical agent to externally control and measure the system of
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interest - and potentially even process this information - restricts QT to this particular
semi-classical picture of coherent control where both the quantum nature of the control
fields is unimportant to the system’s dynamics and the system itself does not change
the control’s state. Thus, any QT framework that requires an external agent to perform
any task, such as driving or measuring the system, is fundamentally limited and phe-
nomenological in spirit. The quantization of this entity is an essential step toward the
generalization of QT and the design of autonomous quantum devices. Along these lines,
our formalism does not suffer from this shortcoming and, therefore, contributes to further
understanding of foundational aspects concerning the development of a fully quantum
thermodynamic theory.

The present work focused on the theoretical aspects and viability of the proce-
dure introduced in this chapter. Despite its mathematical consistency and compelling
features, a more rigorous analysis on experimental grounds is necessary to support the
use of our proposal. In this sense, a detailed examination of the potential physical ob-
servations and experiments that one might perform to investigate this framework is
out of the scope of this thesis. However, it is of the author’s opinion that such delib-
eration is crucial for building a robust and meaningful physical theory. Thus, let us
briefly remark on this topic. Essentially, we associate the local effective Hamiltonian,
H̃(k)(t) ≡ ∑d(k)

j=1 ϵ̃
(k)
j (t)|ϵ̃(k)

j (t)⟩⟨ϵ̃(k)
j (t)|, as the observable for characterizing the physical lo-

cal internal energy, U (k)(t), of subsystem (k). These operators, by construction, depend
on the dynamics of the local Schmidt basis and - a priori - can be experimentally recon-
structed once known the time evolution of the local density matrices. Observe that the
emergent energetic time dependency clearly implies that the energy spectra {ϵ̃(k)

j (t)}j is
modified due to the interactions between the subsystems. Notice, however, that this does
not happen if the physical internal energy is associated with the bare Hamiltonians Ĥ(k):
clearly, the expectation values might be changing in time, but that would be a conse-
quence of the local state dynamics since the Hamiltonians are constant for autonomous
systems, i.e., ⟨Ĥ(k)⟩(t) = tr{Ĥ(k)ρ̂(k)(t)}. In other words, as long as the subsystems are in-
teracting, their eigenenergies are affected by their interaction Ĥint. Suppose, for instance,
a qubit interacting with another objectap: on the one hand, the former’s bare Hamiltonian
could be written as Ĥ(1) = 1

2ℏω0σ̂
(1)
z , where σ̂(1)

z is the usual Pauli matrix, and ℏω0 is the
gap between the energy levels; on the other, the local effective Hamiltonian will have the
following general structure H̃(1)(t) ≡ 1

2ℏωeff (t)σ̃(1)
z (t), where σ̃(1)

z (t) is the Pauli matrix
relative to the time-dependent effective eigenbasis and ℏωeff (t) is the time-dependent ef-
fective gap induced by the interaction. Notice that, while in the former, the eigenbasis and
energy spectrum are static, in the latter, they are dynamic. Along these lines, as we know,
the gap structure dictates the energy frequency absorption and emission, and - in principle

ap In principle, it could be as simple as another two-level system, a single photon, or a com-
plicated body.
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- this corresponds to a realistic scenario that could be probed: while the qubit’s effective
Hamiltonian is changing in time due to the interaction, its absorption frequency ωeff (t)
is also being modulated by subsystem (2), in such a way that its interaction capability
with a third party is affected. Similar situations might be constructed considering qutrits
and their energy level structures. Essentially, if such a spectrum modulation is observed,
it would be in accordance with this work’s proposal. Also, it is worth mentioning that
this kind of setting and test might be experimentally feasible in optical and solid-state
setups and NMR, for instance.

In short, we provided a useful and novel framework for characterizing the energetics
within interacting quantum systems. Hopefully, it became clear both the importance of
this kind of task and how they are not easy or trivial questions, especially because several
subtleties should be considered once more foundational aspects are being raised. Finally,
it is - optimistically - expected that these results will also have the potential to motivate
the flourishing of new definitions of quantum work and heat, along with the refinement
of the understanding of the laws of thermodynamics in the quantum realm.
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4 CONCLUSION AND OUTLOOK

Quantum thermodynamics is an exciting and promising research field that will -
certainly - play a pivotal role in the design and development of future quantum-based
technologies. In addition to the purely practical-driven interests, fundamental theoretical
aspects lie at the heart of the intersection of quantum mechanics and thermodynamics.
As mentioned earlier, despite many efforts aiming to extend the well-known laws of ther-
modynamics to the microscopic realm of non-equilibrium and quantum processes, there is
still no unifying and general picture for the theory. Along these lines, some fundamental
questions remain unanswered. Besides, most current proposals rely on regimes and set-
tings that, although familiar to the macroscopic description, are restrictive to our more
ambitious purposes of characterizing the thermodynamics within arbitrary autonomous
quantum systems. The present work belongs to this general context.

In this thesis, we focus on the energetic analysis within isolated bipartite quantum
systems. More specifically, we propose a novel and general formalism for a dynamic de-
scription of the energy exchanges between interacting subsystems. To this aim, instead of
using the bare Hamiltonians, we introduce a new effective operator as being the represen-
tative element for characterizing the local dynamics and internal energy, i.e., the Schmidt
decomposition approach allows the identification of effective Hamiltonians whose expec-
tation values satisfy the desired properties of appropriate definitions of internal energies,
namely being local and additive quantities. Such proposal is independent of the Hamil-
tonian structures (including the interaction term), coupling strengths and other regular
constraints, which establishes a promising route for the thermodynamic analysis of general
autonomous quantum dynamicsa.

The definition of quantum counterparts of classical thermodynamic variables is one
of the core conceptual issues of the field. The identification of quantum thermodynamic
entropy, internal energy, work and heat, along with their relationships, is crucial from a
foundational point of view and of extreme practical relevance for designing and operating
functional quantum devices. Along these lines, our proposal opens up many possibilities
for future investigations. A consistent definition of local internal energy corresponds to the
first and fundamental step toward the definition of other relevant quantities, especially
those directly derived from the energy flow, like work and heat. Consequently, it also
provides the means for helping to establish general quantum versions of the first and
second laws.

Future research will aim at these topics. However, more importantly, it will also
focus on suggesting realistic experimental designs for assessing these quantities and inves-
a The discussions and results introduced in this thesis were presented in (1) after its defense.
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tigating our proposal. As discussed earlier, the local effective internal energies are, a priori,
experimentally accessible properties. Still, further research is necessary for identifying an
appropriate physical setup and the corresponding parameters.

In summary, quantum thermodynamics is a young discipline, and its development
is still a work in progress. On the one hand, it implies that it is a fertile field to explore;
On the other, it also means there is no solid and cohesive foundation yet. In this thesis,
we identify a consistent candidate for quantifying internal energy and provide a simple
framework suitable for the energetic analysis of autonomous quantum systems. The pro-
posed formalism does not assume any approximations or restrictive hypotheses, treat the
bipartitions on equal footing and is completely general.
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