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ABSTRACT

ARAUJO, G. D. A Bayesian framework of reaction networks for dynamical
population models. 2021. 160p. Thesis (Doctor in Science) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2021.

The tradition of mathematical modeling in the biological sciences is yet to reach a mature
state in many fields. The most pressing issues are the difficulty in first translating the
complexities of life to quantitative modeling terms and the lack of robust frameworks
providing structure and cohesion to the building and interpretation of models. In par-
ticular, the quantitative study of biological populations, as for example in behavioral
ecology and evolutionary dynamics, is composed of a set of scattered methodologies that
generate models without an anchored conceptual foundation. Modeling concepts are often
ambiguous and do not directly translate to actual biological terms. Inspired by modeling
advances in biochemistry, this thesis aims at the conceptualization and application of a
general modeling framework for dynamical populations in biology. Combining a Bayesian
probabilistic paradigm with the theory of reaction networks, I was able to structure a
framework of relational interactions among populations, one that extends biochemical
applications to all types of populations, unifying and generalizing existing methods in
eco-evolutionary dynamics. The framework comprises both stochastic and deterministic
models, and also their connection; it considers the connection with data through statisti-
cal model determination and brings a large emphasis on unambiguous design-informed
dynamical equations. I validated the framework through applications to genetic regulation,
parental investment, and ecological predator-prey dynamics.

Keywords: Eco-evolution. Bayesian probability. Reaction Networks. Markov jump pro-
cesses. Individual specialization.





RESUMO

ARAUJO, G. D. Um framework Bayesiano de redes de reação para modelos
dinâmicos de populações. 2021. 160p. Tese (Doutorado em Ciências) - Instituto de
Física de São Carlos, Universidade de São Paulo, São Carlos, 2021.

A tradição de modelagem matemática nas ciências biológicas ainda não atingiu sua
maturidade em diversas áreas. As maiores complicações enfrentadas são a dificuldade de
traduzir a complexidade da vida em termos quantitativos de modelagem e também a falta
de frameworks robustos que propiciam estrutura e coesão na criação e interpretação de
modelos. Em particular, o estudo quantitativo de populações em biologia, como por exemplo
em ecologia comportamental e dinâmica evolutiva, é composto por um conjunto de métodos
difusos que geram modelos sem se ancorar em uma fundação conceitual. Conceitos de
modelagem são muitas vezes ambíguos e não se traduzem a termos diretamente biológicos.
Se inspirando em avanços de modelagem em bioquímica, essa tese tem como objetivo
a conceitualização e aplicação de um framework geral de modelagem para dinâmica
populacional em biologia. Combinando um paradigma Bayesiano de probabilidade e a
teoria de redes de reação, eu pude estruturar um framework de interações relacionais
entre populações, que extende aplicações bioquímicas a todo tipo de populações, assim
unificando e generalizando métodos existentes em dinâmica eco-evolutiva. O framework
consiste tanto de modelos estocásticos quanto determinísticos, e também da conexão entre
eles; ele considera a conexão com dados através da determinação estatística de modelos e
traz uma grande ênfase a equações não ambíguas e informadas por design. Eu validei o
framework através de aplicações em regulação genética, investimento parental e dinâmicas
ecológicas de presa-predador.

Palavras-chave: Eco-evolução. Probabilidade Bayesiana. Redes de reação. Processos de
pulo Markovianos. Especialização individual.
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1 INTRODUCTION

Physical processes are naturally complex. They are messy with interconnected
elements jointly acting through time in intricate dynamics. The historical approach in the
study of physical sciences is to reduce nature in order to analyze its moving parts and
experimentally control its behavior. From this tradition, with the aim to mechanistically
understand, explain, and predict the many processes of nature, the idea of developing
and studying models has been successful. A model of nature is designed so as to try and
capture, in a sufficiently simple manner, the main factors responsible for the generation of
observed processes. It is a method supported by the efficient assumption that a great part
of that complexity of nature can be washed out as not determinant enough for the robust
understanding of a given process. The main task in the design of models is to rightly
sort out which are those determinant factors and then assemble their relationship in a
theoretical framework that is able to capture the actual rules governing them. In order to
rigorously lay out the rules of dynamical behaviors in a quantitative fashion, frameworks
of modeling are better expressed in mathematical terms, and that has caused the physical
sciences and mathematics to have a joint tradition in the development of their methods.

Biological processes, featuring a rich umbrella of autonomous systems built over the
physical nature through billions of years of evolutionary accumulation, are much messier
and much more complex in detailed behavior than physical systems. Because of this, the
biological sciences traditionally faced a much harder challenge in terms of reducing life
and its environments to quantitative mechanistic models.1 This barrier has translated into
a tradition of qualitative and verbal models, aiming mostly at description, classification,
and hypothesis-driven assessment of biological processes and systems, that do much in
paving the way for a comprehensive quantitative understanding of such processes. Then,
only recently there has been a more robust movement towards quantitative mechanistic
modeling in biology. Even then, there is much yet to be done in terms of laying down
principled foundations that conceptualize behavioral rules in biology from the ground
up;2–4 this ground being understood as a mathematical-theoretical framework from where
complex models can be derived from.

The main goal of this work is to research for the development and application
of such a framework for biological processes, one aimed mainly at treating dynamical
processes of biological populations. In this case, populations mean individuals grouped
into collectives, that relate to their environments in the same ways, featuring simple
kinds of local interactions that add up to complex global dynamics. We are particularly
interested in applications to biochemical and eco-evolutionary processes, with individuals
being molecules and lifeforms. Local interactions, for these specific applications, range
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from chemical reactions to the relationship between animals, as for example predator-prey
relations.

The more complex a system is, and thus the more we need to reduce it to treatable
and principal components, more we incur into the uncertainty accompanying this reduction.
From the ignorance towards smaller or underlying processes and the impossibility to draw
precise trajectories to the unavoidable measurement errors, we are left in need to consider
the probabilistic components of modeling design. Thus, any framework that is proposed
as a theoretical ground for these kinds of complex systems must provide a dynamical basis
that is probabilistic. For example, we are not able to track the individual trajectories
of animals in an ecological setting or molecules in a biochemical setting, so we must
provide a probabilistic account of how these trajectories generate the global properties
that we observe. This is akin to how statistical mechanics is a ground framework for
thermodynamics.

We opt to use a Bayesian paradigm of probability to define and treat all proba-
bilistic relations we use, the reason being that it is a strong perspective to tie together
all layers in which we need to consider arguments that formalize uncertainty, from dif-
ferent kinds of modeling assumptions to model determination in the form of parameter
estimation.5 We even base our use of stochastic calculus on the Bayesian formalism, all in
a manner that is completely compatible with traditional derivations that do not bother to
connect mathematical laws and results with modeling philosophy.6 In this context, the
Bayesian framework is often considered an extension to propositional logic to encompass
an uncertain assessment of nature.7 We highlight in particular the use of a Bayesian
reasoning of uncertainty as a basis for the development of trajectories in reaction networks
as probabilistic structures; this reasoning is the grounding over which we developed the
ideas of recursive network modeling and nesting networks.

The main theory we use to sustain as a modeling framework is reaction network
theory.8 Although being proven useful to model a wide variety of systems in chemistry
and biology, reaction networks are yet not properly stressed in the literature as having
the powers it actually has. Having been developed in the chemistry context, they are
traditionally viewed as a strict framework for reaction-like events, and not as a general
theory of relational interactions among populations of, in principle, abstract entities.
They already caught the attention of researchers in the mathematical field of category
theory,9 but their use as a general framework for biological entities, especially for eco-
evolutionary processes, is yet to be fully grasped. For example, reaction networks allow
for the generation of abstract quantities, such as payoffs, that do not directly influence
the occurrence of reactions, but only indirectly (by affecting rates); however, this use has
never been considered before. A recent work, for example, proposing reaction networks to
build payoff matrices for game theory, had the trouble to redefine payoffs as proxy network
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elements and, in the process, restricting more than necessary their use in the context.10

Additionally, combining reaction networks with Bayesian arguments, we can properly
extend the notion of what reaction rates and the law of mass action actually mean in an
abstract form. This is able to help us formalize the proper way to build reaction network
models outside the physical scope of elements being assumed to not express internal
properties capable of driving their dynamics (such as payoffs or any evolutionary trait).
Beyond this potential, reaction networks also provide us with a developed mathematical
apparatus featuring a probabilistic basis that connects with deterministic models as an
infinite system limit.

Figure (1) shows a graphical representation of the framework we develop in this
thesis. We take the theory of reaction networks and embed its derivation and conceptual-
ization into a Bayesian paradigm. From that, we generalize the types of models that can
be designed with reaction networks, aiming at applications to eco-evolutionary popula-
tion systems. Then, the theory yields two types of kinetics, one more fundamental and
stochastic, and another that is deterministic and arises from a limit of infinite system.
These kinetics allow us to dynamically analyze the models using standard methods. Then,
developing a method for nesting networks, we can submit the generalized reaction networks
to an ecologically-driven evolutionary scale dynamics, also providing a generalization of
evolutionary game theory and adaptive dynamics. All these methods can then be subjected
to a Bayesian parameter estimation pipeline as a basis for model determination and
connection with experimental data. Our framework encompasses design-level relational
modeling of populations, stochastic and deterministic dynamical analysis, statistical anal-
ysis through parameter estimation, and a specialized unifying paradigm to treat questions
from an eco-evolutionary setting. Our original contributions comprehend a particular
conceptualization of the theories, a new methodology, and applications to biochemical and
ecological systems.

1.1 Structure of the Thesis

This work is structured in the following manner. Chapters 2, 3, and 4 develop the
required theory, but with an original understanding and organization of concepts. Chapter
2 exposes a notion of the Bayesian interpretation of probability and parameter estimation
methodology and, under this context, the derivation of the methods of stochastic calculus
that are pertinent to our framework. Chapter 3 defines, in a principled manner, the theory
of reaction networks along with the detailed derivation of the stochastic and deterministic
dynamics, also with their connection. Chapter 4 works out stochastic approximation and
statistical methods applied to reaction networks.

Chapters 5, 6, and 7 develop original works featuring applications and further
development of the framework’s methodology. Chapter 5 presents an application on a
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Figure 1 – The Framework. Pink processes are of design-level modeling; yellow processes
are mathematical description steps; blue processes are part of analysis and
application. Red borders indicate processes with original contribution. The
connection of all processes and the Bayesian basis is an original contribution.
Source: By the author.

biochemical setting focused on the probabilistic and statistical branches of the framework,
analyzing the stochastic properties of a seminal model for oscillations in the context of
protein production and genetic regulation. Chapter 6 is the robust and important work that
extends reaction networks and our framework to generalize, unify, and provide foundations
to existing modeling methodology of eco-evolutionary dynamics. Lastly, chapter 7 brings
a clean application of the eco-evolutionary branch of the framework that elucidates
central mechanistic factors behind the scarcely quantified ecological question of specialist
versus generalist diets and heterogeneity of populations in predator-prey interactions.
This application stresses the functionality of the design-level emphasis of our framework,
demonstrating the ease and efficiency in determining the interactions that are relevant
to the system’s composition. The works in these chapters are presented in chronological
order.
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2 PROBABILISTIC FOUNDATION

This chapter develops the basis of the Bayesian paradigm of probability, introducing
the sum and product rules as the main tools to relate probabilities and build probabilistic
models, and also the derivation of the Bayes equation, which is the backbone of statistical
analysis. The Bayesian interpretation of probability is supposed to connect the philosophical
meaning of uncertainty to the operational mathematical tools of probability spaces,
resulting in a methodology that extends the binary propositional logic.

Under the Bayesian paradigm, we proceed to define stochastic processes and Markov
jump processes, then we provide a fully Bayesian derivation of the master equation for
the time-evolution of probability densities of jump processes. The master equation will be
the mathematical basis for the stochastic treatment of our modeling framework. There
is nothing new in our Bayesian derivation of Markov jump processes apart from the
accommodation of these methods into a Bayesian type of reasoning.

Finally, we show the basics of the parameter estimation procedure of Bayesian
statistics, comprised of the search for a posterior distribution of parameters that arises
from prior knowledge and a data likelihood that encodes the data generating process
defined by the model.

2.1 Bayesian Probability Framework

The Bayesian interpretation of probability assumes that the understanding of nature
is always attached to a point of view, and that the picture of the world given by data is
fundamentally uncertain.5,7 From that, probability is defined as a measure of uncertainty,
from a point of view of the models themselves when trying to produce statements about
nature. Under this view, other forms of interpretations, such as frequencies or propensities,
are understood as models of probability; models of assessment and control of uncertainty.

Following that interpretation, we can understand the Bayesian framework as an
extension to propositional deductive logic, where, instead of binary 0 or 1 true/false values
of propositions, we have a [0, 1] interval of possible values of certainty about a proposition.
In this view, the objects of attention are propositions, statements about information we
have, and we use the tools of probability spaces as a mathematical treatment for measuring
the degree of belief of a given proposition. Probability is then an operator over statements
outputting their plausibility, given a model. Thus, models and parameters are treated
as subjects of propositions, and therefore have their values and definitions attached to
probability statements. This is done in contrast with the standard approach of having
random variables as arguments of probabilities, instead of uncertain propositions about
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fixed variables.

We can define a logical sum and a logical product operations over propositions
in order to recursively combine them into compound propositions. We define A,B as a
product operation, meaning A and B; it is true only if both A and B are true. And A+B

as a sum operation, meaning A or B; it is true when at least one of A or B is true. Then,
for example, we can talk about the proposition C defined as C = A+B, A or B. We saw
that this means that C is true if A is true, regardless of B, or if B is true, regardless of A;
so C is only false if A is false and B is false, which is equivalent to say that C = A,B, that
reads as: not C is equal to not A and not B, by the use of a negation operator. Figure
(2) shows the and and or operations as Venn diagrams. This reasoning gives us a tool to
transform between sum and product operations through the use of the negation operation:

A,B = A+B, (2.1)

A+B = A,B. (2.2)

We can understand these as logical rules relating propositions (note that we can consider
every equality between propositions also as a proposition, that is trivially true if it’s a
rule). Now, treating propositions as varying in degree of belief, the same as varying in
plausibility in the interval [0, 1], we need to define a good operator to rigorously convey
the notion of plausibility. These are probability distributions.

Figure 2 – Venn Diagrams. The diagrams show a visual representation of the four
most important logical expressions: or operation, and operation, conditional
operation, and negation. Blue plus red regions represent the space of all possible
outcomes, only blue shows the outcomes being considered by the composed
propositions.
Source: By the author.
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2.1.1 Probability Rules

Standard probability distributions, the mathematical objects that model the concept
of probability, are linked with the conceptual measure of uncertainty by being compatible
with its goals. We express these goals in the form of three desiderata, asserting rules to be
followed by the plausibility of every proposition:

I) Plausibility is represented by real numbers.

II) Plausibility must increase continuously and monotonically with the addition of
information supporting the truth of propositions, as well as respect deductive limits. This
is a desiderata of qualitative agreement with rational consideration of data.

III) Plausibility must be consistent: different ways of obtaining a result must
give the same result; all given relevant information must be considered and equivalent
propositions must be represented with equivalent plausibility.

With these three desiderata, we choose probability spaces as a good mathematical
measure of plausibility. Thus, given a model, P (A) is the plausibility of proposition A
from that model, a number between 0 and 1. P (A) = 0 when A is certainly false and
P (A) = 1 when A is certainly true. This identification also provides the transformation of
sum and product operations, given as the probability rules:

ProductRule : P (A,B) = P (A|B)P (B) = P (B|A)P (A) (2.3)

SumRule : P (A+B) = P (A) + P (B)− P (A,B) (2.4)

The proposition A|B is the conditional proposition of A under B, read as A given
B; it means the proposition A when we know that B is true (note that this does not
imply temporal order between A and B, this is to stress that we are not talking about
causal connections, but logical connections). With these rules, we build the negation of a
proposition, A, as

P (A) = 1− P (A). (2.5)

Figure (2) shows Venn representations of a conditional proposition and of a negation of
a proposition. A proposition and its negation form an exhaustive (P (A + A) = 1) and
mutually exclusive (P (A,A) = 0) set, composed of two propositions. When N propositions
are exhaustive and mutually exclusive, they are called a partition of the event space.
Consider a partition represented as the set {Ei}, with i = 0, 1, 2...N . By applying the
product and sum rules, we can write the probability of any proposition A using the
conditionals over the {Ei}. This is called the law of total probability, and is useful for
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designing probability terms of conditioned propositions that we know something about:

P (A) = P ((
∑
i

Ei), A) = P (
∑
i

Ei, A) =
∑
i

P (Ei, A) =
∑
i

P (A|Ei)P (Ei). (2.6)

The first equality comes from the fact that {Ei} are exhaustive, the second equality is
a distributive property of propositional sum. The third is the sum rule with {Ei} being
mutually exclusive, and then the product rule. As an example, suppose we have a set
of dice, but with different numbers of sides. Then we randomly pick one to throw. We
don’t know directly the probability of any outcome, but we know the probability of each
outcome given the die has n faces, so we can build the probability of an outcome using
the law of total probability. In that case, the partition would be of propositions Ei = The
die has i faces.

Another useful related operation is the marginalization of a joint probability, that
is just a form of the law of total probability. Note what happens here,

P (A) =
∑
i

P (Ei, A). (2.7)

If we have the propositions A and Ei and their joint probability P (Ei, A), we may use
a partition built over Ei to remove Ei with a sum and obtain P (A). This is called a
marginalization of P (Ei, A) over Ei. This is particularly relevant in the case where Ei
asserts that some variable has a given value. Then we may consider as the partition the
set with propositions for every value in that variable’s domain; we marginalize over the
domain of that variable. If that variable is continuous, we have Ei = {The variable x is in
the range between xi and xi + dx}. Then we may write the marginalization process as

P (A) =
∫
dxiP (Ei, A). (2.8)

2.1.2 Bayes Equation

Statistical methods are mainly concerned with two major types of problems: 1)
model selection, that uses data to establish criteria to choose between models for describing
systems of interest; and 2) parameter estimation, that, given a model, uses data to infer
parameter values of the model. Both interests are centered around the Bayes equation,
which is simply derived from the product rule of probability:

P (A|B) = P (B|A)P (A)
P (B) . (2.9)

It has this quality of inverting the conditional, making it possible for us to update our
knowledge about proposition A by the use of information acquired about B (because
they’re related, information is shared between them). This can translate into update of our
theories in light of new data. Suppose we have a set of hypotheses {Hi} and a proposition
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representing data, D. Then, with I representing our prior information on the matter, we
have

P (Hi|D, I) = P (D|Hi, I)P (Hi|I)
P (D|I) = P (D|Hi)P (Hi|I)∑

i P (D|Hi, I)P (Hi|I) , (2.10)

where the last equality is a law of total probability for D over the set of hypotheses (it’s
assumed that they form a partition, because they are naturally mutually exclusive, and, if
they aren’t exhaustive, it is rational to include the hypothesis that is the negation of the
sum of every other, then making it exhaustive). This is the base of model selection and
parameter estimation, as the set of hypotheses can represent alternate models or alternate
versions of a model with different parameter values. This is also valid in continuous form,
for a set of hypotheses parameterized by continuous values.

In this context of estimation by the use of data, we call P (Hi|D, I) the posterior
probability of Hi, that is the probability of Hi given that D is true, so given that we
know the data. The term P (D|Hi) is called likelihood of the data D over Hi, meaning the
probability of the data D given that Hi is true. The term P (Hi|I) is the prior probability
of Hi, what we know before considering the data. The term in the denominator is of
less importance and is usually regarded as a normalization constant, with the estimation
problem represented as

P (Hi|D, I) ∝ P (D|Hi, I)P (Hi|I), (2.11)

with the product of prior and likelihood acting as a kernel for the posterior, called the
odds of that hypothesis in light of data. The prior information I is a formalization of our
previous knowledge about the hypotheses. Normally, prior information becomes increasingly
irrelevant as we accumulate more data.

The likelihood is where the probabilistic model of the system comes in. For example,
we assume the validity of our dynamical model, that gives us the probabilities of the
system being in every possibility of states, and with that we have probabilities of the
system being where it was seen in the data. And by maximizing the likelihood, we can
arrive at point estimations for the parameters, but a more robust treatment is made by
obtaining the posterior distribution and summarizing it in all desired manners in order to
obtain estimations concerning Hi. Model selection can be performed by calculating the
odds ratio between hypotheses, that give the relative values of their posteriors.

This concludes our sketch of the general theory of the Bayesian framework considered
in this work. We now turn to the Bayesian treatment of Markov jump processes, the basis
of our stochastic modeling approach.

2.2 Stochastic Processes and the Markov Property

We start by defining a notion of a stochastic process. Our interest is in describing
dynamical systems, which are systems changing over time. When we model these systems
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as stochastic, the model evolution is not completely known to us. The model dynamics
is described by probabilistic trajectories over their states. At first, we could think of
propositions concerning the entirety of a dynamical process, but then we would restrict
ourselves to probabilities about whole trajectories. So, following our interest in knowing
probabilities dealing with each moment in time, we mostly consider propositions that
are concerned with what is happening to the system at each instant. The definition of a
stochastic process aims at pairing propositions with instants in time and chaining them in
order to represent the whole dynamical process.

For us, stochastic process will be the set of propositions {Xs,t}, for t ∈ T , with T
being the relevant set of time instants, for s ∈ S, with S being the relevant set of possible
system states, where each Xs,t is, in a general form, read as

Xs,t = {The system is in state s at time t}.

Then, we may talk about the probability of the system being in state s at time
t, P (Xs,t), or the probability of the system being at state s′ at time t′ if we know it’s in
state s at time t, P (Xs′,t′|Xs,t). The models we study in this work are stochastic processes
of a certain kind, they are Markovian models.

2.2.1 Markovian Stochastic Processes

Markovian processes are stochastic processes for which the probabilities associated
with the system in future times depend only on knowledge about its current state. It means
that the model doesn’t hold any memory of previous states, and past knowledge has no
bearing in its future. In practice, any conditioning on previous times actually is dependent
only on the closest previous time. So, if t1 < t2 < t3, we have that P (Xs3,t3 |Xs1,t1 , Xs2,t2) =
P (Xs3,t3|Xs2,t2). This means that a transition between states is characterized only by the
current state, regardless of the past. With that, we can talk about transition probabilities
P (Xs′,tn|Xs,tn−1), meaning a probability of the system moving to a state s′ at a time t′ from
the state s at a time t. Knowledge about some initial state and transition probabilities is
sufficient to build the whole chain probability, just using the product rule together with
the Markov property. For ease of notation, let’s consider Xstn ,tn = Xn, with tn > tm for
n > m:

P (X0, X1, X2) = P (X2|X0, X1)P (X0, X1) = P (X2|X1)P (X1|X0)P (X0). (2.12)

Like that, we can build a chain for up to an arbitrary proposition Xn. This means that
a Markovian model is completely characterized by an initial state and its transition
probabilities (these transition probabilities are often presented as a transition matrix, and
for a continuous time set T we often talk about transition rates).

The theory of Markovian processes spreads in four possibilities as we consider the
nature of the states and times sets, S and T . Both can have continuous or discrete indexes
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for its elements. For discrete states and discrete times, we have the theory of discrete
Markov chains, the system jumps over a network of states through discrete iterations. For
continuous states and discrete times, we simply have the case of a continuous Markov chain,
a case we’ll briefly visit through the method of Markov chain Monte Carlo. For continuous
states and continuous times, we have the Markov continuous stochastic processes, such
as diffusion processes. Finally, for discrete states and continuous times, we have the
Markov jump processes, the branch we are mainly concerned with in this work. Here, by a
continuous passage of time, the system jumps between different states at random times.

Markov jump processes are governed by a Chapman-Kolmogorov differential equa-
tion that we call a master equation. The master equation is very often not solvable, and
we can approximate it to continuous-states differential equations for continuous stochastic
processes or even to deterministic differential equations with a limit of infinite system.

2.2.2 Bayesian Derivation of a Master Equation for Markov Jump Processes

This section presents a derivation of the master equation using a Bayesian reasoning,
and we emphasize our reliance on the simple probability rules defined in the previous
section. We are interested in models that are Markovian processes of continuous time and
discrete state space, Markov jump processes. Consider a system Γ of this type, defined by
the following assumptions:

1. Γ exists in a discrete state space, with states that can be uniquely determined
by a set of numbers, each describing a component of Γ (usually translated to integer count
numbers of each type of component). So, if Γ is a system determined by two components,
two species N1 and N2 with counts n1 and n2, then at a given time it’s determined by the
pair (n1, n2) contained in the set of possible states. We denote the state of the system
with the vector n with dimension equal to the number of system’s components. In the
example, n = (n1, n2).

2. Γ evolves by changing states along a continuous passage of time. So, Γ has a
continuous set of time instants and is a "jump process".

3. Γ obeys the Markovian property and we know the transition rates for the system.
We’ll rewrite them in terms of the transition probabilities. Also, the jumps to the many
different states are independent events.

4. We can divide the time set into defined intervals dt for which we can consider
O(dt2)/dt → 0 for dt → 0 and that we can assure transition rates to be approximately
constant during dt.

So, if we know that Γ is in a state n1 at a time t1, it can jump to any other state
n2 at a posterior time t2 with a probability P (Γn2,t2/Γn1,t1 , Zt1,t2) = Tr(n1, t1 → n2, t2),
with Zt1,t2 = {There are no jumps during the interval t2 − t1} and n1 6= n2. Since Γ is
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Markovian, the transition probability does not depend on states before t1. Remember that
Γn,t = {Γ is in state n at time t}. In order to completely specify the system, we must
connect the transition probabilities to the known transition rates. They are defined as
follows:

Tr(n1, t1 → n2, t2) = Wn1,t1→n2,t2dt, (2.13)

as long as t2 − t1 = dt. But we have problems. When the system jumps, this probability
breaks; how many times can we expect it to jump during a time interval dt? Also, what is the
probability of the system remaining in the same state after dt, ∑nj

Tr(n, t→ nj, t+ dt) =
1−∑nj

Tr(n, t→ nj, t+ dt)? Can we know it?

2.2.2.1 Transitions

We are interested in the limit dt → 0, so we can solve our problems by proving
the following statement: During a passage of time dt starting at time t, the system can
jump once, from state n to any different state ni with probability Wn,t→ni,t+dtdt. Also,
the system can jump more than once with probability O(dt2) and remain in state n with
probability 1−∑ni

Wn,t→n2,t+dtdt+O(dt2).

For that, consider the propositions, using the notation with implicit dependency of
time Wn,nj

= Wn,t→nj ,t+dt:

Kk = {With Γ being in state n at time t, exactly k > 0 transitions occur during
the next interval dt, kj from n to nj 6= n with constant probability Wn,nj

dt and the
constraint ∑nj

kj = k.}

With constant independent transitions, P (Kk) follows a multinomial distribution
with k trials and a number of possible outcomes equal to the number of possible states.
One of its possible outcomes never happens in any trial, representing the system jumping
to nowhere in that trial, so:

P (Kk) =
∑∑
kj=k

k!∏
j kj!

∏
nj 6=n

(Wn,nj
dt)kj (1−

∑
nj 6=n

Wn,nj
dt)0 = (

∑∑
kj=k

k!∏
j kj!

∏
nj 6=n

W kj
n,nj

)dtk.

(2.14)
We can see that this probability is proportional to dtk, so we have P (Kk) = O(dtk). In
particular,

P (K1) =
∑
nj 6=n

Wn,nj
dt. (2.15)

For no transitions, we have the propositionK0, defined asK0 = ∑
kKk = ∑

nj
Tr(n, t→ nj, t+ dt).

Noting that the Kks are mutually exclusive, using the sum rule, we have

P (K0) = P (
∑
k

Kk) = 1− P (
∑
k

Kk) = 1−
∑
k

P (Kk) =

1− P (K1)−
∑
k>1

P (Kk) = 1−
∑
nj 6=n

Wn,nj
dt+O(dt). (2.16)
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This ends our justification and solves our problems. We can now make sure that at most
one transition occurs during dt in the limit.

2.2.2.2 Master Equation

Finally, we turn to the task of building the master equation. Let’s give some easier
names to our relevant propositions:

X0 = Γn0,t0 = {Γ starts in an initial state n0 at time t0}.

X = Γn,t = {Γ is in state n at time t > t0}.

And for each possible state ni:

Yi = Γni,t = {Γ is in state ni at time t′ < t with t′ > t0}.

The goal now is to assign a probability to proposition X using the Yis. Let’s look
at the proposition ∑i Yi; it means Y1, or Y2, or Y3, etc. It essentially means that Γ is in any
possible state at time t′, and this is always true, the set {Yi} is exhaustive. Also note that
Yis are mutually exclusive, because at the same time Γ can only be in one state. So the set
{Yi} is a partition of the event space at time t′, a set of mutually exclusive events covering
the whole space. Since the sum of Yis is always true, and using product properties, we can
write

X = (
∑
i

Yi), X =
∑
i

X, Yi. (2.17)

Let’s begin assigning probabilities to porpositions. Note that the products X, Yi are also
mutually exclusive, so we have, using the sum rule

P (X|X0) = P (
∑
i

X, Yi|X0) =
∑
i

P (X, Yi|X0). (2.18)

Now we use the product rule

P (X|X0) =
∑
i

P (X|Yi, X0)P (Yi|X0) (2.19)

and then the Markovian property, that says P (X|Yi, X0) = P (X|Yi),

P (X|X0) =
∑
i

P (X|Yi)P (Yi|X0). (2.20)

See that all this is just the law of total probability applied to X with the partition {Yi}.
Now, why is it relevant to rewrite P (X|X0) in terms of the Yis? It is because, with our
specification of Γ, we have knowledge about local transition probabilities, but the known
initial state X0 may be as far as we wish from the arbitrary state X we want to describe.
Using the Yis as bridges, we can make t′ "adjacent" to t and smuggle the known transition
probabilities into our derivation. With adjacent meaning distant by an interval dt.

We need to specify a t′ of Yi that is adjacent to the t of X: t′ = t− dt. If this is
true, we have the probabilities P (X|Yi) in terms of the transition rates. There are two
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cases; 1) ni = n and it means that no transitions occur, and 2) ni 6= n and it means
that some transition with rate Wni,t−dt→n,t occurs. So we separate the sum in these two
possibilities

P (X|X0) =
∑
ni 6=n

P (X|Yi)P (Yi|X0) + P (X|Yn)P (Yn|X0), (2.21)

with Yn defined as Yi for the case of ni = n. The transition probabilities are, using the
same implicit time-dependency notation as above,

P (X|Yi) = Wni,ndt+O(dt2) (2.22)

because we are going from ni to n. The probability of no transition is

P (X|Yn) = 1−
∑
ni 6=n

Wn,ni
dt+O(dt2) (2.23)

because we are going from n to all other nis. Note the exchange in the indexes of W .
Putting more clearly, in case 1 the system is jumping from ni to n, and in case 2 the
system already is in n and we consider the negation of it going to any other possible ni.

Inserting in the equation for P (X|X0), we have

P (X|X0) =
∑
ni 6=n

(
Wni,ndt+O(dt2)

)
P (Yi|X0)+

1−
∑
ni 6=n

Wn,ni
dt+O(dt2)

P (Yn|X0). (2.24)

Just reorganizing the equation, we arrive at

P (X|X0)− P (Yn|X0)
dt

=
∑
ni 6=n

(Wni,nP (Yi|X0)−Wn,ni
P (Yn|X0)) + O(dt2)

dt
. (2.25)

Finally, we perform the limit dt → 0. With this, the left side of the equation becomes
the derivative of P (X|X0) in relation to time and O(dt2)

dt
→ 0. P (Yn|X0) on the right side

becomes P (X|X0) as t′ → t (note that the Yis now represent Γ in time t with the limit
imposing t′ → t). We have the Master Equation:

dP (X|X0)
dt

=
∑
ni 6=n

(Wni,nP (Yi|{t′ = t}, X0)−Wn,ni
P (X|X0)) . (2.26)

We can now change the probabilities to the more explicit distributions notation. The
distribution that P (X|X0) follows has as variables the state vector n and the time t. If
we define the probability of no transitions occurring as Wn,n, we can sum over all states of
Γ without altering the equation (note that the additional term ni = n ends up being zero).
Calling the distribution P (X|X0) = Π(n, t), we have

dΠ(n, t)
dt

=
∑
ni

(Wni,nΠ(ni, t)−Wn,ni
Π(n, t)) ,
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Π(n, t0) = δ(n,n0). (2.27)

Note that we can generalize the proposition X0 into a set of propositions to mean that
the state of Γ in t0 is uncertain, with different probabilities of being in different states. We
don’t need to know the exact initial state for the equation to be valid. For systems with a
finite number of states, we can even know nothing about the initial state, assigning to the
set of X0 a uniform probability distribution over the sates.

The solution of this equation gives the probability of proposition X happening once
that X0 happened, that means Γ has transitioned to state n after an arbitrary number of
jumps during an arbitrary time interval t− t0.

We can interpret the Master Equation in terms of gains and losses in probability;
it means that the right side is viewed as a net gain in probability at time t, the first term
being the gain from transitions into n and the second term being the loss from transitions
away from n.

