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ABSTRACT

BESSE, R. Ab initio study of structural, energetic, and electronic properties
of two-dimensional transition metal dichalcogenides. 2021. 160p. Thesis (Doctor
in Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2021.

The advances in techniques for the isolation and synthesis of two-dimensional materials
have opened new paths for the investigation of novel physical phenomena and proper-
ties, with great potential for technological innovation. In this context, transition metal
dichalcogenides form a prominent class of compounds, due to their unique electronic and
optical properties. This thesis aims to contribute to the understanding of the physical
properties of two-dimensional transition metal dichalcogenides, studying a wide variety of
systems by means of calculations based on density functional theory and time-dependent
density functional theory combined with molecular dynamics. The analysis of relative
phase stability in MoSe2 showed that the Peierls transition mechanism leads to the sta-
bilization of the distorted octahedral phase, and a phase preference transition induced by
the nanoflakes sizes was demonstrated. By investigating two-dimensional materials based
on dichalcogenides of transition metals of groups 8 to 11, it was found that weak inter-
layer binding, typical of two-dimensional materials, occurs in the systems with transition
metals of groups 8 and 10, whereas a strong contribution of chemical bonds was observed
in the remaining materials. The identified semiconductor monolayers also have transition
metals from groups 8 and 10, and the chemical trends of band offsets could be explained
and employed with Anderson’s rule to predict junction types of heterobilayers. With the
examples of the heterobilayers of MQ2 (M = Mo, Ni, Pt; Q = S, Se), it was found
that although interlayer binding is dominated by weak interactions, interlayer coupling
can significantly influence band gaps beyond the approximation of Anderson’s rule. Two
mechanisms are crucial for these effects, namely, the interlayer hybridization of electron
states and the formation of electric dipole at the interface, which was explained by a
simple physical model. In the MoS2/PtSe2 heterobilayer, it was observed that a photoex-
citation across the band gap of MoS2 generates electron transfer to the PtSe2 layer at a
faster rate than hole transfer, leading to an effective charge separation, despite the type-I
band alignment. Both carriers transfers are influenced by the level crossings induced by
the interfacial dipole caused by the imbalance in charge transfer.

Keywords: Two-dimensional materials. Transition metal dichalcogenides. van der Waals
heterobilayers.





RESUMO

BESSE, R. Estudo ab initio das propriedades estruturais, energéticas e
eletrônicas de dicalcogenetos de metais de transição bidimensionais. 2021.
160p. Tese (Doutorado em Ciências) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2021.

Os avanços nas técnicas de isolamento e síntese de materiais bidimensionais abriram novos
caminhos para a investigação de novos fenômenos e propriedades físicas, com grande po-
tencial para inovações tecnológicas. Nesse contexto, dicalcogenetos de metais de transição
formam uma classe proeminente de compostos, devido às suas propriedades eletrônicas e
ópticas únicas. Essa tese visa contribuir com o entendimento das propriedades físicas de
dicalcogenetos de metais de transição, estudando uma ampla variedade de sistemas por
meio de cálculos com base na teoria do funcional da densidade e teoria do funcional da
densidade dependente do tempo combinada com dinâmica molecular. A análise da esta-
bilidade relativa das fases em MoSe2 mostrou que o mecanismo de transição de Peierls
leva à estabilização da fase octaédrica distorcida, e uma transição de preferência de fase
induzida pelos tamanhos de nanoflocos foi demonstrada. Pela investigação de materiais
bidimensionais com base em dicalcogenetos dos metais de transição dos grupos 8 a 11,
foi encontrado que a fraca interação entre camadas, típica de materiais bidimensionais,
ocorre em sistemas com metais de transição dos grupos 8 e 10, enquanto uma grande
contribuição de ligações químicas foi observada nos demais materiais. As monocamadas
semicondutoras identificadas também possuem metais de transição dos grupos 8 e 10, e
as tendências químicas de deslocamentos de bandas puderam ser explicadas e utilizadas
com a regra de Anderson para prever tipos de junções em heterobicamadas. Com os ex-
emplos das heterobicamadas de MQ2 (M = Mo, Ni, Pt; Q = S, Se), foi encontrado que
embora a ligação entre camadas seja dominada por interações fracas, o acoplamento entre
camadas pode influenciar singnificativamente o band gap além da aproximação da regra
de Anderson. Dois mecanismos são cruciais para esses efeitos, especificamente, hibridiza-
ções de estados eletrônicos entre camadas e a formação de dipolo elétrico na interface,
que foi explicada por um modelo físico simples. Na heterobicamada MoS2/PtSe2, foi ob-
servado que uma fotoexcitação no band gap de MoS2 gera transferência de elétrons para
PtSe2 em uma taxa mais rápida que a transferência de buracos, levando a uma separação
efetiva de carga, apesar do alinhamento tipo-I. As transferências dos dois portadores são
influenciadas por cruzamentos de níveis induzidos pelo dipolo interfacial causado pela
desigualdade na transferência de carga.

Palavras-chave: Materiais bidimensionais. Dicalcogenetos de metais de transição. He-
terobicamadas de van der Waals.
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1 INTRODUCTION

This thesis presents a study on the physical properties of two-dimensional (2D) ma-
terials, specifically the family of transition metal dichalcogenides (TMDs). In this chapter,
the factors that drive the interest in investigating these materials are discussed, followed
by an introduction to their fundamental characteristics. A review of current scientific
challenges related to the understanding and control of the properties of 2D TMDs is pre-
sented, highlighting the open problems to be addressed, based on which the objectives of
this work are defined.

