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ABSTRACT

MAZO, P. L. Controlling the interaction via Feshbach resonances in a
dual-species Bose-Einstein condensate: the implementation for potassium. 2020.
73p. Dissertation (Master in Science) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2020.

In this work we document the first measure of Feshbach resonances in our laboratory
utilizing potassium 39 in the state F = 1,mF = 0. We submitted the 39K atoms trapped
in an optical trap to a homogeneous magnetic field in the range of up to 800 Gauss, where
are expected resonances for the species in the |F = 1〉 manifold. Those are the first steps
to come up with a machine capable of using this technique for different and innovative
studies on superfluidity in a mixture of quantum gases. In our case, we use the same pair
of coils both to obtain different magnetic field gradients (phase of MOT and MT), in
anti-Helmholtz configuration, as well as to obtain a homogeneous magnetic field (tuning
the magnetic field around previewed resonance), in Helmholtz configuration. To make this
possible, we have implemented a H-Bridge system, which consists in installing one of the
coils in a system of power switches. We have prepared the atomic cloud since the MOT,
passing through a Gray Molasses stage and reaching our Optical Dipole Trap with 106

atoms at 12 µK where we apply a homogeneous field and perform a loss spectroscopy.
Here we will present the resonances we have obtained and its characterization.

Keywords: Bose-Einstein condensate. Feshbach resonance.





RESUMO

MAZO, P. L. Controlando a interação em um condensado de Bose-Einstein
de duas espécies através das ressonâncias de Feshbach: a implementação para o
potássio. 2020. 73p. Dissertação (Mestrado em Ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2020.

Nesse trabalho documentamos as primeiras medidas das ressonâncias de Feshbach em nosso
laboratório utilizando o potássio 39 no estado F = 1,mF = 0. Nós submetemos os átomos
de 39K aprisionados em uma armadilha óptica a um campo magnético homogêneo com um
alcance de 800 G, onde é esperado que estejam as ressonâncias de Feshbach para a espécie
atômica nos estados com |F = 1〉. Estes são os primeiros passos para compormos uma
máquina capaz de usar esta técnica para diferentes e inovativos estudos em superfluidez em
uma mistura de gases quânticos. Em nosso caso, nós usamos o mesmo par de bobinas para
tanto obter diferentes gradientes (estágios de MOT e MT) em anti-Helmholtz, tanto para
gerar um campo homogenêo em configuração Helmholtz (sintonizando o campo magnético
nas ressonâncias ditas). Para tornar isto possível, nós implementamos uma ponte-H, que
consiste na instalação de um sistema de interruptores de energia em uma das bobinas
do par. Nós preparamos a nuvem atômica desde o MOT, passando pelo estágio da Gray
Molasses e chegando na armadilha dipolar óptica com 106 átomos na temperatura de 12
µK onde aplicamos o campo homogêneo e performamos a espectroscopia de perda. Aqui
nós apresentaramos as ressonâncias que medimos e a caracterização feita.

Palavras-chave: Condensado de Bose-Einstein. Ressonâncias de Feshbach.
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1 INTRODUCTION

Since the first obtaining of a Bose-Einstein Condensate (BEC) in 1995,1 ultracold

atoms systems have received considerable attention among physicists. This type of system

shows a enormous potential with a high degree of control, and ultra-low temperatures

provide an ideal system for studying quantum phenomena. The quantum aspects of the

matter are finally exposed in a macroscopic scale in the BEC, where there are still so

much to be learned. Double species experiments add a new degree of both difficulty and

possibility where the interaction between the species makes the problem more complex

and interesting.2−4 The discovery of Feshbach resonances5,6 and how it can manipulate all

the system’s interactions simply by changing the magnetic field opened a new horizon of

possibilities where all types of behaviours finally can be studied and (hopefully) understood.

In our laboratory, in the Center of Optics and Photonics in IFSC, we have developed

various experiments towards Bose-Einstein Condensation of sodium7−9 and rubidium10−13

for many years. We have explored different aspects of collective excitations, thermodynamics

in a trapped sample, vortex formation, and the achievement of quantum turbulence in

ultracold gases. Looking at the advancing of these studies and going beyond, we invested

in a system capable of obtaining a double condensate of sodium and potassium in recent

years. This system intends to explore aspects such as phase separation, miscibility effects,

and exploration of equilibrium systems, vortex formation, and quantum turbulence.

The main focus of this work is the tool capable of changing the interactions by

a simple knob, the Feshbach resonances, where we document the implementation of

the technique with the results obtained with the basic theory necessary to understand

the physics behind it. Going from scattering theory to the different ways of tuning the

resonances and finally showing the experimental results of the implementation of the

technique. Although the experiment involves two species, this work will focus only on

potassium, where we centralize the Feshbach tests. We will insert sodium in the near

future. In the meanwhile, only one species is enough to guarantee the functionality of the

technique.

In the second Chapter, we present a review of the collision and scattering theory.

We go from the classical atom colliding with the quantum system of particles, giving
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special attention to the scattering length, which will have great importance later. Then,

we go to the Chapter 3 - The Feshbach resonances, where we give a brief introduction on

the subject, first observed in nuclear physics, and then explain the famous two channel

model. A simple "toy model" is used to give a better intuition about the phenomenon,

presenting a few ways to detect a Feshbach resonance experimentally. Furthermore, we

show the resonances listed for potassium 39 and how we plan to detect them. A brief

explanation of the miscible and immiscible phenomenon is given to motivate the future

work on a double species BEC.

In the Chapter 4 we present the laser setup used, with all the transitions and

set-ups necessary in the laboratory. The instrumentals used in the tuning of the resonances

is explained in detail. In Chapter 5 we show the results, going through all the steps from

the beginning of the sequence to the Optical-Dipole Trap (ODT), where the resonances

were tuned. We do a loss spectroscopy measurement and compare the effects of the change

in the interaction by measuring lifetime of the atoms on the ODT in different situations.

In conclusion, we compact the results and talk about the current state of the experiment

and the prospects.
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2 SCATTERING THEORY

Before we start on the theory behind the Feshbach resonances, a solid understanding

of atomic collisions and scattering theory is necessary. In this Chapter, the reader will

be reviewing some basic concepts that will be of great importance later. We start with

the classical theory of collisions, and we transition to the quantum realm, talking about

the scattering properties; the Hamiltonian utilized to the famous Lippmann-Schwinger

equation. Finally, we go to low temperatures, focusing on the cross-section and scattering

length. These two terms will be essential throughout the whole dissertation.

2.1 A colliding system: the channels of a collision

Figure 1 – The scattering process. A beam of collimated particles coming through a dispenser is
colliding with a barrier. A fraction of the particles is scattered and the rest remains
in the beam.

Source: By the author

The collision process can be described with two elements: the incident particle (or

particles) and the scatterer (figure 1). When considering one type of incident particle and

one scatterer, the collision process can be written in the following way:

A+B → C +D

Let us say A is the incident beam of particles, and B is the scatterer. The different
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configurations of A+B constitutes the entrance channel, and the states of C+D constitutes

the exit channel. C + D can be many things; in an elastic collision, C + D would be

the same as A+B that started the collision, with the scatterer not interfering with the

incident particle’s energy or state. Similarly, the final state can have only one element C if

the particle and scatterer were fused during the collision. The incident particle can also

explode into six pieces by the scatterer; the final state would be C+D+E+F +G+H+J

counting the scatterer.

To characterize the collision, we can talk about the channels of the collision. A

channel is the possible mode of fragmentation of the system during the collision.14 Since

the definition of the channels can involve some arbitrariness; one must be careful. Different

states can be amounted into one channel or treated separately depending on the aspect of

interest. One can treat the different excited states as different channels when treating with

collisions, for example. In an elastic collision, the system remains in the initial channel.

When a particular channel is energetically accessible, we call it an open channel, while the

channels forbidden by energy conservation will be called a closed channel. This will be

important when discussing the two-channels model for Feshbach resonance in the next

chapter.