The Master Equation is the differential form of the Chapman-Kolmogorov equation.
In this work, we’ll consider only time-independent transition rates (homogeneous Markovian
systems), so the abridged notation, Wni,n, will always be used.

2.3 Parameter Estimation

In this section, we’ll connect model to data by building the parameter estimation
process.11 The input of the process is the data, measured from the physical systems of
interest (this work is concerned specifically with reaction network systems and we’ll test
the estimation models using simulated data generated from stochastic simulations). The
output of the process is a posterior probability function, the probability density of the
estimated parameters under the model.

We start with the Bayes equation, that gives us the parameters’ posterior distribu-
tion,

P (Hk|D, I) = P (D|Hk, I)P (Hk|I)
P (D|I) . (2.28)

D is a proposition asserting the data, we’ll specify it later. The set of hypotheses
Hk will mean the following:

Hk = {The model mk with parameter values θi is true}.

And we’ll write Hk = Mk,Θi, with these new propositions meaning:

Mk = {The model mk is true}.

Θi = {The vector of parameters, θ, for the given model is between θi and θi +dθ}.
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We are interested in parameter estimation and will work with a fixed model, so
we may omit the proposition Mk as always true for our model. We also omit the data
probability, since it doesn’t involve Θi. Then, we’ll work only with the estimation kernel,
on the form

P (Θi|D, I) ∝ P (D|Θi, I)P (Θi|I). (2.29)

There are two elements to deal with for the estimation, 1) the data likelihood given the
parameter values, P (D|Θi, I), and 2) the parameter’s prior information, P (Θi|I).

2.3.1 Priors

The choice of prior depends on everything we know about the model and the
parameters. It can reflect the form of our likelihood, we may choose them to be conjugate,
so the form of the posterior doesn’t change by addition of new data to the estimation
problem. It also depends on the nature of the parameters. We’ll consider here only
continuous parameters; then we may deal with two kinds of parameters: space parameters,
that can be negative and depend on a choice of origin; and scale parameters, that are only
positive and express our chosen units. The prior’s domain must contain all known possible
values for the parameters and can’t contain values we know to be impossible (see that the
posterior is zero for values outside this domain). It has to, at least in order of magnitude,
represent our state of knowledge about probabilities for different parameter values. When
we have no useful probabilistic information to use, we need to use non-informative priors;
this can be tricky, because the specifications of the problem may result in a nontrivial way
to invoke uniformity over parameter spaces.

We may consider the posterior as a prior for inclusion of more data in the future,
so the prior also loads information from possible previous measurements, and this also
enables the notion of sequential data processing. Now, the specifics of prior choices is
an experimental analysis and it depends on details of the problems, so we leave further
developments to the applications when in need of them.

2.3.2 Data Likelihood

Before inputting the data into the likelihood, let’s build the functional form of the
likelihood. Consider a variable y to represent the data point at a time t. Then, assuming
a continuous data variable just for convenience, the probability of having a data point
valued y at this time is the same as the one for the proposition: Y = {The data is in the
range [y,y + dy] at time t}. This analysis can be readily adapted to discrete variables.
Now, consider what the model gives us. For each possible state of the model, x, we have
a probability for the system to be in that state at any time, given an initial state. The
probability density for a continuous x is the same as the probability of the proposition
Xt|X ′0 (remembering to consider an initial state), with: Xt = {The state of the model is in
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the range [x,x+ dx] at the time t}. If we consider a random error for each measurement,
we have a variable e representing the possible values for the error, following a probability
density equal to the one for the proposition: E = {The measurement error is in the range
[e, e+de]}. Now we can write the data y in terms of the variables representing the model
and the error. If we define the variables x and e with the propositions Xt|X ′0 and E, we
have that

y = f(x) + e. (2.30)

This equation represents a measurement model. The function f(x) is any transformation of
the physical quantities that matches their relation to the measured quantity. The simplest
form of the measurement model is one where we consider no measurement errors and the
measurements are exactly the variables of our physical model, so y = x. From now on,
we’ll consider this simple relation between y and x but with measurement errors, so

y = x+ e. (2.31)

This means, for example, that, if our physical model gives us molecular concentrations for
x, we are directly measuring those same molecular concentrations, but with with error e.

We want to compute the likelihood P (Y |Θi, I) as a function of y, but in terms of
what we know, that are the densities of x and e. Here, we assume enough control over the
measurement errors to know their probability densities.

Whenever we want to express a probability of a proposition in terms of other
propositions, we may want to marginalize their joint probability, in a maneuver to include
these propositions just to remove them again:

P (Y |Θi, I) =
∫ ∫

dxdeP (Y,Xt, E|X ′0,Θi, I), (2.32)

We want a probability density on the variable y in terms of the parameters of the model
and the measurement error, that’s why we invoke the distributions for x and e. With
that distribution for y, we’ll later input the data value and get the probability of that
data value given the model, i.e. the likelihood for that data. Using the product rule and
considering that X and E are independent (model independent of measurement errors),

P (Y |Θi, I) =
∫∫
dxdeP (Y |Xt, Ej, X

′
0,Θi, I)P (Xt|X ′0,Θi, I)P (E,Θi, I). (2.33)

Using the fact that y = x+ e, we have

P (Y |Xt, E,X
′
0,Θi, I) = δ(y − x− e). (2.34)

Putting δ(y − x− e) inside that integral has the effect of singling out the value of e. Call
the proposition:

Ey−x = {The measurement errors are between y − x and (y + dy)− (x+ dx)}.
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Then, we end up with

P (Y |Θi, I) =
∫
dxP (Xt|X ′0,Θi, I)P (Ey−x|I). (2.35)

If we consider P (Xt|X ′0,Θi, I) = fm(x,θi, t), the model distribution over x, and P (Ey−x|I) =
fE(y − x), the error distribution over e,

P (Y |Θi, I) =
∫
dxfm(x,θi, t)fE(y − x). (2.36)

You may recognize this equation as a convolution integral. This relates to the fact that
y = x+ e, the sum of variables is computed as a convolution at the level of probabilities
of propositions asserting those variables.

A simple and usual error model is the following: we assume the measurement
error to be distributed as N (e|0, σ2

eI), a multivariate normal distribution with mean
zero and a known, constant, standard deviation over all measured variables and data
points (I is the identity matrix of dimension equal to the system’s dimension). With that,
we have fE(y − x) = N (y − x|0, σ2

eI). We now assume the simplest kind of model for
the measurement process: a deterministic model. In that case, fm(x,θi) = µ(x,θi) is a
deterministic function of the data and the parameters. For example, in the case of a linear
regression of a one dimensional model, we have µ(x,θi) = θ1x + θ2. The result of the
convolution will then be trivial

P (Y |Θi, I) = N (y|µ(θi, t), σ2
eI). (2.37)

By having the data points (y, t), we evaluate this likelihood in terms of the parameters θi.
If we use a different value for the vector of parameters, say θi′ , we obtain another value of
the likelihood. The posterior probability density will then be a function of the parameters,
given by the prior and likelihood functions.

Let’s talk about the data proposition D in order to quantify the likelihood function
using a data set obtained from a measurement operation. First, let’s suppose that all
variables specifying the state of the model are observed in a measurement, so a single
measurement gives us a data vector w that is the same dimension as our physical model.
This vector represents the observed quantities related to the variables of the physical
model. Then we have for the data:

D = {A measurement observed a set of d data points {([wj ,wj +dw], [tj, tj +dt])}
with j = 0, 1, ..., d− 1, where wj is a vector for the j-th measurement and tj the measured
time at that point.}.

We have D = ∏d−1
j=0 Dj for the Dj individual measurements. If we consider a string

of measurements given a model that’s Markovian, we have, using the product rule and the
Markovian property

P (D|Θi, I) = P (D0|Θi, I)
d−1∏
j=1

P (Dj|Dj−1,Θi, I). (2.38)
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Each term P (Dj|Dj−1,Θi, I) is, as we calculated, given by

P (Dj|Dj−1,Θi, I) =
∫
dxP (Xt|X ′0, Dj−1,Θi, I)P (Ewj−x|I). (2.39)

Here, t = tj − tj−1. How can that conditioned state, x′, be chosen? The initial time and a
possible initial conditioned state are given with the earlier measurement, Dj−1. That’s the
last observation we have of a system that we are modeling as Markovian, so let’s use Dj−1

from now on. In this scenario, we know that at the initial state the system is at wj−1 with
an uncertainty given by e. That’s a random initial state for the model,

P (X ′0|Dj−1,Θi, I) = P (Ewj−1 |I) = fE(wj−1). (2.40)

We also need to compute the actual initial measurement of the whole data chain,
P (D0|Θi, I). What we do depends on the situation, we have to model the initial measure-
ment. When the data is modelled by a normal distribution, it’s natural to assume that
P (D0|Θi, I) is a normal distribution. Then, as a standard choice, we’ll have the initial
mean vector and variance matrix treated as parameters to be inferred, as parts of θi.

Then, following our deterministic model example, the likelihood for the data set D
is given by

P (D|Θi, I) = N (w0|θ0, θ
′
0)

d−1∏
j=1
N (wj|µj(θi,∆tj,wj−1), σ2

eI). (2.41)

This will be a function of the data points ({wj , tj)} and the model parameters θi. There
we have, for this specific case, the whole likelihood function in terms of the model output
and the data. The model output, in turn, is a function of the model parameters (what we
want to estimate with the posterior).

2.3.3 Incomplete Measurements

Before, We assumed that all system’s variables were observed. What happens if we
have measurements only of a subset of the system’s variables? It gets harder to estimate
(even impossible for some kinds of parameters in certain systems). But the difference is
that we also have to marginalize over the unobserved variables, to extract the subsection
of the model that interacts with the data:

P (Dj|Dj−1,Θi, I) =
∫∫
dxdeP (Dj|Xt, X

′
0, E,Dj−1,Θi, I)P (E|Θi, I)

∫
duP (Xt|X ′0, Dj−1,Θi, I).

(2.42)
The vector u represents the unobserved variables, and the vectors coming from D have
dimension equal to the number of observed quantities. The integral on du must be
evaluated over the model’s distribution. If it’s a deterministic model (or even a possibly
time-dependent normal distribution), the integral is the easiest possible, the result is just
to ignore the unobserved components.
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The posterior distribution is the final Bayesian result of the parameter estimation
process. Once we have a posterior P (Θi|D, I) for the model parameters, we can summarize
it by our decision in order to estimate the parameters in the ways suited to the systems
we are analyzing.
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3 REACTION NETWORKS

This chapter defines and develops the theory of reaction networks in a way that
is most suited to our needs. There is more than one possible focus that we could give to
different aspects of reaction networks, and we will emphasize the dynamical properties
yielded by the network’s structure rather than the structure of reactions themselves.12

Thus, we carefully describe how transition rates arise from our assumptions and how we
can interpret their different terms. We also emphasize the abstract relational nature of the
networks as modeling tools, even shifting the meaning of reactions to a more generalized
form of interactions resulting from encounters between elements.

We then determine the functional forms of transition rates for both the deterministic
and stochastic network kinetics, as well as defining the limit of infinite systems that connect
the two descriptions and connect the discrete count-numbers and continuous densities that
define the state-space of reaction networks. We do this by first interpreting the stochastic
assessment of the networks as arising from modeling uncertainties, under the Bayesian
probabilistic paradigm.

We also give some simple examples of well-known systems that are usually defined
at the ambiguous level of differential equations and that can be properly specified in
terms of local interactions encoded as reactions. We choose systems from different fields of
biological modeling.

3.1 Reaction Networks

Reaction networks are an efficient way to model mechanisms of local interactions
between components generating a more complex dynamical behavior that shows at the
global population level. By using a set of reactions happening at a local level (local in
terms of the network’s dynamics) and relating to more fundamental mechanisms, we can
find and describe the trajectories and properties of the whole system, at a collective level.
Reaction networks are then viewed as a set of species composed of identical, individual
units that are the elements of each species, and that interact with each other when they
encounter each other, through defined reactions. Their interactions, in turn, result in the
creation or destruction of elements.13

The real nature of these species is not relevant to the framework. Only the relations
between their elements. Reaction networks abstract away the differences between elements
and group them by how they relate to other elements; the identical elements of a species
are defined as the ones that interact in the same ways. This relational construction is
essential to the generalizing power of reaction networks; they don’t talk about specific
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physical systems, but abstract entities that can behave in ways that physical systems do.

3.1.1 Definition

There are many ways to introduce reaction networks, and here we define them in a
way that is more readable in the language of this work. Consider the reaction network
as consisting of three sets: 1) a set of species, that are collections of identical elements
interacting in the same ways, 2) a set of complexes, that are linear combinations of species
with integer coefficients, divided into reactant and product complexes 3) and a set of
reactions, that are maps between complexes of species. In a reaction network, elements
follow their own individual trajectories, independently of each other, and when they
encounter in groups that are reactant complexes, they can interact in a way that results
in a reaction, transforming that group of reactants into a group of products.

1) The set of species is a finite set of N variables representing the system’s N
different component species, Xi, with i = 1, 2..., N . Each species is composed of many
identical elements, measured as a count-number of elements ni. Given that, we enunciate
a key property of a reaction network: The vector of count-numbers, n = (n1, n2...nN)T ,
uniquely determines the state of the reaction network. So, its state space is formed by
all possible combinations of different count-numbers, and no other property is able to
discriminate states, regardless of the possible underlying differences, interactions, and
even other elements. In that sense, all elements must be homogeneously mixed on average,
without any distances structured among them. Also, underlying mechanisms are modeled
as not relevant enough to affect the structure of reactions or the count-numbers of species
with effects not covered by reactions. Note that the dynamics in focus with reaction
networks are the dynamics of the concentrations of species, that’s what defines the network
states (so the networks evolve as reactions changing concentrations). As an example, if a
reaction network consists of three species, we represent them as X1, X2, and X3, and the
vector of elements count-numbers as n = (n1, n2, n3)T .

2) The set of complexes is defined over the set of species as the relevant groups of
species. The reaction complexes tell us what combinations of elements are expected to
result in reactions (reactant complexes) and what combinations are expected to result
from reactions (product complexes). The reactions will transform complexes into other
complexes, and that’s what constitutes the changes of states. Complexes are collections
of species and composed of a certain number of elements, denoted by integer coefficients.
Complexes have the general form

N∑
i=1

ciXi. (3.1)

In the example of a network of three species, we may have many different sets of complexes,
for example this one: {X1 + 2X2, X3, 3X1, ∅}. Empty complexes as reactants mean that
a reaction can occur spontaneously, without encounters (simply creating elements); and
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empty complexes as products mean that a reaction will result in the suppression of every
reactant element (destroying them). How come elements are created from nowhere? In
physical systems, this will be a result of an underlying process not explicitly modeled at
the level of the network.

3) The reaction set is the set of relations that determine the allowed transitions
between states of the reaction network. The reactions are information about how the
components interact to dynamically affect their numbers through encounters of reactant
complexes. A reaction network will have a countable set of R reactions represented by the
numbers r = 1, 2..., R. A reaction r is expressed as dependent on the Xi as

N∑
i=1

sirXi −→
N∑
i=1

s′irXi, r = 1, 2...R. (3.2)

We read a reaction as: at the left of the arrow, we have the reactant complex for this
reaction (these elements are used, suppressed from the system), and at the right side we
have the product complex (these elements are formed or preserved, appearing as a result
of the reaction). Following the example given so far, we could have many possible reactions
from the complexes defined, here is an example: X1 + 2X2 −→ 3X1, 3X1 −→ X3, X3 −→ ∅.

Note that the structure of a reaction as a map between complexes implies by how
much the state n can change. The allowed transitions are represented by the coefficients of
complexes on a reaction map, denoted by sir for reactants and s′ir for products, and called
stoichiometric coefficients (the nomenclature comes from actual chemical reactions). They
mean that, during a reaction r, sir elements of component Xi are destroyed and s′ir elements
are created; or, equivalently, s′ir − sir elements appear or disappear, depending on the sign.
In the reaction network, the reactions happen independent from each other, so when we
say that the interactions have a local nature, we mean that the state transitions happen
by processes on the level of elements that have no dependence over what’s happening away
from there and are not directly affected by external processes.

3.1.2 Stoichiometric Coefficients

All stoichiometric coefficients together uniquely define the reactions of a network
and their difference Sir = s′ir − sir uniquely defines the state transitions; to represent
the reactions happening, we can think of a stoichiometric operator that acts as O(ni) =
ni + (s′ir − sir) in all system components, moving from one state to another (it is common
to define the system together with a stoichiometric difference matrix, S). Such an operator,
in this context, is called a step operator, executing the event of a reaction over any function
of n:

ESir
i g(n1, ..., ni, ..., nN) = g(n1, ..., ni + Sir, ..., nN). (3.3)

Thus, a reaction r happens as the operation ∏iE
Sir
i n. See that it allows us to express every

state in terms of a given state. All this means, in other words, that "jumps" between states
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in the state space are determined by the information contained in the difference between
stoichiometric coefficients, that informs how much each reaction will shift components
in state space through each transition that happens by the occurrence of a reaction. So,
trajectories in state-space are composed of sub-spaces determined by the stoichiometric
difference matrix S, given an initial state.

3.1.3 Transition Rates

Reaction networks, as defined above, don’t possess any component that identifies
their actual dynamical evolution. For that, we need to combine the reaction network with a
measure of how often reactions will happen, given a state n. For that, we add a dynamical
structure to the reaction networks. We say that reaction networks are associated with a
dynamical process of a continuous time passage, and then the system state is a function of
time n = n(t). We define the set of R functions, one for each reaction, Wr, and call them
transition rates. This means that, when the reaction network is in state n, at a moment
of time, Wr will represent the rate at which reaction r will occur, altering the state of the
system.

There are two distinct sources of processes affectingWr. 1) On one side, we have the
trajectories of elements in a reaction network converging so as to form reactant complexes
in a moment of time, allowing the occurrence of the associated reaction. We have to
explicitly model this dependence in order to understand the time-evolution of the network
as it is defined. 2) On the other side, we have the fact that not every encounter of reactant
elements will result in a reaction. There can be any process not captured by the network’s
structure that can affect the occurrence of a reaction given that a reactant complex
is formed. These two sources of dynamical processes affecting the transition rates are
independent, and the first is a process happening in the reaction network while the second
is assumed as an underlying source of mechanisms. Underlying here means that these
mechanisms can affect the system, but only through reactions, and lying on a different
scale (consider for example the sense in which quantum mechanics may be seen as an
underlying process giving rise to classical mechanics, from a macroscopic point of view).
So we break down these two dependencies in the definition of the transition rates

Wr = krfr. (3.4)

We identify fr as an event-function, giving the transition rate’s dependence on the elements
trajectories in the reaction network, the encounter chance of elements forming a reactant
complex; and kr as a reaction rate, being the rate by which reactions locally occur, given
an encounter of elements forming a reactant complex.

The reaction rates kr are usually constant, because otherwise they would represent
interactions not being mechanistically explained by the network. But, mathematically, it
works fine to have it as a function of n, and it can happen as a result of approximations
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on reaction networks, such as time-scale related or quasi-steady state approximations,
that bundle up a set of interactions into one single composed reaction. They can also be
dependent of external parameters, such as a measure of temperature, of element’s affinities,
element’s capacity of seeing each other, etc. Independent of the functional form of the
reaction rates kr, we view them as external rates assigned to reactions. We also expect the
event-functions to have the same functional dependency over the reactant complex for any
reaction. Therefore, the functional form of fr will be part of the definition of the reaction
network’s kinetics. And, given a specific kinetic description of the network, we represent
the reaction rates assigned to the reactions, over the mapping arrow:

N∑
i=1

sirXi
kr−→

N∑
i=1

s′irXi, r = 1, 2...R. (3.5)

3.1.4 Physical Systems

The major restriction of the reaction networks when we think of physical systems,
as we mentioned, is that the state of the system must be determined by a single set of
numbers that is the quantity of elements of species, their count-numbers. The system
must give scalar non-negative measures of concentrations and be homogeneous in all
other aspects. Also, the time-scale of the reactions must permit that these conditions
keep valid when reactions happen. These traditionally imply spatial homogeneity (as
in well-stirred systems) and rapid thermal equilibrium after reactions occur. If space is
structured, the state of the system must include information about the spatial coordinates
of elements in addition to their numbers; the same goes for temperature or anything more
that differs. Fluctuations of quantities, other than the change in the number of elements,
like external parameters, as a consequence of reactions or not, usually can’t be modelled.
So the assumptions of "good behavior" and rapid diffusion must hold.

This kind of restriction has the only purpose of maintaining the state of the system
defined by the count-numbers of species alone. If we can represent anything else as a
function of n changing the evolution of the network through reaction rates, and justify
the connection, then it is not a restriction. The same holds if we can compartmentalize
the elements into sub-species that have different values for properties, such as regions
representing spatial structure.

Underlying processes that happen, for example, in faster time-scales, or at a smaller
spatial scale, could affect the system mainly as changes in reaction rates. We can justify
quasi-steady state approximations and time-scale separations using the connection between
these processes and the reaction network, then we are able to model different functional
forms of reaction rates, dependent on n.

Moreover, we can consider reaction networks as a probabilistic model over physical
systems, then we don’t suppose well mixing of actual trajectories, but of probabilities
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of finding the system at a given state. In this way, transition rates are representative
of reactions’ plausibility, reading as the chances of reactions happening at a given state
instead of simply rates. This interpretation is similar to that of a model in statistical
mechanics, where systems are designed to have equiprobable microstates instead of actual
trajectories.

But, in the end, when modeling real systems, reaction networks are suited to systems
composed of "populations", collections of any physical objects that can be considered
identical in the scope of the problem. Also systems of physical elements that don’t
affect each other’s trajectories outside of encounters. There can be different kinds of
processes affecting the reaction network as external forces (communicating through the
count-numbers of species), but the species must be defined with these restrictions.

3.1.5 The Continuous Limit

We have defined the reaction network as a system of interacting species composed of
many elements, with a discrete nature, with total counts defining the states of the system
through the extensive variable ni. But the traditional deterministic approach associated
with them considers the state variables as continuous intensive concentrations ηi. What is
the relation between these two? Concentrations are primarily defined as a quantity per unit
of "size" of the system, for example the volume for real biochemical systems. In this case,
ηi should be the concentration associated with ni. We define a general size parameter for
the reaction network, Ω, representing a transformation between whole system properties
and local system properties that are independent of the system’s size (from extensive to
intensive properties). In practice, Ω can be "just" a scale resizing, but Ω is theoretically
essential to building the bridge between microscopic level dynamics and macroscopic level
dynamics. This is the relation between the two levels of state descriptions:

ηi = lim
Ω,ni→∞

ni
Ω . (3.6)

This limit encapsulates a passage from discrete to continuous descriptions. Note that the
limit enforces both the system size and ni to approach infinite to the same degree, otherwise
ηi couldn’t be defined as it is; ni being an extensive variable, it grows with the system. So,
the deterministic approach is, first of all, building ηi to be a good approximation for ni/Ω.
This enables us to talk about the discrete changes ∆ni in terms of continuous infinitesimal
changes dηi = ∆ni/Ω = O(1/Ω), because ∆ni is of O(1) (ni is a count number). Moreover,
O(1/Ω) stands as the order of the approximation of the discrete quantity ni/Ω to the
continuous quantity ηi (note that 1/2Ω is the maximum size of the indeterminacy of ni/Ω
by ηi).
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3.1.6 Common Systems Modeled as Reaction Networks

Now we give some simple examples of famous biochemical systems. In the examples
below and the sections that follow, we pay attention to how reaction networks are 1) a
general, abstract, modeling approach encompassing a wide range of physical systems, 2) a
unifying framework bridging the gap between theoretical mechanistic modeling (a design
level) and mathematical dynamical treatments (a quantitative model), 3) a straightforward
generator of deterministic and stochastic analysis and the connection between them, 4) a
reliable and easy to understand tool for designing and editing models with many degrees
of different complexities, 5) and a readable organization of complex dynamical systems as
emergent from simple and clearly defined mechanistic interactions.

These examples are stated in their deterministic kinetic form, as systems of differ-
ential equations. In the next section, we’ll derive a justification for this connection.

The first example is the Lotka-Volterra system, that describes the dynamics of
predators and preys in an ecological environment. The system is commonly written as

dφ1

dt
= αφ1 − βφ1φ2

dφ2

dt
= kφ1φ2 − γφ2. (3.7)

This can be the result of a reaction network system with three reactions, stated as follows:

X1
α−→ 2X1

X1 +X2
β−→ (1 + δ)X2

X2
γ−→ ∅, (3.8)

with k = βδ. We can easily interpret the reactions as, respectively: the birth of a new
prey from a prey, a predator consuming a prey and giving birth to δ new predators, and
a predator dying. The relation k = βδ enlightens the connection between β and k that
comes from the local interactions. The reaction network has the stoichiometric difference
matrix

S =
1 −1 0

0 δ −1

 . (3.9)

From the reaction network, that as we’ll see derives the deterministic system above, we
can also derive a stochastic version of this system.

Now, it is common to want to add intra-species competition in a Lotka-Volterra
model, where the population can’t grow indefinitely but is limited by a carrying capacity.
It is simple to add that by the use of the reaction network approach. Let’s add intra-species
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competition to the prey population, as the following:

X1
α−→ 2X1

2X1
ε−→ X1

X1 +X2
β−→ (1 + δ)X2

X2
γ−→ ∅. (3.10)

The second reaction represents intra-species competition, because it says that sometimes
the encounter of two preys will result in the death of one of them; they are competing
for resources or actually fighting. This additional step, as we’ll see in the next section,
changes the deterministic system above to

dφ1

dt
= αφ1 − βφ1φ2 − εφ2

1

dφ2

dt
= kφ1φ2 − γφ2. (3.11)

The carrying capacity is defined as: the concentration of preys that result in the ceasing
of net growth due to competition counterbalancing the growth reaction. We have it as
K = α/ε. Note that a growing population reaching its carrying capacity is mathematically
the same as a reversible chemical reaction reaching equilibrium with its reverse reaction.
K is here expressed in terms of local parameters.

This approach is in accordance with the usual system of differential equations for
this interaction in terms of K. We could add this interaction to the predator population too,
but the definition of their carrying capacity in the same way asK would depend on breaking
the prey-consumption reaction in two steps, of prey consumption and predator birth (or, if
we remove the prey consumption, we could make the two populations symmetrical and end
up with a classical competition model). See that the parameter ε can have a meaningful
interpretation that is often overlooked in usual modeling: an intrinsic rate of intra-species
competition. The stoichiometric difference matrix for this new system is

S =
1 −1 −1 0

0 0 δ −1

 . (3.12)

So note that the reaction network provides a comfortable flow to the modeling approach
and also a grounded basis for mechanistic interpretation of the trajectory equations that
result from it.

Another example, the SIR compartment model of epidemiology, with S being the
susceptible individuals, I being the infected individuals, and R being the recovered or
removed individuals. This system can have even actual humans as species. The system is
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commonly posed as

ds

dt
= −βsi

di

dt
= βsi− γi

dr

dt
= γi, (3.13)

resulting in s+ i+ r = s0 if we consider the initial condition s = s0 and i = r = 0. This
system is the same as the one derived from the following reaction network with only two
reactions

S + I
β−→ 2I

I
γ−→ R, (3.14)

The reactions are interpreted as: an infected individual infects a susceptible one, and an
infected individual gets removed or recovers. We can expand this model to include birth of
susceptible individuals and a population death rate that is equal for every compartment:

∅ ∆−→ S

S + I
β−→ 2I

I
γ−→ R

S, I, R
µ−→ ∅. (3.15)

The last line represents the three death reactions with the same rate. On top of that, we
can include an exposed step, allowing for an incubation period with average duration T
during which the newly infected individual isn’t yet infectious (this means a reaction rate
of 1/T ). For that, we include the compartment of exposed individuals, E:

∅ ∆−→ S

S + I
β−→ E + I

E
1/T−−→ I

I
γ−→ R

S,E, I, R
µ−→ ∅. (3.16)

Now, the susceptible individual becomes exposed, and the exposed in turn eventually
becomes infectious. This variant with the exposed compartment is called the SEIR model.
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Now, the deterministic system arising from this is
ds

dt
= ∆− βsi− µs

de

dt
= βsi− e

T
− µe

di

dt
= e

T
− γi− µi

dr

dt
= γi− µr. (3.17)

These epidemiological models are a good example of the importance of parametric esti-
mation, because the reproduction number R0 is a valuable metric of how dangerous an
infection outbreak actually is, and it is defined in terms of model parameters. For the
SEIR model as the above, it is

R0 = βT−1

(µ+ T−1)(µ+ γ) . (3.18)

So, by being able to estimate those parameters using observational data of the model’s
variables, we are able to estimate the reproduction number. With an estimation procedure
over the models from the reaction network, we can do this for either a deterministic or a
stochastic epidemic model.

We now through an example of quasi-steady state approximation in the context of
molecular dynamics. Consider a substrate molecule S that is consumed to form a product
P , with the help of an enzyme E through the reactions

S + E
k+−→ C

C
k−−→ S + E

C
k−→ P + S. (3.19)

The species C is the complex formed by the substrate and the enzyme. The deterministic
system associated with this network is

ds

dt
= k−c− k+se

de

dt
= k−c+ kc− k+se

dc

dt
= k+se− k−c− kc

dp

dt
= kc. (3.20)

We observe that the concentration of the substrate-enzyme complex C is approximated
constant in the time-scale considered, in a state of quasi-steady state, with the reactions
consuming C happening in a faster time-scale and conditioned to C’s formation. This can
be approximated to a reaction network that doesn’t "note" C,

S + E
keff−−→ P + E, (3.21)
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with E kept with constant concentration e0. To calculate keff , we set dc
dt

= 0, and note
that e = e0 − c. This results in the following equations:

dp

dt
= keffeos

ds

dt
= −keffe0s, (3.22)

with
keff = k

KM + s
, (3.23)

where KM = k−+k
k+

is the Michaelis-Menten constant. This reduction produces an effective
rate that is called the Michaelis-Menten rate of catalyzed product formation. This derivation
is compatible with the one from the reduced reaction network. Note that keff now non-
linearly depends on the concentrations through s. The reduced network models underlying
mechanisms through their effect over the reaction rate.

3.2 Deterministic System

We follow directly the particular definition of a reaction network from the pre-
vious section with the aim to define ways in which we can describe trajectories of the
concentrations ηi in time. For this, we assume an infinite system and give a deterministic
interpretation to the transition events brought by the reaction sets. We do this by defining
the meaning of the transition rates in a particular manner: a reaction having a transition
rate Wr will continuously happen through a continuous time passage in a way that the
instantaneous amount of reaction events per unit of time is proportional to it. This allows
us to define the instantaneous change of concentrations per unit of time in terms of the
stoichiometric difference of reactions as

dηi
dt

=
∑
r

SirWr(η) =
∑
r

Sirkrfr. (3.24)

This is so regardless of the possible dependence of kr on the vector of concentrations, η.
Implicit in this equation is the assumption of a time scale dt large enough to permit the
state of the system to be always defined (in the terms discussed in the last section), but
simultaneously a time scale that is small enough to keep the state of the system constant
up to O(dt). Recall that the reaction rate kr acts as a strength parameter weighting the
occurrence of the reaction depending on environmental factors, the affinity factors between
reactants, and underlying mechanics affecting the actual occurrence of the reaction, while
the event-function fr(η) is dependent only on the reaction structure and the reactant
concentrations. The equation above can be read as: the change dηi in concentration of a
species during the passage of time dt is equal to the number of reaction events happening
during dt, Wrdt, times the amount that ni changes per reaction event, Sir. The number of
reactions happening during dt is also the number of complexes formed by encounters of
elements during dt, fr, times the number of encounters that end up reacting, krdt.
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3.2.1 The Event-function

The problem of directly deriving a deterministic set of equations able to describe
the dynamical evolution of the reaction network now reduces to finding the law connecting
a given reaction type to its reaction event-function. We’ll provide a qualitative reasoning
that arrives at the overall reaction occurrence determination that is called law of mass
action, which is historically an empirical law that will later have a fully grounded derivation
coming as a deterministic limit of a stochastic analysis of the reaction network.

We must expect that fr(η) will not depend on species that are not reactant species
of r, because their presence is irrelevant to the occurrence of this particular reaction, per
construction (but note that kr might depend on them, if they interfere with environmental
or underlying mechanisms also driving the actual occurrence of r). Conversely, fr(η) must
depend on reactant species’ concentrations, because, for example, if a given concentration
is zero, the reaction can’t possibly occur due to the lack of an "ingredient".

We now argue that fr(η) must be built as separable in terms of functions of
different reactant species, and these functions are symmetrical if the species are symmetrical
reactants. For example, that a reaction of form X1 +X2 −→? will have an event function of
the form fr(η1, η2) = g(η1)g(η2) and X1 + 2X2 −→? will have fr(η1, η2) = g(η1)h(η2). This
is because each element of a species is assumed to be independent of the others, so they
can’t possibly communicate with each other, by construction. Such communication would
be viewed as an interaction, thus having its effects considered either as a reaction itself or
as a part of the factors bundled inside kr.