1.1 Motivation

The experimental isolation of graphene,1 a 2D honeycomb lattice of carbon with
one-atom thickness, has opened up a new road for advances in the development of low-
dimensional devices. The method that was discovered to obtain graphene crystallites was
also successfully applied to isolate monolayers of other 2D materials,2 also defined by one-
or few-atoms thicknesses, thus creating a huge potential for the investigation of properties
and phenomena of a wide range of 2D materials. Initially, the efforts were essentially
concentrated on graphene, mostly due to the observation of excellent electronic properties
of its isolated crystals, for example, the high charge carrier mobility, even at chemically
and electronically induced high carrier concentrations.3 However, some limitations were
encountered for graphene, for example, the lack of a band gap is a challenge for its
application in electronics and optoelectronics, and therefore, other 2D materials have
been brought to the limelight. Hexagonal boron nitride (h-BN), an insulator that shares
graphene’s honeycomb structure, but with a small lattice constant mismatch, was shown
to yield good device quality when employed as substrate for graphene.4 TMDs, which
are among the most important and widely studied 2D materials, appeared as excellent
candidates for semiconducting applications, due to their natural band gaps.5

The library of already known 2D materials is not restricted to the previous ex-
amples and advances have been made in other compounds, such as elemental materials
other than graphene (e.g. silicene6 and black phosphorous7), MXenes,8 ternary trichalco-
genides,9 and perovskites.10 The vast majority of 2D materials are obtained from layered
van der Waals (vdW) solids, which are formed by the stacking of layers, where intralayer
bonding is dominated by covalent and ionic bonds and the layers are bound by vdW
forces. Therefore, the impressive rise in the importance of 2D materials has driven several
efforts to identify layered vdW solids among already known crystal structures.11–14 In this
context, the evaluation of the magnitude of interlayer binding, the exfoliation energy,15

is important to access the potential exfoliability of layered solids. Of these, 2D TMDs
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have attracted special attention due to their excellent properties for multiple promising
applications, for example nanoelectronics,16 electrocatalysis,17 and thermoelectrics.18

Existing methods for isolating sheets of 2D materials can be classified in two
main categories: top-down and bottom-up methods. Top-down methods consist in the
exfoliation of layers from a layered crystal, for instance, through mechanical exfoliation,
as in the Schotch tape method, that was employed to exfoliate graphite in the first isolation
of graphene.1 This method allows to obtain crystals with good quality employing fairly
cheap and readily available apparatus, but does not offer a scalable way of obtaining
monolayers of 2D materials. This deficiency is overcome with another top-down approach,
namely liquid-phase exfoliation, that consists in separating the layers from the crystal
through sonication in a liquid solution.19 Although this method allows high scalability
compared to mechanical exfoliation, there can be drawbacks, such as the quality and
size of exfoliated crystals.20 These exfoliation methods contrast with approaches in which
sheets are directly grown, often called bottom-up methods, which offer potential for high
degree of morphological control and scalability, specially with chemical vapor deposition.21

The progress in the techniques to obtain and manipulate 2D sheets and the knowl-
edge of the vast library of 2D materials made possible to design materials through the
controlled vertical stacking of different monolayers in a chosen sequence, often called
vdW heterostructures, which enabled an important route to explore novel properties and
phenomena within 2D materials.22,23 The interlayer binding is dominated by weak vdW
interactions, thus allowing to explore combinations of the numerous 2D materials re-
laxing the condition of strict lattice matching of usual heterojunctions. In particular,
vdW heterostructures based on TMDs have exhibited promising properties for several
applications, such as photodetectors,24 light emitters,25 photocatalysis,26 nanoelectronic27

and spintronic devices,28 which reveals the versatility of TMDs for the design of vdW
heterostructures, in which a suitable band alignment between component layers is an im-
portant factor.29 Therefore, the study of 2D TMDs is a key step to guide the advances in
the design of novel 2D materials and vdW heterostructures.

1.2 Two-dimensional transition metal dichalcogenides

TMDs are compounds with chemical formula MQ2, where M is a transition metal
(TM) and Q is a chalcogen, specifically, S, Se, and Te. Among the most important factors
that contribute to the interest in 2D TMDs is the possibility to modify their physical and
chemical properties through layer stacking,30 exploration of the large number of possible
chemical compositions,31 and alloying.32 The interest in TMDs for 2D materials has been
mainly focused on compositions with group 6 TMs, namely, the sulfides and selenides of
Mo and W, and also, but to a lesser extent, on compositions with TMs from groups 4, 5
and 10. This is because in these compounds, TMDs crystallize in vdW layered structures,31



29

and therefore, they facilitate the obtention of ultrathin 2D sheets.