2.2 The cross section of a collision

One concept of great importance in our studies is the variable known as the collision

cross section. The cross-section can be defined by the ratio of the number of certain events

in a collision per unit time and per unit scatterer. To illustrate this concept, we shall look

closely at a simple collision case where we have a beam of particles A with a sufficient

number of particles with nearly parallel directions with the velocity peaked around a

specific value vi. If we call the cross section of the beam S and the number of particles A

per unit volume na, we can write the flux of particles as:

Φa = navi = Na

S
(2.1)

Where Na is the number of particles reaching the target per unit time. If we assume a

target with thickness, l, sufficient small (a barrier of the scatterer particle B) and call nb
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the density of the particles in the barrier, we can write accordingly:

Nb = S · l · nb = S · n′b (2.2)

The quantity Nb is the average number of particles B in the region of the beam of particles

A, n′b is the particles B’s surface density. Under these conditions, we can see intuitively

that the total number of particles A Ntot interacting with the scatterer is proportional to

the flux of particles A and the total number of scatterers B. We may write:

Ntot = Φa · Nb · σtot (2.3)

Where σtot is called the total cross section of the collision and has the dimension of an

area, this quantity can be thought of as the "effective area" where the interaction can

occur within the beam. However, one should not infer that it is directly correlated with

the particles geometrical properties. Defining Ptot = Ntot/Na as the probability that an

incident particle will interact with the scatterer, from equations 2.1 2.2 2.3):

Ptot = n′b · σtot (2.4)

How the collision interactions will take place (or if it will interact at all) will be dictated by

the total cross section, which will depend on intrinsic properties of the system A+B and

the energy of the particles that will or will not be scattered. A more profound discussion

will occur later, but now it would be useful to have the cross section as a differential. We

will consider the laboratory flame of reference (illustrated in figure 1) and elastic collisions

only.

dN = Φa · nb · σ(θ, φ)dΩ (2.5)

Where we write the differential cross section:

σ = dσ

dΩ (2.6)
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The elastic cross section is obtained by integrating the differential elastic cross section

over all scattering angles:

σtot =
∫ dσ(θ, φ)

dΩ dΩ =
∫ 2π

0

∫ π

0

dσ(θ, φ)
dΩ sin(θ)dφdθ (2.7)

2.3 The interatomic potential

Considering our case of interest that is the collision of cold neutral atoms, the

interaction between them will be an induced dipole-dipole interaction, with a Van Der

Waals type of potential: Attractive at long distances and very repulsive at short distances

(see figure 2). For large distances, the interaction will become more and more negligible.

After a certain point (called the Van Der Waals length15) the wavefunction is unaffected

by the potential with good approximation.

Figure 2 – The Van der Waals potential.
Source: Adapted from CALLISTER.16

The exact format of the potential is subject to the atoms’ internal states in question,

and different internal states can have multiple molecular potentials associated. These

molecular potentials are closed channels; they support at least one bound state and are

energetically inaccessible by the atoms during a collision.
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2.4 A two-body problem

Now we shall look more directly into a collision of two particles, treating the

non-relativistic collision and scattering through a potential V (r). The potential depends

on the relative motion of the two particles colliding. We will do the first to separate the

problem into two parts: one corresponding to the relative motion between particles and one

corresponding to the center of mass in the laboratory reference frame. We will assume the

system to have reached a stationary state and relate the cross section to the asymptotic

behaviour of the standing wave function.

Considering particle A with corresponding position and mass ~ra and ma and do

the same for particle B (~rb and mb) and considering the potential between then to be

depending only on the relative position between particles (~ra − ~rb) we can write the full

Hamiltonian of the system:

(
−
~2∇2

ra

2ma

−
~2∇2

rb

2mb

+ V (~ra − ~rb)
)

Ψ(~ra, ~rb) = EΨ(~ra, ~rb) (2.8)

Where E is the total energy of the system and Ψ(~ra, ~rb) the stationary wave function, ~ is

the planck constant divided by 2π, µ is the reduced mass of the two particles, φ is the

wave function, V (r) is the potential energy between both particles and ∇2
r is the Laplace

operator. By changing variables ((ma~ra +mb~rb)/(ma +mb) = ~R, µ = mamb/(ma +mb),

~r = ~ra − ~rb and M = ma +mb) we can write the Hamiltonian as:

(
−~2∇2

R

2M − ~2∇2
r

2µ + V (~r)
)

Ψ(~r, ~R) = EΨ(~r, ~R) (2.9)

Then we can perform a separation of the wave function Ψ(~r, ~R) = φ(r) · ψ(R) since the

Hamiltonian have a complete set of solutions in this form and the potential depends only

on ~r. Now we separate the Hamiltonian into two time-independent Schrödinger’s equations:

−~2∇2
R

2M ψ(~R) = ECMψ(~R) (2.10)

and (
−~2∇2

r

2µ + V (~r)
)
φ(~r) = Erelφ(~r) (2.11)

with E = ECM + Erel. We have successfully transformed a two-body problem into two
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one-body problem. Equation 2.10 is the Hamiltonian of a free particle with the coordinates
~R and mass M while the equation 2.11 is the Hamiltonian of a wave function φ(~r) with

mass µ in the presence of a potential V (~r). Now the problem of scattering is reduced to

the interaction of a particle with reduced mass µ and relative position ~r by a potential

V (~r).

2.5 The Lippmann-Schwinger equation

Now that we have separated the problem into two one-body problem we can focus

on solving equation 2.11 that is typically the Schrödinger equation for a particle in the

presence of a potential V (r). One relevant assumption being made here (that will be shown

later to be correct) is that the collision is indeed elastic. The initial assumption implies

that the solution of the Schrödinger equation shown above has the same eigenvalue of the

energy of a free particle:

HΨ(~r) =
(
−~2∇2

r

2µ + V (~r)
)

Ψ(~r) = EΨ(~r)

HFreeΦ(~r) = −~2∇2
r

2µ Φ(~r) = EΦ(~r)
(2.12)

We are looking for a solution that when V → 0⇒ Ψ(~r)→ Φ(~r) since we have a

continuous energy spectra.17 It can be verified (apply E −HFree to both sides) that the

solution is:

|Ψ〉 = 1
E −HFree

V |Ψ〉+ |Φ〉 (2.13)

Since E is an eigenvalue of HFree we make the denominator "a little complex" to avoid any

possible divergence:

|Ψ〉 = 1
E −HFree ± iε

V |Ψ〉+ |Φ〉 (2.14)

Finally 2.14 is the famous Lippman-Schwinger equation. Choosing a representation and

solving this approximating for a large r we have the following solution17:

〈x|Ψ〉 = eik·x

(2π)2/3 −
eikr

r

2m
4π~2

∫
d3x′e−ik’·x’V (x’)〈x’|Ψ〉

= 1
(2π)2/3

[
eik·x + eikr

r
f(k’,k)

] (2.15)
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Figure 3 – Wave dynamics according to the equation 2.15 where we have a wave propagating
towards a barrier and after the collision the wave is divided into two parts: One that
continues propagating to the right and one spherical wave propagating outwards the
barrier.

Source: By the author.

Where f(k’,k) is the amplitude of the part of the wave that was scattered by the

barrier going outwards as a spherical wave (see figure 3). The amplitude f(k’,k) is given

by:

f(k’,k) = − 1
4π (2π)3 2m

~2 〈k’|V |Ψ
+〉 (2.16)

Where Ψ+ is the outgoing spherical wave. It’s useful to define the Transition Operator15,17,18

T̂ such that:

V |Ψ〉 = T̂|Φ〉 (2.17)

The spherical symmetry of the potential V implies that T̂ commutes with both L and

L2 (is a scalar operator). Expanding the amplitude f(k’,k) in the spherical wave basis

|E, l,m〉:

f(k’,k) = − 1
4π (2π)3 2m

~2 〈k’|T̂|k〉

= − 1
4π (2π)3 2m

~2

∑
l,m,l′,m′

∫ ∫
dEdE ′〈k’|E ′, l′,m′〉〈E ′, l′,m′|T̂|E, l,m〉〈E, l,m|k〉

= −4π2

k

∑
l,m

Tl(E)
∣∣∣∣∣∣
E=~2k2/2m

Y m
l (k̂’)Y m†

l (k̂)

(2.18)

It is helpful here to define the parameter "partial-wave amplitude" fl(k) as follows:17

fk(k) = −πTl(E)
k

(2.19)
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Now we can write:

f(k’,k) = f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos(θ)) (2.20)

Where Pl are the Legendre Polynomials. Now we can rewrite eq. 2.15 utilizing 2.20 and

writing the plane wave as a sum of spherical waves14 and we have (for large r):

〈x|Ψ〉 = 1
(2π)3/2

[
eikz + f(θ)e

ikr

r

]

= 1
(2π)3/2

[∑
l

(2l + 1)Pl(cos(θ))
eikr − e−i(kr−lπ)

2ikr +
∑
l

(2l + 1)fl(k)Pl(cos(θ))
eikr

r

]

= 1
(2π)3/2

∑
l

(2l + 1) Pl2ik

[
[1 + 2ikfl(k)]e

ikr

r
− e−(kr−lπ)

r

]

(2.21)

Now we can begin to understand what is happening in the scattering process. In the

absence of the scatterer, we have only a plane wave propagating, which can be written as

a sum of spherical waves outgoing and incoming, as seen in eq. 2.21. The scatterer will

only change the coefficient of the outgoing wave (1→ 1 + 2ikfl(k)) where the incoming

wave remains unaffected.