The reasoning above actually leads to a more strict conclusion. We argued for
lack of communication between elements of different species, but the whole point also
encompasses lack of communication between elements of the same species as well, resulting
in a reaction of type 2X1 −→? having an event function of form f(η1) = g(η1)g(η1) = g2(η1).

Our derivation is now reduced to finding the simplest form of event function, for
the reaction of type X1 −→?. We argue that it should be the simple form fr(η1) = η1.
This comes by once more extending the argument of mutual independence of elements.
In this scenario, what would we expect to change if we doubled the concentration η1?
Since the elements don’t "see" each other, we may visualize this doubled system as two
independent superposed systems occupying the same volume, so we would expect to double
the number of reactions occurring. This independence in all-terms is conducive to a linear
functional form between elements and reaction occurrence, so fr(η1) = n1. Remember that
any multiplicative constant would function as an arbitrary scale already absorbed by the,
in principle, unknown reaction rate kr. Thus, the deterministic derivation is now complete.

Note that we didn’t need to invoke any statements about probability, about chances
of occurrence, but we needed to invoke the microscopic property of the reaction network,
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the fact that species are composed of discrete elements interacting in a microscopic, local
scale, and that, apart from the reactions themselves, evolve independently of each other.
Without this assumption, we could only hope for phenomenological conclusions, since the
microscopic details would be inaccessible.

3.2.2 Deterministic Equations

For the general reaction network represented by

N∑
i=1

sirXi
kr−→

N∑
i=1

s′irXi, r = 1, 2...R, (3.25)

we arrived at event-functions of the form

fr(η) =
∏
i

ηsir
i . (3.26)

This leads to deterministic differential equations of the form

dηi
dt

=
∑
r

Sirkr
∏
j

η
sjr

j . (3.27)

The system of equations represented above is what we usually call a mass-action kinetic
system, although the term mass-action commonly implies constant reaction rates kr, that’s
why we can consider this broader derivation to be a form of generalizing the mass-action
system.

The system above can be provided with initial values of concentrations and then
integrated in order to output actual trajectories in time for η. But the trajectories
themselves are also far from being the only source of information about the system’s
behavior. Many other tools are also available, such as dynamical stability and state
space analyses, for obtaining structural information on systems for which only numerical
trajectories are available.

3.3 Stochastic System

The stochastic form of reaction networks will be a Markov jump process, with
probability distribution governed by the master equation.14 The central aim of this section is
to provide arguments both for this conclusion and for the connection with the deterministic
system described in the last section.

We start by noting that reaction networks, as defined in this chapter, are compatible
with all system-defining assumptions of a stochastic system governed by the master
equation, that we saw in the last chapter. They are systems evolving through a continuous
passage of time assumed to have a well-behaved infinitesimal time-step scale, dt; and are
systems defined by the total number of discrete state element counts of species, ni, with
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states changing through discrete "jumps" between states (the jumps being the reactions
occurring and transforming the state vector by a shift of size equal to the stoichiometric
difference of species). We only lack a line of reasoning to justify the system having a
probabilistic nature, and being Markovian in addition to that.

3.3.1 Bayesian Probabilistic Assessment

The central difference between the stochastic description and the deterministic is
that now we are far from the infinite system limit n,Ω→∞. This means that we can no
longer define the intensive-level concentration η of species. The stochastic kinetic must be
set in the level of discrete element count-numbers ni. A consequence of this is that the
definition of Wr as the instantaneous amount of reactions r per time-unit and size-unit in
terms of concentrations now breaks down. We need to reinterpret reaction events as actual
discrete events happening between the elements of the system, which means we need to
actually count the amount of reactions happening inside the entire system. But given
that our model is overlooking the actual individual trajectories of each element and their
details (per design of the reaction network), we can’t know for sure whether a reaction
will or will not happen at a given moment in time. That’s where a Bayesian probabilistic
description enters.

In this view, the elements will follow their unknown trajectories "at will" (actually,
through their own underlying mechanical laws, from molecules to actual people), shuffling
themselves as they rapidly achieve spatial homogeneity (as the reaction network framework
assumes), and sometimes they’ll encounter each other, being together at the same place,
so as to enable a reaction to occur (think about, for example, molecules bumping each
other or preys and predators crossing their paths). This setup doesn’t necessarily mean
that a reaction will occur, because environmental/underlying factors surrounding the
encounter of reactants must be so as to "ignite" the reaction (think about molecular
encounters resulting in a chemical reaction or not, or animal encounters resulting in their
interaction or not). So, from a Bayesian standpoint, it is important to note that these
encounters arise from the actual motions of elements, which can be determined in nature,
and what is undetermined is the model’s knowledge of whether actual encounters are
happening and then resulting in the reactions. And precisely because we are overlooking
the mechanistic details surrounding and behind each encounter, we don’t know where
there will be molecules or animals encountering each other, or whether the molecules are
bumping in the right manner, or whether the animals saw each other and engaged in their
reaction-interaction.

In order to characterize transition events, or jumps, as a consequence of reactions
occurring in the system, we would like to use the following statement:

Rr,n = {Given a state n, a reaction r occurs during the next interval of time dt}.
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But we don’t know for sure whether Rr,n will be true, so we’ll deal with its
probability of being true. We know that the system is in a given state n, contained inside
a space of size Ω, and the reactions occur locally at a reaction rate k′r. We rename here the
reaction rate because we don’t know whether or not this is the same parameter defined for
the deterministic description, since we are on a different context, with these parameters
meaning different things, in theory. The reaction rate k′r, being the local rate of occurrence
of a given reaction of type r, marks how often an encounter will result in the actual
transition taking place. In this scenario, we can’t say that k′rdt will be the amount of
reactions that occur somewhere, for two reasons: 1) a given encounter of reactants will
either result in 1 reaction occurring or 0 reactions occurring, and 2) we can’t simply count
what we don’t know will happen. So, it only makes sense to think of k′r as the probability
of an encounter of elements of a reactant complex resulting in a transition.

Now, by the reasoning we gave, we can divide the statement Rr,n in encounters
happening and transitions happening due to encounters, so we can break it into the two
following statements:

Er,n = {Given a state n, an encounter of reactants of r is occurring}.

Tr,n = {Given a state n, encounters result in reactions during the interval dt}.

We say that Rr,n = Er,n, Tr,n. And by the product rule, we have

P (Rr,n) = P (Er,n)P (Tr,n|Er,n). (3.28)

In the way k′r is defined, we can see that P (Tr,n|Er,n) = k′rdt, the probability of a transition
occurring given an encounter of reactants (note that we are assuming that encounters are
preserved at least during the time dt, it is part of the requisites over dt). Finding P (Rr,n)
is now a matter of finding P (Er,n), that will give rise to the stochastic form of the event
function.

3.3.2 Transition rates and the Markov Property

The most reasonable assumption we can make about where each element is, given
that we don’t know anything about their individual trajectories, is to suppose a uniform
probability over the entire space Ω, so in a way that this probability is simply proportional
to the volume considered. But we also need to formalize what we consider to be an
encounter. So, we divide the space into minimal cells of size ωr defined in such a way
that elements inside them are considered to be encountering themselves and therefore are
candidates to "close the deal" for reaction r. These cells can be viewed as encounter sites,
with the size ωr being a fundamental parameter of the underlying mechanisms allowing the
reactions to happen, representing the volume of a characteristic reaction’s effective-range.
Although we are allowing for different reaction ranges to different types of reactions, it is
part of our assumptions to treat each of them as constant parameters, and also the fact



52

that they are well-behaved in the sense that they’re small enough in comparison to the
system size Ω. The number of such reaction-site cells inside a system of size Ω is Ω/ωr.

Then, given the sizes ωr, we conclude that, for each element composing the system,
there’s a uniform chance ωr/Ω of finding it inside any small cell of size ωr and a chance
(Ω− ωr)/Ω of finding it outside a given cell.

Our probabilistic assessment over the cells is diffuse enough to prevent us from
incurring in an under-counting of encounters (from, for example, close-by elements that
happen to belong to different neighbor cells), because, in a sense, we can visualize every
element as having "a portion" ωr/Ω of it inside every cell (the math can’t distinguish this
detail, we are not really creating spatial structure here).

We have now the basis to obtain a reasonable probability of having a confluence of
reactants inside a cell of size ωr, thus constituting encounters as we defined them. The
encounter happens when we find a group of reactants for a valid reaction in each cell,
taken from the entire population of elements given by n.

Take for example the reaction of type X1 +2X2 −→?. Every time we have an element
of type X1 and two elements of type X2 inside a cell, we have a valid encounter for reaction
r. Consider a particular cell of size ωr, then if we count how many groups of one X1 and
two X2 elements that could be there and consider the chances of a given group being
there, we have the chances of an encounter be happening there. The number of possible
groups is the combination composed of one X1 and two X2 from the populations of n1

elements of type X1 and n2 elements of type X2. The probability of a particular group of
one X1 and two X2 being inside a cell is built from the following statement: an element
X1 is inside the cell, and an element X2 is inside the cell, and an (other) element X2 is
inside the cell. Based on their individual chances and their independence, we conclude
that this probability is ω3

r/Ω3 (the joint probability of all three elements considered being
inside the cell instead of outside). So, for one cell, using event Er,n applied to a single cell
Eωr
r,n, in this particular example we would have

P (Eωr
r,n) = n1n2(n2 − 1)

2
ω3
r

Ω3 . (3.29)

This reads as: an encounter of this type in this cell happens with probability ω3
r/Ω3,

but P (Eωr
r,n) considers all n1n2(n2 − 1)/2 possible independent encounters between these

elements.

For the general case of a reaction ∑N
i=1 sirXi −→?, that probability becomes

P (Eωr
r,n) =

∏
i

ni!
(ni − sir)!sir!

ωsir
r

Ωsir
. (3.30)

And finally, for the total probability of having an encounter for a reaction of type r in the
entire system, we sum all independent probabilities of it happening in a single cell, which
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means multiplying by the number of cells:

P (Er,n) = Ω
ωr

∏
i

ni!
(ni − sir)!sir!

ωsir
r

Ωsir
. (3.31)

Going back to P (Rr,n), we end up with the following probability of a jump of kind r

happening in the system when it is in state n:

P (Rr,n) = k′rdt
Ω
ωr

∏
i

ni!
(ni − sir)!sir!

ωsir
r

Ωsir
=
 k′r

ω
1−
∑

i
sir

r

Ω
∏
i

ni!
(ni − sir)!sir!Ωsir

 dt. (3.32)

Now, a few commentaries before we proceed:

1) Unless ∑i sir ≤ 1, meaning a reaction of type ∅, X1 −→?, this probability actually
depends on the fundamental reaction parameter ωr. This makes sense, because this
parameter defines how common an encounter should be, and for a reaction involving only
one element or no elements, there’s not really an encounter to happen. Moreover, this
parameter is not a part of the structure of the reaction as an interaction of the network,
but a part of the underlying mechanics giving rise to the interaction. So this dependence
on ωr should be absorbed by the reaction rate, making us retroactively redefine what we
consider to be the reaction rate to

kr = k′r

ω
1−
∑

i
sir

r
∏
i sir!

. (3.33)

This redefinition comes in order to maintain consistence in the dependencies of the reaction
rate and of what we defined as the reaction event-function, despite muddying the clear
stochastic interpretations of before. Note that it means that we should expect reaction
rates to scale according to the total number of reactants (it makes sense, because reactions
requiring more elements should be less probable to happen). Then, we also divided by∏
i sir! because, in the deterministic case, we let multiplicative constants to be taken inside

the reaction rate (with this, the event-function actually holds only the functional form of
the dependence on the architecture of reactions). This redefinition will soon be even more
justified when we see that this new reaction rate actually is the deterministic reaction
rate, and the equation above already is a connection between deterministic and stochastic
formulations.

2) P (Eωr
r,n) depends on the system size Ω, but we are considering reactions that

happen on a local scale, independent of the whole system. This comes only from the fact
that we are representing these reactions in terms of the total numbers of elements in the
system, that are extensive variables. But then, we can’t remove the dependence on Ω by
just trying to rewrite the expression in terms of intensive variables ni/Ω. To justify that,
note that P (Eωr

r,n) takes in consideration the progressive use of elements from the whole
"bag" of ni elements, making it truly dependent on the system size. See, for example, that
reactions using only up to one reactant of each species, called first order reactions, that
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don’t need the successive drawing of elements of any type, can be made independent of Ω.
If we could somehow approximate the counting of elements by a counting "with repetition",
considering that the "bag" of elements is large enough to not "get smaller" as we use them,
then we would also break the necessity of this Ω dependence; that’s precisely what happens
when we move to the deterministic description, when we are able to make Ω→∞.

3) We implicitly assumed a lack of explicit dependence on the time for the jumps.
The reactions are built in a matter that doesn’t use time as a relevant component in the
reactions, but the reaction rates may depend on the absolute value of time (for example,
if they are influenced by timed factors). If that is the case, we should adjust the notation
accordingly, but nothing would change in the derivation. One thing to note in advance is
that an explicit dependence on time would not break the Markovian property of models if
the dependence is on the actual time of the jump, not previous times.

4) In our derivation of P (Er,n), we could have considered the term (1−ωr/Ω)(ni−sir),
meaning that elements outside the group should be outside the cell, making it a binomial
distribution. But this is not a matter of dividing all elements through a binomial distribu-
tion, it is a matter of putting candidate reactants inside the cell, independently of all other
elements, and then counting all sets of candidates. The dependence on other elements’
situations would break the local and independent nature of this probability.

Now, the probabilities P (Rr,n) are the probabilities of jumps in a discrete state
space from n to all other accessible states (that are made accessible by the set of reactions).
This defines transition rates for each reaction as P (Rr,n) = W r

n,n′dt, with the new state
n′ = n + STr and STr being the r-th column of the transposed stoichiometric difference
matrix, giving the update on n by the jump of type r. These transition rates are given by

W r
n,n+ST

r
= krΩ

∏
i

ni!
(ni − sir)!Ωsir

. (3.34)

These stochastic transition rates are also called propensity functions in the biochemistry
literature. We see that the transition rates depend only on the state before the jump,
always (unless kr would be made to depend on previous states, something that is possible
in principle but would break the Markovian property). That’s actually expected, since
reactions are defined to be determined by the present number of elements.

This concludes that the system, defined in this way, behaves as a Markovian jump
process, and therefore has its probabilistic evolution governed by the master equation
derived in the last chapter:

dΠ(n, t)
dt

=
∑
r

(
W r
n−ST

r ,n
Π(n− STr , t)−W r

n,n+ST
r

Π(n, t)
)
. (3.35)

Let’s pay attention to the changes from the last chapter, from eq. (2.27). Now, the
transitions are restricted to the ones allowed by the set of reactions, so the sum now is over
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the reactions. The reactions shift the state space in clearly defined quantities, STr . The first
term of the sum accounts for the jumps into the present state from the state that has the
present state as a possible destination through reaction r, and the second term accounts
for the jumps from the present state to the state brought by reaction r. This equation can
be rewritten as a function of only the present state if we use the step operator defined
before, in equation 3.3 (the operator that shifts states by the stoichiometric differences
applied to individual entries). So we have

dΠ(n, t)
dt

=
R∑
r=1

( N∏
i=1

E−Sir
i − 1

)
Wr(n)Π(n, t), (3.36)

with the transition rates just renamed for convenience, because the reaction label r is
enough to denote the transition. Note that each Ei acts only over the i-th component of
n, shifting it by Sir.

The same remarks made to the system of deterministic differential equations now
apply to the master equation. It can be solved, given an initial condition over n, to
determine the probability density of states Π(n, t) for all times; but it can also have its
properties analyzed in order to describe the noisy behavior of stochastic reaction networks,
with the study of its steady-state solutions, moments, and other analytically useful metrics.

3.3.3 Connection to the Deterministic System

The connection with the deterministic system is made when we equate the stochastic
transition rates per unit of size Wr(n)/Ω with the deterministic version of krfr(η) by
performing the limit Ω,n → ∞. Recall that the deterministic krfr(η) is the number
of reactions occurring per unit of time and size, that’s why we consider the stochastic
transition rates divided by the system size. We must note that, by performing the limit,
we are moving from a state of uncertainty to an approximated state of certainty, and
that’s because the limit washes out our uncertainty along with the approximation. How
so? Suppose that the range of uncertainty we associate with ni is δni; this value, the
uncertainty of our belief about ni, is formalized in probability terms as the standard
deviation of the probability associated with ni. This uncertainty would be translated
to ηi as δηi = δni/Ω. Uncertainty being "washed out" is formally put as δηi → 0 when
Ω, ni → ∞. Because the uncertainty about ni is the sum of independent uncertainties
associated with every element of species i, the central limit theorem says that, as the
limit goes, the probability associated with the number ni approximates a Gaussian and
δni → O(√ni). Since we must have ni go with the same order as Ω, δηi → 0, as we want,
with error of order O(1/

√
Ω).

Note that the limit holds a valuable meaning: it is able to transform the probability
of a reaction occurring at the microscopic scale into an approximate amount of reactions
occurring at the macroscopic scale, without uncertainties associated. Let’s illustrate these
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kinds of transformations with an example: suppose a population of individuals that can
be in one of two states A and B, with any individual having probability p of being in
state A (meaning that the statement "an individual is in A" is uncertain with probability
p). Now, if we take a number Ω of individuals, we may ask, for example: how many of
these individuals are in state A at a given moment? We can’t know that for sure, because
the state of individuals is uncertain. We can argue that, because the total number of
individuals in state A is the sum of independent individuals in their states, this value
should approach pΩ as Ω gets larger, but the statement "there are pΩ individuals in state
A among Ω individuals" has a probability associated with it. The point is that, as we
make Ω→∞, the uncertainty (variance) associated with that last statement goes to zero.
If you see that pΩ is the mean of individuals in state A (and the mean being merely an
estimator of this value, an "artificial" expected value for it), you don’t need to invoke the
central limit theorem to justify the loss of uncertainty, just the law of large numbers (that
says that the uncertainty over the mean goes to zero, but doesn’t say how it goes). The
fact is that we couldn’t say that ηi is the mean of ni/Ω before we perform the limit. What
is funny is that, by showing that ηi approximates ni/Ω with certainty in the limit, we also
show that ηi is the mean, at least in the limit. Also, by invoking the central limit theorem
we were able to see that the uncertainty over ηi goes as O(1/

√
Ω).

So, performing the limit, we reach the connection:

lim
Ω,ni→∞

Wr

krΩ
= lim

Ω,ni→∞

∏
i

ni!
(ni − sir)!Ωsir

= lim
Ω→∞

∏
i

ni
Ω

(ni − 1)
Ω ...

(ni − sir + 1)
Ω =

lim
Ω,ni→∞

∏
i

ηiΩ
Ω

(ηiΩ− 1)
Ω ...

(ηiΩ− sir + 1)
Ω =

∏
i

ηsir
i . (3.37)

The last term is the deterministic event-function fr(η). Note how the deterministic
derivation is a large size approximation to the stochastic derivation, and all the treatment
developed so far in this chapter is applicable to every system modeled as a reaction
network.

3.3.4 Simulation of the Limit

To fully appreciate this connection, we consider a simple example where we show
a stochastic trajectory, simulated from the stochastic simulation algorithm (SSA), in-
creasingly approaching the deterministic trajectory of the same system as the system size
increases. For that, we’ll use the simple predator-prey system shown before

X1
α−→ 2X1

X1 +X2
β−→ (1 + δ)X2

X2
γ−→ ∅. (3.38)
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This system exhibits well-known oscillatory trajectories with differing phases (preys go up,
then predators go up, then preys go down, then predators go down). The deterministic
differential equations is given in equation 3.7, and the full-length master equation is, with
implicit dependence on time

dΠ(n1, n2)
dt

= α
(

(n1 − 1)Π(n1 − 1, n2)− n1Π(n1, n2)
)

+β

Ω

(
(n1 + 1)(n2 − δ)Π(n1 + 1, n2 − δ)− n1n2Π(n1, n2)

)

+γ
(

(n2 + 1)Π(n1, n2 + 1)− n2Π(n1, n2)
)
. (3.39)

Each line shows the contribution from one reaction, with the first term being the jump
into the state n = (n1, n2)T , and the second term being the jump out of that state.

In figure 3, we show a sample of the stochastic system together with the trajectories
of the correspondent deterministic system, for a system size of Ω = 1. We see the contrast
between both dynamics with such a low system size. Figure 4 shows the connection between
them as the system gets bigger, for the trajectory of preys. We maintain the same initial
deterministic concentration and other parameter values through all four scenarios. Note
how, at size Ω = 100, both dynamics already are hardly distinguishable.

Figure 3 – Predator-Prey reaction network. Left: a sample of the master equation from
the SSA. Right: a numeric solution of the deterministic equation. The system
size is Ω = 1, so both scales coincide. Initial values are n1 = η1 = 40 and
n2 = η2 = 30. With arbitrary time-scale, we have α = γ = 2, β = 0.1, and
δ = 1.
Source: By the author.

One final aspect to note that is related to this connection is the evolution of the
mean number of elements of a species, also given by the master equation. The mean is
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Figure 4 – Number of preys compared for the four system sizes Ω = 1, 5, 10, 100. The
deterministic solution (Ωη1) is shown in black and the stochastic samples from
the SSA (n1) are shown in blue. Initial values of concentrations are kept at
η1 = 40 and η2 = 30, and the initial number of individuals are scaled accordingly,
n1 = 40Ω and n2 = 30Ω. With arbitrary time-scale, we have α = γ = 2, β = 0.1,
and δ = 1.
Source: By the author.

defined as
〈ni〉(t) =

∑
n

niΠ(n, t). (3.40)

where the sum extends over all possible combination of states n. In the same way, the
mean extends to any function of n,

〈g(n)〉 =
∑
n

g(n)Π(n, t). (3.41)

To find the equation for the mean, we produce this definition over the master equation.
We multiply the whole equation by ni and sum over all possible states:

d
∑
n niΠ(n)
dt

=
R∑
r=1

( N∏
i=1

E−Sir
i

∑
n

(ni + Sir)Wr(n)Π(n)−
∑
n

niWr(n)Π(n)
)
,

d〈ni〉
dt

=
R∑
r=1

( N∏
i=1

E−Sir
i 〈(ni + Sir)Wr(n)〉 − 〈niWr(n)〉

)
. (3.42)

note how ni transforms into ni + Sir when passing inside the step operation that discounts
the shift by Sir. The step operator also doesn’t shift anything in means, because they
don’t depend on the system state n, so it just vanishes. Then the ni portion of the first
term cancels out with the second term, and we end up with

d〈ni〉
dt

=
R∑
r=1

Sir〈Wr(n)〉. (3.43)
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This equation has the same form as the deterministic system from equation 5.3, and with
it we can see how 〈ni〉/Ω is equal to ηi in the limit from the point of view of the master
equation. We also see that, if all reactions are of type ∅ −→? and X1 −→? (both zero and first
order reactions, the ones that give linear transition rates), the equation for the average is
exactly the same as the deterministic equation for ηi. We could be tempted to say that, at
least in these cases, they are the same even without the limit; even for small systems. But
this is wrong! The equality ηi = 〈ni〉/Ω never holds without the limit, it doesn’t even make
sense. At the level of ηi, we don’t have a finite value of Ω (it doesn’t exist as a parameter).
And if we define η without the limit, we are approximating with error of order 1/Ω (an
error we don’t even have access to if we don’t have access to ni or Ω). But it is remarkable
that the equations of motion have the same form for linear systems, even for small systems,
and are equal up to a constant factor. It means that being small doesn’t alter the shape of
the average dynamics of linear systems, and the same doesn’t occur for nonlinear systems.

But, how can we really interpret mean motion? It is the motion we would expect
uncertainties to be placed around, an unbiased estimator, while ηi is what we would expect
to see in very large systems. But, then, for large systems, ηi also is where we would place
uncertainties around (the two kinds of motion converge as the system gets ever larger and
uncertainties shrink).

3.3.5 Final Remarks

In conclusion, we present a summarizing discussion about the fundamental differ-
ences between the deterministic and stochastic kinetics presented in this chapter:

1) The state variables of the stochastic system, ni, have three properties that we
explored: they are discrete, exact, and uncertain. Meanwhile, the state variables of the
deterministic system, ηi, occupy opposite sides in these properties: they are continuous,
approximate, and certain. And there is a limit that connects these two worlds. Let’s go
through these differences once more.

2) Discrete/Continuous: the bridge between discrete and continuous treatments is
made possible by the limit. But the limit is a theoretical construct, elements are never
infinite in reality. This presupposes that the discrete description is more fundamental
than the continuous one. But we are not saying that reality itself has a discrete nature,
we are saying that reaction networks have. So, in light of a reaction network model,
systems are fundamentally discrete, and whenever we are describing them with continuous
variables, we are approximating them. With that said, in the limit, a continuous variable
approximates a discrete variable exactly. So when we say that the continuous treatment is
an approximation, we say it in relation to the reaction network, assuming finite numbers.

3) Exact/Approximate: So in the limit the deterministic approach is exact. When-
ever we say that it is an approximate quantity, we say that in the sense described above.
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And this is useful to say, because even in theory we may want to consider the limit up to
a certain point, and talk about the errors we are allowing ourselves to commit. In this
particular case, the approximation error brought by the deterministic description is of
O(1/Ω), so it is clear that ηi is exact in the actual limit, because 1/Ω→ 0.

4) Certain/Uncertain: the whole point of a Bayesian treatment is to quantify our
uncertainties about statements, and we do this by associating probabilities to them. So,
in this framework, there’s a formal process by which uncertainty could become certain,
and it involves changing the system in a way that makes our measures of uncertainty
go to zero. Regardless of how we actually do this, the most important is to see how it
can be done in principle. With that said, note the key roles the law of large numbers
and the central limit theorem play in this process. They are fundamentally about the
path through which our observations can become certain, and are a connection between
processes in individual scales and consequences in population scales. With this, we saw
that the uncertainties over η go to zero as O(1/

√
Ω). Now, an interesting discussion comes

from the fact that, by applying a limiting process over our own assessment of chances,
we end up with an equivalent proportion on the system. This can act as a gauge of our
uncertainty; think of this example: suppose you toss a coin that you know nothing about,
so you state the possible results with probability 1/2. If you toss it "infinitely" and observe
that the proportion of heads is 1/4, then that acts as global information demanding you
to revise your local assessment of the coin. But then, suppose that you have absolute
knowledge of the physical states of the coin, so there are no uncertainties. In this case,
does the proportion of heads mean something to you? Yes, it shows you how uncertainties
should be assigned by those who don’t know the details you know, but know at least this
long term behavior. But if you never tossed the coin, it still makes sense to say that the
chances of a toss result in heads is 1/2, for you. This example talks about three levels of
knowledge. The statement "the next toss will give heads" is evaluated as having 1/2 by
those who never saw the coin, or 1/4 by those who saw the long-term proportion it gives, or
either 0 or 1 for those who know the details about how the coin will land. No one is wrong,
or more wrong, than the others. They are all equally right from their perspectives. So, if
we assign chances to a system’s local behavior and then we see that its "large frequency"
behavior is different from the expected, we are missing important structures happening at
the local level that are giving rise to this difference. In this sense, the connection to the
deterministic description assures us that our probabilistic assumptions are in the right
direction (of course, if the system of interest behaves as our deterministic description).

5) A last remark, about the mean and low values of ni. Small systems are prone
to historical accidents. Take for example the system of preys and predators above. If for
some underlying reason we reach n1 = 0, preys will be gone forever, and shortly after
that the predators would too. This is never certain to occur, but always possible. The
deterministic η could never capture these accidents, while the average 〈ni〉 does, in a sense
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(it takes into account the chances of it occurring and has its value influenced by them).
Small size unbalancing the chances of reactions occurring is a fundamental aspect causing
divergence in the shapes of their dynamics for nonlinear systems. Suppose, for example,
that a reaction needs two elements of species X1 to occur, but n1 = 1; then that reaction
is not allowed to occur. This scenario would be felt by the mean motion, but never by the
deterministic motion (that is presupposing an infinite amount of n1).
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4 ESTIMATION AND STOCHASTIC APPROXIMATION ON REACTION NET-
WORKS

This chapter develops an introduction to the main methods that we use to analyze
the stochastic aspect of reaction networks, and these are actually methods related to
Markov jump processes, which are the mathematical translation of the stochastic kinetics
of networks.

We introduce the stochastic simulation algorithm for the exact simulation of the
master equation, that is based on waiting times between jumps. Then, the system size
expansion, that is the only systematic approximation of the master equation, which means
it is controlled by a small parameter, the size or volume of the system. This approximation
has a widely used first order called linear noise approximation, and it is not only important
to the mathematical analysis of noise but also to the theoretical understanding of the
connection between probabilistic and deterministic levels through the law of large numbers.

Then we specify the parameter estimation process to statistical models that use
the deterministic level of reaction networks, and an introduction to the central Bayesian
estimation algorithm of Markov chain Monte Carlo, building each related concept up to
the full understanding of the algorithm’s rationale.

The chapter ends by introducing the STAN Bayesian statistical language and
working out a simple estimation example on a Lotka-Volterra model defined through a
reaction network.

4.1 Stochastic Simulation Algorithm

Since solutions to the master equation of Markov jump processes is rarely obtainable,
especially for the case of nonlinear propensities, the exact simulation of the stochastic
dynamics is extremely useful. The stochastic simulation algorithm (SSA), or Gillespie’s
algorithm, is a method for exactly sampling trajectories of species governed by the master
equation, and it is widely used across many fields, wherever the master equation is present.15

Equally important is the easiness with which we can understand and use the algorithm. In
this work, we make extensive use of the SSA for visualizing the stochastic level of reaction
networks and also to generate simulated data for parameter estimation processes.

The SSA is centered around the fact that the waiting time between any jump
in the stochastic dynamics follows an exponential distribution weighted by the sum of
propensities. The more total propensity the model has (the more reactions in a network),
more are the chances for a reaction event to occur at any given time. The derivation of
waiting times follows from considering the occurrence of jumps as a counting process,
and noting the fact that, in between jumps, all propensities remain constant, because
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they are only state-dependent (so the SSA is restricted to propensities not explicitly
dependent on time). This results in a Poissonian distributed model for jumps, which has
exponential waiting times. But note that the Poissonian dynamics is always breaking after
a reaction occurs, because then the propensities change; so, after every jump, the waiting
time exponential distribution must be updated. Thus, we can write the following:

P (A) = λe−λτ , (4.1)

for the proposition A = {The next reaction occurs after a time τ}, where λ is the sum of
all propensities or transition rates, λ = ∑

rWr(n). Then, if we generate a uniform unit
random number u1, the time for the next reaction will be

τ = −ln(u1)/λ. (4.2)

After that, we determine which reaction will be the result of that jump, considering that
each reaction has a probability of being chosen that is proportional to its propensity (its
transition rate). So the propositions Bj = {The next reaction to happen is reaction j} have
probability P (Bj) = Wj/

∑
rWr. By generating another uniform unit random number uj,

we choose the reaction with label equal to the minimum j that satisfies the condition
r=j∑
r=1

Wr > u2

r=R∑
r=1

Wr. (4.3)

In that way, by starting from any allowed initial state, we can simulate samples up to any
given time by updating the model and iterating this procedure for each jump.

This direct stochastic simulation is computationally demanding, due to the need
of iterating over every single jump. Many approximations were designed upon the direct
and exact SSA, aiming at easier computation. The first and most famous of them is called
tau-leaping SSA, which uses a longer and chosen iteration time and approximates the
simulated number of jumps occurring in that interval (the model updates with tau-sized
leaps composed of many jumps).16

4.2 System Size Expansion

While the stochastic simulation yields exact samples of the dynamics (in a prob-
abilistic sense), approximations to the master equation are inexact methods to extract
structural information from the probability trajectories. We find that the most physically
natural, and thus most natural from the modeling perspective, is the system size expansion
(SSE).13,14 The SSE is a systematic approximation of the master equation. It provides a
measure of the approximation error through an expansion parameter dependent on the
system size (Ω), and also provides successive orders of approximation, meaning considera-
tion of ever larger systems. This expansion thus acts as a smooth connection between the
deterministic and stochastic pictures of the same dynamics represented by the reaction



65

networks, and is the generalization of the limit we performed in the last chapter to achieve
this connection.

The expansion is based on what we call the van Kampen’s ansatz. It breaks
down the uncertainty into a structured noise around the infinite system trajectory (the
deterministic limit). The aim is to be able to rely on the limit as the highest degree of
approximation and analyze uncertainty as the noise levels around the limit, that would be
viewed as the expected trajectory in the absence of noise. The main goal of the ansatz is
then to workout how exactly noise scales with the system size. Drawing from the same
arguments as in the last chapter: from the central limit theorem, the variance around the
mean scales with size as Ω−1. The noise, measured as the deviation around the mean,
should then scale as Ω−1/2. With all considerations, we present the ansatz as

ni
Ω = ηi + Ω−1/2ξi, (4.4)

where ξi are the noise variables, now considered as the focal variables of the model. So, it
acts as a transformation from the actual count-numbers ni to the noise ξi, now with the
goal to describe the evolution of ξ instead. The ansatz, as expected, implies the order of
approximation of the system to the deterministic limit, given its actual size: O(Ω−1/2). In
this context, the limit η is viewed as part of the model specification for η, and can be
provided simply as a numerical solution.