Layered TMDs can be found in a variety of polymorphs, which can differ on the
intralayer arrangement of atoms and also on the stacking pattern of the layers.31,33 The
monolayers are composed of a plane of TM atoms in a triangular lattice that is sandwiched
between two planes of chalcogen atoms, also in triangular lattices. Three main monolayer
phases are found and their main difference is the coordination environments of TM atoms,
which can be trigonal prismatic, octahedral, or distorted octahedral, and the stacking of
these monolayers leads to the different bulk crystal polytypes. The trigonal prismatic
coordination occurs in the bulk 2H phase,31 which has monolayer stacking sequence AbA
BaB, capital and lower case letters indicate the alignment of chalcogen and metal atomic
planes, respectively. This phase is the lowest energy crystal structure of most group 6
TMDs, for instance MoS2, WS2 and MoSe2.31,34 The octahedral coordination is observed
in the bulk 1T phase,31 with stacking sequence AbC AbC. Notably, this is the lowest
energy phase of group 4 TMDs, for example, TiS2, ZrS2, and ZrSe2.31,34 Monolayers of
the distorted octahedral phase can be generated by reconstructions in the octahedral
monolayer, mainly with displacements of metal atoms rows. This type of configuration is
observed in the bulk 1T′ phase,33 which is the ground state crystal structure of WTe2.34

An important factor to determine which of the layered structural phases is adopted
by a TMD is the d electron count of the TM atom. The different coordination environments
and symmetries of each coordination environment generate differences in the electronic
structure, particularly in the splitting of the d orbital levels.31,33 As a consequence, the
number of electrons that occupy these levels influences the relative energy of phases,
which can explain why the 2H phase is favored for MoQ2 compounds but 1T is favored
for TiQ2. The structural diversity of TMDs leads to important consequences for their
physical properties, and a single compound can have marked differences between different
phases. For example, Mo dichalcogenides are semiconductors in the 2H phase and metals
in the 1T phase,35 whereas the 1T′ phase has attracted interest because of the possibility
to obtain quantum spin Hall phases.36 Therefore, the diversity of crystal structures also
contributes to the wide range of chemical and physical properties found in 2D TMDs.

1.3 State of the art in the study of transition metal dichalcogenides

The intense research activity on 2D TMDs in the past decade has opened up
several routes to understand and exploit the physical properties and phenomena observed
in these materials, and consequently a wide range of topics within the study of 2D TMDs
are currently relevant. Here, recent advances and open problems are reviewed, focusing
on the topics related to the scope selected for this thesis, namely, TMDs nanoflakes,
development of novel 2D materials based on TMDs, band gaps of vdW heterostructures,
and interfacial charge carrier transfer in vdW heterostructures.
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1.3.1 Transition metal dichalcogenides nanoflakes

Along with the advances in 2D TMDs, there have been also efforts focused on 2D
TMDs nanostructures with small lateral size,37 motivated by the capacity of tuning nano-
materials properties through the control of size. Typically, this classification encompasses
nanostructures with lateral sizes below 100 nm,37 termed nanoflakes, which preserve the
attractive properties of the large 2D monolayers, and have some advantages derived from
the enhancement of quantum confinements effects and active edge sites. For instance, the
presence of dangling bonds at the edges with a high surface-to-volume ratio favors the ap-
plication in photocatalysis,38 and potential applications for TMDs nanoflakes also include
chemical sensors,39 cell imaging,,40 and many other technologies for sensing, biomedicine,
and energy sources.37

Because of the important role of the structural phase in the properties of 2D TMDs,
including nanoflakes, there is great interest in developing strategies to control their phase
stability. Several approaches have been employed to induce transitions between the semi-
conducting and metallic phases, such as exposure to chemical vapor of organic electron
donors,35 insertion of Li atoms,41 and electron beam irradiation.42 These strategies are
based on modifying the electron count via transfer of electrons to the TMD sheets, but
other strategies have been proposed, for instance, the application of strain, given the dif-
ferent energy response to stain of the different phases.43 However, all these strategies have
been explored in sheets with lateral sizes in the micrometer scale, and theoretical results
on semi-infinite MoS2 nanoribbons have shown that the nanoribbons width is correlated
to the relative phase stability.44 Therefore, the role of nanoflakes sizes on the relative
stability of 2D TMDs phases, as well as the effects on the physical properties must be
further investigated.

1.3.2 Development of novel 2D materials

With the surge in interest in 2D materials, various studies have been developed
to screen vdW layered solids by searching and classifying crystals reported in databases
of crystal structures.12–14 This approach is useful to identify candidates for the obtention
of novel 2D materials, by pointing out systems whose structural features and interlayer
binding strength are favorable for the exfoliation of monolayers. These studies are limited
to already known vdW layered solids, which does not cover all possibilities of finding 2D
materials, since there has been success in the obtention of 2D sheets from crystals not
characterized by vdW stacking of layers, such as Ga2O3

45 and Fe2O3.46 Furthermore, the-
oretical studies have verified the fulfillment of conditions for thermodynamic and kinetic
stability of monolayers for compounds not known in layered crystals, including TMDs47

and the II-VI and III-V compositions of traditional 3D semiconductors.48 Therefore, the
search for novel 2D materials is not restricted to compounds that are known to adopt
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layered crystal structures, and due to the diversity of physical and chemical properties
of TMDs, the large scale exploration of these compounds is a viable path to identify 2D
materials with interesting properties.