Defining Sl ≡ 1 + 2ikfl(k) and observing in eq. 2.21 that it is changing the phase of

the outgoing wave in the collision process, we can call it Sl = e2δl (2δl is the phase where

the factor 2 is conventional and δl is a function of k) and write17:

fl = Sl − 1
2ik = eiδlsin(δl)

k
(2.22)

We can rewrite eq. 2.20 for a different expression for f(k, θ):

f(k, θ) = 1
k

∑
l=0

(2l + 1)eiδlsin(δl)Pl(cos(θ)) (2.23)

2.6 The scattering cross section

As seen in the previous section, a scattered wave can be written as a sum of a

spherical wave going outwards the barrier and a term where is the original wave unaffected

(equation 2.15). The scattering cross section will be the fraction of the original wave that
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was scattered.15 In order to obtain the cross section defined in eq. 2.6 we will look to the

density flux j(r) associated with the Schrödinger equation

j(r) = ~
2mi [Ψ∗(r)∇rΨ(r)−∇rΨ∗(r)Ψ(r)]

= Re

[
~
mi

Ψ∗(r)∇rΨ(r)
] (2.24)

That satisfies the continuity equation:

∇r · j + ∂ | Ψ |2
∂t

= 0 (2.25)

Since we are considering to have a stationary system, we don‘t have a variation of

the density with the time, so the equation reduces to:

[
∂

∂r
r̂ + 1

r

∂

∂θ
θ̂ + 1

rsinθ

∂

∂φ
φ̂

]
· j = 0 (2.26)

In spherical coordinates. The flux through a unit area of the incident wave vector k is

given by:

jinc · r̂ = Re

[
A∗A

~
mi

e−ikz
d

dz
eikz

]
= A∗ · A · v (2.27)

The radial flux of the outgoing wave can be written as:

jout · r̂ = Re

[
A∗A

~
mi

f ∗(Ω)e
−ikr

r

∂

∂r

(
f(Ω)e

ikr

r

)]

= A∗Av
| f(Ω) |2

r2 + terms of higher order in 1/r
(2.28)

Now we can write, using the definition of cross section seen in section 1.2, the outgoing

flux of particles passing through a spherical surface element r2dΩ for large r, divided by

the incident flux:
dσ

dΩ =| f(Ω) |2 (2.29)
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Where f(Ω) is the amplitude of the scattered wave. We can write the total cross section:

σTotal =
∫
| f(k, θ) |2 dΩ

= 1
k2

∫ 2π

0
dφ
∫ +1

−1
d(cos(θ))

∑
l

∑
l′

(2l + 1)(2l′ + 1)eiδlsin(δl)e−iδl′sin(δl′)PlPl′

= 4π
k2

∑
l

(2l + 1)sin2(δl)

(2.30)

Now we can solve this equation for the total cross section for different types of particles:15

For bosons: σk = 8π
k2

∑
l even

(2l + 1)sin2(δl(k))

For Fermions: σk = 8π
k2

∑
l odd

(2l + 1)sin2(δl(k))

For distinguishable particles: σk = 4π
k2

∑
all l

(2l + 1)sin2(δl(k))

(2.31)

2.7 Low energy limit: s-wave scattering

At low temperatures (when 1/k is at least comparable with the range of the

potential) terms of high order in l are not considered.18 As seem on figure 4 we can see

that classically atoms with l bigger than zero cannot penetrate the centrifugal barrier for

such l. The effective potential for the l-th barrier is given by18:

Veff (r) = V (r) + ~2

2µ
l(l + 1)
r2 (2.32)

For system at low temperatures the collisions will be for the s-waves (l = 0). From equation

2.31 we can write the cross section for bosons with l = 0:

σ0 = 8π
k2 sin

2(δ0(k)) (2.33)

We define the scattering length

a = lim
k→0

fk = − lim
k→0

δ0(k)
k

(2.34)
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Figure 4 – The Van Der Waals potential in arbitrary units for l=0 (solid line), l=1 (dashed line)
and l=2 (black dotted line). We can observe that the potential has a barrier at some
point r=b where is extremely repulsive and for the l=0 the potential doesn’t have a
maximum and is attractive at long ranges, different from l=1 and l=2. The maximum
creates a barrier where ultra cold gases cannot pass. This illustrates how only the l=0
part (s-wave) contributes to the problem.

Source: BENNO.15

The s-wave cross section is then depend only on the scattering length to first

order:15,18

σ0 = 8πa2 (2.35)

This parameter scattering length is quantifying the strength of the scattering. It is related

to the phase gained in the collision and will be the only parameter necessary to characterize

the interaction in the system.

2.8 The scattering length

As previously said, in an elastic collision between atoms at low temperatures, the

atoms are like waves interacting. After the collision, the emergent waves are similar to

those initially, but a phase δ was obtained, called the phase-shift (see figure 5). In this

low-temperature regime, the acquired phase-shift and the momentum of the wave are

related by:

δ = −ka

The quantity "a" is called the scattering length and can be either positive or negative,
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depending on the pair of atoms’ interaction. This parameter is of great importance in cold

atoms, being the only parameter necessary to characterize the system’s interaction. Atoms

repel when a is positive and attract when a is negative. Also, it adds a degree of control

in the system since it is related to the interaction, and, as will be seen in the next chapter,

it can be changed through a uniform magnetic field.

Figure 5 – The Phase-Shift acquired in the process of collision.
Source: By the author.

For different depths of the potential, the phase shift will differ as the atoms tend to

expend more time together during specific depths (more in the next chapter). This leads

to a different phase shift and, consequently, a different scattering length.
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3 THE FESHBACH RESONANCES

This chapter will focus on the main topic of this dissertation: the Feshbach reso-

nances (FR). We will talk about the different types of FR and other ways to tune them.

The two channels model is used to explain the physics behind the resonances, and the

square well simplification gives a good intuition behind the behavior near the points of

resonance. We discuss effects customarily used to observe it experimentally and show the

spectrum of resonances for our atomic species and its resonances with another alkali metal,

the sodium. The reader can find a more detailed description of the Feshbach resonances

and its various types in the work "Feshbach resonances in ultracold gases".5

3.1 Introduction

The Feshbach resonances were first introduced in the context of nuclear physics,

used to explain the narrow resonances in the total cross section of a scattered neutron. In

1993 Boudewijn Verhaar proposed using this effect to manipulate the interaction in atomic

quantum fluids19 and only in 1998 the effect were observed, first by Inouye et al.6 in an

sodium BEC and in the same year by Courteille et al.20 for ultracold rubidium atoms.This

mechanism rapidly gained popularity in ultracold atoms, where the scattering length is of

great importance as it controls the interaction, as shown in the last chapter.

Today this effect is well known and extensively used in cold atom physics wherein

the presence of resonance the scattering length of the sample can go from −∞ to ∞

allowing a high degree of control over the sample. This effect was observed by several

groups21−24 and has opened tons of possibilities. It can suppress the recombination in

gases with negative or anomalous big scattering length, suppress three-body recombination

in two-component Fermi gases, we can "turn off" the interaction to obtain a theoretical

Bose-Einstein condensate, in addition to many others. With a two atomic mixture, the

system becomes even richer with the possibility of altering the intra-species interaction

and the inter-species, allowing all kinds of dynamics like different miscibility regimes,2,25,26

molecule formation,27,3,28 and more.4
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3.2 The two channels model for Feshbach resonances

A Feshbach resonance is an effect involving multi-channels. In ultracold atoms, the

channels are usually molecular potentials from a hyperfine manifold.29 Nevertheless, the

mechanism behind it can be understood by looking at the coupling between two channels in

a collision, an open channel, and a closed channel (see section 2.1). The colliding particles

interact in the open channel (or entrance channel) with a specific energy threshold E.