With the variable change given by the ansatz, we are able to expand the whole
description around η in successive orders of Ω−1/2. Given an arbitrary function of n/Ω,
g(n/Ω), we do

g(n/Ω) = g(η + Ω−1/2ξ) = g(η) + Ω−1/2∑
j

ξj
∂g(η)
∂ηj

+O(Ω−1). (4.5)

Then we define the probability distribution of ξ, π(ξ), in the same way as we defined Π(n)
in the last chapter. The transformation between pictures gives

∂Π
∂t

= ∂π

∂t
+
∑
j

∂π

∂ξj

∂ξj
∂t

= ∂π

∂t
− Ω1/2∑

j

∂π

∂ξj

dηj(t)
dt

. (4.6)

Over ξ, the step operator acts as

ESir
i g(ξ1, ξ2..., ξi..., ξN) = g(ξ1, ξ2..., ξi + Ω−1/2Sir..., ξN), (4.7)

with Sir = s′ir − sir being the stoichiometric difference. Finally, we have to provide our
transition rates in terms of an expansion on n/Ω:

Wr(n) = Ω
∞∑
l=0

Ω−lW (l)
r (n/Ω). (4.8)

For reaction networks, all Wr will be well-behaved and this expansion exists (all the W (l)
r

exist). Then, the SSE is executed by applying all transformations above to the master
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equation
∂Π(n, t)

∂t
=

R∑
r=1

( N∏
i=1

E−Sir
i − 1

)
Wr(n)Π(n, t). (4.9)

After this, we can collect all different orders of approximation by matching the exponents
of Ω. The zeroth order, of magnitude Ω1/2, must vanish in order to configure Ω−1/2 as a
small parameter and justify the expansion (acting like a consistency check for the ansatz).
The condition for that is

dηi(t)
dt

=
∑
r

SirW
(0)
r (η). (4.10)

This is precisely the deterministic system derived in the last chapter, withW (0)
r (η) = ∏

j η
sjr

j .
The next order of approximation, for Ω0, represents the first order of the noise ξ. It is
called linear noise approximation (LNA), and it is linear because the first order of noise is
a Gaussian distribution with time-evolving parameters dependent on η.

4.2.1 Linear Noise Approximation

The LNA is then given by the first order of the expansion on the noise, the following
equation on π(ξ):

∂π(ξ)
∂t

=
∑
r

(
−
∑
i,j

Sirξj
∂W (0)

r (η)
∂ηj

∂

∂ξi
+ 1

2
∑
i,j

SirSjrW
(0)
r (η) ∂

∂ξi

∂

∂ξj

)
π(ξ). (4.11)

This is a fokker-plank equation on ξ, with Gaussian solutions for every instant of time.
Thus, for solving this equation, it suffices to find solutions for the first two moments of π,
determining the mean and variance of ξ. For the equation of the mean, we multiply Eq.
(4.11) by

∫+∞
−∞ dξkξk to obtain

d〈ξk〉
dt

=
∑
r

Skr
∂W (0)

r (η)
∂ηk

〈ξk〉. (4.12)

Note that, if we have deterministic initial conditions (ξk(0) = 0), 〈ξk〉 = 0 for all subsequent
times. By proceeding in the same way, and noticing that the evolution is the same for
both the second moment and the variance, we have

d〈ξkξl〉
dt

=
∑
r

(∑
j

∂W (0)
r (η)
∂ηj

[
Skr〈ξkξj〉+ Slr〈ξlξj〉

]
+ 1

2SkrSlrW
(0)
r (η)

)
. (4.13)

By solving these equations, we then obtain the time-evolution of the approximate Gaussian
noise profiles around the deterministic trajectory η. This solution becomes more precise
the larger the system is.

Now, we will build a more operational form of the LNA through matrix notation.
We suppose deterministic initial conditions and consider 〈ξk〉 = 0. The variance matrix is a
NxN matrix defined as Σij = 〈ξiξj〉. The stoichiometric matrix is NxR matrix defined as
Sir = s′ir−sir. Characterizing the input from the deterministic system, we have the Jacobian
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matrix of the ODE system for η, a NXN matrix defined as Jij = ∑
r Sir∂W

(0)
r /∂ηj . Lastly,

the diagonal propensity matrix is a RxR matrix defined as diag(W (0)
r ). Then, we can write

Eq. (4.13) in its matrix form:

dΣ
dt

= JΣ + ΣJT +D, (4.14)

with D = S[diag(W (0)
r )]ST , called diffusion matrix. This equation is a Lyapunov matrix

equation over Σ. Solving the deterministic system and the Lyapunov equation then gives
the solution to the LNA:

π(ξ) = N (ξ|0,Σ(η)). (4.15)

As an illustration, consider the Lotka-Volterra system, with N = 2 species and R = 3
reactions:

X
ω−→ 2X

X + Y
γ−→ (1 + δ)Y

Y
µ−→ ∅. (4.16)

Denoting (ηX , ηY ) = (x, y), with the reactions and variables in the same order, the
stoichiometric matrix is

S =
1 −1 0

0 δ −1

 . (4.17)

The Jacobian of the deterministic system is

J =
−γy + ω −γx

δγy δγx− µ

 . (4.18)

And the diagonal of the propensities is

diag(W (0)
r ) =


ωx 0 0
0 γxy 0
0 0 µy

 . (4.19)

This is all it takes to determine the LNA solution.

With the LNA being a Gaussian distribution, we see that, by using it, we lose all
structural noise information that can’t be captured by a Gaussian. If such information is
needed, one must consider the inclusion of higher orders of approximation. But, with the
SSE, we see that the magnitude of these effects scales at least as O(Ω−1).

4.2.2 Relation to Other Approximations

There are other ways to approximate the master equation, but they are not
systematic.17 The Kramers-Moyal expansion is a method that directly applies a Taylor
expansion to the equation. The Pawula theorem states that, in order for the approximated
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solution to be a proper probability distribution, only the first two expansion terms can
be considered. Also, in order to apply the expansion, the count-number variable n is
transformed into a continuous variable. So the expansion really becomes just a coarser
continuous picture that follows the same propensities as the master equation. The resulting
equation for a continuous state variable is a usual Fokker-Planck equation (different from
the LNA solution), that has the two expansion terms identified as a drift and a diffusion
contributions. This equation, in turn, holds an equivalency to the stochastic differential
equation picture represented by an associated Langevin equation. The Fokker-Planck also
connects to a path integral formulation. Interestingly, we can instead apply the SSE to
this continuous approximation of the master equation and also obtain the LNA, with the
drift contribution giving rise to the deterministic trajectory and the diffusion contribution
giving rise to the noise. That is because the continuous approximation already is implicit
in the SSE too. This expansion is also called a diffusion approximation, and it doesn’t
regard the system size, so it doesn’t connect with the deterministic limit and doesn’t
measure approximation errors.

Another approximation to the master equation is the method of moment closure.18

It is a practical, heuristic procedure that truncates the dynamics on n by making its
higher order moments equal to zero. Doing so, we are able to close and then solve the
EDO system on lesser moments. This is needed because, for the full system, equations
like Eq. (4.12) and Eq. (4.13) (but for n instead) generally depend on higher moments,
forming an open EDO system. Moment closures can in principle be made more precise
by the more rigorous adoption of criteria for truncating moments. Despite the ξ being
Gaussian distributed in the LNA, and thus having the first two moments to be nonzero,
the LNA doesn’t impose restrictions on any moments of n.

4.3 Parameter Estimation on Reaction Networks

Now turning to the problem of parameter estimation, we first note that models
of reaction networks have a straightforward statistical implementation, in theory. By
somehow obtaining n (for a stochastic model) or η (for a deterministic approximated
model), we can provide simple numerical solutions as a model for the data in order to feed
the likelihood. The parameters we want to estimate in this case are the reaction rates and
also unknown initial states or measurement errors.

The real problem is that we almost never can afford to solve the master equation
for reaction networks, not even numerically. Out of the box, a numerical solution for
parameter estimation would consist of simulating a large amount of samples for every
relevant set of parameter values, which is a prohibitive computational effort. Then, the
approximations to the master equation are, in principle, especially useful for this task.
More standard stochastic approximation, such as the Langevin equation, unfortunately
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lead to hard obstacles in terms of matching the evolution of the model with the observed
data, which demands complex fixes that are usually called observational bridge constructs.
The SSE, on the other hand, can be readily used in the likelihood function, and this is a
great feature of the expansion. The reason is that the SSE provides a full model for the
evolution of the state distribution between observations. But even the estimation with
LNA likelihood can be extremely demanding on computations.

In this work in particular, we will explain and use the process of parameter
estimation on reaction networks with the approximated model of the deterministic limit.
Although it is a more simplistic approximation that loses all information on the structure
of noise around the mean of the model (which is useful for parameter estimation), we can
draw on the benefits of it being so easy to implement and also fairly fast. The deterministic
model then shows the least the estimation procedure can do in this context, and we will
see that it is surprisingly efficient.

Suppose we have a numerical solution for η. Since the model is deterministic, we
have the simple form of a likelihood where the model is its mean, and we can choose the
most appropriate form of distribution for the observation noise. Since the LNA gives a
structured Gaussian distribution of noise, dependent on η, we will choose a Gaussian with
constant and diagonal covariance matrix, Σ = diag(σ2

i ) as an approximation to the form
of the likelihood; that can be seen as component observations with independent errors
with constant variance. Then, the measurement model we will use is

η = x+ e, (4.20)

where x is the data and we are implicitly considering only the measured components. The
error is then e ∼ N (0,Σ). Setting the transition rates and other defining constants as the
parameter vector θ, with dimension equal to the number of parameters to estimate, the
likelihood becomes

P (X|Θ) =
∏
k

N (xk|ηk(θ, tk),Σ), (4.21)

with k = 1, 2..., K representing the data points, consisting of the pair (tk,xk). In order to
initialize the model for η, we choose the parameters η0 as initial states for a time right
before the first measurement t0 < t1, and also estimate the initial states. If we wanted to
perform the estimation from the LNA model instead, the main difference would be to sum
into e the solution to the LNA.

4.4 Introduction to Markov Chain Monte Carlo

In the parameter estimation process, once the model is ready, we are in theory
expected to integrate the kernel of the posterior for every set of values in the multidi-
mensional parameter space; then, in order to extract information from the posterior we
have to marginalize and calculate expectations through more integration on the posterior.
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Our task of estimating parameters transforms into a computational burden of integrating
functions on a high dimensional space and which normally feature a slim geometry of
probability mass, making integration especially painful. For this reason, direct integration
is virtually never a viable option in the Bayesian analysis. One of the main methods to
determine probability distributions and widely used in Bayesian parameter inference is
the Markov Chain Monte Carlo (MCMC).11,19,20 Our goal is to use MCMC to calculate
the parameter estimation process on the reaction network models. In this section, we will
provide the intuition for this method, from the beginning.

4.4.1 Monte Carlo

A Monte Carlo method is one that in general transforms samples into integrals.
This is built upon the law of large numbers, that basically shows us how to view uncertain
events as certain events plus an approximation error.

We’ll work out the intuitions through one dimensional continuous objects, but
they can readily be generalized to more dimensions and discrete spaces. Suppose a data
generating process {Xp

i } = {The variable x modeled by the probability density p(x) is in
[xi, xi + dx]}, with probability P (Xp

i ) = p(xi)dx. According to the law of large numbers,
we can calculate the mean of any function f(x) over a density p(x) by using a set of N
samples as the approximation

〈f〉 =
∫
f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi), (4.22)

an unbiased estimation with error O(N−1/2). As a particular well-known case, we have
〈x〉 ≈ ∑i xi/N , called the sample mean. But then, if we view f(x)p(x) as a simple function
of a real variable x, this is actually a method for calculating the definite integral of f(x)p(x)
over a support set through the sample mean. So the law of large numbers can act as a
connection between samples of distributions and deterministic integrals. In particular, for
a uniform density over an interval of length L, we have p(x) = L−1, and

∫
L
f(x)dx ≈ L

N

N∑
i=1

f(xi). (4.23)

In this case, we use the uniform samples as a sort of "mining" of function values that in
the limit will equally distribute themselves around the function mean. And if we map the
area under the curve of f(x) into a rectangle by an area-preserving transformation, that
rectangle would have a length of L and a height of 〈f(x)〉.

By using monte carlo integration, we can focus on just sampling the posterior. It
is a much easier task than determining the posterior, marginalizing it, and calculating
expectations.
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4.4.2 Importance Sampling

The method in Eq. (4.23) presupposes that we draw samples from the distribution
p(x), but we may need or want to draw samples from another distribution q(x), for example
the standard case of drawing from uniform distributions in algorithms. Then, it would be
useful if we could input the sampling from a different distribution q(x) into calculations
for p(x). This can be done as the trick

〈f〉 =
∫
f(x)p(x)

q(x)q(x)dx ≈ 1
N

N∑
i=1

f(xqi )
p(xqi )
q(xqi )

. (4.24)

So it is the same as sampling the function f(x)p(x)/q(x) from the q(x) distribution. In this
context, we can say that we are giving to each xqi an importance, or weight, of p(x)/q(x)
in order to calculate the mean of f(x) under p(x).

All this is, in principle, of great value for the parameter estimation process through
the posterior distribution. With it, we may sample parameters from the posterior in order
to calculate estimators for them, such as the mean, even if we have to sample primarily
from another distribution. But then we run into a problem: we can have at most the
kernel of the posterior, not the entire density. So, we have the posterior represented by
the density p∗(x) = k(x)/Z, where k(x) is the kernel and Z =

∫
L k(x)dx is the unknown

normalization factor of the posterior. But then, since Z is actually an integral, there is
now a straightforward way to calculate it:

Z =
∫
L
k(x)dx ≈ L

N

∑
i

k(xqi )
q(xqi )

. (4.25)

Thus, by estimating Z itself, we can distribute importance (weight) to values of x in the
interval according to an estimated density from the known kernel.

4.4.3 Rejection Sampling

But then, we notice that calculating from narrow distributions by sampling other
densities like that may be an inefficient process. If p(x) and q(x) don’t match, many
samples xi can have a negligible importance in relation to contributing to the probability
mass, especially in high dimensional spaces. That’s because the probability mass of kernels
is usually concentrated in a narrow subset of the parameter space (called typical set),
and it gets more concentrated for higher dimensions. This mismatch is the price we pay
in order to sample from a distribution using another distribution. In an estimation task,
if we could sample the xi from the posterior itself, it would be a much more efficient
sampling process, optimally efficient in this sense. A way to do this is to reject some xqi
on the basis of their importance under the kernel. It makes the sample generation less
computationally efficient to assure efficiency in the convergence of the integration. This
transforms the sampling under q(x) into a proposal of sampling, and a candidate sample
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is filtered under p(x) (or the kernel). For us, a major advantage of this method is that
we don’t need to estimate Z, which is a much more inefficient process. We’ll see that the
acceptance-rejection of xqi can be defined with only the kernel.

For each sampled xqi , we draw a uniform u in the interval [0, 1], and we accept xqi if

u <
k(xqi )/q(x

q
i )

max[k(x)/q(x)] , (4.26)

intuitively meaning that, in order to be accepted, xqi must fall under the curve of k/q.
Thus, we reject the sample if it falls off the curve of the kernel, in a region defined by the
constant boundary max[k(x)/q(x)] that ensures to encapsulate the whole curve of k/q.
This boundary (and also q) is of course considered only from values inside the support of
the kernel. Note that, by using a ratio as the filtering criterion, we don’t need information
of Z (it is only a scale on the kernel). In order to justify this, consider the propositions:

A = {A value was accepted},

X = {The sampled value is x}.

Then, P (X|A) = P (A|X)P (X)/P (A) has a density

p(x|A) = (k/(mq))q
P (A) = k(x)

mP (A) , (4.27)

where we defined m = max[k(x)/q(x)]. P (A), the probability of a proposal being accepted,
irrespective of its value, can be calculated by marginalizing P (X,A) over x:

P (A) =
∫
P (X,A)dx =

∫
P (X|A)P (X)dx =

∫ k(x)
mq(x)q(x)dx = Z

m
. (4.28)

Then, p(x|A) = k(x)/Z, and the accepted samples are distributed according to the desired
density, in our case the posterior p∗(x).

The most widespread picture of a monte carlo integration is done with rejection
sampling. Instead of directly calculating the integral Eq. (4.23) from a uniform sampling,
the uniform sampling is used as a proposal. Then, the function f(x) itself is used as a
kernel for the rejection-acceptance step. The simple integral then equates with the monte
carlo estimation of Z. The visualization of this process is one of dots accumulating both
inside and outside the curve of f(x); the dots falling inside the function are the accepted
ones, and those falling outside are rejected.

4.4.4 Markov Chain

The task of determining a posterior distribution is one of finding its probability
mass in the parameter space. We saw that a rejection sampling technique can assure
that sampling will efficiently represent the posterior probability mass. But we just shifted
the problem to the burden of proposing sample candidates. In high dimension parameter
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spaces, the probability mass will represent just a slim proportion of the space’s volume.
This means that a lot of proposals will get rejected if our choice of Q(X) isn’t already
aligned with the kernel. Thus, we are still left with the pressing goal of electing an efficient
proposal distribution, one that listens to the location of the posterior’s probability mass.

The idea is to use the posterior’s geometry in order to devise a criterion. In general,
the probability mass is not scattered over the parameter space, but packed inside a specific
typical set. We may guess that the typical set is concentrated around the mode, as is the
case of the geometry of a one dimensional Gaussian distribution. But at higher dimensions,
it non-trivially spreads away from the mode; because despite the importance of points is
decreased, the volume of the typical set increases in regions away from the mode. Thus, the
geometry of the high dimension posterior in general resembles a narrow band around the
region of large importance. We must devise a sampling method that probes the parameter
space for this set and then wanders over it with good mixing.

This suggests that we correlate the sampling process, in an attempt to encode
the goal of "getting closer" to the typical set once a sample falls far away from it. More
formally, we want, given a sample, to distribute the next sample in a way that actively
searches for probability mass. With that, q(x) will shape itself according to the geometry
of the posterior, granting a sufficiently high acceptance of proposals. For example, simply
proposing samples that are nearby an accepted sample already does wonders in increasing
the chances of acceptance, because we can expect that accepted samples are more probably
located in good neighborhoods (the posterior mass is not scattered over the parameter
space, but concentrated). In other words, if a sample is accepted, there is a higher chance
that it is closer to the typical set than rejected samples, because the importance for
acceptance is based on the kernel itself.

But if we want to correlate a sample with the previous sample, we want to make
the sampling process into a Markovian chain. And since we want to lock it as being
distributed as the posterior, it must be in equilibrium. Then the problem is reduced to the
coordination of a proposal and an acceptance that result in both the equilibrium state of
a Markov chain and the posterior distribution. In theory, no matter where the sampling
process starts, it can converge to an equilibrium that mimics the sampling of the posterior.
Since we now incur in the drawback of having correlated samples, we must ensure a good
sampling mixture in order to use the process for estimations (ensure that the process is
really able to capture the whole target distribution, and does not "get stuck" in certain
regions).

Another problem to consider is that the acceptance process is not that well defined
yet, because the determination of a quantity like m = max(k/q) already is an optimization
problem. The idea of probing for the typical set from a current sample can also be used to
address this and devise a local acceptance criterion.
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This process of sampling from a Markov chain in order to calculate expectations
from a desired target distribution is what is generally called a Markov chain Monte Carlo
sampler (MCMC).

4.4.5 Metropolis-Hastings

The algorithm of Metropolis-Hastings is a MCMC sampler built on a property of
reversible Markov chains, an equilibrium constraint called detailed balance. Consider the
set of statements about a chain at equilibrium {X(t)

i } = {The state of the chain x is in
[xi, xi + dx] at time t}. Then, in detailed balance,

P (X(t−1)
i )P (X(t)

j |X
(t−1)
i ) = P (X(t−1)

j )P (X(t)
i |X

(t−1)
j ), (4.29)

noting that P (X(t−1)
i ) = P (Xi), because it is at the equilibrium. This is the same as saying

that P (X(t−1)
i , X

(t)
j ) = P (X(t−1)

j , X
(t)
i ). Under detailed balance, the probability flux of the

jump from i to j is the same as for the jump from j to i, so there is no net flux in the chain;
the transitions are pairwise in equilibrium. When we define a particular chain through its
transition probabilities, if we make sure that the chain satisfies detailed balance with the
posterior, then if it is a proper posterior, that is the unique equilibrium distribution of the
chain. Thus, the requirement is to choose transitions satisfying

P (X(t)
j |X

(t−1)
i )

P (X(t)
i |X

(t−1)
j )

= k(xi)
k(xj)

, (4.30)

where k(x) is the kernel of the posterior. The transition is the product of a proposal and
an acceptance given proposal steps, so we must have

P (X(t)
j |X

(t−1)
i ) = q(xi, xj)P (Aij), (4.31)

where q(xi, xj) is the sampling distribution, now dependent on both xi and xj, and Aij =
{Given a proposal from xi to xj, the jump to xj is accepted}. This results in

P (Aij)
P (Aji)

= k(xi)q(xj, xi)
k(xj)q(xi, xj)

. (4.32)

If we chose

P (Aij) = min

1, k(xi)q(xj, xi)
k(xj)q(xi, xj)

, (4.33)

then it is a valid distribution for which the condition is always satisfied.

The choice of a sampling proposal distribution q(xi, xj) influences the speed of
convergence of the chain. The particular Metropolis algorithm chooses it to be symmetrical
(and making the acceptance independent of q), q(xi, xj) = q(xj, xi), often a Gaussian
q(xi, xj) = N (xj|xi, σ2). In this case, the deviation σ regulates a step-size for proposals,
that can’t be too large so as to miss the regions of interest and cause a large rejection rate
or too small so as to be slow on convergence and mixing.
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For a multi-dimensional parameter space, there is also a choice involved in the
jumps being sequential on each dimension or in form of a batch update (updating all
dimensions at once is more efficient). The samples taken before convergence are discarded
in the estimation process (the initial samples are called warm up), and parallel exploration
with multiple chains is advisable. There are actually many details to address in the practical
use of MCMC to carry out the estimation process and also the diagnosis and analysis
processes following it. We then rely on a good software that can take care of much of the
engineering bits.

4.4.6 STAN

We implement the MCMC method through the STAN statistical programming
language.21 It is a multi-interface language for custom Bayesian computation through
advanced MCMC algorithms, written in C++. STAN targets a log transformation of the
posterior distribution (needed for improved computation stability) and can run with two
gradient-based MCMC methods for adaptive probing of parameter space. The Hamiltonian
MCMC (HMCMC) and its variant No U-turn Sampler (NUTS).22,23 The motivation
behind HMCMC methods is to interpret the posterior landscape as a potential energy,
with a simulated Hamiltonian dynamics imprinting a momentum into the Markov chain,
so the jump-size of the proposal adapts according to the gradient of the posterior; that is
in contrast with the rigid Gaussian proposal. The NUTS variant implements strategies
to improve the covering of the posterior by increasing the awareness of the chain based
on the samples already visited; it is able to provide an automatic stop to the posterior’s
exploration, when the chain "sees" that it’s enough.

STAN also contains many diagnosis, analysis, and visualization tools aiming at
efficiently automate all tasks that are not related to the modeling aspect of the inference. It
is possible to effortlessly check for convergence, mixing, and proportion of effective samples.
There are also in-built transformations for constraining parameters and calculating the
posterior in the log space.

4.5 Estimation Example: Lotka-Volterra

In order to properly illustrate the parameter estimation process, we consider the
Lotka-Volterra model from Eq. (4.16). We generate data using the stochastic simulation
algorithm on a medium-sized space of Ω = 100: from a sample trajectory, we extract 30
measurements at random times for both preys and predators.

We then use the deterministic dynamics as a statistical model of the data-generating
process, thus the likelihood becomes a Gaussian having the model as the mean and the
variance σ2 as a proxy noise level also to be estimated. For simplicity, we use the generally
well-suited exponential priors for all the parameters. The priors reflect the order of
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magnitude of the parameters, with means equal to one of 0.1, 1, or 10, depending on the
parameter.

The statistical task is to estimate the parameters θ = (w, γ, δ, µ, x0, y0, σ), where
(x0, y0) is the initial state of preys and predators used to initialize the statistical model,
and σ is the proxy standard deviation of the measurements. The initial state, for t = 0,
was chosen as 200 preys and 100 predators, meaning densities of (x0 = 2, y0 = 1). Figure
(5) shows the sampled trajectory and measurements together with both the deterministic
model and the mean estimated model, along with trace plots of the posterior. The table
(2) compares the estimated values with the real parameter values used for data generation.

The estimation process runs with 4 chains. For all chains, the trace plots indicate
the expected behavior of the jumps, a "fuzzy caterpillar" shape, of well-mixed exploration
of the posterior. Note that, with just the noisy extracted measurements and the statistical
model, we are able to, in theory, estimate the particular place of the multi-dimensional
parameter space in which the system operates.

Figure 5 – Parameter estimation on the Lotka-Volterra model. Upper left:
Stochastic sample with 30 randomly extracted measurements for both preys
and predators, compared with the deterministic model. Lower left: Same
stochastic sample, compared with the deterministic curve generated with the
mean estimated parameters. Right: Trace plots for posterior samples of the 4
network parameters and the initial state of the model. The gray region indicates
the warm-up iterations.
Source: By the author.
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Table 1 – Estimated parameters. The estimated posterior yields the mean values and
standard deviations shown in the table, compared with the real parameter values.
The standard deviation of the measurements σ has no real value because it is a
proxy of the actual noise levels coming from the stochastic process.

Parameter Mean Estimation Real Value
w 0.57± 0.02 0.55
γ 0.18± 0.01 0.18
δ 2.04± 0.11 2.00
µ 0.91± 0.03 0.84
x0 1.88± 0.05 2.00
y0 1.22± 0.05 1.00
σ 0.15± 0.02 -

Source: By the author.
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5 STOCHASTIC ANALYSIS AND PARAMETER ESTIMATION OF THE GOOD-
WIN MODEL FOR GENETIC REGULATION.

This chapter develops a work that was partially presented at the 19th International
Conference on Systems Biology, ICSB 2018, hosted at Lyon, France. At the time, the
parameter estimation analysis wasn’t completed and the overall narrative was slightly
different. The work features an application of the stochastic methods developed in previous
chapters and taps into a discussion of design principles of modeling that is most relevant for
the systems biology field that points to the functional communication between biological
systems. In particular, this work analyzes the design principles of biological oscillators
through a minimal model generally called the Goodwin oscillator. This chapter is somewhat
less mature than the others, since it was the first research and conducted before a more
solid understanding of scientific writing and programming.

5.1 Abstract

Gene expression and regulation are intrinsically stochastic processes. Due to low
molecular counts and random chemical reactions, intrinsic noise is a major feature to be
controlled or exploited by gene network designs. In this work, we develop an analytic
modeling of a minimal network of negative feedback through the use of reaction networks,
yielding the stochastic approach of the chemical master equation for the probability
density of protein levels. The model highlights differences between direct and indirect
self-regulation and the appearance of oscillations. We expand the nonlinear equations using
Van Kampen’s system size expansion and make connections to the deterministic limit. We
find a steady-state noise control profile for the indirect feedback strength, and we see an
optimum feedback strength value for noise control in the model. We also analyze the model
in the case of a Hill-type feedback function, making it a stochastic version of the Goodwin
oscillator model. We further study the bifurcation properties of the Goodwin model in
terms of the Hill exponent as well as the feasibility of Bayesian parameter estimation in
relation to the critical point.

Keywords: Systems Biology, Intrinsic Noise, Circadian Oscillations, Design Prin-
ciples, Linear Noise Approximation.

5.2 Introduction

5.2.1 Systems Biology

Systems biology is an interdisciplinary field aiming at the modeling and analysis of
biological systems. It combines the mathematical and computational descriptions, that are
usual to physics and applied mathematics, with the holistic approach of systems thinking.
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Such an approach enables the quantitative exploration of a system’s dynamics and a
multiscale treatment of complex biological networks; as, for example, gene expression and
regulation networks, protein dynamics, cellular signaling, metabolic pathways, etc.24,25

Systems biology became possible with the modern experimental and computational resolu-
tions that enable observation and control of entire molecular systems’ dynamics. These
observations revealed non-intuitive structures that begged for more quantitative techniques
than those available at the time (like features arising from nonlinear dynamics).3

With this view, the behavior and function of a cell population is considered emergent
from the behavior of a single cell and the interactions with its environment; and the later
is considered emergent from the dynamics of intracellular components networks and the
conditions upon them, and so on. The descriptions between scales are alike physical limits,
as for instance the thermodynamic limit emerges from statistical mechanics. But systems
thinking also suggests multiscale descriptions of function instead of components, so specific
functions can be better isolated from neighboring dynamics, like what is explored through
the concept of gene networks (so systems are bound by their functional interaction more
than their physical interaction). One can systematically follow the functions of a specific
gene network up to a phenotypic level without the need to understand the dynamics of an
entire genome or the specific marginal interactions making the network possible.

Intracellular processes are modeled as dynamical systems, with parameters and
designs made to match experimental observations. The models range from minimal,
prototypical models to complex, multi-component simulations and synthetic engineering
of biological processes and networks.26,27 Minimal models are needed to unveil design
principles, network motifs, leading dynamics and properties of more detailed systems,
mostly through analytic development.28 These are building blocks to the understanding
and prediction of complex systems, connecting structure to behavior. Analytic findings in
minimal models can be results of phase space, bifurcation or statistical analysis, and can
guide further modeling, experimenting and synthetic engineering of the system.

5.2.2 Gene Expression

Gene expression is the dynamics of synthesis of protein products from one or more
genes. Even prokaryotic gene expression and regulation is in detail accomplished by a
variety of reactions involving many different components.29 But this complex event can be
roughly reduced, functionally, by considering the functions of three central steps:

1) Transcription: is when information from the DNA gets transcribed to a
messenger RNA by the enzyme RNA polymerase. The enzyme is able to bind to the
promoter region of the DNA, then the strands are unzipped to produce the corresponding
mRNA with the enzyme reading one of the strands. The new mRNA is released to
participate in protein production and, if the cell is an eukaryote, this is preceded by the
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additional step of leaving the cell nucleus.

2) Translation: is when a protein is synthesized from a mRNA. In the cytoplasm,
mRNA binds to the macro-molecule ribossome that reads the mRNA’s nucleotides (using
freefloating tRNAs) while assembling the aminoacid chain. After being created, the chain
folds to the protein conformation and is released.

3) Regulation: is the modulation of expression rates done by cellular mechanisms.
Genes can regulate the expression of each other by having protein products that initiate
processes of regulation. These are the interactions that combine genes in networks and
allow their communication, giving complexity to their function. A gene can also regulate
itself directly, by having its own products changing the rate of their expression in the
process of self-regulation. Regulation is possible in any step of expression, but we focus on
transcriptional regulation. The elements that regulate transcription are proteins called
transcription factors, and they bind to the DNA, turning the gene on and off. Their
dynamics are promoted by parameters of the cell environment and their binding interacts
with DNA polymerase and its capacity to engage in transcription, usually obstructing
the operator region of the DNA or activating polymerase’s binding; doing so, they can
be inhibitors or activators of transcription, usually making up for positive and negative
feedback. Stochastic regulation is central in determining viral and bacterial behavior and
adaptability, and also cellular differentiation and morphogenesis in multicellular organisms.

The regulation of gene expression and, consequentially, the architecture of gene
networks, is able to present many features depending on specific environments and functions
of genes. Important examples of such features are 1) genetic switches, that control the
activation of different cellular environments and account for cellular change of behavior; 2)
genetic oscillations, that control cellular rhythms and circadian cycles; 3) signaling and
metabolic pathways, that allow orchestrated responses to changes in the environment, like
the presence of a substance, and actions upon the environment; 4) operons, that are units
of co-transcription of partner genes. Important models include: phage-λ lysis-lysogeny
switch, collins toggle switch, bacterial quorum sensing, tryptophan and lactose operons,
circadian rhythm generator of drosophila melanogaster and the repressilator.13,27,30,31

Another feature expressed by gene networks is the role of noise.32 Since the process
of gene expression involves approximately random chemical reactions among molecules
present in low copies subject to random degradation, like mRNA and protein products,
and also inside a cell (an unpredictably diverse and ever-changing environment), we can
expect that it is crucially affected by both intrinsic and extrinsic noise.33,34 And we
see that this stochastic nature affects structure and function of gene networks by the
attempts to minimize the presence and resist the effects of detrimental noises and to
control functional noises.35 Noise can be functional, for example, in processes of cellular
fate decisions accounting for robustness of cellular populations, promoting variability in
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decision triggers.36–40

Minimal models of stochastic gene networks include models of single gene expression,
as single gene dynamics represent the basic unit of networks. We can expect to understand
noise in the network level as emergent from noise at the expression level.41

5.2.3 Goodwin Oscillator

The oscillatory feature is of great value for genetic processes, and the design
principles for genetic oscillators are guides for when to expect and how to create oscillatory
networks. In particular, the feature of sustained oscillations by limit cycles, that are robust
in relation to external perturbations and portray a stable amplitude; always the result
of bifurcations in the parameter space. Design principles for sustained oscillations are at
least: 1) a negative feedback loop; 2) a delay between a process and its negative feedback
response; 3) and nonlinear dynamics.42

The Goodwin oscillator is a minimal proposal for a genetic oscillator, with just
enough complexity to fulfill all necessary design principles.43 In its full three-variable
design, it is composed of a transcription reaction that generates mRNA with a nonlinear
rate featuring negative feedback; then a translation reaction that generates a protein in
the presence of an mRNA; then a reaction where the presence of the protein activates a
transcription factor that regulates the transcription reaction rate; and also degradation
reactions. It was first proposed in 1960 by Brian Goodwin, with a Hill feedback function
modulating the transcription reaction.44 The Goodwin oscillator has surprisingly complex
behavior, given the simplicity of its equations.