The dichalcogenides of Mo and W are the most common examples of 2D TMDs,
and vdW layered TMD solids are also found for other TMs from groups 4 to 7 and and
some of the compositions of group 10 TMs.31 For other TMs, a small number of layered
crystal structures have been reported, for example, IrTe2 in the 1T structure,49 but the
majority of these compounds are traditionally known to adopt a variety of crystal phases
not formed of stacked layers,50 such as the pyrite51 and marcasite52 crystal structures of
FeS2. Theoretical studies on novel 2D TMDs have indicated the potential to synthesize
stable monolayers with TMs of groups 8 to 11,47,53 and obtained their electronic properties,
but these investigations employed only isolated monolayers. Therefore, it is crucial to
examine the interlayer interactions in these systems, to obtain a deeper understanding of
the effects of layer stacking on the electronic properties and of the interlayer binding.

1.3.3 Band gap design of vdW heterostructures

Semiconductor heterojunctions of vdW heterostructures of 2D TMDs have been
found promising to develop materials for various technological devices, such as nanotran-
sistors,54 photocatalysts,55 and photovoltaic cells.56 In this context, obtaining vdW het-
erostructures with suitable band gaps and band alignments is crucial. Depending on the
band alignments, semiconductor junctions are usually classified into three cases, each of
them possessing features that can lead to advantages for specific applications.57 Type-I or
straddling gap junctions, are the cases in which both valence band maximum (VBM) and
conduction band minimum (CBM) are located at the same side of the junction, and they
favor efficient recombination of charge carriers due to the spatial confinement, leading
to enhanced photoluminescence and potential for application in light-emitting devices.58

Type-II or staggered gap junctions have VBM and CBM located in different sides of
the junction, which facilitates spatial separation of electrons and holes, and therefore,
increases the lifetime of these charge carriers, a desirable property for solar cells and pho-
tocatalysts.55 Type-III or broken gap junctions are the cases with no overlaps of band
gaps, that is, the VBM of one side of the junction is above the CBM of the other, which
has been employed for the development of tunnel diodes.59

Owing to the dominant role of vdW forces in the interlayer interactions, vdW
heterostructures are expected to be well suited for a description of band alignments with
Anderson’s rule,60 also termed electron affinity rule. Within this approximation, the band
offsets at the interface are assumed to be equal to the natural band offsets of the materials
that form the heterojunction, which also allows to evaluate the heterostructure band
gap as the difference between the lowest CBM ad highest VBM among the materials.



32

This approximation corresponds to neglecting the effects of hybridization and charge
redistribution at the interface, which is expected to be accurate for vdW heterostructures
in the absence of interlayer chemical bonding. A good validity of this approach has been
demonstrated, for instance, in experimental measurements of MoS2/WS2 and MoS2/WSe2
heterostructures.61 In view of this, theoretical studies have widely employed Anderson’s
rule to predict band alignments and band structures of vdW heterobilayers.29,53,57,62,63

Although Anderson’s rule is expected to have good validity in vdW layered sys-
tems, interlayer electronic coupling can play an important role in the electronic structure
of these systems. This is notable in materials formed of identical stacked layers, such as
observed in group 6 TMDs with the transition from direct band gap to indirect band
gap going from monolayer to bulk, due to the interlayer coupling of band edge states,30,64

and also in the strong dependency of PtS2 band gap on layer number.65 Similar behaviors
have been reported for heterobilayers based on theoretical studies of systems composed
of TMDs and tin dichalcogenides66 and of IV-V monolayers,67 where deviations from
Anderson’s rule are caused by interlayer hybridizations. In view of that, obtaining fur-
ther understanding on the effects of interlayer coupling on the band gaps of TMDs vdW
heterostructures is important to guide the design of these materials for application in
technological devices.

1.3.4 Interlayer charge carrier transfer

The interfacial transfer of charge carriers in heterojunctions plays a fundamental
role in semiconductor devices. Therefore, developing a deep understanding of this pro-
cess is crucial for the development of functional junctions, which requires going beyond
the description of band alignments and addressing other relevant aspects, such as the
dynamics of the charge transfer process. In vdW heterostructures, the predominance of
weak vdW interactions between monolayers might suggest that interlayer charge carrier
transfer could be inhibited, however, ultrafast transfer has been experimentally observed
in heterostructures based on TMDs.68,69 These observations sparked interest in the un-
derstanding of the mechanisms that enable the surprisingly small time-scales of charge
carrier transfer in vdW heterostructures.70 Based on the simulation of photoexcited states
in TMD heterobilayers, it has been proposed that dipole coupling across the interface is
a significant factor to enable ultrafast charge transfer, which is therefore sensitive to the
atomic arrangement at the interface.71 The delocalization of photoexcited charge carrier
states between the monolayers that form the heterojunction has also been pointed as a
crucial feature that allows the ultrafast charge transfer in these systems.72,73

Most studies of interlayer charge transfer in TMDs vdW heterostructures have
concentrated on type-II junctions, which is the most common band alignment type ob-
tained with TMs from group 6, due to the common trends of valence and conduction band
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offsets for these monolayers.74 However, there is growing interest in exploring heterostruc-
tures with type-I junctions, motivated by their potential for application in photodetection
and light-emitting devices.75,76 In these systems, the band alignments favor the transfer
of both holes and electrons to the same junction side, contrary to type-II junctions, and
therefore, the mechanisms of charge carrier transfer deserve further investigation. Fur-
thermore, the investigation of the dynamics of charge transfer between monolayers with
dissimilar structural phases can shed more light into the role of the atomic arrangement
at the interface in the mechanism of ultrafast charge transfer.