Simultaneously, the pair of particles also have a closed channel that allows molecular

states (bound states) but is inaccessible. Usually, each channel corresponds to different

spin configurations and have different magnetic moments. By applying a homogeneous

magnetic field, the channels will be dislocated by different amounts due to the different

magnetic moments. So it is possible to change the relative position of the channels. This

shifting can also be done by light; for more details, refer to Chin et al.5

Figure 6 – Two channels model for the Feshbach resonances. The energy of a bound state in a
closed channel (red curve) approach the threshold energy E in the entrance channel
(black curve) by shifting the relative distance between the channels with a magnetic
field.

Source: CHIN et al..5

If the energy of the mentioned bound state gets close to the atoms’ threshold energy

in the entrance channel, they will stick together more during the collision, affecting the

phase-shift and, consequently, the scattering length. Shifting the relative distance between
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channels can bring the energy of one bound state closes to the threshold energy of the

collision. This effect is known as the Feshbach resonances where the scattering length

will diverge at the point of resonance. The following equation can describe the scattering

length behaviour at the resonance.

a = abg

(
1 + ∆

B −B0

)
(3.1)

where abg is the background scattering length, B0 is the point of resonance and ∆ is

the width of the resonance (in Gauss), measured as the distance between the center of

resonance and the point where the SL reaches zero. The coupling strength between the

two channels will determine the width of the resonance,15 where the better the coupling,

the wider the ∆.

3.3 Modeling the interaction with a square well

In the previous section, we saw the two-channel model and its effects on the

scattering length at the point of resonance. This section will focus on a intuitive way to see

how a bound state affects the scattering length of a collision. By making a simple square

well model, we can understand conceptually how the scattering length is changing. We

will model the collision process with a simple "toy model" as called by Werner.18 Landini

also uses a similar approach in his thesis.30 The model consists of a single potential that

will illustrate the behaviour of the scattering length as the potential between particles

begins to accommodate a bound-state. As we saw in the previous chapter, the scattering

length relates to the phase gained in the collision approximately as:

δ = −ak (3.2)

For R > b we can write the solution of the scattering as a sine wave

Ψ(r, t) ≈ sin(kr + δ) ≈ k(r − a) (3.3)
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Figure 7 – Model to understand intuitively the changes and divergence of the scattering length
close to a Feshbach resonance.

Source: Adapted from SCHULZE.27

We can easily tell the scattering length from this simple approximation by drawing

a tangent line in the wavefunction’s linear part. The point where it cross the x-axis will

give the value of "a". If we have a square well with a depth of V0 not deep enough to

accommodate a bound-state, the tangent line will be somewhere in the negative spectrum.

The moment the potential allows one bound state inside, the tangent line becomes parallel

with the x-axis, giving a = −∞. Making the potential a little deeper, the scattering length

will pass from −∞ to +∞ and end up with a positive value.

This illustrates perfectly a Feshbach resonance, where we have control of the

"deepness" of the potential shifting two internal states potential until a bound state

becomes resonant with the entrance energy. There we have the divergence of the scattering

length.

3.4 Observing a Feshbach resonance experimentally

This section will discuss how we can identify a Feshbach resonance experimentally

and the signatures we should be looking for. There are several ways to do this experimentally,
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and here we will talk about some of them. For more information, refer to Chin et al.5

The most common way to characterize a resonance in cold atom experiments is by

observing the inelastic losses at the points of resonance, where the three-body and twobody

collisions are enhanced. This method has been used for measuring the Feshbach resonances

experimentally for the first time in 1998 by Inouye et al.6 where the resonance was observed

by the enhancement of three-body losses in a Bose-Einstein condensate of sodium (figure

8) and still is a reliable form to observe the Feshbach resonances experimentally. We have

selected this method to observe the resonances in our experiment.

Figure 8 – Loss spectroscopy performed in a BEC of sodium in the first measurement of a
Feshbach resonance experimentally.

Source: Adapted from INOUYE.6

The loss equation in a 3D harmonic trap at temperature T (considering that the

thermalization occurs much faster than the inelastic losses) can be written as:

dn(t)
dt

= −n(t)
τ
− L2n(t)2 − (4/3)3/2L3n(t)3 (3.4)

where the L2 (L3) is the thermally averaged two-body (three-body) loss coefficient, n(t)

is the mean density and τ the one-body lifetime. At low temperatures is shown that the
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three-body rate is proportional to the scattering length with L3 ∝ a4.19 Normally it is

necessary a sufficient large density for this mechanism to be relevant as it is usually very

small (L3 ∼ 10−27cm6/s).29 But with the divergence of the scattering length, it becomes

responsible for most of the losses near a resonance. The two-body process can also lead

to a loss in the trap since the coefficient L2 is enhanced near resonance, and at low

temperatures, it takes a Lorentzian profile. These losses occur due to the release of the

internal energy in the kinetic form in the collisional process, expelling the atoms from

the trap. This release of energy near resonances also reflects in the temperature of the

cloud, where near the resonances can also be observed an increase in the temperature.31 A

weakly dimer state can be achieved by performing a sweep over the resonance point to

the side where the molecular level’s energy is below the dissociation limit, a weakly dimer

state can be archieved.32 For the case of bosons, the atoms are quickly lost from the trap

by inelastic atom-molecule and molecule-molecule collisions.31

The elastic collisions can also show evidence of a resonance. Due to the divergence

of the scattering length, the cross-section of the system will increase drastically, enhancing

the thermalization rate of the cloud. The scattering length can be tuned to zero in the

same form, making B = B0 + ∆ in eq. 3.1, suppressing the collisions in the system. The

lack of collisions will suppress the thermalization causing several losses when performing

an evaporative cooling.

Figure 9 – Height of the photoassociation peaks as a function of the magnetic field revealing the
Feshbach resonance.

Source: Adapted from COURTEILLE.20
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One of the first observation of a Feshbach resonance in a cold atom system was done

by Courteille et al.,20 the Feshbach resonances were identified using radioative spectroscopy.

This technique makes use of blue- or red-detuned light that induces losses by exciting

atom pairs to an excited molecular state. Courteille et al. used a red-detuned beam fixed

in the S → P transition in a experiment of ultracold rubidium atoms observing the height

of the photoassociation near a resonance (see figure 9). In 2003, Chin et al.28 used this

technique with a blue-detuned beam in caesium samples.

3.5 The Feshbach resonances between 39K-39K and 23Na-39K

Our experiment aims to obtain a dual-species BEC of 23Na−39 K with the aid of

Feshbach resonances. Inter-species FR have been observed experimentally in the states

|1,−1〉33 and will be our reference for tuning the inter-species scattering length. Figure 10

shows both the inter and intra-species scattering length in the region of the resonances.

The resonances show many possibilities with a region where the SL of sodium remains at

52a0 allowing a good collision rate and the condensation of the sample becomes possible.

In the same region the inter-species interaction can be changed drastically allowing the

study of the miscibility regimes, that will be talked more on the next section.

Figure 10 – The spectrum of Feshbach resonances between 23Na-39K (blue line), 23Na-23Na
(dashed yellow line) and 39K-39K (dashed orange line) in the state |1,−1〉. The
horizontal dashed lines represent the points of resonance. The little graphic indicates
the range in which the miscibility between the species changes (see text).

Source: Adapted from SCHULZE.33

Since the sodium lasers were under maintenance at the time, this dissertation aims

to characterize the intra-species Feshbach resonances for potassium 39 to prepare the
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system for the dual-species experiment. This characterization will ensure the functionality

of the system, where we can apply the technique mastered in a mixture of sodium and

potassium. The theoretical calculated Feshbach resonances for potassium 39 in the F = 1

manifold are the following:

Table 1 – Theoretical values for the Feshbach resonances for potassium 39 in the F=1 manifold.
The column B0 corresponds to the point of each resonance and ∆ the width.

mF ,mF B0(G) -∆(G)
1,1 25.9 0.47

402.4 52
745.1 0.4
752.4 0.4

0,0 58.8 9.6
65.6 7.9
471 72
490 5
825 0.032
832 0.52

-1,-1 33.6 -55
162.3 37
560.7 56

Source: Adapted from D’ERRICO et al.31

Table 1 shows the points of each resonance along with the corresponding width,

whose signal tells if the scattering length diverges to −∞ or∞ first. In Chapter 5 we present

the resonances we have measured using loss spectroscopy for the pair |F = 1,mF = 0〉

3.6 The miscibility regimes in a double mixture

A big attractive in this mixture is the possibility to tune the miscibility by changing

the inter-species interaction.2 We have two coupled equations in a double-condensate to

describe the system’s evolution, known as the coupled Gross-Pitaevskii equations:34,35,7,27

i~
∂Ψi

∂t
=
(
−~2

2mi

∇2 + Vi(r) + uii | Ψi(r, t) |2 +uij | Ψj(r, t) |2
)

Ψi(r, t) (3.5)
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Figure 11 – An exemplification of the two miscibilities regimes a two specie mixture can have
by altering the inter-species scattering length. In this image the distribution of one
specie is shown in red and the other is shown in yellow, while the overlap of both
species is shown in orange. By altering the u12 in respect to the u11 and u22 we can
pass from a miscible regime to a immiscible. With a u12 negative enough the system
will collapse.