The system oscillates only in certain regions of the parameter space. A Hopf
bifurcation separates the transition between a stable steady-state and limit cycle oscillations.
Oscillations occur with high transcription feedback strength, when the model is highly
non-linear.45

In this work, we investigate the strength of intrinsic noise at steady state for the
Goodwin oscillator, examine its properties at the bifurcation point, and compare the
feasibility of Bayesian parameter estimation at different distances from the bifurcation,
using a deterministic statistical model with stochastic simulated data. We use a general
description of the feedback in terms of equilibrium feedback strength, then apply the
results for the case of the Hill-type feedback.

5.3 Methods

5.3.1 2D and 3D Models

We consider a genetic system that, at its most basic design, featuring transcription,
translation, and regulation, is composed of only the mRNA and protein species. The
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protein acts as its own regulator and we will call this model the 2D Goodwin model. This
model does not exhibit oscillations; despite the nonlinear negative feedback, it lacks a
sufficient delay in the loop from transcription to regulation. Using the reaction network
theory to represent the reactions of the model, we have

∅ F (n2/Ω)−−−−−→ X1, X1
γ1−→ ∅

X1
k2−→ X1 +X2, X2

γ2−→ ∅. (5.1)

We represent the mRNA as X1 and the protein as X2. The first reaction is a transcription,
and the functional shape of the regulation is modelled with the activation function of
protein density F (n2/Ω), where n2 is the protein count-number. In order to configure it as
a negative feedback, we impose that 1) F (n2/Ω) > 0 for every n2, as it is a reaction rate,
and 2) dF (φ2)

dφ2
< 0 for every φ2, so that F (n2/Ω) is a monotonically decreasing function of

n2, characterizing the negative, repressing, feedback loop (where φ2 is the deterministic
limit density of proteins). The second reaction is the degradation of mRNA with a rate of
γ1. The third reaction is the translation, with rate k2, and the last is the degradation of
proteins, with rate γ2.

The oscillatory behavior is made possible with the inclusion of a third species
that acts as a transcription factor for indirect regulation of the protein production. The
Goodwin oscillator, that we will call 3D Goodwin model, is represented by the reaction
network

∅ F (n3/Ω)−−−−−→ X1, X1
γ1−→ ∅

X1
k2−→ X1 +X2, X2

γ2−→ ∅

X2
k3−→ X2 +X3, X3

γ2−→ ∅. (5.2)

Now, the transcription regulation is no longer a function of the protein X2, but of the
transcription factor X3: F (n3/Ω). X3 is activated by the presence of the protein, with
a rate of k3, and is assumed to degrade with the same rate as the protein, γ2. The
indirect regulation may, with sufficient non-linearity, provide the needed delay to sustain
oscillations.

5.3.2 Deterministic Description

The reaction network models yield a deterministic description of a system of
ordinary differential equations, given by

dφi
dt

=
∑
r

Sirκr
∏
j

φ
sjr

j , (5.3)

where φi are the density of species, sjr is the stoichiometric coefficient of reactant j in
reaction r, κr is the reaction rate of reaction r, and Sir is the stoichiometric difference of
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species i in reaction r. Using this system of equations, we perform a dynamic stability
analysis of the models. For that, we linearize the system around the fixed points and
determine the behavior through the Lyapunov exponents, that are the eigenvalues of the
Jacobian of the linearized system. A supercritical Hopf bifurcation can happen when the
system exhibits complex conjugate Lyapunov exponents, with a phase transition occurring
with the passage from Re(λ) < 0 to Re(λ) > 0, i.e. from a stable fixed point to an unstable
fixed point with the appearance of a stable limit cycle around it.46 This is the bifurcation
known to occur for the 3D Goodwin model, having the critical point for a parameter set
that yields Re(λ) = 0 for the pair of complex conjugate exponents.

5.3.3 Stochastic Description

There is also the more fundamental stochastic description, with time evolution of
the densities’ probabilities given by a master equation of Markov jump processes,47 with
transition rates

Wr = κrΩ
∏
i

ni!
(ni − sir)!Ωsir

, (5.4)

where Ω is the system size, the intracellular volume in this case. The connection to the
deterministic system is achieved by the limit n,Ω → ∞, with φ = n/Ω. In order to
analytically treat the stochastic system, we use the linear noise approximation (LNA), the
first order of the system size expansion for the noise around the deterministic trajectory,
accomplished with the transformation n = Ωφ+ Ω1/2ξ.14,48 The parameter ξ is the noise
around the deterministic trajectory, under the LNA it follows time-dependent Gaussian
distributions, and we can calculate the level of noise as a solution to a Lyapunov equation
for the variance matrix of ξ in terms of the deterministic solution.

5.3.4 Noise Analysis

The measure of noise magnitude relative to the density size is the index of dispersion
of each species, D(ni) = 〈∆n2

i 〉
〈ni〉 .

49 We can evaluate noise strength in relation to the
unstructured Poisson distribution, that always has D = 1. Thus, sub-Poissonian noises
have 〈∆n2

i 〉 < 〈ni〉 and super-Poissonian noises have 〈∆n2
i 〉 > 〈ni〉. We will evaluate the

steady-state index of dispersion for the Goodwin model in terms of ξ:

Ds(ni) = 〈∆n
2
i 〉∗

〈ni〉∗
= Ω−1/2 〈ξ2

i 〉∗

φ∗i
(5.5)

. In the results, we will plot the index of dispersion as a function of the feedback strength
at steady-state.50 The measure of feedback strength is the derivative of the steady-state
feedback function F (φ∗/Ω), the parameter

w = − 1
γ2

dF (φ∗2)
dφ2

> 0. (5.6)
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Thus, the repression of regulation increases with w. Valuable metrics defined in terms of w
include the strength that minimizes the noise levels of the system, which is of evolutionary
interest for processes that require dynamical control and precision, and the critical value
of w, meaning the least feedback strength that results in oscillations.

5.3.5 Hill Feedback

At first, the feedback function F (n/Ω) can be any function of n/Ω that is positive
and monotonically decreasing. It characterizes a negative feedback loop. But the standard
activation function of feedback in the Goodwin model is the Hill function51

F (φ) = a

1 + bφm
. (5.7)

The parameter m is called Hill exponent and is a measure of nonlinearity and feedback
intensity, a higher m means high nonlinearity and low feedback intensity.

In the following, we show a possible model of time-scale reduction that results in a
Hill function for the context of genetic regulation.52 Consider a DNA operator site O that
can be either free for transcription or bounded by a repressor R. It takes m molecules of
the repressor to inactivate the transcription expressed by that operator. The reactions of
binding/unbinding form an equilibrium pair:

O +mR
k+−→ ORm

k−−→ O +mR. (5.8)

The mass-action equations for these reactions is given by
d[O]
dt

= −k+[O][R]m + k−[ORm]

d[R]
dt

= −mk+[O][R]m +mk−[ORm]

d[ORm]
dt

= +k+[O][R]m − k−[ORm]. (5.9)

At the steady-state, we have a detailed-balance relation,

k−[ORm] = k+[O][R]m. (5.10)

With this equation, we build the following ratio in terms of [R]

f = [O]
[O] + [ORm] = 1

1 +K−1[R]m , (5.11)

where K = k−/k+ is the dissociation constant. The rate f represents the fraction of
operators that is free for transcription at each time, but also represents the fraction of
time each operator is free (that we know with uncertainty and model probabilistically).
The transcription occurs only if the operator is free from the repressor molecules, so we
make it’s rate proportional to this fraction,

F ([R]) = k1f([R]) = k1

1 +K−1[R]m . (5.12)
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Each transcription event occurs in a slower time-scale and the process of regulation is
taken to be in equilibrium always; this is the assumption that justifies the reduction and
then allows the non-mass-action reaction rate. The regulation rate of the Goodwin model
then takes the following Hill shape:

F (n/Ω) = k1

1 +K−1( nΩ)m . (5.13)

The hill exponent m is also called the degree of cooperation, representing the number of
repressor molecules needed to form a complex bounded to the operator.

5.3.6 Parameter Estimation

We also perform a Bayesian parameter estimation on the 3D Goodwin oscillator
with a Hill regulation function, focusing on the Hill exponent as a measure of nonlinearity
and of different noise levels. Using m as the critical parameter of choice, we analyze the
noise levels at different distances from the critical point modeled as the estimated standard
deviation of the densities. Our statistical model considers the deterministic system with
constant Gaussian noise as the data generating model while we use the stochastic system
as the real model behind a simulated set of data.

As a simulation of the real data generating process, we extract, at random time
intervals, observations from a sample of the stochastic description of the Hill feedback 3D
Goodwin model. For that, we use the stochastic simulation algorithm (SSA) of the master
equation. The data sets are made with 40 observations each, from 3 different intensities
of feedback nonlinearity: subcritical regime far from the critical point (m −mc << 0),
subcritical regime near the critical point (m−mc close to 0+), and supercritical regime near
the critical point (m−mc close to 0−). The three scenarios represent different magnitudes
of noise and investigate the feasibility of estimation near the bifurcation.

The estimation task is performed through the STAN language for Bayesian
computation.21 It uses a Hamiltonian Markov Chain Monte Carlo algorithm to esti-
mate a posterior distribution for a vector of model parameters θ.22 With exponential
priors matching the expected scales of parameters, we model the likelihood of the data
as a Gaussian with mean equal to the deterministic description of the reaction network
model. The Gaussian has a constant independent variances that we estimate along with
the reaction rates of the Hill 3D Goodwin model. Thus, θ = (b, d, ε, γ1,m, k1, K, σ1, σ2, σ3)
and we have the likelihood of the data, given the model, as

P (x|θ) = N (x|φ(θ),σ), (5.14)

where x = (x1, x2, x3) are the observed data points. The posterior is then estimated with
the kernel P (θ|x) ≈ P (x|θ)P (θ).
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5.4 Results

5.4.1 2D Model

We first reparameterize the model with dimensionless parameters, defining b = k2/γ1

and ε = γ2/γ1 and changing the temporal scale as t −→ γ1t. The parameter ε is the mRNA-
to-protein mean lifetime ratio. Usually, mRNA degradation is much faster than that of
proteins. That can make ε << 1 in real genetic systems. The parameter b measures the
mean number of proteins produced by each mRNA by translations and is called the protein
burst size. From the reaction network, we then have the following deterministic system:

dφ1

dt
= −φ1 + εF (φ2)

γ2
dφ2

dt
= bφ1 − εφ2. (5.15)

The fixed point is of the form

φ∗1 = ε

b
φ∗2 = ε

γ2
F (φ∗2) (5.16)

The Jacobian matrix for this system in the fixed point is then−1 −εw
b −ε

 , (5.17)

where we use the previously defined steady-state strength of feedback.

The eigenvalues of (5.17) are

λ± = −1
2(1 + ε)± 1

2
√

(1 + ε)2 − 4ε(1 + wb). (5.18)

We see that they are not real numbers for (1 + ε)2 < 4ε(1 + wb), it means that the phase
portrait might be a spiral; but the real part is always negative, so the steady-state is
always a stable fixed point.

The reaction network also yields a stochastic dynamics that, as the LNA approxi-
mation, results in a Fokker-Planck-type equation with time-dependent Gaussian solutions
on the joint density of the model:

∂Π(ξ1, ξ2, t)
∂t

=
(
− dF (φ2)

dφ2

∂(ξ2Π)
∂ξ1

+ F (φ2)
2

∂2Π
∂ξ2

1

)
+
(
− k2

∂(ξ1Π)
∂ξ2

+ k2φ2

2
∂2Π
∂ξ2

2

)

+
(
γ1
∂(ξ1Π)
∂ξ1

+ γ1φ1

2
∂2Π
∂ξ2

1

)
+
(
γ2
∂(ξ2Π)
∂ξ2

+ γ2φ2

2
∂2Π
∂ξ2

2

)
. (5.19)

Assuming a determined initial state, the first moment of the noise variable ξ is always
zero, and the second moments evolve as a Lyapunov system of equations. In steady-state,
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we can write the system as

b〈ξ2
1〉∗ + wεb〈ξ1ξ2〉∗ − εφ∗2 = 0

b〈ξ1ξ2〉∗ − ε〈ξ2
2〉∗ + εφ∗2 = 0

(1 + ε)〈ξ1ξ2〉∗ + wε〈ξ2
2〉∗ − b〈ξ2

1〉∗ = 0. (5.20)

Solving for the index of dispersion of n2, we get:50

Ds(n2) = 〈∆n
2
2〉∗

〈n2〉∗
= Ω−1/2 〈ξ2

2〉∗

φ∗2
= Ω−1/2

(
1 +

(
b

1 + ε

) (1− w)
(1 + bw)

)
(5.21)

This result shows two noise contributions: the unregulated Poissonian transcription noise
represented by the factor 1 and the translation noise represented by the factor b/(1 + ε).53

We see that the negative regulation acts to decrease the noise, so negative feedback may
function as a noise control feature.

Figure (6) shows Eq. (5.21) for Ω = 1. A curve for ε = 0.01 and ε = 1 are
represented. We see that both curves cross the Poissonian threshold for w = 1, as expected.
For the super-Poissonian case, the noise control is greater for higher values of ε. For the
sub-Poissonian case, a substantially greater noise control can achieved for a lower value
of ε. We can visualize that Ds is a monotonically decreasing function of w, which can
effectively decrease fluctuations to a minimum value of

Ds(w −→∞) = ε

1 + ε
. (5.22)

The infinite strength fluctuations equate to ε for ε << 1, showing a baseline persistent
level mediated only by the life-time ratios.

5.4.2 3D Model

For the deterministic description of the 3D model, with dimensionless parameters,
we introduce d = k3/γ1, measuring the creation of protein repressors:

dφ1

dt
= εF (φ3)

γ2
− φ1

dφ2

dt
= bφ1 − εφ2

dφ3

dt
= dφ2 − εφ3. (5.23)

For the fixed point, we have

φ∗2 = b

γ2
F (φ∗3), φ∗1 = ε

b
φ∗2, φ∗3 = d

ε
φ∗2. (5.24)

Now, we note that
w = − 1

γ2

dF (φ∗3)
dφ3

(5.25)
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Figure 6 – Noise levels by equilibrium feedback strength. Above: The steady-state
index of dispersion for protein products Ds as a function of the steady-state
feedback strength w, for the direct regulation 2D model. b = 20, d = 10
and the blue and red lines have ε = 1 and ε = 0.01 respectively. Below:
Ds as a function of the re-scaled steady-state feedback strength bdw, for the
indirect regulation 3D model. For the blue case, bdwmin ≈ 2.98; for the red
case, bdwmin ≈ 0.45. Dashed lines are incorrect solutions after the bifurcation,
where LNA assumptions break.
Source: By the author.

and write the Jacobian of the system for the fixed point:
−1 0 −εw
b −ε 0
0 d −ε

 . (5.26)

The eigenvalues are solutions to the following equation

λ3 + (1 + 2ε)λ2 + (ε2 + 2ε)λ+ ε2 + dbεw = 0. (5.27)

For the particular case of ε = 1, it’s easily solvable, and the eigenvalues are

λR = −1− (dbw)1/3, λ± = −1 + 1
2(dbw)1/3 ± i

2
√

3(dbw)1/3. (5.28)

There is a real eigenvalue that is always negative, and there is a pair of conjugate complex
eigenvalues. The real part of these eigenvalues is zero for the critical value of the feedback
strength: wc = 8/db. This is a critical value for a supercritical Hopf bifurcation. With
w > wc, the system exhibits limit cycle oscillations.

This motivates us to look for a general form of wc for any ε, and we do this by
searching in equation (5.27) for imaginary solutions, i.e., solutions of the type λ = ai. This
procedure gives:

wc = 2 + 4ε+ 2ε2
db

. (5.29)
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With a = Im(λ) =
√
ε2 + 2ε; the value 2π/a is an approximation of the limit-cycle’s

period near the bifurcation point. We have, thus, found a critical value for the feedback
strength at the fixed-point.

Numerically, we will analyze the rescaled parameter bdw. The critical rescaled
strength, bdwc, has a minimum value of 2 and increases with the small parameter ε, being
usually close to 2.

The stochastic dynamics of the 3D model, with the LNA approximation, reduces
to the equation

∂Π(ξ1, ξ2, t)
∂t

=
(
− dF (φ3)

dφ3

∂(ξ3Π)
∂ξ1

+ F (φ3)
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∂ξ2

1

)
+
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2
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2

)

+
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∂(ξ2Π)
∂ξ3

+ k3φ2

2
∂2Π
∂ξ2

3

)
+
(
γ1
∂(ξ1Π)
∂ξ1

+ γ1φ1

2
∂2Π
∂ξ2

1

)

+
(
γ2
∂(ξ2Π)
∂ξ2

+ γ2φ1

2
∂2Π
∂ξ2

2

)
+
(
γ2
∂(ξ3Π)
∂ξ3

+ γ2φ3

2
∂2Π
∂ξ2

3

)
. (5.30)

This equation, together with the deterministic steady-state, results in the following
six dimensional linear system for the steady-state second moments:

wε〈ξ2
3〉∗ − d〈ξ1ξ2〉∗ + (1 + ε)〈ξ1ξ3〉∗ = 0

wε〈ξ2ξ3〉∗ − b〈ξ2
1〉∗ + (1 + ε)〈ξ1ξ2〉∗ = 0

−b〈ξ1ξ3〉∗ − d〈ξ2
2〉∗ + 2ε〈ξ2ξ3〉∗ = 0

b〈ξ1ξ2〉∗ − ε〈ξ2
2〉∗ + εφ∗2 = 0

d〈ξ2ξ3〉∗ − ε〈ξ2
3〉∗ + dφ∗2 = 0

−wεb〈ξ1ξ3〉∗ − b〈ξ2
1〉∗ + εφ∗2 = 0 (5.31)

Solving the system for n2’s index of dispersion, we get, for Ω = 1:

Ds(n2) = 〈ξ
2
2〉∗

φ∗2
=

2ε(1 + ε)(1 + ε+ b) + dbw
[
(1 + 2ε)(wb+ ε) + 1 + ε+ b

]
2ε(1 + ε)2 + dbw

[
(1 + ε)(1 + 2ε) + 1− dbw

] . (5.32)

Figure (6) shows equation (5.32), Ds in terms of the rescaled steady-state strength (bd)w,
for ε = 1 and ε = 0.01. There is a value of the feedback strength that makes the protein
dispersion diverge to infinity. This value obeys the equation

d2b2w2 − db(1 + (1 + ε)(1 + 2ε))w − 2ε(1 + ε)2 = 0. (5.33)

We see that the critical noise strength we previously calculated, wc, is precisely the solution
of the equation above, meaning that, in the critical point, the noise becomes divergent.
We could expect this result as a fluctuation precursor of the bifurcation, resulting from
increasing near-critical time-correlations of different instants’ fluctuations in steady-state.54
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This analytic finding motivates the study of bifurcation noise in such systems; we ask
whether a feature like this could be of any functional use by the network, like, for example,
the use of noise-induced oscillations for systems near the bifurcation point, still in the
subcritical dynamics. We note the importance of fluctuation precursors of bifurcations in
the prediction of critical behavior in real systems. It’s also an interesting result that we
could reach a critical point calculation by using the framework for the system’s noise.

Beyond the critical point, in the supercritical dynamics, the stochastic calculations
lose their meaning, because the assumption of one stable fixed point is violated after the
Hopf bifurcation. The most interesting aspect of figure (6) lies in the subcritical region
though; we note that there is an optimal control value of w = wmin, one that minimizes
the fluctuations, unlike what we have seen in the 2D model featuring direct regulation.
Thus, indirect regulation by transcription factors introduce the feature of noise suppression
through regulation. We see that, for lower values of ε, a lower feedback strength is needed
to achieve optimal control, and the control is more efficient. We can derive an analytic
expression for wmin, but the expression is loaded and provides no further insights. Changes
in b and d have shown less sensitivity than changes in ε.

Now, assuming a Hill-type feedback reaction rate, we write

F (φ∗3) = k1

1 +K−1(φ∗3)m (5.34)

For simplicity, we relabel φ∗3 = φ, so the derivative is

F ′(φ) = −k1K
−1mφm−1

(1 +K−1φm)2 (5.35)

and then
w = −F

′(φ)
γ2

= k1K
−1mφm−1

γ2(1 +K−1φm)2 . (5.36)

We know that, in the fixed point,

φ∗1 = ε2

bd
φ = εk1

γ2(1 +K−1φm) . (5.37)

Reorganizing these expressions, we have w(m) explicitly stated in terms of m, ε, k1, K, b, d

and γ2 as

w = mε

bd
− mε2γ2φ

b2d2k1
= w0 − αφ (5.38)

with w0 > 0, α > 0 and φ implicitly calculated from

εγ2

bdk1
φ = 1

1 +K−1φm
. (5.39)

We see that w0 is the maximum strength value, achieved if the steady-state
concentration of repressor proteins is zero. This makes sense because that is when the
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feedback rate is the most sensitive to a change in the repressor’s density. If wc > w0, the
phase space has no bifurcations regardless of φ. So we set a minimum value of m that
allows bifurcations:

mmin = 2 + 4ε+ 2ε2
ε

. (5.40)

For small values of ε, we have mmin ≈ 2ε−1, which is a ridiculous number. We also see
that the minimum value of mmin is 8, achieved for ε = 1. Also, for usual parameter values
of genetic systems, w is a very slowly decreasing function of φ, so it’s usually near its
maximum value for these systems.

The maximum re-scaled strength is bdw0 = mε. For low values of m, the Hill
feedback gives a maximum w below the optimal value for noise control. The numerical
cases shown in figure (6) give m = 45 as the optimal Hill exponent for the case ε = 0.01 and
m = 3 for the case ε = 1. Thus, the system can more easily achieve the optimal noise-control
dynamics for similar degradation rates of the maker-molecule and the product-molecule,
unlike the ones of mRNA and protein products.

5.4.3 Parameter Estimation

We explore the parameter estimation process on the Hill 3D Goodwin model for
three scenarios in order to compare a low noise condition with a high noise condition and
also a subcritical regime with a supercritical regime. For that, we fix parameter values
apart from the Hill exponent m, as shown in the real value column of table (2). A medium
value of ε = 0.3 is chosen to ensure a modest lower bound for the possibility of bifurcation
into oscillations. We then calculate, based on our analysis, the critical value of m and the
value that minimizes the protein noise level at equilibrium. The critical value is mc ≈ 11.6
and the minimum noise is achieved with mn ≈ 0.42. With these results, we choose: 1)
the low noise subcritical regime, far from the bifurcation, has m1 = 2; 2) the high noise
subcritical regime, near the bifurcation, has m2 = 10; 3) the supercritical regime near the
bifurcation has m3 = 13. For each of the three cases, we take the 40 measurements of
mRNA, proteins, and transcription factors from samples of the simulated master equation
of the stochastic process. We choose a mesoscopic dynamics with Ω = 100, aiming at a
sufficient stability in the behavior of the stochastic samples.

Figures (7), (8), and (9) show the estimation setup for the three scenarios. For the
more stable, low-noise case of m = 2, the estimated parameters are fairly accurate and
reflect the reality of the data generating dynamics. The high-noise, but still subcritical,
case of m = 10 can also be estimated with the deterministic model, but not completely
so. The less sensitive parameters from the Hill function, m and K−1, can’t be so precisely
defined. The supercritical case, for m = 13, features oscillations. Then, the deterministic
model has a hard time adjusting to the oscillations in face of the unpredictable noise levels,
so the estimation process becomes unreliable.
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The three cases yield practically the same equilibrium densities for all three species,
but they mainly differ on the oscillatory pattern before the equilibrium, that is more
accentuated for higher values of m. These oscillations become sustained once beyond the
bifurcation, thus breaking the stable fixed point. Table (3) shows analytically calculated
values of equilibrium density and index of dispersion for proteins, with the expected
deviation around the mean for the subcritical regimes. The estimated standard deviations
underestimate the noise levels calculated with the LNA, even for the case of m = 2.
But the estimation is unreliable for noise levels, because it is made with only 1 sampled
trajectory. In table (2), however, we see that the magnitude of deviations behaves as
expected between the cases, with the lowest estimated value being for the case m = 2 and
the highest estimated value for the case of m = 13, the supercritical regime; especially σ3,
associated with the more abundant species X3 (transcription factors).

According to the LNA, the protein standard deviation at equilibrium near the
bifurcation (m = 10) are ≈ 4 times larger than far from the bifurcation (m = 2) (≈ 16 times
the noise levels). According to the estimation of the proxy deviation of the deterministic
model, they are ≈ 2.2 times larger.

Figure 7 – Parameter estimation for m = 2, low noise far from bifurcation. Es-
timation is fairly accurate in this case, with low estimated noise levels. The
dynamics is mesoscopic with Ω = 100. Upper Left: The stochastic process
with the 40 measurement points, mRNA (X1) is red, protein (X2) is green,
and transcription factor (X3) is blue. The deterministic trajectories for the real
parameter values are shown in black. Lower Left: The stochastic trajecto-
ries are compared with the process for the mean estimated parameter values.
Right: Trace-plots of parameters for 4 chains, with warmup shown in gray,
featuring θ = (b, d, ε, γ1,m, k1ε

−1, K−1) and the proxy standard deviations of
the statistical model for mRNA and protein.
Source: By the author.
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Figure 8 – Parameter estimation for m = 10, subcritical regime near the bifur-
cation. Estimation is less accurate than the first case, especially m and K.
Estimated noise levels are considerably higher. The dynamics is mesoscopic
with Ω = 100. Upper Left: The stochastic process with the 40 measurement
points, mRNA (X1) is red, protein (X2) is green, and transcription factor (X3)
is blue. The deterministic trajectories for the real parameter values are shown in
black. Lower Left: The stochastic trajectories are compared with the process
for the mean estimated parameter values. Right: Trace-plots of parameters for
4 chains, with warmup shown in gray, featuring θ = (b, d, ε, γ1,m, k1ε

−1, K−1)
and the proxy standard deviations of the statistical model for mRNA and
protein.
Source: By the author.

Table 2 – Estimated parameters. The estimated posterior yields the mean values and
standard deviations shown in the table, compared with the real parameter values.
The standard deviation of the measurements σ has no real value because it is a
proxy of the actual noise levels coming from the stochastic process.

Parameter (m=2) (m=10) (m=13) Real Value
b 0.84± 0.10 0.96± 0.19 0.72± 0.08 0.95
d 0.81± 0.11 0.90± 0.19 0.71± 0.08 0.82
ε 0.29± 0.04 0.33± 0.07 0.24± 0.03 0.30
γ2 0.57± 0.06 0.52± 0.09 0.60± 0.05 0.55
m 2.12± 0.25 5.39± 0.97 17.73± 2.77 2/10/13

k1ε
−1 0.69± 0.10 0.59± 0.13 0.62± 0.06 0.70

K−1 9.01± 0.95 6.15± 1.18 2.48± 2.24 10.5
σ1 0.04± 0.01 0.14± 0.02 0.14± 0.02 −
σ2 0.06± 0.01 0.13± 0.02 0.16± 0.02 −
σ3 0.12± 0.02 0.15± 0.02 0.28± 0.03 −

Source: By the author.

5.5 Discussion

In this analysis we have advanced the exploration of the 3D Goodwin model,
designed under the theory of reaction networks, in the same lines as the more easily
solvable 2D model. We determined the equilibrium critical point for a general feedback
functional form, in terms of the steady-state feedback strength parameter, and then a
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Figure 9 – Parameter estimation form = 13, low noise far from bifurcation. The
estimation is not accurate, especially m and K−1, and the noise levels are the
highest and are confounded with the oscillations. The dynamics is mesoscopic
with Ω = 100. Upper Left: The stochastic process with the 40 measurement
points, mRNA (X1) is red, protein (X2) is green, and transcription factor (X3)
is blue. The deterministic trajectories for the real parameter values are shown in
black. Lower Left: The stochastic trajectories are compared with the process
for the mean estimated parameter values. Right: Trace-plots of parameters for
4 chains, with warmup shown in gray, featuring θ = (b, d, ε, γ1,m, k1ε

−1, K−1)
and the proxy standard deviations of the statistical model for mRNA and
protein.
Source: By the author.

Table 3 – Calculated protein levels and feedback. We see increasing values of feed-
back strength at equilibrium, while the protein density remains practically the
same. Noise levels are unavailable for the supercritical case, where the LNA
assumptions break. As expected, the noise increases as the model approaches
the bifurcation. The standard deviation of ξ2 is calculated as

√
φ∗2Ds.

Parameter m=2 m=10 m=13
w 0.75 3.75 4.87
φ∗2 0.35 0.36 0.36
Ds 0.21 3.32 -√
〈ξ2

2〉 0.27 1.1 -
Source: By the author.

minimal value of the Hill exponent that permits the transition to oscillatory behavior
for the case of a Hill feedback; the Hill exponent being a measure of nonlinearity in the
feedback and also an important parameter relating to the underlying dynamical process
happening at a faster time-scale. We then determined the noise behavior of the model
by using the LNA expansion on the stochastic description of the model and criticized
the model in the context of genetic regulation. We also performed a Bayesian parameter
estimation on the 3D model using the deterministic description, exploring its feasibility at
different distances from the bifurcation, considering the noise levels and the appearance of
oscillations.
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For the deterministic description of the model, we found an analytical expression for
the critical feedback strength at equilibrium, wc. With the LNA, we found the equilibrium
subcritical noise levels through the index of dispersion Ds, in terms of w, and we saw that
noise diverges at the critical point. The expression for Ds shows that there is a minimum
noise level that in theory can be achieved for regulation setups aiming at suppressing noise,
which can be a desirable feature for intracellular processes; an optimal noise-suppressing
feedback is not present for the 2D model.

In the context of genetic regulation, the mRNA lifetime can be several orders
of magnitude smaller than the proteins lifetime. We found that it can be an issue for
oscillatory designs of the Goodwin model, since the minimum Hill exponent permitting
oscillations, previously determined to be mmin = 9 for equal lifetimes,55 was found to be
mmin ≈ 2ε−1 >> 1 in this context. In order for Goodwin oscillations to be applicable to
gene regulation, we must have similar lifetimes of mRNA and proteins or we should be
able to further justify the rise of large Hill exponents, currently seen as the number of
binding entities of some sort (be it a phosphorylation, or operator binding, or else).56

The divergence of noise at the bifurcation is an interesting way to relate two
different analytical approaches. Despite using the deterministic system at the core of its
calculations, the LNA is able to provide its own clean expression for critical values as the
point of noise divergence. We understand this divergence as due to the divergent sensitivity
of the system to perturbations on the critical point, so the noise reverberates accordingly.54

The LNA approach is unable to analyze the noise levels of the supercritical oscillatory
regime, because it breaks the unique stable steady-state assumption.

The Bayesian parameter estimation process is a promising method for determining
reaction network models, and we saw how it can accurately estimate parameters far
from the bifurcation. For systems near the bifurcation or in the oscillatory scenario, we
acknowledge the need for a better statistical model instead of the simple deterministic
description with constant independent Gaussian noise. The LNA itself is a good candidate
to more accurately describe the noise structures for these more complex cases.57 A LNA
statistical model can be numerically inputted even for oscillations, with the benefit of
adapting the noise levels according to the dynamical evolution of the system, following
the Lyapunov system of equations for the correlation matrix of the model. This better
statistical assessment can also be valuable to estimating processes for smaller, more
stochastically unstable systems in microscopic conditions (Ω ≈ 1), as is often the case for
intracellular processes.
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6 A UNIFYING MECHANISTIC FRAMEWORK OF EVOLUTIONARY DYNAM-
ICS USING REACTION NETWORKS

This work encompasses all the generalization of reaction network theory that
is pertinent to the context of eco-evolutionary dynamics and then uses the resulting
framework to reinterpret, unify, and extend the standard modeling theories of the field.
Many comprehensive examples are worked in order to illustrate the consistency and
robustness of the framework. We consider this to be the main result of this thesis and
it features both the methodology and its application to theory development and specific
biological problems. For example, it discusses the interpretation of the Price equation for
trait evolution, a generalization and connection between evolutionary game theory and
adaptive dynamics, and also provides a critique to modeling approaches for the ecological
problem of the evolution of parental investment.