1.4 Objectives

1.4.1 General objectives

This thesis aims to contribute to the understanding of the physico-chemical prop-
erties of 2D TMDs. Among the wide range of currently interesting topics concerning these
materials, this study focuses on a set of open problems related to the identification and
understanding of major factors that can influence their properties, encompassing various
types of systems, namely, nanoflakes, layered crystals, monolayers, and vertical heterobi-
layers. The main points addressed in the thesis are the role of size on the phase stability
and electronic properties of nanoflakes, the characterization and screening of bulk and
monolayer TMDs beyond usual compositions, the role of interlayer coupling on the elec-
tronic properties of vdW heterobilayers, and the study of interlayer charge carrier transfer
in vdW heterobilayers. These topics are described in detail below, and the results related
to each of them are discussed in separate chapters.

1.4.2 Specific objectives

• With MoSe2 as example, study the structural properties of the different bulk and
monolayer TMDs polytypes, and their relative stability. Obtain the relative energies
of the trigonal prismatic and octahedral phases of (MoSe2)n nanoflakes, with n

ranging from 15 to 192, to investigate the role of nanoflake size on the phase stability,
and to identify associated effects and consequences on the electronic properties.

• Obtain the equilibrium crystal structure configurations of the 36 MQ2 compounds,
with M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Q = S, Se, Te, for a
set of layered and non-layered crystal phases reported for TMDs in the literature,
and determine their relative stability based on the energy criterion. Characterize
the interlayer binding of layered crystals, via the evaluation of the exfoliation en-
ergy and analysis of the electron density. Obtain the band gap of the lowest energy
configurations of bulk and monolayers, and the band offsets of isolated semiconduc-
tor monolayers. Perform a preliminary screening of heterobilayers for application
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in solar energy harvesting, based on an estimation of an upper limit for solar cell
efficiency.

• Construct vertically stacked configurations for heterobilayers of MQ2 monolayers,
withM =Mo, Ni, Pt, andQ= S, Se, and evaluate equilibrium structural parameters
and interlayer binding energies. Obtain the heterobilayer band gaps via Anderson’s
rule, based on the band offsets of isolated monolayers, and via the calculation of
heterobilayers band structures. Compare the results to examine the validity of An-
derson’s rule, and investigate related effects by the analysis of band structures.

• Generate configurations for the 2H-MoS2/1T-PtSe2 vertical heterobilayer at differ-
ent ionic temperatures, and identify the band edge states of MoS2 for each configu-
ration. Simulate the time evolution of a photoexcited system, corresponding to an
electron excitation across the band gap of MoS2, and evaluate the occupation of
electrons and holes on each side of the heterobilayer interface. Identify mechanisms
involved in the interlayer charge carrier transfer, through analysis of the features of
wave functions and time evolution of electron states.
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2 METHODOLOGY

This chapter summarizes the theoretical basis and developments of the meth-
ods employed in the studies discussed in this thesis, as well as the main aspects related
the application of the methods. It is divided in: (2.1) Many-body problem; (2.2) Den-
sity functional theory; (2.3) Time-dependent density functional theory; (2.4) Periodic
systems; (2.5) Basis sets; (2.6) Projector augmented-wave method; (2.7) Computational
implementation.

2.1 Many-body problem

The quantum description of materials is fundamental for the understanding of their
electronic properties and also allows to address several other aspects of the materials, such
as obtaining structural properties and analyzing energy trends. Within this approach, the
system is defined by theM nuclei and N electrons that compose it and their interactions,
which can be described with the many-body Hamiltonian77

Ĥ =
N∑
i=1
−1

2∇
2
ri +

M∑
α=1
− 1

2Mα

∇2
Rα

+
N∑
i=1

N∑
j=i+1

1
|ri − rj|

+

M∑
α=1

M∑
β=α+1

ZαZβ
|Rα −Rβ|

−
M∑
α=1

N∑
i=1

Zα
|Rα − ri|

,

(2.1)

where atomic units were employed, i.e., electron mass, electron charge, reduced Planck
constant, and 1/4πε0 have unit value. The first and second terms of the Hamiltonian
correspond to the kinetic energy of electrons (T̂e) and nuclei (T̂N), respectively, and the
third, fourth and fifth terms account for the Coulomb interactions between electrons (V̂ee),
between nuclei (V̂NN), and between nuclei and electrons (V̂Ne), respectively.

Given the Hamiltonian of (2.1), the properties of the system are obtained via the
wave function Ψ({Rα}, {ri}), which is the solution of the time-independent Schrödinger
equation

ĤΨ({Rα}, {ri}) = EΨ({Rα}, {ri}) , (2.2)

where {Rα} and {ri} denote the dependence on the sets of positions of nuclei and elec-
trons, respectively, and E is the energy of the system.

The analytic solution of the Schrödinger equation is possible only for simple sys-
tems, such as hydrogen-like atoms and the quantum harmonic oscillator. Therefore, the
solution of the many body problem requires the use of numerical methods, which can
also benefit from approximations that simplify the description of the system. The Born–
Oppenheimer (BO) approximation78,79 consists in decoupling the dynamics of electrons
and nuclei, and is widely used for calculations of atomic, molecular, and solid systems.
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This approximation is based on the difference of the time scale of nuclear and electron dy-
namics, the latter being much smaller than the former, so that electrons can be considered
to instantaneously adapt to changes in the atomic positions.