Source: By the author.

Where the index i, j = 1, 2 correspond to the specie 1 and 2 with i 6= j. The

Vi(r) is the trapping potential for the specie i and the terms uii = 4π~2aii/mi, and

uij = 2π~2aij/µij are the mean-field potentials, representing the strength of the intra-

species and inter-specie interaction, respectively. The aij represent the scattering length of

the specie i with the specie j, mi is the mass of specie i and µij is the reduced mass of the

system. The mean-field terms can be controlled using Feshbach resonances, and for different

set of parameters, we can expect different miscibility regimes, with the density distribution

of the species overlapping (miscible regime) or being phase-separated (immiscible regime).

The miscibility can by characterized by:

δg = u11u22 − u2
12 (3.6)

When the interaction of one specie with itself is stronger than the inter-species

interaction (δg < 0) then we have a immiscible regime, where the species begin to behave

like water and oil, spatially separating the two components. Otherwise, if the interspecies

term wins δg > 0, the system will be in the miscible regime. It’s important to note that

we need the intra-species SL to be always > 0 to prevent the collapse of the BECs. Even

in this case, if the uij were set negative enough, the system will collapse as well. The
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little graph in figure 10 represent the δg in function of the magnetic field. We see that

between 100 G - 120 G we can explore the different miscibility regimes in the double

superfluid mixture without collapsing the BECs (both aNa and aK are positive in this

range). Miscibility effects have been observe in several BEC experiments36,2,25,26 and will

be explored in our experiment in the near future.
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4 THE EXPERIMENTAL SETUP

In this section we will describe briefly the experimental apparatus necessary to

obtain an ultra cold sample of potassium trapped in an optical trap and the instrumentation

to tune the Feshbach resonances. A complete description can be found in the other thesis

of the group [Castilho et al.,7 Peñafiel et al.9] and also in our recent published paper

[Castilho et al.37] where we describe the full apparatus for trapping both species.

Our system uses one program in Labview to generate the whole experimental

sequence (shown in figure 23). This program sends the commands to a board from National

Instruments that will control all the steps from the loading of the magneto-optical trap

(MOT) to different steps as Gray Molasses (GM), Magnetic trap (MT), and ODT, allowing

the condensation and its study using absorption imaging. In the Chapter 5 we will detail the

sequence to trap the atoms in our optical trap and measure our first Feshbach resonance.

4.1 The vacuum chamber

Figure 12 – The drawing of the vacuum system.
Source: CASTILHO.7

The vacuum system is probably the part that had changed the least over the time.

Here we describe the main characteristics of our system and for more details the reader is

advised to check the other thesis of the group.
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Our vacuum system consists of three chambers, each being pumped by an ionic

pump with pressures below 10−9 Torr. The two side chambers are directly above the

atomic oven for each specie (see figure 12). The oven provides an atomic beam into each

side chamber where the atoms are trapped in two-dimensional magneto optical traps (2D

MOTs), where the configuration was inspired by the work in.38 The K oven is set at 120
◦C and is connected to a timer programmed to turn on each day two hours before we

arrive at the laboratory, ensuring a good atom flux at the beginning of the day.

Figure 13 – Sectional view of the Science Chamber.
Source: By the author.

Both side chambers are connected to a central chamber (the Science Chamber) by

gate valves. An atomic flux coming from the 2D chambers enter in the SC though the

differential pumping tubes, this configuration allows a lower pressure in the SC ensuring a

good lifetime of the atoms in our trap. The atoms are first loaded in a 2D MOT and are

pushed to the main chamber through a red-detuned beam called the "push" beam. Once

in the Science Chamber, the atoms are trapped by three counter propagating beams in a

region with a quadrupolar magnetic field provided by the pair of coil in anti-Helmholtz

configuration (the 3D MOT). The pair of coils (the Quadrupole/Feshbach Coils) are

protected by a case that allows a constant flux of cold water to flow and prevent excessive

heating. This case is coupled to the main chamber maintaining the pair of coils close to
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anti-Helmholtz configuration. For fine adjustment of the magnetic field we have three pair

of little compensation coils allowing us full spatial control of the point of zero field.

4.2 The laser system for 39K

We have three lasers for potassium, two for the D2 transition (one for each Cooling

and Repumper transition) and one for the D1 transition. A closed cooling transition is

made in the D2 line where the cooling frequency (|F = 2〉 → |F ′ = 3〉) provides a molasses

region for the MOTs and the Repumper frequency (|F = 1〉 → |F ′ = 2〉) ensures that

the atoms stays in the cycle. One difficulty we have with the potassium specie is the

separation between the hyperfine states in the D2 line (38.8 MHz for 39K), so in order to

maintain a closed transition is needed more repumper light. The D1 transition is necessary

for the Compressed MOT hybrid and for the Gray Molasses stage,,39 the latter is where

the sample is cooled below the doppler limit. A dissertation focusing on the Gray Molasses

stage is being written by our master student Edward Iraita and will be available soon. The

natural line width is 6.035 MHz for the D2 transition and 5.956 MHz for the D1 transition.

The frequencies used in the experiment and their respective locking points are illustrated

in figure 14.

For a each transition (D2 and D1) we lock our frequencies based on the dispersion

signal obtained by the saturated absorption technique. In a potassium vapour cell containing

the atomic sample, we input two counter-propagating beams named pump beam and

probe beam. The pump beam has a higher intensity and will saturate the transition for

the atoms within a certain group velocity (the atoms won’t be able to absorb more light).

On the other hand, the probe beam will excite another group velocity due to the doppler

effect, but will see a "hole" associated with the atoms absorbing the pump beam that

could also can absorb the probe beam. These atoms have its velocity close to zero along

the direction of propagation of the beams and are a good reference for the transition.

The signal is collected by a fast photodetector, which send the absorption signal to the

Digilock module by Toptica. With the signal we generate a dispersion and lock the laser

in frequency, from the ground state crossover to the 1st excited state crossover.

Since the atoms require a lot of power due to the small hyperfine splitting, it was

necessary to build two homemade Master Oscillator Power Amplifier (MOPA),7 with this,

the light is amplified before injecting it into the optical fibers that guides light to the
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Figure 14 – Frequency scheme for potassium 39.
Source: Adapted from CASTILHO.7

vacuum chamber. We use one MOPA for the 2D MOT (called 2D MOPA) and another

for the 3D MOT (3D MOPA) where is injected a total of 45 mW summing the Cooling

and Repumper light. The input ratio can be controlled by a wave plate right before the

MOPA and we can see the output ratio on a Fabry-Perot cavity where we inject a little of

the 3D light. The ratio is optimized in the waveplate choosing the value that enhances the

MOT signal of fluorescence. Coming out of the optical fiber we have 310 mW of the 3D

light and around 300 mW of 2D light. In the stage of Gray Molasses when the D2 light is

turned off the D1 light is injected in the MOPA 3D for a output power of 310 mW. Table
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2 shows the power and frequency of the light used in the MOT stage. For the push beam

we use the light from the 2D MOT with a power of 300 µW .

Table 2 – Light detuning and power for the MOT stage

Light Detuning (MHz) Power (mW)
Repumper 3D -36 50
Cooling 3D -31 260
Cooling 2D -21 150

Repumper 2D -18 150

Source: By the author.

Since there is the possibility to work with another potassium isotope (the potassium

41) we build the absorption system able to rapidly switch between the isotopes. We built

two tracks the beam can travel with Acoustic Optical Modulators - AOMs set at different

frequencies. Using a waveplate we can quickly switch the tracks, transitioning the absorption

signal from one isotope to the other if needed.

4.3 The Optical Dipole Trap setup

In order to explore the properties of interaction tuning in both atomic species,

together and individually, we need to change to a pure optical trap. In the first stage of

the experiment we use the well known MOT technique, which combines a magnetic field

in anti-Helmholtz configuration with three red detuned counter propagating beams. This

technique allow us to confine the atoms in a small region of space (in the order of 1 mm)

with a number of approximately 108 atoms of potassium and 7× 109 atoms of sodium in

our experiment.