6.1 Abstract

Evolutionary game theory is a successful modeling framework for evolutionary
dynamics. It is able to simulate reproduction that is shaped by an ecological environment
where individual success depends quantitatively on the behaviors of others, and populations
can evolve in time through the replicator equation. But game theory’s proportion-based re-
sults provide an incomplete representation of population dynamics which is fundamentally
dependent on densities. In this work, I use reaction network theory, an established frame-
work for modeling populations in general, as a generalization of evolutionary game theory
that defines interactions at the stochastic level of individuals, generating a density-based
dynamics. Using the hawk-dove game as an example, I highlight the consequent limitations
of evolutionary game theory and propose network-based solutions. In particular, games
can easily lead to divergent densities, and the solution to this problem is built upon the
properties of the eco-evolutionary process. Then, as a unification of frameworks, I explore
the integration between evolutionary game theory, replicator dynamics, the Price equation,
and adaptive dynamics, and work out examples to better understand the framework. In
special, I present a null model of parental care evolution as an example of trait evolution.

Keywords: Eco-evolution, Replicator Dynamics, Adaptive Dynamics, Price Equa-
tion, Density-Dependent Selection, Markov Jump Process.

6.2 Introduction

In a general sense, evolutionary processes are emergent dynamics at the level of
populations that happen as a consequence of how interactions at an individual level shape
the characteristics of evolving units. Many forces are simultaneously at play mostly in
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nonlinear and non-intuitive ways, and the quantitative treatment of those forces often is
necessary to the description of the many possible outcomes and conditions from which
they arise. The understanding of evolutionary processes through the lens of mathematical
modeling goes a long way in helping us to formalize concepts and sort out these complex
scenarios. However, mathematical models of evolution traditionally rely on a more abstract
grounding, without direct connection to the individual level interactions determining the
birth and death of evolving units.2 To the models, concepts as reproduction, mutation,
and selection are important only by how they define characteristics of individuals and
populations and how they determine and are determined by births and deaths. In order
to understand how the actual environment of evolving populations helps in determining
their evolutionary fate, mathematical models must account for how evolving units are
created and destroyed differentially. That is depending on their adaptive capacities and
the environments made relevant through their individual interactions. The modeling task
in this case is to try and capture the most relevant interactions determining birth and
death.

Adapting from the discussion in Dieckmann et. al., 2006,58 these are some require-
ments that a grounded framework of evolutionary dynamics should intend to satisfy: (1)
Mechanistic justifications. All forces considered in shaping evolution at the population level
must arise from explicitly defined processes happening at the individual level.4 (2) Explicit
eco-evolution. The ecological environment directly determines adaptation through births
and deaths, and models of evolution at least imply what they consider as the relevant
factors of this environment; these should be made explicit.59 (3) Density-dependence.
More fundamental than proportion (or frequency) dependence, the outcome of evolution
depends on the actual size of populations, and even when infinite population limits are
considered, evolution is sensible to their densities.60 (4) Stochastic foundation. When
assuming average individual interactions instead of tracking every individual trajectory,
all deterministic models must arise from a limit of a stochastic process, and this process
should be available for the cases where the deterministic assumptions break.61 In addition
to these requirements, I consider what is not necessarily a requirement, but a desirable
goal: design-level modeling. To improve communication between research fields and en-
hance model conception, it is desirable to encapsulate the mathematical details behind a
design-level interface, where one can think and talk about the processes without the need
to understand or worry about what makes the model work in the details.

Evolutionary game theory (EGT) is a traditionally successful modeling framework
for eco-evolutionary dynamics, and its methods are evolving and have a great potential
to compose a grounded framework of evolutionary dynamics.62,63 Models in EGT are
built in two steps, first define a match-maker game delivering payoffs to individuals as
results of their interactions (ecological scale), then use payoffs in a replicator dynamics as
modulators of reproductive rates (evolutionary scale). This process enables us to investigate
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the relative success and stability of strategies in face of a defined strategy pool. However,
standard EGT is rooted in some detrimental limitations. (1) It does not have a clear unique
connection with an individual-level stochastic foundation. (2) The replicator dynamics is
based on proportions and often assumes the equilibrium of population densities, which are
the actual quantities shaped by births and deaths, thus being mechanistically relevant to
the process and also intrinsically tied to it. (3) The rigid match-making of games is not
dynamical in nature, but based on a specific sorting of all individuals at certain points in
time, usually pairwise sorting.

Another example is how the Price equation is such a source of misunderstanding
in the way that trait evolution is supposed to play out, because it does not make it clear
how we can interpret it under the light of the mentioned requirements.64 In addition, it is
important to understand how the many different techniques can relate to each other inside
an unifying picture. Page and Nowak (2002)65 explore the mathematical correspondences
between deterministic equations of evolutionary dynamics, promoting unification at this
level

Reaction networks originated in the modeling of chemical reactions, but the frame-
work itself is a powerful abstract reasoning system suited for all kinds of collective
dynamics.12,66 They spread to be widely used across many fields of biology, such as
molecular biology34 and epidemiology.67. Reaction networks define mechanisms of local
interactions, based on encounters, that collectively generate a population-level dynamics, in
a relational manner. By treating network dynamics as a set of interaction rules, the theory
functions as a smooth connection between verbal design-level reasoning with quantitative
nonlinear outputs. It is much like EGT, but reaction networks are natively dynamical,
and cannot only correspond to EGT, but also effortlessly address its shortcomings. It has
been used in this context before; Veloz et al. (2014)10 offered a reaction network model
for payoff matrices, by modeling network units as decisions instead of individuals. Taylor
and Nowak (2006)68 also used for EGT ideas found in reaction networks. The use of the
mass-action law as a tool is also standard in population dynamics.

In this work, I introduce reaction networks adapted to the context of evolutionary
dynamics, then show how both modeling steps of EGT can be understood as particular
cases of two reaction network models, one at an ecological scale, and another at an
evolutionary scale. I illustrate how we simply cannot sustain the assumption of densities
being independent of replicator dynamics, by analyzing the density instability of the
Hawk-Dove game; then I proceed to show how we can correct the problem with reaction
networks and also gain insights into the underlying evolutionary processes.
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6.3 Methods

6.3.1 Reaction Networks for Evolutionary Dynamics

The central idea is to represent a macroscopic population system through a set of
relational rules of interaction described at the microscopic level of individuals. The fact
that interactions have a relational nature holds a major correspondence with evolutionary
theory: the theory leaves open the specification of what an individual is, what matters is
how it relates, not its identity. For example, it does not matter what a replicator is, as
long as it replicates. Thus, as with evolutionary processes, any unit, or coherent collection
of subunits, can be subjected to the same theory, as long as its external relations are
preserved. What reaction networks do is to describe all relevant interactions available to
these (abstract) individuals with the aim to transform those interactions into population-
level dynamics. For that, we require that populations be defined as collections of identical
individuals, in the sense that they interact in the same ways. So, if an event results in an
individual changing its relational nature, it must become part of another population, in the
same way as chemical components can transform themselves with reactions or individuals
transform from susceptible to infected in epidemiology models. As a result, the state of
the system is not about individual trajectories, it is about the sizes of populations, and
the interactions are considered through probabilistic arguments.

For the purposes of this work, I will define reaction networks in a simple intuitive
manner, although there are more mathematically sound definitions.8 I also maintain a
terminology that is more suited to evolutionary theory. Consider a set ofN populations with
individuals represented as Xi, with i = 1, 2..., N . They are each composed of ni identical
individuals that are distributed inside a space with size Ω (ni’s are natural numbers). The
individuals interact with surrounding peers, changing their numbers according to a set of
R interactions (or reactions) defined as

N∑
i=1

sirXi −→
N∑
i=1

s′irXi, r = 1, 2...R. (6.1)

This means that sir elements of species Xi are needed for the occurrence of interaction r,
that in turn results in s′ir elements of population Xi emerging from the interaction. The
interaction r then changes the amount of Xi by (s′ir − sir). How interactions physically
happen is not determined by the network, but is a part of the model specification and
its assumptions. As an example, a simple interaction representing replication would be
X1 −→ 2X1. Another example, an interaction representing a competition between two
individuals resulting in the death of one of them would be X1 +X2 −→ X1.

The state of the network is determined solely by individual count-numbers, ni,
combined into a state vector n = (n1, n2..., nN). We can view the state description
by n as the information about how many individuals of each type are present in the
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system at a given moment, and it is sufficient to uniquely determine the system. Each
interaction r, when it happens, provokes a state transition where each ni is transformed
into ni + (s′ir − sir). State transitions are the pace at which the system can evolve in
time as a result of interactions. As an example, consider the network formed by two
populations, X1 and X2. At a given moment, the network state is n = (n1, n2). If a
competition interaction X1 +X2 −→ X1 happens in the system, it undergoes a transition
to the new state n′ = (n1, n2− 1), meaning that a X2 individual was destroyed. If, then, a
replication interaction X1 −→ 2X1 happens, the system undergoes another state transition
to n′′ = (n1 + 1, n2 − 1), because a X1 individual was created.

6.3.1.1 Stochastic Kinetics

With the network defined as above, we have no information about how often
interactions will occur, only the static description of the allowed transitions of the system.
For that, we add to the reaction network a kinetic description by specifying the rate at
which interactions will take place. Assuming a kinetic of continuous time passage, we can
introduce transition rates for each interaction, Wr. Since we do not know individual’s
trajectories, this transition rate means that we should expect a probability of Wrdt for
interaction r to occur during an infinitesimal interval of time dt. Knowledge about the
detailed wanderings of individuals is not required if we can guarantee a transition rate Wr.

Apart from interactions, individuals will have trajectories independent of each
other. To understand the derivation of transition rates, it is useful to divide them into
two contributions. (A) The chance that required individuals will encounter themselves
within an interaction range σr, and (B) the chance that, given the encounter A, those
individuals actually engage in the interaction. It is also default to assume that interactions
are given with σr that is constant in time. As an example, consider the following picture
of interaction X1 +X2 −→ X1: X1 is a predator consuming a prey X2. Then, A represents
the chances of the predator finding itself close enough to the prey (where enough is given
by the interaction range), and B represents the chances of the predator actually finding
and capturing the nearby prey.

The reasoning above results in a form of stochastic mass-action law.13 For a general
interaction r composing a network as defined, the transition rate is given by

Wr(n,Ω)dt = (krdt)Ω
∏
i

ni!
(ni − sir)!Ωsir

. (6.2)

I will call the function kr(n) an interaction rate. The term krdt encapsulates the contribu-
tion B above, but is not technically equivalent to it, because kr absorbs the interaction
range parameter from A:

kr = k0
r

σ
1−
∑

i
sir

r
∏
i sir!

, (6.3)
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where k0
r is the contribution from B. The other terms describe the rest of contribution A,

and they depend only on the properties of the interaction itself. Interaction rates kr are
constant rates by default or their form as a function of the state n is part of the system
specification. We represent it over the arrow of an interaction. So, taking again the example
of the competition interaction, now with the kr represented, we have X1 +X2

kr−→ X1, with
transition rate given by Wr = krn1n2/Ω.

Since Wr depends only on the current state n, reaction networks behave as a
Markov jump process with stochastic transition rates given by Wr(n), considering that
transition rates between states not linked by reactions are equal to zero. Markov jump
processes are stochastic systems with discrete state space and continuous time that obey
the Markov property saying that transitions depend only on the current state. They evolve
according to a master equation for the probability density of states, given by

∂Π(n, t)
∂t

=
∑
r

(
Wr(n− sr)Π(n− sr, t)−Wr(n)Π(n, t)

)
, (6.4)

where the vector sr is such that (sr)i = (s′ir − sir). This equation yields a complete and
exact stochastic evolution of the reaction network as a Markov jump process.69 Together
with an initial condition, it can (1) be solved analytically for a narrow range of mostly
linear systems, or it can (2) be simulated with a stochastic simulation algorithm (also called
Gillespie’s algorithm), or it can (3) be approximated by the Kramers-Moyal expansion as a
diffusion approximation resulting in a Fokker-Planck equation (or the associated Langevin
stochastic differential equation), (4) be approximated by moment-closure techniques, or
(5) be approximated by a systematic system size expansion over Ω having as the first
stochastic order what is called a linear noise approximation.13 The later expansion also
gives a connection to the deterministic description, as its zeroth order is a deterministic
system of differential equations. To establish a connection to the deterministic limit, for a
finite time domain, the system-size expansion assumes we can write the expansion

Wr(n,Ω) = Ω
∞∑
i=0

W (i)
r (n/Ω)

Ωi
. (6.5)

This forms a class of transition rates that are well-defined in terms of densities, and
is always valid for mass-action rates. For non-mass-action rates, when kr is no longer
constant, it is sufficient to define kr(n,Ω) = kr(n/Ω). For the following, we assume these
requirements.

6.3.1.2 Deterministic Kinetics

We can achieve a deterministic description from the stochastic kinetics by per-
forming a limit of large system in a way that approximates the count-numbers ni by a
continuous density of individuals. Following the system-size expansion, we write the state
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of the network in terms of a continuous density ni = Ωηi +
√

Ω. Then, for the limit of
infinite populations and infinite size, we have

ηi = lim
Ω,ni→∞

ni
Ω . (6.6)

The approximation is of O(Ω−1) and is exact in the limit.13,70,71 By performing this limit
over the stochastic kinetic for ni given by the master equation, using the system size
expansion, we achieve deterministic kinetics for ηi given by a set of differential equations
for the time-evolution of the densities vector, η:

dηi
dt

=
∑
r

(s′ir − sir)W d
r (η), (6.7)

where W d
r (η) are the deterministic transition rates for densities, given by

W d
r (η) = lim

Ω,ni→∞

Wr(n)
Ω = kr

∏
i

ηsir
i . (6.8)

Since the deterministic kinetics are a result of a limit over the system size Ω, this size is
no longer a parameter of the model. As n and Ω increase in the stochastic kinetics, the
noise around the deterministic trajectories gets smaller as the continuous approximation
gets more exact.

I now work an example to show the transformation from stochastic to deterministic
descriptions. Consider a system of one population X. Individuals reproduce asexually with
a constant rate k1 = ω, they also die with a constant rate k2 = µ, and they fight for space
and resources, resulting in death, with a constant rate k3 = γ. The reaction network that
represents this system is

X
ω−→ 2X

X
µ−→ ∅

2X γ−→ X. (6.9)

This is the design-level of reaction networks, the model is now fixed. The mathematical
description that comes next is already determined by the system specification. The master
equation giving the evolution of the probability density of states n is

∂Π(n, t)
∂t

= ω(n− 1)Π(n− 1, t) + µ(n+ 1)Π(n+ 1, t) + γ

Ω(n+ 1)nΠ(n+ 1, t)

−
(
αn+ µn+ γn(n− 1)

Ω

)
Π(n, t). (6.10)

The transition rates areW1 = ωn,W2 = µn, andW3 = γn(n−1)/Ω. The differential
equation over the density η obtained as deterministic kinetics for this network is then

dη

dt
= ωη − µη − γη2. (6.11)
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This equation is equivalent to the logistic model η̇ = ηr(1−η/K), and we derive the growth
rate r = (ω−µ) and carrying capacity K = (ω−µ)/γ as functions of the fundamental rates
of birth, death, and competition. We see that the system we are modeling of replication,
death, and competition is described in the deterministic limit of infinite system by a
logistic model.

6.3.1.3 Modeling transition rates

The two sources of contribution to transition rates are important for their design.
The shape of the encounter rates is determined by the network structure, by how the
interactions themselves are designed. What determines them is the availability of indi-
viduals needed for the interactions, the reactant complexes in chemical terminology. The
other contribution is encoded into the interaction rates, and it has a major role in our
interpretation of them. In the chemical domain, they are usually constant contributions,
especially because one needs to provide physical justifications for more complex shapes,
such as time-scale separations and quasi steady state approximations.27 But for population
dynamics, interaction rates are designed as probabilistic functions relating to the real
interactions as a sort of activation function. They regulate the intensity by which possible
encounters between individuals result in the outcome of their interactions. This is the
same modeling role as payoff functions have in influencing birth and death rates in EGT,
and kr can also be subjected to a game model that determines its functional shape.

Take as example a mating interaction of the form X1 +X2
kr−→ b(X1 +X2). Suppose

X1 are female individuals and X2 are males, and they interact to produce (b− 1) offspring,
with b > 1. The interaction rate for this is Wr = krn1n2, it is independent of the terms in
the outcome, the products, that enter only as part of coefficients in the equations describing
the evolution of states. The n1n2 factor is an encounter rate contribution, and is present
by the structure of the interaction. Now, if we know from the system that this particular
mating interaction is somehow affected by the ratio of males to females, being more or
less likely to happen as a function of this ratio, we must have kr = kr(n2/n1). It might be
inversely proportional to it, then kr = λn1/n2. The value of this proportionality constant
λ is particular to the system, and in principle can be further modeled as a function of the
environment and the species or even estimated as a part of a fit to data.13

One particular family of interactions that is especially important to evolutionary
dynamics is composed of interactions of type X kr−→?, involving a single individual. Simple
births and deaths are interactions of this type, that are not exactly interactions; are
more properly self-interactions. These do not need an encounter to happen, so they are
always susceptible to occur. The reaction rates are Wr = krn, and kr has a more definite
interpretation of a frequency, with 1/kr being an average time of occurrence. Then, for
example, if an individual X has an average life-time of T before spontaneously dying, it is
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subject to the death interaction X 1/T−−→ ∅. We interpret this rate as a constant propensity
to die that results on average life-times of T units of time; since the Markov jump process
produces Poisson distributed independent interactions, this life-time will have a standard
deviation of T , and the population in the deterministic limit decays to 1/e of its initial
size after T . In the same way, if an individual X reproduces itself in cycles happening at a
frequency of ω per unit of time, it is subject to the birth interaction X ω−→ 2X. By default,
ω is also a constant propensity, but as a function of the state, ω = ω(n), it encodes the
birth propensities as dependent of the surrounding population dynamics. By that, we
design interactions directly influencing what we may call the fitness or reproductive success
of individuals.

6.4 Results

6.4.1 Reaction networks for evolutionary game theory

I first define two more features that are compatible with reaction networks in the
way we defined. (1) Interactions can produce quantities that are not part of the system
state as individuals. (2) In a hierarchical manner, we can design models for interaction
rates, shaping rates by the results of a game at the ecological level; this game can itself be
a reaction network, one that is simulating rates for a network at the evolutionary level.

I generalize equation (6.1) to

N∑
i=1

sirXi
kr−→

N∑
i=1

s′irXi + crΛ, (6.12)

where Λ can be any kind of quantity with an amount λ and cr is how much of it is produced
by interaction r. Since Λ is never required for interactions, λ does not strictly need to be
part of n, λ can be a real number, and transition rates do not depend on λ. A produced
quantity is passively accumulated as the system evolves in time. Its stochastic description
generalizes equation (6.4) to

∂Π(n, t, λ)
∂t

=
∑
r

(
Wr(n− sr)Π(n− sr, t, λ− cr)−Wr(n)Π(n, t, λ)

)
. (6.13)

Thus, in the deterministic limit we defined, the production of Λ is given by

dλ

dt
=
∑
r

crkr
∏
i

ηsir
i . (6.14)

In the same way, more than one quantity can be produced by a network, and λ can be
generalized to a vector λ.

I then define a game network, using the example of a simple birth interaction
X

ω−→ 2X. This interaction is a part of a population model, and we wish to build a model
for the interaction rate ω, in order to define it as a function of the state n in accordance
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with our design intentions to represent a system of interest. Whenever we define a function
ω(n), we are implicitly designing a model for it; the simplest case being a constant, that
is a modeling choice nonetheless. The process is to model ω(n) with another reaction
network, using probabilistic argumentation to connect the game network to ω(n). The aim
is to define mean-field interactions shaping the propensities of the interaction X ω−→ 2X to
happen as a function of the surrounding environment represented by the state n. This is
what EGT implicitly accomplishes, with payoffs acting as state-dependent propensities
to breed and die. The quantities Λ produced by interactions are central to this, as they
can act as a measure of interaction intensity. Suppose Λ is produced in the game network
for ω, then ω ∝ dλ/dt is a model for the interactions that drive the occurrence of the
birth X ω−→ 2X, interpreted as increasing the probability of its occurrence. In game theory
terminology, Λ is payoff for the birth interaction.

The stochastic kinetics of reaction networks describe the network state at the
level of individual counts, represented here by n. The infinite size limit of deterministic
trajectories equivalently represents population densities, η. But the characteristic of
replicator dynamics is to represent birth and death population dynamics using relative
proportions, defined as pi = ni/

∑
i ni, with deterministic counterpart ρi = ηi/

∑
i ηi.72 This

level of representation loses information on the total sizes of populations ∑i ni (or
∑
i ηi),

and only a subset of systems is by any means reducible to relative proportions. Fixing
densities at equilibrium does not work as an assumption, since we cannot control density-
level dynamics beforehand. Therefore, replicator dynamics is an inherently incomplete
representation of populations.

6.4.1.1 Evolutionary-level replicator dynamics

The replicator dynamics models the evolutionary level taking the game as input,
and can be viewed as a network. To derive it as such, consider a network of N populations
named Xi, i = 1, 2, ...N , with count-numbers vector n = (n1, n2...nN ). The Xi individuals
self-reproduce with rate ωi(n) and die with rate µi(n). At birth, each Xi mutates into
Xj with probability qij(n) (a fraction qij of offspring from Xi mutates into Xj); then the
probability of not mutating is qii(n) = 1−∑j qij. These result in the network

Xi
qijωi−−−→ Xi +Xj

Xi
µi−→ ∅. (6.15)

In the first interaction, Xi produces Xj, and for every population Xi there are N types
of these birth interactions; one for each type of individual produced. In the second, Xi

transforms into nothing, it dies. This system yields a stochastic description resulting in
the master equation (6.4), but we focus here on the deterministic limit. The limit (6.6)
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results in the following system for the densities ηi:

dηi
dt

= −ηiµi(η) +
∑
j

ηjωj(η)qji(η). (6.16)

By expressing this evolution in terms of proportions, we have

dρi
dt

= −ρiµi(η) +
∑
j

ρjωj(η)qji(η)− ρi
∑
j

ρj(ωj(η)− µj(η)). (6.17)

If the system depends on densities only through proportions (a somewhat strict restriction),
we have ωi(η) = ωi(ρ), and the same for the other rates; then, the system is closed on the
proportions and we have a standard replicator-mutator equation. If, as a more relaxing
assumption, all rates are of the form ωi(η) = g(∑i ηi)ωi(ρ) for any function g(∑i ηi) of
the population size that is the same for all rates, then the phase portrait of the system can
still be obtained at the level of proportions, but not its time evolution, that depends on g.

If we discard the possibility of mutations (all qij = 0 for different populations and
qii = 1), the equation (6.16) for densities becomes

dηi
dt

= ηi(ωi − µi) = ηiFi (6.18)

if we define a growth function Fi = (ωi − µi). And from that we arrive at the particular
replicator equation, that has the general form:

dρi
dt

= ρi

(
(ωi − ω)− (µi − µ)

)
= ρi(Fi − F )., (6.19)

with ω = ∑
i ρiωi and equivalently for µ. This is a replicator equation with Fi interpreted

as an abstracted measure of fitness of populations. Equation (6.19) does not impose any
particular restrictions on the functions Fi, and holds for any network of this kind, possibly
resulting in different forms of Fi. Equations (6.18) and (6.19) highlight that densities are
driven by Fi while proportions are driven by how Fi deviates from its mean among the
populations.

Not only birth and death, but a baseline competition is also fundamental at the
evolutionary scale, because it encodes the indirect dispute for limited resources; a dispute
that fills the important role of containing growth by being the primary consequence of
resource scarcity. These forces are absent from the standard replicator dynamics and, with
competition, we can instead define a logistic form of replicator equation. Consider the
following network, as a general form of (6.15):

Xi
qijωi−−−→ Xi +Xj

Xi
µi−→ ∅.

Xi +Xj
γij−→ Xi. (6.20)
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Where γij are competition rates. Defining fi = ωi − µi as an intrinsic growth rate, this
network yields growth rates of the form Fi = fi−

∑
j γjiηj . A strong sign of the limitations

of the proportions-only description, the network results in an explicitly density-dependent
replicator equation for the proportions:

dρi
dt

= ρi(Fi − F ) = ρi(fi −
∑
j

γjiηj −
∑
j

ρjfj +
∑
j

ηj
∑
k

γjkρk). (6.21)

The densities follow η̇i = ηiFi with the new Fi. With competition, the replicator dynamics
yields a more complex trajectory. But if we assume a constant baseline rate of competition
between all individuals, γij = γ, the competition term of Fi becomes the same for every
population, a selective pressure of γ∑j ηj, not affecting the dynamics of proportions.
For such case, densities still depend on γ, but the proportions follow the dynamics
ρ̇i = ρi(fi − f), the same as before. However, the growth of densities stops whenever
fi = γ

∑
j ηj. This happens when fi is the same for all populations, and it coincides with

the equilibrium of proportions, given by the standard replicator dynamics. This is a means
of modeling forces that successfully limit population size and allow evolution to occur as
we expect at the level of densities, but without changing the replicator dynamics.

6.4.1.2 Ecological-level games

The actual game of EGT is a deterministic method for modeling interaction rates
as a mean field of interactions that shape the functional forms of birth and death rates
in the replicator dynamics. It is a model of propensities for birth and death in which
individuals interact without changing their numbers. They can also be defined as reaction
networks. For this, interactions output payoff quantities instead of creating and destroying
individuals.

Suppose then the evolutionary-level reaction network of N populations Xi that
includes birth and death interactions Xi

wi−→ 2Xi and Xi
µi−→ ∅ with every wi(n) and µi(n)

as state dependent functions, and possibly competition with a constant rate γ. I define a
game for the rates ωi and µi as the following: no individuals are born or die, and the result
of interactions is the production of quantities that function as propensities to reproduce or
die, payoffs; then, the interaction rates we are modeling will be proportional to the average
payoffs per individual, gathered during the time span of the game, T . The interactions
considered in the game are ecological situations that continuously happen during the lives
of individuals in that environment. Naturally, each different behavioral strategy adopted
by individuals defines a different relational population. The general standard form of game
interactions is

N∑
i=1

sirXi
kr−→

N∑
i=1

sirXi +
N∑
i=1

(
cGirGi + cLirLi

)
. (6.22)

The result of the interactions is the production of the payoff quantities Gi and Li for each
population. These represent gain payoff values of gi as propensity of birth rates and loss
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payoff values li as propensity of death rates. The payoffs are modeled as the gains and
losses per participating individual, for each population, as results of each interaction. Their
time evolution is given by equation (6.14). The constants cGir and cLir are the amounts of
payoff produced by each interaction. Thus, the birth and death rates are given as

ωi(η, T ) = 1
ηiT

∫ T

0

dgi
dt
dt

µi(η, T ) = 1
ηiT

∫ T

0

dli
dt
dt. (6.23)

When the game models a non-changing mean environment, payoffs are not functions of
the time t, and the interaction rates reduce to

ωi = 1
ηi

∑
r

kr
∏
i

ηsir
i cGir,

µi = 1
ηi

∑
r

kr
∏
i

ηsir
i cLir. (6.24)

Consider then the game of two populations with pair-wise interactions outputting
a general payoff matrix


X1 X2

X1 (aG − aL) (bG − bL)

X2 (cG − cL) (dG − dL)

. (6.25)

This matrix means that whenever there is an interaction of type X1 +X1, each X1 involved
gets (aG − aL), and the same goes for X2 +X2 interactions resulting in a payoff (dG − dL).
For X1 +X2 interactions, the X1 individual gets (bG − bL) while X2 gets (cG − cL). The
superscripts G and L mean gained and lost payoff, that contribute respectively to birth
and death rates.

The network for this payoff matrix is

2X1
k−→ 2X1 + aGG1 + aLL1

X1 +X2
k−→ X1 +X2 + bGG1 + bLL1 + cGG2 + cLL2

2X2
k−→ 2X2d

GG2 + dLL2. (6.26)

For this game, all interaction rates k are equal and there are only interactions composed of
two individuals; however, these are not necessary constraints for reaction networks. Then,
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the payoffs are time-independent, so we are able to obtain instantaneous birth and death
rate estimates

ω1 = k(η1 + η2)(aGρ1 + bGρ2)

µ1 = k(η1 + η2)(aLρ1 + bLρ2), (6.27)

and analogously for X2. Neglecting mutations in the evolutionary scale, from equation
(6.19), this yields a replicator dynamics that has the same phase portrait as yielded by EGT.
There is one difference, though: the time-evolution of both populations is proportional to
the factor (η1 + η2), the total density. This results in a dynamical evolution that is affected
by densities, not just proportions.

Consider a population that, under the rule of a standard replicator birth-death
network at the evolutionary scale, evolves according to game-shaped rates of equation
(6.27). This population has an artificially unstable density growth. Whenever ωi > µi,
densities tend to grow indefinitely, and whenever ωi < µi, densities tend to decrease
indefinitely. For the case of a Hawk-Dove game, ωi > µi always for both Hawks and Doves,
so densities will rapidly diverge.

If we instead consider the logistic evolutionary scale, given by a network with a
constant baseline competition with rate γ, it is still not sufficient to regulate population
growth in this model. We define the average intrinsic growth function for proportions as

φ(ρ) = k
(
ρ1
(
(aG − aL)ρ1 + (bG − bL)ρ2

)
+ ρ2

(
(cG − cL)ρ1 + (dG − dL)ρ2

))
, (6.28)

with φi = fi/(η1 + η2). Then, the total density (η1 + η2) is at a finite equilibrium when the
following condition is met:

φ(ρ)eq = γ. (6.29)

This is an artificially narrow condition, indicating an inconsistency in the model formulation.
The factor φ(ρ)eq is determined for a given game independently of densities or γ. If
φ(ρ)eq < γ, the equilibrium total density is zero, and if φ(ρ)eq > γ, it still diverges.

This problem points to the issue that the evolutionary birth and death rates, ωi
and µi, must also include the influence from background births and deaths ω0 and µ0

that are independent of the standard encounters modeled by the payoff matrix. In theory,
the game payoffs are supposed to represent propensities deviating from this background
that encompasses the influences from other activities and baseline fertility/lifespan of
individuals.63 This means for us to add the following set of interactions to the standard
game in (6.26):

Xi
ω0−→ Xi +Gi (6.30)

Xi
µ0−→ Xi + Li,
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assuming, for simplicity, the background to be constant and the same for all populations
(and this is mathematically equivalent to making ωi → ω0 +ωi at the evolutionary network).
Then, this inclusion, in the same way as the competition interaction, does not alter the
replicator dynamics. Instead of equation (6.29) being needed, the equilibrium total density
is now well-defined and given by(

η1 + η2

)
eq

= (ω0 − µ0)
(γ − φ(ρ)eq)

, (6.31)

and it is a simple measure of total population size of an ecological system of this kind at
equilibrium. But it demands that φ(ρ)eq < γ at the equilibrium of proportions, otherwise
populations would be on average too successful to be restrained by an intensity γ of
competition.

6.4.2 Stochastic Models

Consider the logistic network

Xi
ωi−→ 2Xi

Xi
µi−→ ∅

Xi +Xj
γ−→ Xi, (6.32)

with i = 1, 2, ...N and ωi(n), µi(n), and γ(n) being state dependent. This is the logistic
evolutionary-scale network. Its stochastic evolution, by equation (6.4), is

∂Π(n, t)
∂t

=
N∑
i=1

(
(ni − 1)ω−i Π− + (ni + 1)µ+

i Π++

+(ni + 1)γ+
N∑
j=1

(nj + 1− δij)Π+ − ni(ωi + µi + γ
N∑
j=1

(nj − δij))Π
)
, (6.33)

where the superscripts (+) and (−) represent a function calculated at state n with the
exception of ni being respectively ni + 1 and ni − 1. The deterministic game at the
ecological scale functions as a mean-field model for interaction rates for the stochastic
evolution too. We can compute the game-simulated interaction rates as ωi(η) = ωi(n/Ω)
with approximation error of O(Ω−1). This process potentially yields a highly complex
stochastic evolution, with nonlinear transition rates.