With the decoupling of the electronic motion and nuclear motions, the wave func-
tion can be written as the product of a nuclear and an electronic part

Ψ({Rα}, {ri}) = χn({Rα})ψn({Rα}′, {ri}) , (2.3)

where {Rα}′ in the electronic function indicates that the dependence on the nuclear po-
sitions is parametric, that is, the electronic part is obtained for each set of fixed nuclear
positions {Rα}. Consequently, equation (2.2) is separated in a nuclear part and an elec-
tronic part, which is written as

Ĥelψn({ri}, {Rα}′) = εn({Rα})ψn({ri}, {Rα}′) , (2.4)

where the electronic Hamiltonian is given by Ĥel = T̂e + V̂ee + V̂Ne. The total energy for
the set of fixed positions of the nuclei includes the constant term of nuclear repulsion:

En({Rα}) = εn({Rα}) +
M∑
α=1

M∑
β=α+1

ZαZβ
|Rα −Rβ|

. (2.5)

The nuclear equation is then given by

(T̂N + En({Rα}))χnm({Rα}) = Enmχnm({Rα}) , (2.6)

that is, the energy En({Rα}) defines a potential energy surface for the dynamics of the
nuclei.

This approach has a good validity for a large variety of systems, but may fail in
particular situations. For instance, such are the cases in which different electronic states
are degenerate or near degenerate and strong coupling between electronic excitations and
nuclear vibrations occur.80 The properties that are investigated in Chapters 3 to 5 of this
thesis can be studied based on the BO approximation.

2.2 Density functional theory

2.2.1 Hohenberg–Kohn theorems

Employing the N -electron wave function as the fundamental quantity to solve the
electron system defined by the Schrödinger equation (2.4) can lead to high computational
cost. In particular, in methods that include the necessary corrections to yield high quality
results, the cost scales very rapidly with the number of atoms, which can make their
application impractical for large systems. An alternative for these methods consists in
basing the description of the many-electron system on the electron density. Such strategy
is based on density functional theory (DFT), whose theoretical foundations are provided



37

by two theorems developed by Hohenberg and Kohn.81 The first Hohenberg–Kohn (HK)
theorem can be stated as: "For a system of an arbitrary number of electrons moving under
the influence of an external potential, the same ground state electron density cannot be
determined by two external potentials that differ by more than a simple additive constant."
Therefore, there is a one-to-one correspondence of the ground state electron density and
the external potential. The Hamiltonian of the system is the sum of purely electronic terms
(T̂e and V̂ee) and the term that originates from the external potential. Thus the external
potential fixes the Hamiltonian, and it follows from the theorem that the ground state
of the system is a unique functional of the ground state electron density. This legitimizes
the use of the electron density as the fundamental quantity do describe the system.

The second HK theorem provides a variational approach to obtain the ground state
electron density, by stating: "The energy functional of the electron density is minimized
by the ground state electron density." That is, if the energy of the system is written as a
functional of the electron density, E[n(r)], as permitted by the first HK theorem, every
trial electron density applied to the expression will result in an energy larger than or equal
to the ground state energy, E0:

E0 ≤ E[n(r)] , (2.7)

where the equality holds only for the ground state electron density n0(r). Therefore,
the correct ground state electron density can be obtained by minimization of the energy
functional. Thus, combined with the constraint of the number of electrons in the system,
the previous theorem requires that

δ
[
E[n(r)]− µ

(∫
n(r)d3r −N

)]
= 0 , (2.8)

which yields
µ = δFHK[n(r)]

δn(r) + v(r), (2.9)

where FHK comes from V̂ee + T̂e, and is termed universal HK functional, as its form does
not depend on the system under consideration. In the case of an external potential v(r)
describing ion-electron interactions (V̂Ne), it is obtained by

V̂Ne[n(r)] =
∫ (

M∑
α=1

−Zα
|Rα − r|

)
n(r)d3r =

∫
v(r)n(r)d3r . (2.10)

In principle, this method provides an exact solution to the electronic equation 2.4. How-
ever, an exact form for the universal HK functional is not known, mainly because of
the difficulty to describe the kinetic energy. An approach to overcome this problem was
developed by Kohn and Sham.

2.2.2 Kohn–Sham formalism

In the Kohn–Sham (KS) formalism,82 the electron system is described in terms
of an auxiliary system, a non-interacting electron gas with same ground state electron
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density as the real system. In this approach, the HK functional is written as

FHK[n(r)] = 1
2

∫ ∫ n(r)n(r′)
|r− r′|

d3r d3r′ + T0[n(r)] + Exc[n(r)] . (2.11)

The first term corresponds to the Coulomb inter-electronic repulsion, and the second
term describes the kinetic energy of a non-interacting electron gas with same density as
the real system. The last term, called exchange-correlation energy, contains contributions
not yet considered by previous terms: (i) correction to the kinetic energy to describe
the real interacting system; (ii) correction to the self-interaction energy that comes from
the Coulomb term; (iii) exchange energy, a consequence of the exchange anti-symmetry
required for the electron wave function; (iv) correlation energy, that accounts for the
interdependence of electrons dynamics. The substitution of this expression in (2.9) gives