However, the Feshbach resonances technique utilizes a uniform magnetic field, that

is not compatible with the gradient used in the MOT. For this reason we need to transfer

the atoms to an Optical Dipole Trap.7,40 This kind of trap can confine neutral atoms by

purely optical means and is a indispensable tool for our purposes.

An atom placed in a focused laser beam will obtain a induced dipole moment

~p(t) = α~E(t) caused by the electric field of the light, with α being the complex polarizability

of the atom. The potential describing the interaction of this induced dipole with the electric
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field can be written (under certain coditions) as:40

VDip = 3πc2

2ω3
0

(
Γ
∆

)
I(~r) (4.1)

Where c is the speed of light, ω0 is the angular frequency of the atomic transition,

∆ is the detuning between the laser beam and the atomic transition, I(r) is the intensity

profile and Γ is the resonant damping rate. For a red-detuned beam (∆ < 0) this potential

will have it’s minimum at the focus point, where the confining will take place. One

disadvantage of this type of trap is the necessity of high intensity since the usual depths

are very shallow (a few 10 µK deep).

In the case of a focusing Gaussian beam propagating in the x direction, we can

write the expression for I(r, x):

I(r, x) = 2P
πw2

0(1 + (x/xr)2)exp
(

−2r2

w2
0(1 + (x/xr)2)

)
(4.2)

Where P is the power of the laser, w0 is the radius at the focus (called the beam waist), r

is the radial profile and xr = πw2
0/λ is the Rayleigh length of our laser, the length along

the propagating axis where our beam radius increases from w0 to
√

2w0. Our configuration

uses two orthogonal beams (propagating along the x and y direction) crossing at the focus

point: the center of our trap. The expression then becomes

VDip = 3πc2

2ω3
0

(
Γ
∆

)
(I1(x, y, z) + I2(x, y, z)) (4.3)

with Ii, i = 1, 2 the intensity of each beam described in equation 4.2. By performing the

harmonical approximation we can write this expression as41

V (x, y, z) ' 3c2Γ
ω3

0∆

(
P1

w2
1

+ P2

w2
2

)
+ m

2 (x2ω2
x + y2ω2

y + z2ω2
z) (4.4)

The index 1,2 refer to each arm and the terms (ωx, ωy, ωz) are the frequencies of the ODT

in each direction.

The laser used for the optical trap in our experiment is a MEPHISTO laser, capable

of generating 42 W of light at the wavelength of 1064 nm (far red-detuned). The light goes

past an isolator (that prevents any light from coming back) and is divided into two ways,
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Figure 15 – Schematic of the ODT Laser system.
Source: Adapted from CASTILHO.7

each designed to be one arm of the trap. Each arm has an AOM necessary to switch the

light on and off during the experiment and is coupled to an optical fiber. The configuration

of the trap in the SC was improved by making the crossed trap with only one arm (figure

16) improving the total power in the atoms from 10 W to around 20 W. From which

direction the beam is injected can be chosen by a rotating a wave plate before our beam

splitter (figure 15). After the first beam exits the chamber it encounters a waveplate that

either allows the beam to re-enter the chamber or send it to a beam stop. We lost the

ability to control the arms separately but the gain in depth was worth it. We used this

control in our attempt to "clean" the spin in the sample, leaving only one state of the

|F = 1〉 manifold in the trap, discussed later in the results.

The control over the beams also helps in the alignment process, where we first

optimize the number of atoms trapped using one arm then we overlap the first beam with

the second beam and improve the density again. The laser also have a PID system for

power stability in the trap preventing eventual fluctuations that could lead to atom loss.

The waist of each beam in the center is 80 µm and our trap have the depth of around 130

µK. To transfer a good portion of the atoms to the ODT, the depth is necessary to be

at least ten times deeper than the actual temperature of the cloud. Since our atoms are

around 12 µK at the end of the cooling process we managed to obtain a reasonable atom

number in our ODT.
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Figure 16 – ODT system in the Science Chamber as seem from above. A single beam is focused
in the center of the chamber before exiting to re-enter crosswise. We use a little
motor (black square in the figure) capable to rotate a birefringent blade before a
beam splitter (gray square).

Source: By the author.

4.4 Tuning the Feshbach resonances

Usually, in order to tune the interaction via Feshbach resonances, a high homoge-

neous magnetic field is necessary. The spectrum of the potassium resonances we would like

to study ranges from a few Gauss to 800 Gauss (see table 1). In many other experiments,

additional coils are implemented for that purpose. In our case we have decided to use the

H-Bridge technique,35,42,43 where we can have our coils in anti-Helmholtz configuration

for the MOT and Magnetic Trap stages, and switch them to the Helmholtz configuration,

making it possible to scan a uniform magnetic field to access the FR, using the same pair

of coils. Next the quadrupole coils system is detailed with its specifications and the system

implemented to switch from anti-Helmholtz to Helmholtz configuration is shown.
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4.4.1 The quadrupole/Feshbach coils

As mentioned before, the coils responsible for the quadrupole field in our MOT will

be the same used to tune the Feshbach resonances. The coils are placed in a hollow Delrin

support that allows a constant flux of water provided by a chiller at 11 degrees Celsius.

Each coil have an internal radius of 40.4 mm, an inductance of 1.7 mF and were made

with 10 layers of 16 loops of insulated copper wire of 2.18 mm diameter. Each coil has a

resistance of 0.35 Ω and are both placed at 62 mm from each other. In figure 17 (left) we

show the pair of coils inside the support placed for magnetic field characterization, where

the field orientation is in anti-Helmholtz configuration while on the right we have the coils

inserted in the Science Chamber, where we have re-entrant windows allowing the good

proximity of the coils.

Inside the support we also have a pair of little coils that can be controlled inde-

pendently and are used as a compensation field, only capable of translating a little the

center of the quadrupole. The pair of compensation coils are powered by a font lambda

and controlled by a IGBT. The field is directed upwards to agree with the future Feshbach

field and it generates a field of around 1 G in the region of the cloud during the time we

choose on our time sequence.

Figure 17 – Quadrupole coils installed outside the system for field characterization (left) and the
coils coupled in the Science Chamber (right).

Source: By the author.

The quadrupole coils are in a anti-Helmholtz configuration with the field orientation

shown in figure 17. The H-bridge is installed in the bottom coil where the direction of the

electric current will be switched (more on the next section) and we will obtain a Helmholtz
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configuration. The calibration for both regimes are the following:

dBQuad

dz
(z ' 0) = I · 5.34G/A · cm (4.5)

BFesh(z = 0) = I · 16.07G/A (4.6)

Using the package Radia in the Mathematica software we were capable of simulating our

system of coils we obtained a good agreement between the simulation and the measurement

done with a hall probe (figure 18). We have the power supplier Delta Elektronika SM

120-50 controlled by an analogical signal, and the switching process provided by IGBTs

(SKM150GB12T4) controlled by digital signals. All analogical and digital signals are

provided by a National Instruments installed in a computer, and those signals are controlled

by a program made in LabView. All this instrumentation makes possible a time sequence

for different situations in the experiment, as mentioned before.

Figure 18 – On the left (right) we have the plot of the magnetic field obtained by the simulation
done using the Radia package on Mathematica and the measurement along the z
axis using a Hall probe for two different currents in anti-Helmholtz (Helmholtz)
configuration.

Source: By the author.

With this system we are able to obtain a homogeneous magnetic field in the region

of the atoms of around 1000 G, more than enough to explore the whole spectrum of

Feshbach resonances in any of the F = 1 manifold (table 1) and also, the interspecies

resonances between sodium and potassium in the |1,−1〉 state (figure 10). In the next

section we will describe the H-Bridge, the apparatus necessary for the switch of current

during the experiment.
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4.4.2 The control system for the H-bridge

As mentioned before, by simply inverting the orientation of the current in one

of the coils, we can switch the coils configuration from anti-Helmlholtz to Helmholtz,

where we have a uniform field in the region of the atoms. For this purpose we installed

an H-Bridge system. In the Figure 19, we have a sketch of the H-bridge, showing the

switch in the orientation of the current in one of our coils, where L and R represent the

inductance and resistance, respectively, both associated with our coil. A power circuit

enables the current to circulate as indicated for each configuration, illustrated in the left

and right of figure 19. This is possible because we have controlled four power switches,

named as C1, C2, C3 and C4, which are turned on and off alternately, as indicated, to

guarantee each situation in the appropriate step of the experiment. Those power switches

are IGBTs, as the ones mentioned before. Our H-Bridge system was assembled and tested

by the undergrad student Guilherme Neto.