6.4.3 Stabilizing the Hawk-Dove game

The Hawk-Dove game (HD) is an important model of animal conflict, representing
an ecological setting where individuals, when encountering, can choose to engage a dispute
or avoid it. Hawks portray an aggressive behavior of engaging while Doves are more
cautious and choose to avoid disputes.73
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The simplest form of the Hawk-Dove game is expressed by the payoff matrix


H D

H (v−c)
2 v

D 0 v
2

 (6.34)

with c > v. An interpretation is that when individuals do engage in a dispute, the winner
gains a payoff v in terms of reproductive advantage (increased birth rate) and the loser
gains a negative payoff c in terms of injuries (increased death rate). It has the corresponding
reaction network:

2H k−→ 2H + v

2GH + c

2LH

H +D
k−→ H +D + vGH

2D k−→ 2D + v

2GD. (6.35)

The game assumes equal interaction rates k for all kinds of encounters. If we want to
consider background birth and death rates, we deviate from the standard game by also
including the interactions

H
ω0−→ H +GH H

µ0−→ H + LH

D
ω0−→ D +GD D

µ0−→ D + LD.
(6.36)

This game is used as an ecological-level simulation of birth and death rates. The logistic
evolutionary network, of which the usual replicator dynamics is a particular case, is
represented for hawks and doves as

H
ωH−−→ 2H D

ωD−→ 2D H
µH−−→ ∅

D
µD−→ ∅ 2H γ−→ H 2D γ−→ D

H +D
γ−→ H H +D

γ−→ D,

(6.37)

with ωH , µH , ωD, and µD modeled by the game (6.35-6.36). This network yields, for
example, a replicator equation for hawks and doves:

dρH
dt

= ρHρD(fH − fD)

dρD
dt

= ρHρD(fD − fH), (6.38)

with
fH = ωH − µH = k(ηH + ηD)

(
ρH

(v − c)
2 + ρDv

)
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fD = ωD − µD = k(ηH + ηD)
(
ρD
v

2
)
. (6.39)

Having the same phase portrait as the simple HD game, it also results in the equilibrium
values of ρeqH = v/c and ρeqD = (c − v)/c. Apart from the speed of the time-evolution of
proportions, that depends on (ηH + ηD), all differences we implemented are felt only at
the level of densities, preserving the same structure of the HD game. For this game, we
have from equation (6.28):

φ(ρ)eq = kv(c− v)
2c . (6.40)

If φ(ρ)eq > γ, the theory predicts that the densities diverge. If φ(ρ)eq < γ, the densities
stabilize, according to equation (6.31), with size

(ηH + ηD)eq = 2ck(ω0 − µ0)
2cγ − v(c− v) . (6.41)

Then, the standard HD model, obtained by reducing the network with (ω0 − µ0) =
γ = 0, results in the usual replicator dynamics for the proportions ρH and ρD, but with
densities rapidly diverging to infinity (Fig. 10-A). If we move to the logistic network, with
the baseline competition rate γ > 0, the equilibrium proportions are the same, but now
the densities can go to zero if φ(ρ)eq < γ (Fig. 10-B) or still diverge if φ(ρ)eq > γ (Fig.
10-C). Only by also adding the simulation of payoffs for independent births and deaths,
with (ω0 − µ0) > 0, we are able to stabilize the densities when respecting the condition
φ(ρ)eq < γ (Fig. 10-D).

In addition, we can consider the stochastic version of the logistic evolutionary
network with birth and death rates modelled by the same HD game. The stochastic
evolution is given by equation (6.4). The network (6.37) defines 8 possible state jumps. As
an example, the birth transition for hawks happens with rate

WH→2H = ωH(n/Ω)nH =
(
ω0 + kv(nH + 2nD)

2Ω

)
nH . (6.42)

The unpredictability of the stochastic network decreases as the size of the system increases,
and that process is fundamentally dependent on the sizes of populations, n. For small
systems, the deterministic dynamics is unable to represent the behaviors of the fundamental
level, however for large systems they become similar dynamics (Fig. 11). The system-size
expansion representing this convergence pictures the stochastic dynamics as composed of
size-dependent noise around the deterministic trajectories, that gets washed out in the
limit by the law of large numbers.

This analysis highlights the existence of three model layers of the populations
dynamics, each one abstracted from the layer before. (1) The fundamental, stochastic layer
of individual-counts represented by n, (2) the deterministic density layer represented by η,
and (3) the deterministic proportions layer represented by ρ and the replicator dynamics.
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Figure 10 – Densities and proportions in the Hawk-Dove game. Left: Densities;
Right: Proportions. Initial state for hawks and doves is (0.4, 0.6), with densi-
ties matching proportions. Equilibrium proportions are the same, but their
time-evolution depends on the total density. We have φ(ρ)eq = 0.1. (A) De-
fault replicator dynamics. Densities quickly diverge, with unbounded growth,
while proportions approach the expected equilibrium. (B) Dynamics with a
constant background competition of rate γ = 0.3 > φ(ρ)eq. Now, population
size decreases to zero while proportions remain approaching the expected
equilibrium values. (C) With a lower competition rate γ = 0.05 < φ(ρ)eq,
densities also diverge. (D) Dynamics with both competition of γ = 0.3 and
background birth and death rates for hawks and doves, (ω0 − µ0) = 0.6. The
model reflects a more realistic evolutionary setting and the densities are finally
stable. Other parameter values: k = 1, v = 1, c = 1.25, and arbitrary units of
time.
Source: By the author.

6.4.4 Price Equation and Adaptive Dynamics

Now we turn to the task of unifying the developed ideas with adaptive dynamics. I
begin with an analysis of the Price equation. Given any population dynamics, we may be
interested in the evolution of traits belonging to individuals. The population dynamics



115

Figure 11 – Stochastic evolution and the system size. Stochastic samples for 4 dif-
ferent sizes, Ω = (10, 100, 500, 2000), compared to the deterministic limit.
All cases depict the same density dynamics of the stable hawk-dove game,
with the model specified as in fig. (10-D). Black lines depict the deterministic
limit, red lines are stochastic densities of hawks and blue lines are stochastic
densities of doves.
Source: By the author.

affect the distribution of the trait among populations and, in turn, the trait can be a factor
affecting the outcome of the dynamics. In order to assign values of a trait to populations
and understand its evolution, we need to provide a trait model reflecting how the interaction
rates depend on trait values and how trait values can change inside populations as time
passes.

Suppose we have a quantitative trait z assuming the value zi for population Xi on
a network with N populations with proportions following the replicator dynamics. This
model has a mean trait value defined as z = ∑

i ηizi/
∑
i ηi = ∑

i ρizi. If we provide a model
for any possible changes dzi/dt, the evolution of the mean z is completely determined
by the evolution of η. The dynamical representation at the level of the trait values is
expressed by the Price equation, obtained by deriving the definition of z in relation to
time:

dz

dt
= cov(z, (ω − µ)) + dz

dt
+ ωδz, (6.43)

with cov(z, (ω − µ)) = ∑
i ρi(zi − z)

(
(ωi − ω) − (µi − µ)

)
, dz
dt

= ∑
i ρidzi/dt, and ωδz =∑

i ρiωiδzi for δzi = ∑
j(zj − zi)qij. This equation is a mathematical equality. Covariance

and mean in this context are referring to simple functions of the distribution of z over the
network, they are summaries of the distribution of z on the populations weighted by their
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proportions ρi.74 In order to derive this equation, we have to suppose that the trait z has
different values zi distributed over different individuals, and the equation itself relates this
distribution of z to the sources of its changes, ultimately driven by interactions of birth
and death. Changes in z are separated in three contributions. (1) The covariance term:
populations with higher birth rates or lower death rates among the network will increase
in proportion, and the trait value that they bear will become more present, driving z
towards them. (2) The mean derivative term: if, over time, each zi can change its value
according to any trait model, the corresponding change in z is the mean of the changes
in each zi. (3) The mutation term: because mutations occur between populations, some
offspring of Xi might be a Xj, bearing the trait value zj instead of zi; the change in z is
modulated by the difference between zj and zi for every mutation.

If we provide a model of the interaction rates, for example as ωi = ωi(η, z),
µi = µi(η, z), and qij = qij(η, z) in the case of birth-death-mutation interactions, the
values zi will affect the population dynamics of η that in turn will affect the distribution
of the zi, driving changes in z. The Price equation captures this interplay and is able to
provide the resulting evolution of z. However, the variance in z comes from the fact that
different populations possess different trait values zi and will tend to decrease when a
population is able to dominate in proportion. In the case where the system is dominated by
one population, the only contribution that is still able to drive changes in z is the second
term, of the mean derivative of zi, that is the only term accounting for the appearance of
new values of the trait; the other terms depend on the permanence of different populations
in order to be effective.

But the mean derivative term, dz
dt
, is rather strange in this context, because it

implies that individuals can change trait values throughout their lives. In the way we
defined the model, each population is representative of the value zi, so it is more natural
for individuals to change trait values by mutating from a Xi into a Xj. Thus, the mean
derivative term vanishes and z changes only due to births and deaths. Additionally, if
we further assume random mutations, so that mutations are equally likely to increase or
decrease trait values, δzi = 0 and the mutation term also vanishes. Thus, usually, the Price
equation reduces to ż = cov(z, F ), and is independent of the qij.

If we assume that mutations almost never occur, with qij � 1 for any i 6= j, we
consider that equilibrium states of η are attained for all Fi = 0 while mutations do not
occur. Then, density equilibrium states always have cov(z, F ) = 0, whether this equilibrium
consists of coexistence between populations or of a single dominating population. Whenever
a mutation occurs in this state, with a new population Xm appearing with trait value zm,
there are two possible outcomes: (1) Fm < 0 and the mutant population fails to grow, or
(2) Fm ≥ 0 and the mutant population has the opportunity to grow. For the second case,
the growth of the new mutants will depend on the behavior of all Fi as functions of η,



117

as ηm grows and other populations possibly shrink. If the mutants successfully grow in
the population, a new equilibrium for z is reached, and this is a general sketch of how the
trait evolution plays out.

To further explore the evolution of the trait z, we consider all populations to be
equal apart from the difference in the trait z. This results in ωi(η, z) = ω(η, z) for all
i and the same for all other interaction rates. Then, the network starts with a single
resident population at equilibrium, Xr with trait value zr. When a mutation occurs, this
equilibrium is disturbed and new mutants Xm appear with trait value zm. We suppose
that all mutations occur in small steps |zm − zr| = δ; and (zm − zr) > 0 means that the
mutation increases the trait value and (zm − zr) < 0 means it decreases. We have for
example the possible populations for positive trait values: X1 with trait z1 = 0, X2 with
trait z2 = δ, X3 with trait z3 = 2δ, and so on. Thus, for the model of the two populations
Xr and Xm once the mutants arise, we have the function F (ηr, ηm, zr, zm) determining the
outcome of both the population dynamics and adaptive dynamics.

With the rise of the mutant, having a proportion ρm, the initial trait average is
z = zr + ρmδ. If the mutants fail to grow, z goes back to zr. If the mutants grow, z is able
to evolve up to zm. Expanding F around the resident trait value zr and neglecting O(δ2)
terms, the Price equation becomes

dz

dt
= ρm(1− ρm)δ2 ∂F

∂zm

∣∣∣∣
zm=zr

. (6.44)

Using η̇ = ηF , we are able to determine the time-evolution of the invasion dynamics behind
this process, with the condition for mutants growth being ∂F

∂zm

∣∣∣∣
zm=zr

> 0 for zm > zr or

∂F
∂zm

∣∣∣∣
zm=zr

< 0 for zm < zr. If the mutants dominate over the residents (ρm → 1), ηm stops
again at a new equilibrium with z = zm, until new mutants appear. When the resident
population cannot be invaded by either increasing or decreasing z, zr is an equilibrium
value for the trait evolution, represented by ∂F

∂zm

∣∣∣∣
zm=zr

= 0. The stochastic counterpart for
the adaptive dynamics as described here arises from considering z = ∑

i zini/
∑
i ni for the

same networks. For multi-trait evolution, the condition for evolutionary equilibrium in
this case is expressed in terms of the gradient ∇mF and the evolutionary trajectory is
given by successive increments of δ(j) for any trait z(j) that is changed by a mutation.

Adaptive dynamics usually rely on two general assumptions: (1) mutations are
rare so as to always occur only when populations are at a dynamical equilibrium, so
dynamical and adaptive time-scales are separated; and (2) population interactions happen
in a way that no coexistence of different trait values can hold, so at dynamical equilibrium
there is only one dominant trait value.75 These assumptions work to provide a purely
adaptive evolutionary model, without interference from the detailed competition dynamics
between populations with different traits, between residents and new mutants. With this
simplification, we can model trait evolution as a Markov jump process over the trait values.
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The jump probabilities depend on the mutation rates, qij , and on the probability of fixation
of the new mutants, which is non-zero only for Fm > 0. The resulting deterministic limit
is called canonical equation of adaptive dynamics.58 It can be summarized as:

dzr
dt

= Cηr
∂Fm
∂zm

∣∣∣∣
zm=zr

. (6.45)

The positive parameter C encapsulates the mutation rate and trait variance, it can depend
on zr but is usually assumed to be constant in models. This equation highlights the fact that
the evolutionary trajectory of the trait z generally depends only on the selection gradient.
It is similar to the Price equation as we defined, although it describes a fundamentally
different system. In the canonical equation, there is no dynamical evolution of proportions,
so any variance over the trait z cannot come from its distribution among the different
coexisting populations. In fact, it comes from the mutation rates, now expressed as a
probability distribution over the values of z, as the probability of mutating from the
resident trait value to adjacent values. The dependence over F does not come from the
dynamical evolution η̇ in this scenario, but from the probability of fixation once the mutant
appears in the population. Thus, the canonical equation models evolution on the trait
space only, assuming instantaneous equilibrium over the dynamical state space, while trait
evolution from the Price equation is about changes in trait due to changes in the dynamical
population evolution. However, both models capture, in agreement, the direction of trait
evolution as given by ∂F

∂z
, the selection gradient.

6.4.4.1 Games as Generations

In order to provide an F that is suited to trait evolution through equation (6.45),
we now make use of our generalization to define games as generations. An issue with
games as simulations of interaction rates is that the payoffs must be further specified in
order to refer to actual populations in biology. Otherwise, games remain as theoretical
explorations of possible scenarios, designed to capture the general features of frequency
dependent evolution. So this is a proposal of an additional design for games, in which we
model birth rates from a simulated generation of individuals. The evolutionary time scale
is one generation per unit of time, and the payoff gathered is the number of offspring per
individual in one generation.

Consider an evolutionary network composed of birth, death, and competition
interactions:

Xi
ωi−→ 2Xi

Xi
1−→ ∅

Xi +Xj
γ−→ Xi, (6.46)

assuming a constant competition rate γ. The death rate is 1 because each individual lives
once per generation, so the average lifetime, that is the inverse of the death interaction rate,
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is the same as the time scale. In this setting, the birth rates ωi will be equal to the number
of offspring each individual produces per generation. Inside a generation, individuals will
never increase in number, because birth interactions increase only birth payoff. But they
die at their natural death rates. The total payoff at the end of the generation, when all
individuals are dead, will be the amount of offspring produced and equal to the birth rate.
It is the same as the birth rate because at each time step, that is the expected time that
individuals stay alive, each individual produces on average the payoff’s amount of offspring,
and that is how many birth reactions each individual undergoes on average per unit of
time, the birth interaction rate itself. The initial state of the simulated generation is the
present state of the evolutionary network, and the birth rate can be density dependent.

I illustrate this modeling strategy with an example of simple sexual reproduction.
The network consists of the populations of females X1 and males X2. We then simulate
generations in order to calculate the birth rates. We use the following simulation network
at the ecological level, that is the game:

X1 +X2
m−→ X1 +X2 + β1W1 + β2W2

X1
µ1−→ ∅

X2
µ2−→ ∅. (6.47)

W1 and W2 are payoff variables representing the number of offspring at a given time, w1

and w2. The coefficient βi considers the average number of offspring from each mating
event that reaches maturity and belongs to the i-th sex. The mating interaction rate m(n)
modulates the shape of the mating transition rate (mating function); I am considering the
baseline mating dynamics of constant m, but other functional forms are responsible for
other kinds of mating functions, and they need a proper mechanistic justification for their
use. To maintain clarity, we use the deterministic limit for this example:

dη1

dt
= −µ1η1

dη2

dt
= −µ2η2

dw1

dt
= mβ1η1η2

dw2

dt
= mβ2η1η2, (6.48)

and the birth rates are given by

ωi = 1
ηi

∫ ∞
0

dwi
dt

dt. (6.49)

All parameters can be functions of the state, but here we consider them as constants.
For an initial state (η1, η2), this system has an analytic solution. The output of the
simulation is the ωi, given by

ω1 = m

(µ1 + µ2)β1η2,
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ω2 = m

(µ1 + µ2)β2η1. (6.50)

The ratio ω2/ω1 is a measure of relative fitness between males and females. Fitness per
individual, for each sex, is proportional to the density of the other sex, and they reach
equality when β1n2 = β2n2 in the evolutionary level. In particular, for equal offspring
share, the equilibrium is for equal number of males and females. In the case of females,
the time evolution is given by

dη1

dt
= η1

(
m

(µ1 + µ2)β1η2 − 1− γ(η1 + η2)
)
, (6.51)

and the replicator equation for proportions is

dρ1

dt
= (η1 + η2)ρ1ρ2

m(β1p2 − β2p1)
(µ1 + µ2) , (6.52)

with ρ2 = 1− ρ1. The equilibrium state is then

ηi = βi
mβ1β2
µ1+µ2

− γ(β1 + β2)
(6.53)

As expected, the equilibrium state for proportions, from the replicator equation, is inde-
pendent of γ:

ρi = βi/(β1 + β2). (6.54)

The mating transition rate is Wm = mη1η2. For females, the mating function, that
is the mating transition rate per individual female, is proportional to mη2 (and for males it
is proportional to mη1). This is the mating function that naturally arises from male-female
encounters for otherwise independent individuals. A commonly used mating function is
the harmonic mean76, that models a decrease in mating that is the result of increased
density (implying increased mating selection, for example), making the chances of mating
events inversely proportional to the population size, so we have m ∝ 1/(η1 + η2). Every
justifiable functional form of the mating rate m gives a different mating transition rate
and thus an alternative mating scenario.

6.4.5 Examples

Finally, we turn to four different examples with the aim to further establish the
use and potentials of this perspective.

6.4.5.1 Generalized Lotka Volterra

A generalized Lotka-Volterra system72 can be modeled at the design level with a
reaction network as

Xi
ωi−→ 2Xi, (6.55)
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Xi
µi−→ ∅. (6.56)

Xi +Xj
κij−→ Xi (6.57)

Xi +Xj
γij−→ 2Xi (6.58)

Xi +Xj
mij−−→ 2Xi + 2Xj (6.59)

Xi +Xj
cij−→ Xi + 2Xj. (6.60)

In these models, all interaction rates are constant. Interactions (6.55) are birth, (6.56) are
death, (6.57) are competition, (6.58) are predation or parasitism, (6.59) are mutualism, and
(6.60) are commensalism. This network yields deterministic description for densities and
replicator dynamics (6.19) governed by the growth function Fi = (ωi − µi) +∑

j ηj(γij −
γji +mij +mji + cij − κji). Some generalizations of this model consist simply of making
any of the interaction rates depend on the network’s state. Arditi-Ginzburg models, for
example, consider that prey consumption rates and birth rates are density dependent.77,78

These would model population size effects, such as density of preys and predators, over
their rates of birth and predation, and would need an additional justification for being
that way.

6.4.5.2 Stochastic Rock-Paper-Scissors Game

This is just another example of the modeling of a standard game and the connection
between stochastic and deterministic equations. Consider the reaction network version of
the simple rock, paper, an scissors game given by the payoff matrix



R P S

R 0 −1 1

P 1 0 −1

S −1 1 0

. (6.61)

The corresponding reaction network simulation for this game is

R + P
k−→ R + P + ΛL

R + ΛG
P

R + S
k−→ R + S + ΛG

R + ΛL
S

P + S
k−→ P + S + ΛL

P + ΛG
S . (6.62)
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We interpret this game as: when R and P cross paths, there is a tendency, represented by
k, for P to reproduce and, with the same intensity, also for R to die. And equivalently for
the pairs S −R and P − S.

For this example, I consider a deterministic game simulation giving the rates of
a stochastic birth and death evolution. In other words, this is a model of stochastic
populations evolving in accordance with transition rates obtained as average payoffs from a
deterministic game of mean-field propensities. The stochastic evolution is given by equation
(6.4), with birth and death transition rates

WR→2R = nRfR(n) = nR
knS
Ω (6.63)

and
WR→∅ = nRµR(n) = nR

knP
Ω (6.64)

for rocks, and equivalently for papers and scissors. These transition rates provide a
stochastic phase portrait equivalent to replicator dynamics for the relative proportions:
pR = nR/(nR + nP + nS), for rocks, and equivalently for papers and scissors. If we make
Ω→∞ while keeping η the same, we recover the deterministic replicator evolution. Figure
(12) shows the evolution of rock proportion pR and the simplex representation of a sample
of the stochastic process for two different system sizes, comparing with the deterministic
limit. The deterministic phase portrait is independent of the population size, but the
stochastic process is inevitably dependent. This game conveniently avoids the instability
of densities, because of its cyclic nature.

Figure 12 – Rock-Paper-Scissors Game. Stochastic samples for small system (Ω = 5)
and large system (Ω = 100), compared with the deterministic limit. Left:
rock proportion, pR, over time. Right: simplex representation showing joint
oscillations, with scissors on the left bottom, rock on the right bottom, and
paper on top. Other parameter values: k = 1, initial condition (nR, nP , nS) =
(30Ω, 8Ω, 8Ω), and arbitrary unit of time. Stochastic samples were obtained
by the stochastic simulation algorithm.
Source: By the author.
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6.4.5.3 Predator-Prey with Hiding Preys

This is a sketch of a more complex ecological situation. The purpose is just to
show the modeling pipeline, not in the rigorous analysis of results. Consider the example
of the following toy ecological system: there is a population of a species that is prey to
the population of a predator species. But preys have the capacity to flee and hide once
they are attacked by a predator. Also, when a prey is consumed, the predator rests from
the hunt in order to produce offspring. Preys only grow when they are feeding from a
substrate plant species, but in order to eat they expose themselves to predators.

I model this system with a reaction network composed of eleven interactions.
Exposed and hiding preys are respectively Xo and Xh. Hunting and breeding predators are
respectively Yo and Yp. The plant substrate is S. A fraction q of predator attacks is evaded
by preys, so it is a measure of prey’s adaptation to predators. Preys stay hidden for an
average time Th, after which they expose themselves again in order to eat and reproduce.
After consuming a prey, predators do not hunt for an average time Tp, after which they
come back to hunting with a new offspring predator. All preys have an intrinsic death rate
of µx, and µy for predators. The full network is:

Xo + Yo
(1−q)α−−−−→ Yp

Xo + Yo
qα−→ Xh + Yo

Yp
1/Tp−−→ 2Yo

Xh
1/Th−−→ Xo

Xh, Xo
µx−→ ∅

Yp, Yo
µy−→ ∅

S +Xo
ω−→ 2Xo

S
g−→ 2S

∅ g0−→ S. (6.65)

The first two interactions are predator’s attack, happening at a rate α. Exposed preys
reproduce when they eat S. Plants grow by reproducing at a rate g, but also grow by
random external seeds at a constant rate g0. The model is fully specified at the design
level. For our analysis, we’ll explore the deterministic system of this network. Representing
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the densities as lower-case letters, we have

dxo
dt

= −αxoyo + xh
Th
− µxxo + wsxo

dxh
dt

= qαxoyo −
xh
Th
− µxxh

dyo
dt

= −(1− q)αxoyo + 2 yp
Tp
− µyyo

dyp
dt

= (1− q)αxoyo −
yp
Tp
− µyyp

ds

dt
= g0 + gs− wsxo. (6.66)

The total density of preys is given by x = xo + xh, and y = yo + yp for predators. With
this model, I show a simple numerical analysis of the prey adaptation to the predators,
measured through the parameter q, while maintaining other parameters fixed. Figure (13)
shows four scenarios with increasing values of prey adaptation, for a given initial state.
When preys are mostly unable to flee (13-A, q = 0.1), the model yields oscillations. With
some capacity to flee (13-B and C, q = 0.4 and q = 0.7), the model no longer exhibits
oscillations and predators still dominate in proportion. For a high enough capacity to flee
(13-D, q = 0.9), predators become extinct. I used an initial state with densities summing
to 1, but note that this number changes depending on the dynamics.

6.4.5.4 Model of Parental Care Evolution

As an example of trait evolution, a reframe a model for parental care evolution,
from Kokko and Jennions (2008),79 later updated by Fromhage and Jennions (2016).80

This model aims at drawing phase portraits for the expected duration of care, τ and τ̃ ,
respectively for females and males. It considers that males and females change between
states of time-in and time-out, for seeking mates and providing parental care after mating.
By counting all potential offspring, the simulation estimates the birth rates of males and
females as a function of the trait. Then we can use these in the evolutionary network
(6.46), composed of birth, death, and background competition for resources. I will call
females X and males X̃. The simplest generation, simulating birth rates, is

XI + X̃I
m−→ XO + X̃O + β

2 (W1 +W2)

XO
1/τ−−→ XI

X̃O
1/τ̃−−→ X̃I

XI , XO, X̃I , X̃O
µ−→ ∅. (6.67)

XI represent females in time-in and XO represent females in time-out, the same for males.
When mating occurs, females go time-out for an expected time of τ , and males for τ̃ . After
caring for offspring, they go back to time-in. We assume half of the offspring to grow as
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Figure 13 – Predator-prey with hiding preys. Time evolution of predators, preys, and
plants, for the initial state (0.1, 0.3, 0.6), with varying prey capacity to hide,
q. (A) q = 0.1, predators dominate and the model eventually oscillates. (B)
q = 0.4, no more oscillations. (C) q = 0.7, preys are about to dominate in
number. (D) q = 0.9, predators are extinct as a result of prey adaptation.
Other parameter values: Tp = 5, Th = 1, α = 0.1/r, ω = 0.2/r, µx = 0.1,
µy = 0.05, g = 0.1, g0 = 0.5r, and r = 0.1 is a parameter measuring the order
of interaction range.
Source: By the author.

male and half as female. All death rates are equal to µ. The coefficient β is a function of
the trait,

β = be−α/(C(τ,τ̃)). (6.68)

The parameter b is the brood size, and the exponential term models the probability of the
offspring to reach maturation, as a function of the caring times. C(τ, τ̃) is a care function,
the amount of care given to offspring as a result of the time spent caring; here I consider a
simple, linear care function C = τ + τ̃ . α is an abstract parameter indicating the intensity
of the offspring’s need of care. The functional form of β is a probability of survival for
each offspring and represents diminishing returns for the amount of care. This model also
considers a parameter for the intensity of sexual selection, k, by leaving a portion of males
out of the mating dynamics; Only ñ/k males are allowed to breed, the rest being denied
by forces of sexual selection. This results in a bias over the operational sex ratio, defined
as the ratio between males and females that are engaged in the mating dynamics.

Since males and females are born at the same rate for every generation, the
population size is equally split in half for each population at the evolutionary level. I
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evaluate the evolutionary trajectories of average care duration, (τ, τ̃), using the assumptions
of adaptive dynamics. Thus, the total population density size, ηX + ηY = N/2 +N/2 = N ,
is assumed to be in equilibrium composed by the resident populations when each mutation
arises. The equilibrium is given by the dynamics at the level of the evolutionary network,
with a constant competition rate γ:

N eq =
1
2(wX + wY )− 1

γ
. (6.69)

This equilibrium density is the measure of size for the resident population whenever
mutants arise. Equation (6.69) is solved implicitly, because the simulated birth rates wX
and wY depend on the equilibrium density. Once we solve it, we are able to evolve the
care duration traits (τ, τ̃) through the phase portrait, by using equation (6.45). for that, I
consider the interactions of new mutants X ′ and Y ′ with trait values τ ′ and τ̃ ′ appearing
among the resident population. Female mutants interact as

X ′I + X̃I
m−→ X ′O + X̃O + β

2 (W ′
1 +W2)

X ′O
1/τ ′−−→ X ′I

X ′I , X
′
O

µ−→ ∅. (6.70)

Male mutants interact analogously. Thus, we are able to compute the relative success
of mutants over residents through ∂Fm

∂zm

∣∣∣∣
zm=zr

using the birth rates as given by equation
(6.49) for the deterministic system of the simulated generation. Then, we can numerically
integrate the birth rates for two scenarios, varying the parameter k, the intensity of sexual
selection for males, considering the mutants to occupy 1% of the total population of their
sex. Figure (14) shows the dynamics without and with the presence of sexual selection.
(14-A), without sexual selection (k = 1), is a static fitness landscape from the resident
point of view, showing care duration mapped onto the reproductive rate (Fr, which is the
same for both sexes) with maximum indicated in red. (14-B) is a phase portrait of the
evolutionary trajectories for the same case. The results are divergent, and equilibrium
states are not states of maximum reproductive success of the resident population, but states
of maximum joint success of male and female mutant populations. The evolutionary result
depends on the initial proportions of care between males and females. This symmetric
system is unstable to any differences in the sex populations. (14-C) and (14-D) show the
dynamics with sexual selection (k = 1.2) for the same initial states; it results in female-only
care, despite the little change in the point of maximum reproductive success.

Kokko and Jennions, in their first formulation of the model, did not verify the
Fisher condition on mating rates, so males and females had different total mating rates,
and therefore different total fitness even for equal offspring share. We see that the reaction
network model, however, trivializes the Fisher condition, because mating rates are bounded
to be equal, due to the joint mating interaction. Fromhage and Jennions, in their updated
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Figure 14 – Trait evolution for the care duration of females and males. Left:
Resident reproductive success per care duration. Right: Evolution of average
care duration for a set of initial conditions. (A) and (B) show the case
without sexual selection (k = 1). The maximum value of Fr is shown in red
at approx. (0.33, 0.33). Equilibrium states of the evolutionary trajectories
depend on the initial state. (C) and (D) show the case with sexual selection
on males (k = 1.2); Maximum Fr at (0.38, 0.31). Other parameter values:
M = 1, µ = 0.01, α = 0.5, competition rate γ = 1 with step dτ = 0.01 and
arbitrary units of time. The constant from equation (6.45) is C = 10−6.
Source: By the author.

model, respected the Fisher condition, and imposed dependence on the sex ratio of time-in
sub-populations (the operational sex ratio η̃I/ηI), which leads to a different formulation of
mating rates. Their formulation considers m = m′/

√
η̃IηI , but without further justification

besides imposing dependence on the operational sex ratio. Also, these existing models do
not consider the possible effects of varying population density.

In this model, there is a trade-off between staying in time-in or time-out, where
individuals invest in generating more offspring or assuring the survival of a given offspring.
The equilibrium is when the increase in average offspring from leaving care is the same as
the increase from staying with the current offspring. The basic model above can be further
expanded to include and analyze many other interactions, such as parental uncertainty,
synergy between male and female parental care, different death rates, etc.
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6.5 Discussion

In this work I developed a methodology for the use of reaction networks as a tool
for a more fundamental version of evolutionary game theory and its connection to trait
evolution through adaptive dynamics. The network description generalizes the replicator
dynamics to a density-level description, and I argued that the evolution of densities is
important for population dynamics and is tied to the evolution of proportions. Evolutionary
game theory deals with an ecological scale game-simulation of reproduction rates and
an evolutionary scale represented by the replicator dynamics; both modeling steps are
better understood in terms of networks. Reaction networks provide a design-level model
specification, and is well-suited for communication between fields and between modelers
and experimental scientists.81 Interactions portray individual relational structures giving
rise to global dynamics at the level of populations, for both a fundamental stochastic
dynamics and the deterministic limit of infinite system.

The methods were applied to show that the standard games derived from simple
payoff matrices result in unstable population densities, and that birth-death simulations
driven solely by pairwise interactions between strategies are dynamically artificial. Baseline
birth-death-competition must be accounted as the building block of an evolutionary
network, and it was shown that this architecture is sufficient to stabilize densities arising
from standard games. I applied these developments to the hawk-dove game to show that
it features divergent densities and to show how to stabilize them. I also used the HD game
to show the connection between stochastic and deterministic network dynamics, mediated
by the size of the system.

A good picture of the network-based EGT is as follows: there is an evolutionary
model, with a larger timescale, where individuals from a population can reproduce or die,
and are subjected to an intrinsic competition stemming from limited resources indirectly
shared by them as they coexist in the same environment. This model is encoded by
networks such as (6.20) and (6.32). The interaction rates present in this network are
influenced by the ecological scenario of the populations, where during their lives they
engage in all sorts of different specific events depending on their individual strategies and
choices. A game network is used to model how this ecological dynamics, happening in
a smaller timescale and not directly leading to individual reproduction and death, help
in shaping birth and death rates. The game works as a mean-field approximation to the
actual ecological setting as a function of given population sizes. Usually, in EGT, these
two scales are represented by a payoff matrix and a replicator equation. However, the
game network can encode a large variety of interaction structures, and is by no means
limited by pairwise interactions or by all interactions happening with the same rate. And
the evolutionary network primarily deals with the evolution of densities instead of just
proportions, resulting in a type of density-based logistic form of evolutionary dynamics,
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generalizing the replicator dynamics.