µ = δT0[n(r)]
δn(r)) +

∫ n(r′)
|r− r′|

d3r′ + δExc[n(r)]
δn(r) + v(r) , (2.12)

which is the same equation that is obtained for a system of non-interacting electrons if it
is under an effective potential

vef(r) =
∫ n(r′)
|r− r′|

d3r′ + δExc[n(r)]
δn(r) + v(r) , (2.13)

where the second term on the right side is usually termed exchange-correlation potential,
denoted by vxc. Therefore, the ground state can be obtained from the solution of one-
particle Schrödinger equation,[

−1
2∇

2
r + vef(r)

]
φi(r) = εiφi(r) . (2.14)

The one-electron wave functions introduced by this method, φi(r), are termed KS
orbitals and are used to construct the total wave function via a Slater determinant, and
to obtain the ground state electron density via

n(r) =
N∑
i=1
|φi(r)|2 . (2.15)

The total energy of the system, including the constant energy term of nuclei-nuclei inter-
actions, can be written as

Etot =
N∑
i=1

εi −
1
2

∫∫ n(r)n(r′)
|r− r′|

d3rd3r′ −
∫
vxc(r)n(r)d3r +

Exc[n(r)] +
M∑
α=1

M∑
β=α+1

ZαZβ
|Rα −Rβ|

.

(2.16)

Since the effective potential in the equation that must be solved to obtain the KS orbitals
depends on the electron density, which in turn is obtained from KS orbitals, the solution
of KS equations must be obtained self-consistently. Starting from a trial set of KS orbitals,
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the electron density is obtained with (2.15) and consequently the effective potential can be
calculated from (2.13), and is then used in (2.14) to obtain new KS orbitals, from which
new electron density and effective potential can be obtained and restart the cycle. This
cycle should be repeated until some previously defined convergence criterion is achieved,
for instance, a variation of total energy smaller than a specified value.

2.2.3 Exchange-correlation functionals

2.2.3.1 Local and semi-local functionals

In principle, the KS scheme is able to provide an exact solution to a system of
electrons under an arbitrary potential, but the exact form of Exc is unknown. Therefore,
approximations for this term, known as exchange-correlation functionals have been devel-
oped. The first level of approximation for Exc, already proposed in the KS paper,82 is the
local density approximation (LDA), which considers only a dependence of the electron
density at each point in space,

ELDA
xc =

∫
d3rn(r)εLDAx (n(r)) +

∫
d3rn(r)εLDAc (n(r)) . (2.17)

The expression for the exchange term εLDAx (n(r)) is obtained by applying the exact form
of the Hartree–Fock (HF) exchange energy for a uniform electron distribution to each
point in space,83

εLDAx (n(r)) = −3
4

(
3n(r)
π

)1/3

. (2.18)

No exact expression is known for the correlation term, but asymptotic expressions for the
homogeneous electron gas at the limits of high and low density are known.84,85 Analytic
expressions for the intermediate region are obtained by fitting numerical results of Monte
Carlo calculations for the homogeneous electron gas,86 such as the parametrizations pro-
posed by Perdew and Zunger (PZ81)87 and by Perdew and Wang (PW92).88

Another level of approximation for the exchange-correlation functionals is the gen-
eralized gradient approximation (GGA), in which a dependence of the functional on the
gradient of electron density is also considered

EGGA
xc =

∫
d3rf(n(r), |∇n(r)|) . (2.19)

As with LDA functionals, there is no unique expression for GGA, and diverse function-
als have been formulated. For instance, the functional proposed by Perdew and Wang
(PW91)89,90 was constructed in to order to satisfy several exact conditions. Later, Perdew,
Burke and Ernzerhof simplified the derivation of the PW91 functional by satisfying only
the energetically significant conditions, and formulated the PBE functional.91 This func-
tional is divided in two terms, the exchange and correlation functionals,

EPBE
xc = EPBE

x + EPBE
c . (2.20)
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The PBE exchange functional has the form

EPBE
x =

∫
d3rn(r)εunifx (n)FX(n, |∇n|) , (2.21)

where εunifx (n) is the exchange energy of the uniform electron gas given by (2.18). The
PBE correlation functional is written as

EPBE
c =

∫
d3rn(r)[εPWc (n) +H(n, |∇n|)] , (2.22)

where εPWc (n) is the LDA–PW91 parametrization for the correlation energy.

2.2.3.2 Hybrid functionals

The calculation of band gaps of semiconductors and insulators from band struc-
tures of local and semi-local DFT presents difficulties, as band gaps are underestimated,
and it has been observed that more realistic band gaps can be obtained with the use of
hybrid functionals.92 These exchange-correlation functionals contain a part of the exact
Hartree-Fock (HF) exchange term, which is given by83

EHF
x = −1

2
∑
i

∑
j

∫
d3r

∫
d3r′φ∗i (r)φi(r′)

1
|r− r′|

φj(r)φ∗j(r′) , (2.23)

where the sums run over occupied orbitals. This type of functional has its basis on the
PBE0 functional,93 which keeps the correlation term of the PBE functional and mixes the
PBE exchange term with HF exchange in a 3:1 proportion,

EPBE0
xc = 1

4E
HF
x + 3

4E
PBE
x + EPBE

c . (2.24)