Figure 19 – Schematic figure of the H-Bridge system.
Source: By the author.
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Figure 20 – Block diagram of the chip HIP4080A used in the control of the H-Bridge.
Source: By the author.

For the electronic control we use a chip [HIP 4080A] that serves as a driver for the

power IGBTs [SKM150GB12T4]. Using a digital signal from our National board, we have

choose which pair of IGBT is open or closed. When we send 5 V to the IGBT driver, it

opens the C1 and C4 IGBTs and closes the C2 and C3, and when we send 0 V is the other

way around. By this command we can easily change from one configuration to another.

One important feature of the driver HIP 4080A is that when eventually when the power

supply is neither 0 V or 5 V, but in between, all the gates are open, to secure that we

don’t have any current in the system. We observed that this method of switching OFF

the current was faster than any other configuration tried before. We modified the system

to use this as the turn OFF method. Figure 20 shows the application block diagram for

the full bridge chip HIP4080A used in the control.

Figure 21 – Test of the turning OFF of the magnetic field by the IGBT in the H-Bridge system.
The orange curve corresponds to the oscilloscope, the blue curve to the transducer
and the purple curve to the hall probe.

Source: By the author.
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The H-Bridge system were tested several times before finally being inserted in the

experiment. We have used hall probes and transducers [IT 200-S ULTRASTAB from LEM]

to monitor the current circulating in the circuit. In figure 21 we present the signals showing

how fast was the turning OFF of the magnetic field in the Helmholtz configuration. We

applied 51 A to the coils that was abruptly turned OFF. The digital signal used for that

is the channel 1 in the oscilloscope (orange line). We can see from the other channels

(channel 2 for the transducer and channel 3 for the hall probe) that the falling time is

close to 1 ms. This is considered a good transient time considering the regular TOFs we

use for imaging

4.5 The image table

Next to the Science Chamber we have our image table for the horizontal image

where we have installed our Stingray CCDs. The table was built in a configuration were the

light can go through two paths, with different magnifications each, before reaching the CCD

(see image 22). This configuration is very useful because in different stages of the experiment

we need to have a good resolution on sizes from 1 mm (MOT) to 50 µm (ODT) where we

would lack the resolution necessary to diagnose the image. The image beam is magnified

once it exits the Science Chamber and will follow one of the two paths ahead, depending if

the removable mirror is placed. On path number 1 we have the magnification of 1.66 and the

image from the atoms is focused on the CCD, 250 mm away from the last lens. On path num-

ber 2 the light is demagnified to 0.5 before reaching the CCD, 60 mm away from the last lens.
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Figure 22 – Configuration of the image table. There we can choose between two magnifications
to observe our atomic cloud in the horizontal plane. The beam is magnified after
exiting the Science Chamber and is demagnified on path number 2. With the CCD
on 1 (2) we have a magnification of 1.66 (0.5).

Source: By the author.

Our imaging system consists on the Absorption Imaging Technique, where we shine

a resonant beam into the atoms (light that is later captured by the CCD) and take three

pictures: In the first one, the beam pass through the atoms, which absorbs the resonant

light. The second one is taken without the atoms, and the third picture is taken without

the resonant light, only background noise. After normalizing the image we can obtain the

density profile of our cloud by the Beer-Lambert law, that relates the intensity of a beam

propagating in a certain direction with the density of the medium29,7:

I(x, y) = I0(x, y)e−Λ
∫
n(x,y,z)dz (4.7)

Where I0(x, y) is the intensity of the beam before entering the medium ( propagating in

the z direction), Λ is the transversal section of absorption and n(x, y, z) the density of the

medium. From this equation we can obtain our density profile:

ρ(x, y) =
∫
n(x, y)dz = −1

Λ ln
I(x, y)
I0(x, y) (4.8)

By performing this integration we obtain our atom number. The temperature of the cloud

can be obtained by the "Time of Flight - TOF" technique, where the trap is turned OFF
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and the atoms fall freely for a certain time (called the TOF) before we take the picture.

By performing this for two different TOFs we can analyse how the cloud expand in that

time and extract the temperature form there. After the pictures are normalized we use

a program written in Python to fit the density profile by a Gaussian for the classic gas

expanding or by a bimodal fit for the BEC.
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5 FIRST RESULTS AND DISCUSSION

In this chapter will be discussed the process of obtaining a reasonable amount

of potassium atoms trapped in a pure optical trap and the method used for tuning the

Feshbach resonances in the state |F = 1,mF = 0〉. The first step towards the scanning of

the resonances is the cooling sequence, since our optical potential is very shallow (130 µK)

and we need the sample ten times cooler than that for a good transferring. Some steps of

the sequence had the objective to clean the spin because we originally wanted to leave

only the mF = −1. The whole sequence will be shown with the experimental numbers we

obtained with the difficulty encountered along the way.

5.1 The cooling and trapping sequence for K

Figure 23 – Experimental sequence with the magnetic field and light of each step.
Source: By the author.

The experimental sequence is illustrated in 23. We begin the sequence loading the

potassium atoms in our 3D MOT for 12 seconds, where we obtain 108 potassium atoms

trapped at the temperature of 5 mK. At this stage, our magnetic field is a linear gradient

of approximately 11 G/cm, and we have the same amount of Cooling and Repumper light

where little adjusts are made to optimize the MOT signal of fluorescence. After loading
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the MOT to maximum number, the real sequence occurs. First we have a "Compressed

MOT - CMOT" stage where the gradient increases, and the frequencies are changed lightly.

The next step is also a Compressed MOT stage, but it makes use of both D1 and D2

light. This stage is called CMOT Hybrid and we use the D1 line on the Cooling transition

and the D2 line on the Repumper transition. This configuration allows us to obtain a

even lower temperature. At the end of this stage we have around 7 × 107 atoms at the

temperature of 700 µK.

The next stage is the responsible for the highest increase in the PSD in our

experiment and is known as the Gray Molasses.39 At zero magnetic field and using the D1

transition, the gray molasses use velocity selective coherent population trapping (VSCPT)

and Sisyphus Cooling to cool the atoms bellow the Doppler limit. A full dissertation is

being written about this process by our master student Edward Iraita where the theory

and a more profound discussion will be found. At this stage, the magnetic field is turned

off, and the D1 light is injected in the 3D MOPA, where it is amplified and send to the SC,

where a total of 300 mW is divided in the MOT beams. For maximum cooling efficiency, it

was observed that lowering the intensity of the beams during this stage accomplishes an

even lower temperature for potassium 39.39 By lowering the intensity, we could go from 70

µK to 12 µK. These stages go on for 15 ms and a good image of our atomic cloud can

finally be observed, where we have measured around 12 µK as mentioned before.

The next step is transfer the atomic cloud to the Optical Dipole Trap, where the

Feshbach scan will occur. There are two most important aspects in this transference. A

good mode matching between the atomic cloud and the ODT is necessary for an efficient

transfer; a discrepancy between the sizes will result in losing a big part of the atomic

cloud during the transfer. The temperature of our cloud is another important aspect where

we need a mean temperature which is ten times lower than the potential depth, that is

already shallow, in order to trap a suitable amount of the atoms. We thought of two ways

of proceeding: we could either send the atoms to a pure magnetic trap before transferring

to the ODT or we could send them directly from the gray molasses stage.

Opting for the magnetic trap stage will improve the mode matching since the MT

is highly confining. The MT can also "clean" the spin of the sample (leaving only one mF

state), since for low fields only the |F = 1,mF = −1〉 is low field-seeking, repelling the

|mF = 1〉 while the mF = 0 falls from the trap.
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Figure 24 – Absorption image obtained after the gray molasses. The atoms were expanding freely
for 10 ms. On the left we have the density profiles on the x direction (y direction) in
blue (red).

Source: By the author.

The downside is that the process of transferring the atoms to the MT can be very

perturbative, heating the cloud considerably. Ideally, with the sodium ready, we could trans-

fer both species to the MT and perform an evaporative cooling on sodium using microwave.

Then the sodium can be used as a coolant for potassium in the MT before being transferred

to the ODT. Since the sodium was not available during this work, the best method was trans-

ferring directly from the gray molasses.
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Figure 25 – A horizontal image of the potassium atoms trapped in a pure optical dipole trap.
The scale on the right correspond to the optical density.