Because of how proportions are defined, they are naturally modeled with time-
evolution driven by the relative fitness of a population compared to the average fitness
among populations (Fi − F ); for a proportion ρi to increase, it naturally forces all other
proportions to decrease respecting the constraint ∑i ρi = 1. Densities evolve according to
the fitness alone (Fi), which is itself affected by the interactions with other individuals;
because the individual fitness is what really shapes the growth of a population. Thus, the
dynamics of proportions, when considered alone, is implicitly providing an artificial source
of selection, while also always neglecting the mechanistic impact of densities in shaping
the intensity with which interactions take place. Moreover, many replicator dynamical
models will yield infinite or zero densities, and this is not something observable at the
level of proportions.

The reaction network approach to EGT has the potential to connect to other
types of models in population dynamics. Simulating for the same logistic evolutionary
network, an ecological game can also be for example a Lotka-Volterra network, or a
network for an epidemiology compartment model. This sort of universality is in line with
the correspondence in equations explored by Page and Nowak, 2002.65

The approach of evolutionary dynamics is also not restricted to static strategies,
and it can be extended to the evolution of continuous traits as an integration with adaptive
dynamics.75. In that case, by extension of the fundamental theorem of natural selection,
traits evolve in the direction of the adaptive landscape, that can be informed by a game-
theoretical model. We developed this approach, stemming from a discussion of the Price
equation and the canonical equation of adaptive dynamics. I presented a solid example of
parental care evolution to illustrate the evolution of the time of care using a game-informed
numerical model of adaptive dynamics.

It is possible to perform Bayesian parameter estimation over reaction network rate
parameters. The framework aims to connect models to real observation data of network
elements.13,57,82 The methods can be adapted to this context of evolutionary dynamics
and can provide estimates of interaction rates through observations of population sizes.
This has the potential to be an additional line of integration with empirical grounds and a
robust test to modeling predictions.

We developed here an approach that is centered around the individual. Traits and
mutations are considered as given. These mechanisms are further expanded by considering
their genetic foundation. I ask whether genetic models can also be integrated with the
framework we develop, with more rich dynamics driving the behavior of traits and mutations.
We can say the same about group selection and inclusive fitness, that have its own issues
of compatibility.83,84 Genetics and group selection comprise both ends towards which we
can aim to expand the reach of population dynamics in the context of evolution. My desire
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for grand models and integration between all relevant dynamics at play follows the same
broad lines of systems biology. In this perspective, models not only are useful to describe
reality, but also on their own, as means of synthetically producing realities. The robust
study of evolving simulated environments should always be a background goal with models
of evolution, aiming at producing ever more complete modeling frameworks.1

In conclusion, reaction networks help in grounding and integrating evolutionary
game theory to stochastic foundations, density-dependent logistic population dynamics, a
wide set of general interactions not limited by standard pairings, a design-level modeling
approach, and potentially more, like observational data. The simplicity of reaction networks
is remarkable. I used networks to analyze and solve the problem of diverging densities
of evolutionary game theory, applying the methods to the hawk-dove game. For that, I
calculated the equilibrium of stable densities of a logistic evolutionary network in terms of
baseline birth-death-competition rates and the average game payoffs.
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7 INDIVIDUAL SPECIALIZATION AND GENERALIZATION IN PREDATOR-
PREY DYNAMICS

This chapter presents a the model for a work done in collaboration with my
collaborator, the ecologist Dr. Rafael Rios Moura. We invested in applying the eco-
evolutionary framework with reaction networks to elaborate the first mechanistically robust
model of individual specialization and generalization of predators. This first development
made extensive use of the design-level proposal of modeling with reaction networks in
order to define the relevant parameters and interactions. We intend to further expand on
this application with a model for trait-evolution alike adaptive dynamics, using nested
networks and game-like modeling.

The work is concerned with the question of what are the mechanistic factors driving
the heterogeneity in predation strategy in regards with the amount of variation in prey
consumption. When can we expect to see coexistence between individuals consuming only
one type of prey and individuals consuming many prey kinds? What are the conditions for
different strategies to arise? The model is designed using the predator-prey dynamics as a
building block. The Python code supporting the results is available at <https://nbviewer.
jupyter.org/github/LR-GUI/IndividualSpecialization/blob/main/Code.ipynb>.

7.1 Introduction

Darwin struggled with his contemporaries to break the scientific tradition of seeing
variation as deformations of ideal immutable forms.85 By introducing the theory of evolution,
the variation of heritable components underlying organismal form became the basis of
the evolutionary process, inaugurating a new scientific tradition widely accepted today.86

Recently, ecologists are struggling with their contemporaries to show that individuals’
niche differ in ways that change our comprehension of eco-evolutionary processes and
species coexistence.87,88 Niche theory is still based on the assumption that individuals are
ecologically equivalent within a population or even a species.89 This ongoing debate has
become central to the current discussion between the extended evolutionary synthesis and
the modern synthesis.90

The ecological niche is currently defined as a hypervolume in an n-dimensional
space composed of the conditions and resources required for a population to persist
indefinitely in the environment.91 Recently, the concept of ecological niche was adapted to
accommodate the individual niche, which can be defined as the ecological interactions of
an organism with all components of its environment.88,92 Many empirical evidence support
the statement that individual niche vary within populations.93,94 Hence, populations
and species are actually groups of heterogeneous rather than homogeneous individuals

https://nbviewer.jupyter.org/github/LR-GUI/IndividualSpecialization/blob/main/Code.ipynb
https://nbviewer.jupyter.org/github/LR-GUI/IndividualSpecialization/blob/main/Code.ipynb
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presenting variation in how they compete, select habitats, reproduce, and forage; among
others.88 This knowledge is not neglected by ecologists, but they historically attributed
individual variation in resource use to differences between sexes, ageing, or ontogenetic
stages.95 However, individuals can differ ecologically regardless of these conditions.94 Thus,
individual specialization emerged as a concept of intraspecific niche variation that occurs
when individuals only use a subset of the resources exploited by the population regardless
of sex, age class or discrete morph.88,93,94

A current challenge for the theory of individual specialization is to predict how and
when individuals are expected to differ.96 Based on empirical evidence, individuals use an
average of 47% (±19.7%) of the resource types exploited by the population, and individual
niche is, on average, 66% (±20.9%) as broad as the population niche.94 Therefore, not
all individuals exhibit identical niche widths. Interestingly, the strength of individual
specialization can also change in space and time97–101 and vary up to ninefold across
populations of the same species.87 Considering predator-prey interactions, some predators
in a population may specialize on the capture of one taxon or a few taxa from those
available as prey, while other conspecifics may exhibit a generalist diet, capturing the
same prey types consumed by the whole population.102 These differences can emerge from
genetic variation103 or through flexibility in learning many different foraging behaviors104,
but it is still unclear when a population is expected to exhibit strong or weak levels of
individual specialization.

There is empirical evidence supporting that the strength of individual specialization
can be driven by intraspecific competition.94 Among-individual niche variation is expected
to increase under intense intraspecific competition when conspecifics diverge from the use
of a common optimal resource and begin to consume alternative prey.94,105 Therefore,
individual predators should be more specialized in the capture of distinct prey items. An
alternative scenario frequently ignored is that not all individuals need to specialize in a
different prey type to coexist. A population may consist of a mixture of generalist and
specialist individuals.102 When individuals share identical rank preferences, but differ in
how much they are likely to add novel prey types to their diet, patterns of nestedness in
forager diet are expected to occur under high population density of predators.106 This
model predicts how predator behavioral flexibility should affect individual niche variation.
However, it did not consider how prey traits, such as its nutritional value and reproductive
rates, may influence the coexistence of specialist and generalist individuals.

The theory of individual specialization is still largely based on verbal arguments
with mixed support from empirical evidence.87,88,93,94 Other theories based on verbal
assumptions produced logically inconsistent predictions and, consequently, are not sup-
ported by empirical evidence, mainly due to an absence of a formal mathematical model.79

Therefore, in this study, we advanced the theory of individual specialization by formally



133

modeling its main assumptions using predator-prey dynamics.107 This modeling approach
can be applied to individuals as well as species. However, we modeled few foraging strate-
gies and prey types that are likely to be observed in populations rather than communities.
In addition, species may share phylogenetic relationships that may strongly influence how
they interact,108,109 except for communities with few competing predators of the same
genus.110 In a population, all individuals are conspecifics and, consequently, share a similar
evolutionary history. Thus, the model is better suited to describe individual specialization
and generalization than community patterns.

In this study, we investigated when generalists and specialists are expected to
co-occur in a population if individuals exhibit different efficiencies in prey capture and
consume prey with distinct nutritional values and reproductive rates. Thus, we can clearly
predict when and in which direction the strength of individual specialization is expected
to change. We also tested if the central claim that populations are generally composed by
heterogeneous individuals in resource use, rather than just generalists, still holds.

7.2 Methods

7.2.1 Lotka-Volterra Model

Our model is based on a Lotka-Volterra dynamics of prey and predators. In the
simple Lotka-Volterra model, the system consists of a prey species X and a predator
species Y , both participating in events that remove or include new individuals in the
population. Prey reproduce at a rate ω, resulting in the inclusion of a new prey from an
existing prey: X ω−→ 2X. Predators die at a rate µ, resulting in the removal of the predator:
Y

µ−→ ∅. Predators and prey interact at a rate α, with the predator consuming the prey
for reproduction, resulting in the removal of the prey and the inclusion of δ predators:
X+Y

α−→ (δ+1)Y . This structure of interactions results in a deterministic continuous limit
composed of a system of differential equations over the densities of prey and predators. It
provides the dynamical evolution of the populations in terms of the interaction rates:

dx

dt
= x(ω − αy)

dy

dt
= y(δαx− µ). (7.1)

This is the usual Lotka-Volterra system of differential equations, and it results in an
oscillatory pattern of prey and predator populations over time. The oscillations are
sustained around unstable fixed points given by

(y∗, x∗) =
(
ω

α
,
µ

δα

)
. (7.2)

Thus, the typical density of predators at equilibrium is larger for high prey birth rate and
smaller for high predation rate; a balance between prey influx and prey consumption. For
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prey, it is larger for high predator mortality rate and smaller for high predator birth rate;
a balance between predator removal and predator influx. Their success is dynamically tied
to each other.

7.2.2 Specialization Model

We are interested in a model that can explore the patterns of interaction between
predators with different degrees of specialization in foraging strategies. Generalist predators
are expected to prey upon a diverse range of species, while specialist predators constrain
themselves to a limited niche. We assume that a generalist strategy prioritizes the ease
in finding consumable prey types, relying less on availability of each type of prey, and
a specialist strategy prioritizes the capacity to efficiently hunt its selected prey; thus,
evolving better hunting performance.

In order to gain insights and analytically understand the determining factors behind
specialist and generalist predator strategies, and their coexistence, we model prey with
different nutritional values and reproductive rates. Therefore, we consider a system with
two kinds of prey, XA and XB, in which XA is n times more nutritive than XB, with
n > 1, so it provides n times more resources for predators. The more nutritive prey XA

also has a reproduction rate that is p times that of XB; when p < 1, XA reproduces at
a slower rate and, when p > 1, XA reproduces at a faster rate. Each prey is consumed
by a specialist predator; the predator YA that consumes XA and the predator YB that
consumes XB, at the same rates (same efficiencies). Then, there is a generalist predator,
Y , that consumes both prey at a rate k times smaller than the specialist predators, with
k > 1. Apart from the predation events, predators are subject to a spontaneous death
and prey may spontaneously reproduce, at rates respectively of µ and ω. This model is
represented by the following set of events:

XA
pω−→ 2XA, YA +XA

kα−→ (1 + nδ)YA, YA
µ−→ ∅,

XB
ω−→ 2XB, YB +XB

kα−→ (1 + δ)YB, YB
µ−→ ∅,

Y +XA
α−→ (1 + nδ)Y, Y +XB

α−→ (1 + δ)Y, Y
µ−→ ∅. (7.3)

This model yields, as a deterministic limit on densities, the following system of differential
equations for species over time:

dyA
dt

= yA(kαnδxA − µ),
dyB
dt

= yB(kαδxB − µ),
dy

dt
= y(αnδxA + αδxB − µ),

dxA
dt

= xA(pω − αy − kαyA),
dxB
dt

= xB(ω − αy − kαyB). (7.4)
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Table 4 – Model Variables.

Variable Description
YA Specialist predator that consumes XA

YB Specialist predator that consumes XB

Y Generalist predator that consumes both prey types
XA More nutritious prey
XB Less nutritious prey
α Predator-prey base competition rate
ω Prey base birth rate
µ Predators death rate
δ Predators base brood size
k Specialists hunting efficiency factor (k > 1)
n A/B Prey nutritiveness ratio (n > 1)
p A/B Prey reproduction rate ratio

Source: By the author.

This is a system of two separated Lotka-Volterra dynamics, YA −XA and YB −XB, that
are coupled by the presence of the generalist Y . Table (4) shows descriptions of all model
variables. In our analysis, we found the fixed points of this system and explored the
behavior of the state space through stability analysis and the possibility of invasions over
stable configurations. For that, we calculated the Jacobian an its eigenvalues and associated
eigenvectors for each fixed point, exploring the different possible initial states and parameter
values. For the analytic calculations, we used the symbolic computations python package
"Sympy". Detailed implementation and results are found as a supplementary material.

7.2.3 N-prey extension

In order to better evaluate emerging thresholds depending on the number of
available prey, it is of interest to generalize our model to an arbitrary number of prey,
maintaining the structure of predation. The generalization consists of adding new prey
XN with their respective specialist predator YN , and making the generalist Y also able to
consume the new prey. For the purposes of this work, it is not necessary to differentiate
their nutritive values or reproduction rates. For each new prey, the following interactions
are added to the system:

XN
pNω−−→ 2XN , XN + YN

kα−→ (1 + δ)YN ,

XN + Y
α−→ (1 + δ)Y, YN

µ−→ ∅, (7.5)

with their corresponding terms added to the time-evolution of densities.
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7.3 Results

The time-evolution of the model exhibits oscillatory dynamics in the same manner
as the standard Lotka-Volterra model. Analogously to (7.2), densities in the specialization
model oscillate around unstable fixed points. But, instead of a single fixed point, there are
7 nontrivial unstable steady-states, shown in table (5), each representing a mode of the
compound predator-prey dynamics. The way parameters relate to define these possible
modes gives us clear insights into what mechanisms are the most relevant in determining
predators strategies.

During the analysis of the different modes represented by each fixed point, we
noted a fundamental threshold present in the system. The intensity of increased efficiency
of specialists against the generalist, represented by parameter k, is determinant for the
success of generalists. If k > 2, the specialists being at least twice as efficient as the
generalist, then the generalist never succeeds in the population. For k < 2, where the
specialists are not so efficient, the generalist can exploit the presence of specialists and
succeed. Coexistence between all predator types is only possible for the threshold case of
k = 2. The threshold value of 2 relates to the number of available prey types, as we will
see.

The points in table (5) refer to the following scenarios:

1 and 2: Simple Lotka-Volterra involving the generalist predator Y and one of the
prey types; it can only happen for k < 2. In this case, whenever the generalist is together
with both prey types, the less fertile one dies out, and the dynamics reduce to 1 if p > 1 or
2 if p < 1. Thus, if there are no specialists present, the generalist strategy cannot sustain
itself as a generalist, since one of the prey always dies out. Furthermore, because of the
lesser efficiency (k > 1), the generalist would succumb if the specialist would invade 1
or 2. The generalist cannot sustain both prey populations because the greater benefit
and increase in density that it gets from the presence of an additional source of fitness
is sufficient to create excessive predation, driving the less fertile prey to extinction. This
prey cannot keep up with the increased rates of predation.

3 and 4: These are simple Lotka-Volterra dynamics, involving one of the specialists
with its prey. Featuring only one of the prey, the specialists can never be directly invaded
by Y , even for k < 2. But, if k < 2, the absent prey can independently appear and enable
the generalist as a successful strategy, resulting in mode 6 (from 4) or 7 (from 3). That is
because, with an additional available prey, generalists have a chance to fare better than
specialists. The access to more prey features a trade-off with low predation efficiency.

5: Both specialists with both prey types, but in an uncoupled manner, meaning
two independent Lotka-Volterra dynamics existing in parallel. For k < 2, the system can
be exploited by generalists seeking to attack both prey (and causing dependency between
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the two dynamics). In that case, the predator consuming the less fertile prey dies out,
irrespective of how nutritious the prey is or how much fertile it is. Only the relative fertility
of prey types determine which specialist dies. Thus, the generalist would invade and cause
the extinction of a specialist, resulting in mode 6 (if p < 1) or 7 (if p > 1). This means that
preying upon sources with faster reproduction (represented by p) is a determining factor
for the success of a specialist strategy in face of generalists, while preying upon highly
nutritious sources (represented by n) is not. However, if k > 2, above the threshold of
specialists efficiency, the generalist strategy fails to thrive and this mode is stable (Figure
1D).

6 and 7: The more interesting dynamics featuring both the generalist and one of the
specialists with the two prey is only possible for k < 2. Since the specialist that consumes
the less fertile prey dies out in the presence of the generalist, 6 happens if p < 1 (Figure 1A,
YA dies out) and 7 happens if p > 1 (Figure 1B, YB dies out). While k < 2 remains valid,
this mode is stable. These modes are the ending result of successful generalists appearing
in populations of specialists in order to take advantage of multiple prey availability. We
see that the presence of specialists, and thus the competition between predators, hinders
the capacity of the generalist to extinguish a prey; which is counter-intuitive, since there
are more types of predators competing for the same prey.

When k is exactly 2, all populations can coexist around a fixed point that is
degenerate on the densities of predators:

(YA, YB, Y,XA, XB) =
(
pω − α, y∗

2α ,
ω − αy∗

2α , y∗,
µ

2αδn,
µ

2αδ

)
. (7.6)

For this coexistence, the density y∗ can be any value for which y∗ < min(ω/α, pω/α),
depending on the initial state. k = 2 is a very narrow condition, but, if k ≈ 2, we can
expect a long transient state of coexistence, meaning that any strategy would die out only
after a long time of coexistence (Figure 1C).

The determinant factor deciding which specialist strategy is best was found to be
the difference in the reproductive rate of prey. An increase in the absolute intensity of
prey reproduction is not relevant because it also drives the success of predators, while the
difference in reproduction determines which prey falls behind first, prejudicing itself and
its specialist. Surprisingly, the nutritive value of prey, affecting the reproductive success of
predators, is important only to modulate prey’s equilibrium density sizes.

7.3.1 N-prey model

The specific value of k = 2 for the threshold of the success of the generalist predator,
at first, can seem somewhat arbitrary. To investigate its origin, we added more prey to the
system, according to (7.5). We found that this threshold is actually k = N , where N is the
number of prey and specialists available. Thus, the generalist is successful over specialists
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Table 5 – Fixed Points.

Fixed Point (YA,YB,Y,XA,XB) Description
1.
(

0, 0, pω
α
, µ
αδn

, 0
)

Y −XA Lotka-Volterra dynamics

2.
(

0, 0, ω
α
, 0, µ

αδn

)
Y −XB Lotka-Volterra dynamics

3.
(
pω
αk
, 0, 0, µ

αδkn
, 0
)

YA −XA Lotka-Volterra dynamics

4.
(

0, ω
αk
, 0, 0, µ

αδk

)
YB −XB Lotka-Volterra dynamics

5.
(
pω
αk
, ω
αk
, 0, µ

αδkn
, µ
αδk

)
YA −XA and YB −XB uncoupled dynamics

6.
(

0, (1−p)ω
αk

, pω
α
, µ(k−1)
αδkn

, µ
αδk

)
No YA, possible for p < 1

7.
(

(p−1)ω
αk

, 0, ω
α
, µ
αδkn

, µ(k−1)
αδk

)
No YB, possible for p > 1

Source: By the author.

for k < N . Then, if N − 1 < k < N , the specialist of the least fertile prey dies out. For
N − 2 < k < N − 1, the specialist of the second least fertile prey also dies out, and so
does the least fertile prey. Then, the pattern repeats up to 1 < k < 2, where there are
only the generalist, the two most fertile prey, and only the specialist of the most fertile
prey. This result shows that, without its specialist, a prey depends on the efficiency of
other specialists to be high enough to survive in face of the generalist. That is because k
is able to gauge the amount of competition a generalist faces so as to not grow too much
and over-consume its prey.

For example, for N = 3 prey and the corresponding specialist predators, the
generalist, consuming all three prey types, is successful only for k < 3, and it dies whenever
k > 3 (Figure 2D). Therefore, it is harder for the specialists to win over the generalist if
there are 3 prey instead of 2, as we could expect. In that case, the specialist consuming
the least fertile prey dies out for 2 < k < 3 (Figure 2B). The second least fertile prey and
the specialist in consuming it also die out if k < 2 (Figure 2A). Hence, the less efficient
the specialists are, the less they can collectively sustain themselves in face of a successful
generalist. Coexistence of all specialists and the generalist only happens for exactly k = 3
(Figure 2C).

7.4 Discussion

In our model, the emerging populations were composed of heterogeneous individuals,
both generalists and specialists, in terms of foraging behavior, as supported by empirical
evidence.93,94 Surprisingly, prey nutritional value was not an important factor determining
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Figure 15 – Different modes with varying k and p. Predators and prey types dying
out are highlighted in black. (A) (k=1.5,p=0.5). With less efficient specialists,
the generalist is successful. The least fertile prey is XA, so its specialist YA dies
out. (B) (k=1.5,p=1.5). Now the least fertile prey is XB, then the specialist
YB dies out. (C) (k=2.1,p=1.5). The efficiency of specialists is slightly above
the threshold, the generalist slowly dies out, after a long transient state. (D)
(k=2.5,p=1.5). The specialists are securely efficient, then the generalist cannot
succeed and dies out rapidly. Other parameter values: ω = 0.2, α = 0.5, δ = 1,
µ = 0.3, n = 2.5. The equilibrium states do not depend on initial densities.
Source: By the author.

the predator-prey dynamics. In the model with two prey types, when specialists were
less efficient than the generalist, the one who consumed the highly nutritious and less
fertile prey was extinguished. Only the specialist who consumed the highly fertile and
less nutritious prey coexisted with the generalist and the other prey. The addition of
new prey types as well as specialists on capturing them also led to the extinction of the
forager consuming only the less fertile prey. Therefore, prey fertility was an important
factor determining the coexistence of specialists and generalists in a population. However,
prey fertility is empirically understudied and overlooked compared to their nutritional
value111–113 The generalist was only extinguished from the population when specialists
were N times more efficient than it, in which N is the number of prey. Therefore, the
coexistence of all specialists in consuming only one type among all available resources
and the generalist is expected to be rare in nature, because it occurs in very restricted
conditions (when k = N), as well as the absolute individual specialization or generalization.
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Figure 16 – Different modes with 3 prey types. Predators and prey types dying out
are highlighted in black. (A) (k=1.5). For k < 2, both the least fertile prey
and its specialist die out (XC and YC), together with the specialist of the
second least fertile prey (YB). (B) (k=2.5). For 2 < k < 3, only the specialist
of the least fertile prey dies out (YC). (C) (k=3). For k = 3, it is the threshold
case where all predators and prey types coexist. (D) (k=3.5). For k > 3,
specialists are efficient enough and the generalist no longer can succeed. Other
parameter values: ω = 0.2, α = 0.5, δ = 1, µ = 0.3, n = 2.5, p = 1.5, q = 0.5.
Source: By the author.

In predator-prey dynamics, if specialists are not present, and there is no hetero-
geneity among predators, a generalist behavior cannot sustain itself, since it is conducive
to extinguish the less fertile prey types. The balance between a generalist and some
specialists is necessary to ecologically stabilize the population composed of prey and
predators. In addition, the co-occurrence of a generalist with all possible specialists is not
stable, because to specialize in preying upon less fertile prey is a bad strategy in face
of generalists. Therefore, most populations in nature are expected to be composed of a
mixture of some specialists and generalists. This prediction is supported by the average
intermediate individual specialization level observed in empirical assessment in populations
(reviewed by Araújo et al. 2011).94

When new prey types become available for a predator that consumes only one type
of resource (i.e., ecological opportunity), it can be a good strategy to exploit the additional
prey, even if the predator is less efficient in capturing it. Therefore, in an evolutionary
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time, individuals may diverge from the consumption of the prey with the highest rank
preference in the population and specialize in exploiting alternative prey types.105,106

This ecological opportunity may occur when competing species are excluded from the
community87 or when there is variability in other factors, such as patch size, microhabitat
diversity, resource diversity, and environmental stability.93,94 Based on the current theory
of individual specialization, it is expected an increase in individual foraging variation,
allowing niche divergence.94,105,106 However, we found that the addition of new prey types
may increase the challenge for specialists overcome the generalist, because they will need
to be much more efficient than the generalist. In addition, the generalist is more prone to
add a new prey type to its diet than specialists, which will reduce its risk of extinction.
Therefore, ecological opportunity is expected to reduce individual specialization instead of
increasing it.

The central trait of prey contributing to the success of specialist predators is the
reproduction rate. Other traits, such as the nutritious quality of the prey, contribute only
to the density of prey themselves, and do not affect the patterns of predation. Furthermore,
it is not the absolute intensity of prey reproduction that determines the success of specialist
predators, but the relative difference in reproduction rates of available prey. From the point
of view of the prey, the dynamics imposes that a high reproduction rate will increase their
value as prey; thus, making them more prone to become targets of predators. However, an
increased fertility also prevents prey from being extinguished in the presence of generalist
predators. In this scenario, the prey must race among themselves to not be the least fertile
ones, because they would become candidates for extinction due to the unrestricted growth
of generalists who are capable of consuming a wide variety of prey. This is a new insight
for advance the theory of individual specialization and guide empiricists to investigate how
the relative fertility of prey influence individual variation in diet.

To be successful as a strategy, a generalist must satisfy a lower bound in the efficiency
of catching new prey. And as with prey fertility, this lower bound in hunting efficiency is
given in terms of the difference of efficiency between different predator strategies, and not
the absolute efficiency in hunting prey. The capacity and opportunity to consume more
types of prey is beneficial to generalists, and an increased variety of prey types reduces the
lower bound for a successful generalist hunting efficiency. For the point of view of specialists,
the more pressing goal is to be able to consume the more fertile prey types. In general,
our model predicted that populations should present generalists as well as specialists.
However, it is important to highlight that other factors may constrain the occurrence
of broader generalists that consume the same set of prey types captured by the whole
population,93 due to neurological, physiological or morphological constraints.97,114–116

Hence, a next step to advance the predictions of our model is to assess the outcomes
of predator-prey dynamics when intermediate generalists in prey consumption compete
against more restricted specialists in the absence of the broader generalists.
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Sketching a more theoretical reason for the threshold k = N , we note that, at
equilibrium, every prey becomes an equally advantageous source of food for each living
individual predator, irrespective of how nutritive it is or how fertile it is. That happens
because all the differences are made even when we take into consideration the relative
densities of predators and prey oscillating at equilibrium and, therefore, the intensity of
competition that they face. Thus, if each specialist has access to 1 source of food, and
the generalist has access to N sources, the specialists must be able to exploit that single
source at least with N times the efficiency of the generalist to be up to the challenge.

In conclusion, our model of predator-prey dynamics presents a solid starting point
for the quantitative assessment of the mechanistic factors behind specialization and
generalization of prey consumption. The focus on relative efficiency of predators and
relative fertility of prey types can improve the understanding of more complex food web
dynamics. Further explorations of this model should explore the generalization to the
dynamics featuring intermediate levels of generalists, under more complex predator-prey
dynamics containing more types of individuals, and also the relaxation of the constraint
imposing an equal efficiency among different specialists. The investigation of trait-evolution
in this context, especially of predator efficiency and prey reproduction rate, is also an
interesting addition.
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8 CONCLUSION

This thesis presented the main narrative weaved in the formative years of my PhD.
First of all, it is the development of a robust and comprehensive framework of modeling
for population models in biology, with a greater focus on applications to the context
of eco-evolutionary dynamics, but also specifically suited to biochemical models. The
framework was built over a Bayesian probabilistic paradigm and through the use and
expansion of the theory of reaction networks as a design-level modeling method that also
yields dynamical differential equations for both stochastic and deterministic scales.

Our main result was the theoretical development and application of the basis of
the framework to build a foundation to population models of evolution. By extending the
reach of reaction networks, we were able to generalize evolutionary game theory, putting
density-dependence under the spotlight, and integrating the evolutionary scale with the
ecological scale. With a grounded foundation, we could also incorporate the evolution
of traits through adaptive dynamical modeling at the evolutionary scale. As an example
of the framework’s potential, we exposed and solved the problem of diverging densities
arising from the standard hawk-dove game.

We also applied the stochastic and statistical branch of the framework to the analysis
of noise, bifurcation, and parameter estimation of the Goodwin model for biochemical
oscillations. We solved for the critical feedback strength by both analyzing the bifurcation
of the deterministic equations and the divergence of noise in the LNA solution to the
stochastic system. We saw how the negative feedback can serve as a feature of noise control
in self-regulating genes. By applying a Hill-type feedback, we solved for the minimum Hill
exponent, representing a threshold non-linearity, that allows the occurrence of oscillatory
behavior, and concluded that genetic systems require additional structure to explain the
presence of oscillations, not just what is captured by a Hill feedback. We then explored the
problem of Bayesian parameter estimation on the model by using the deterministic system
as a data generating process contrasted with simulated data from stochastic samples of
the system.

Finally, we applied the eco-evolutionary branch of the framework to the mechanistic
assessment of the ecological problem of the evolution of predator-prey behavior, specifically
the specialist-generalist dynamics promoting heterogeneity among predation strategies.
We found that, contrary to intuition, it is not the prey nutritional value that determines
the success of specialists, but relative prey reproductive rates, i.e., specialists should opt
to consume prey with the highest reproductive rate. That is especially important in the
presence of generalist predators, because they pose the threat of out-competing specialists.
But generalists can only survive if specialists are not too good in capturing their chosen
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prey, leaving room for generalists to take their share.

Overall, the framework functions at least as a solid base over which to build
models, ranging from design, to mathematical description, and to statistical assessment of
data. All by a fully integrated and fairly automated methodology. Future developments
include a refinement of the parameter estimation process, especially to include stochastic-
based likelihood, for example using the LNA solution, and also the continuous use of
the framework to address problems in theoretical ecology, evolutionary dynamics, and
biochemistry.
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APPENDIX A – STAN MODELS

The models in STAN are composed of blocks that allow us to define functions,
specify the data to be inputted, define parameters and generated quantities, and also the
statistical model itself. In our applications, the functions we define are the deterministic
systems of differential equations yielded by reaction networks, and the model is simply
composed by the prior definitions and the data likelihood calculated over the integrated
deterministic model. In our case, the distribution of the likelihood is a normal distribution,
and we use exponential priors. The STAN code was processed using the R language with
the RSTAN interface.

A.1 Example Model of Lotka-Volterra

functions {
real[] LV(real t, real[] y, real[] theta, real[] x_r, int[] x_i) {

real dydt[2];

real X = y[1];
real Y = y[2];
real w = theta[1];
real g = theta[2];
real d = theta[3];
real u = theta[4];
dydt[1] = X*(w-g*Y);
dydt[2] = Y*(d*g*X-u);

return dydt;
}

}

data {
int<lower=1> N;
real ts[N];
real y[N, 2];
real t0;

}
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transformed data {
real x_r[0];
int x_i[0];

}

parameters {
real<lower=0> y0[2];
vector<lower=0>[2] sigma;
real<lower=0> theta[4];

}

model {

real mu[N,2];
mu = integrate_ode_rk45(LV, y0, t0, ts, theta, x_r, x_i);

y0 ~ exponential(0.1);
sigma ~ exponential(2);
theta[1] ~ exponential(2);
theta[2] ~ exponential(10);
theta[3] ~ exponential(1);
theta[4] ~ exponential(2);

for (t in 1:N)
y[t] ~ normal(mu[t], sigma);

}

A.2 3D Goodwin Model

functions {
real[] G3D(real t, real[] y, real[] theta, real[] x_r, int[] x_i) {

real dydt[3];

real X = y[1];
real Y = y[2];
real Z = y[3];
real b = theta[1];
real d = theta[2];
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real e = theta[3];
real g = theta[4];
real m = theta[5];
real k = theta[6];
real K = theta[7];
dydt[1] = k / (1 + K * Z ^ m) - g * X;
dydt[2] = b * g * X - e * g * Y;
dydt[3] = d * g * Y - e * g * Z;

return dydt;
}

}

data {
int<lower=1> N;
real ts[N];
real y[N, 3];
real t0;

}

transformed data {
real x_r[0];
int x_i[0];

}

parameters {
vector<lower=0>[3] sigma;
real<lower=0> theta[7];

}

transformed parameters {
real<lower=0> y0[3];
y0[1] = 1;
y0[2] = 0;
y0[3] = 0;

}

model {
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real mu[N,3];

mu = integrate_ode_rk45(G3D, y0, t0, ts, theta, x_r, x_i);

sigma ~ exponential(2);
theta[1] ~ exponential(1);
theta[2] ~ exponential(1);
theta[3] ~ exponential(1);
theta[4] ~ exponential(1);
theta[5] ~ exponential(1);
theta[6] ~ exponential(1);
theta[7] ~ exponential(1);

for (t in 1:N)
y[t] ~ normal(mu[t], sigma);

}
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