Source: By the author.

During the gray molasses stage the cloud is not being confined and is expanding

during the stage, making it difficult to obtain a good mode-matching. We also have the

manifold of the F = 1 state that we need to consider. To "clean" the states of our cloud

we utilized a technique deployed in the work "All-optical cooling of 39K to Bose-Einstein

condensation",44 where we turn ON only one arm of the ODT during the gray molasses

and apply a low field gradient after the GM, repelling the mF = 1 that will escape

along the arm of the ODT. The mF = 0 were supposed to escape through the arms

since it doesn’t have a good confinement in this direction and the mF = −1 will be

trapped in the center of the ODT and captured when the second arm is turned ON.

By performing this sequence only the mF = −1 would reach the ODT stage. Due to

a technical limitation, we couldn’t remove all the power on the second arm during the

first stage, having a leak of around 500 mW on the second arm. After done this process

we measured that 2/3 of the atoms vanished from the trap, indicating the technique

had worked (and it did, but the remaining atoms were mysteriously at the mF = 0). At

the end of the sequence we obtained around 1.6·105 atoms trapped in the center of the ODT.
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5.2 Measuring the potassium Feshbach resonances

Figure 26 – The first Feshbach scan done by the group. We measured the remaining atoms in
the ODT for each value of magnetic field applied. A Lorentzian was used to fit the
atom number in the two regions we observed losses. The center of the losses were at
59.7 G and 459 G.

Source: By the author.

Once the potassium atoms are trapped in our optical dipole trap, we can begin

tuning the Feshbach resonances. As mentioned earlier, we will use the same quadrupole

coils to generate a uniform field in the region of the trap, switching the current of one of

the coils using an H-Bridge. The method to locate the resonances is by loss spectroscopy,

where we expect the trap to lose a considerable number of atoms when close to resonance

due to the enhancement of inelastic losses. The atoms remain in the ODT for 100 ms

before the Feshbach field is turned on abruptly. We choose to keep it on the atoms for

1 second before the trap is turned off for each value of the magnetic field, and the total



64 Chapter 5 First Results and Discussion

number of atoms remaining is observed. The first Feshbach scan can be seem in figure 26

where we fit the region of loss with a Lorentzian.

After some analysis of the magnetic field calibration we observed that we have

two resonances near the first region (58.8 G and 65.6 G) and two resonances in the

second region (471 G and 490 G). Finally we conclude that our cleaning method was not

suitable and we had our sample in the state F = 1,mF = 0 where we couldn’t observe the

resonances above 800 G due to the narrow width. At table 3 we show the points where we

observed a severe loss in the atom number and the waist of each Lorentzian fitted. We

tried to investigate the heating around the resonances, but we couldn’t fit the cloud by a

Gaussian properly at those points due to low atom number, resulting in a value that was

not trustworthy at that moment.
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Figure 27 – A zoom at the first region of loss obtained at the first scan. The dashed lines
correspond to the theoretical values of resonances in the mF = 0. This graphic
serve as a guide to the eye where there is a possibility the losses were due the two
resonances.

Source: By the author.

We see that the first point we measured is between the first and second resonance,

which has a similar width. As eye guidance we plotted in figure 27 two dashed lines where

the first and second resonances are located with the corresponding width. We assume that

the loss region is due to the first and second resonances, that we didn’t have the resolution

to differentiate them.
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Table 3 – Feshbach resonances measured by loss spectroscopy for potassium 39 in F = 1, mF = 0
state in this work. The B0 is the center of the fitted Lorentzian and w is the waist of
the Lorentzian

Resonance B0(G) w(G)
1st 59.7 22.7
2nd 470.3 60

Source: By the author.

For the second resonance measured, we were able to redo the Feshbach scan and

obtain a more stable measurement (see figure 28) wherein the center of the fitting we have

around 60% fewer atoms than out of resonance. The agreement between the theoretical

point and the experimental point was very good, probably due to this resonance having

72 G of width, wider than any other resonance in the F = 1 manifold. Another resonance

is located at 490 G, but its width is so narrow that it may have been masked by the wider

one, being necessary a higher resolution in the measurement to separate both. We pointed

in figure 28 the points where the resonances are located with each width.

The reason why we remained only with the mF = 0 did not reached a consensus

between the team. One possible explanation is that the gradient used in the cleaning

process were not high enough to trap the atoms, but since only the mF = ±1 could feel

it, they could be repelled by the trap like in a Stern-Gerlach pulse, if the center of the

quadrupole is not exactly in the center of the ODT. Further investigation is needed before

we reach a conclusion but it is clear that we have measured the mentioned resonances. In

the next sub section we will provide one more evidence.

5.2.1 Comparing the lifetime of the samples

Since we couldn’t measure the heating to validate more our measurement of the

resonances, we have measured the lifetime of the sample for different scattering lengths.

We have chosen three values: 466 G, 338 G and 0 G. The point 466 G corresponds to the

second resonance observed dislocated 5 G to the left, 338 G corresponds to a point where

we do not have a resonance near, and 0 G where the lifetime will be the ODT lifetime. A

highly decrease was observed for the point near resonance (see figure 29), when compared

to the other two curves, indicating the presence of a resonance near, increasing drastically
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Figure 28 – Second scan of the second resonance observed. We fitted the experimental points
with a purple Lorentzian and obtained a waist of 60 G with the center at 470.3 G.
The dashed lines correspond to the theoretical value of the resonances, with each
width.

Source: By the author.

the modulus of the scattering length, enhancing the inelastic losses. The points were fitted

by two decaying exponentials, to take into account the two regimes where the first one

being a dramatically fall due to the three-body losses before reaching a more stable regime.

The lifetime measured near the resonance corresponding to the first decay of the sample

were τ = 0.25 s, with its points diverging from the other measurements that remained

close.

We measured the lifetime of the sample with the field at 338 G to observe if the high

field would be interfering in the lifetime measurement. The result was that the decaying

was as if the field was turned off, with points close to the blue points in the graphic. These

two curves were also fitted by two decaying exponentials and the lifetime corresponding to
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Figure 29 – Measurement of the lifetime of the atoms in the ODT for three different homogeneous
magnetic field: B=0 G - field OFF - (blue circles), B=338 G (orange squares) and
B=66 G (green triangles).

Source: By the author.

the first decay were very similar, measuring τ = 1.3 s for the blue curve and τ = 1.6 s

for the orange curve. Our results are still very preliminary and need some investigation,

but is indicating that we are indeed tuning the Feshbach resonances in our sample for the

|F = 1,mF = 0〉.
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6 CONCLUSIONS AND PROSPECTS

In this work, we measured the Feshbach resonances for the potassium 39 in the

state |F = 1,mF = 0〉. We performed loss spectroscopy on the Optical-Dipole Trap and

observed two regions of losses at around 59.7 G and 470 G, corresponding to the mF = 0

state’s resonances. The measurement was performed with the same pair of coils used in the

quadrupole trap, switching it from anti-Helmholtz configuration to Helmholtz configuration

in a very controllable way, using power IGBTs as fast switches. We ensure the tuning of

the scattering length by performing a lifetime measurement, where the three-body and

two-body (three-body mainly) are enhanced for a high scattering length.

We have decided to use potassium atoms as probes for the first measurements

due to the accessible and wide Feshbach resonances, and the sodium lasers were not in

good functionality. A few setbacks limited our measurements: The optical trap was built

originally for the sodium that will sympathetic cool the potassium. We also faced signals

of vacuum problems just after obtaining the measurements, interfering with the advance

on steps as calibration of the field and the measurement of the resonances in the other

states.

Even considering the fact that the inter-species resonances between sodium and

potassium are wider than the ones measured in this work, we are still considering the

implementation of a PID system to stabilize the magnetic field, providing us with higher

resolution when performing loss spectroscopy. This first approach allowed us to obtain the

first measurements and insights for the next stage of the general project. Having assured

that the system is capable of tuning the Feshbach resonances we can continue with our

aim to apply this technique in a double species Bose-Einstein condensate.

Now the sodium lasers are back from repair and we already have recovered the

pressure in the Science Chamber. The sodium BEC was recovered and we observed the

first signals of sympathetic cooling with both species in the magnetic trap. These studies

will continue in the PhD, where we plan to obtain a double degenerate mixture where we

will be capable to explore the different miscibility regimes and quenching effects in the

sample.
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