This mixing proportion was derived based on perturbation theory from the adiabatic con-
nection theorem, to optimize results for atomization energies of molecules.93 An important
drawback of the PBE0 functional is the large computational cost to evaluate the exchange
term. To reduce this limitation, it has been observed that the long range contributions
of PBE and HF exchange are similar and have low numerical values.94 Based on that,
Heyd, Scuseria and Ernzerhof proposed a range separated hybrid functional (HSE06) in
which the Coulomb operator of the exchange term is separated in short range (SR) and
long range (LR), and the LR exchange takes only PBE exchange. The range separation
is written as

1
r

= erf(ωr)
r

+ erfc(ωr)
r

, (2.25)

where erf(x) is the error function,

erf(x) = 1√
π

∫ x

−x
e−u

2
du , (2.26)

which is equal to 0 for x = 0 and goes to 1 for x→∞, and erfc(x) is the complementary
error function (erfc(x) = 1 − erf(x)). The first term on the right side of equation 2.25
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composes the SR term, and the second term composes the LR term, with ω as a range
separation parameter. Thus, the HSE06 exchange-correlation functional is

EHSE06
xc = 1

4E
HF
x,SR + 3

4E
PBE
x,SR + EPBE

x,LR + EPBE
c . (2.27)

It is readily noted that for ω = 0 the PBE0 functional is recovered, and for ω → ∞
the PBE functional is obtained. Tests performed with different values for ω have shown
that ω = 0.11 bohr−1 = 0.206Å−1 provides a good compromise between computational
cost (time and less convergence problems) and accuracy of results for properties of atoms,
molecules and solids, such as ionization potentials, electron affinities, bond lengths, lattice
parameters, and band gaps.95

2.2.4 van der Waals Corrections

Standard local and semi-local exchange correlation functionals can also fail to
provide a good description of long range electron correlation, which is related to vdW dis-
persion interactions. Because of that, the strength of binding is usually underestimated
in systems in which these forces are important, such as molecular solids, or crystals with
weakly bound layers, as in the case of TMDs.96,97 To overcome this problem, some meth-
ods have been developed in order to improve the description of weak vdW within DFT
calculations. In particular, a class of methods is based on the notion that these interac-
tions have no significant direct effects on the ground state electron density, so that only
a correction to the converged DFT total energy is added, keeping the electron density
unchanged,

E = Etot + EvdW . (2.28)

One of these methods is the D3 method developed by Grimme et al.,98 in which the
dispersion energy is composed of two- and three-body interactions terms for the atoms,

EvdW = −
∑

n=6,8,10

∑
α

∑
β<α

sn
fa,n(Rαβ)Cαβ

n

Rn
αβ

−∑
α

∑
β<α

∑
γ<β

fa,3(Rαβγ)Eαβγ , (2.29)

where Rαβ is the distance between atoms α and β, and in the three-body term, Rαβγ is
the geometric mean of Rαβ, Rβγ and Rγα, and the term Eαβγ depends on the distances
between atoms and on the angles determined by lines joining these atoms.

It was shown that including the terms with n > 8 in the D3 correction can cause
instabilities, without considerably enhancing the quality of results for common systems.98

Beyond that, the inclusion of the three-body term can worsen the accuracy of lattice
parameter results.99 Therefore, in the implementation employed here, only the two-body
terms with n = 6 and n = 8 are included. Furthermore, fa,n are damping functions,
employed to avoid divergences for small bond lengths, and are given by

fa,n(Rαβ) = 1
1 + 6(Rαβ/(sr,nRαβ

0 ))−µn
, (2.30)
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where Rαβ
0 are fixed for each pair of atoms between H and Pu, and the parameters sr,8, µ6,

and µ8 are fixed,98 and sr,6, as well as s6 and s8 are adjusted depending on the exchange
correlation functional employed.98 The Cαβ

n coefficients, which determine the magnitude
of the interactions, are determined both by the chemical species and the chemical envi-
ronment within the material being calculated. Several reference coefficient values of C6 for
each chemical species were obtained for different hydride molecules. Then, the chemical
environment is taken into account by geometrical considerations, as the Cαβ

n coefficients
are obtained by a weighted average of these reference values. In this average, the weights
are proportional to the similarity between the effective coordination numbers of the re-
spective atoms in the reference molecules and in the system being calculated.98

2.3 Time-dependent density functional theory

2.3.1 Runge–Gross theorem and time-dependent Kohn–Sham formalism

The study of dynamic processes, such as the transfer of charge carriers in semi-
conductor junctions, is inherently time-dependent and therefore, beyond the scope of
DFT simulations. Considering the success of DFT to address several physical properties
of materials and its computational efficiency, a time-dependent counterpart of DFT is
a promising route to describe such phenomena. The theoretical foundations that allow
the use of the density as the fundamental variable to describe time-dependent systems
are provided by the Runge–Gross (RG) theorem,100 an analog of HK theorem. The RG
theorem can be stated as "Two particle densities n(r) and n′(r) that evolve from the same
initial state are always different if they evolve under the influence of two different poten-
tials (assumed to be expandable in a Taylor series about the initial time) that differ by
more than a purely time-dependent function". Therefore, there is a one-to-one mapping
between the time-dependent external potential and the particle density, and it is possible
to use the density as the fundamental quantity to describe the system. Based on these
results, an additional theorem provides a time-dependent analog of the KS formalism,100

where the time-dependent density is obtained from

n(r, t) =
N∑
i=1
|φi(r, t)|2 , (2.31)

and the orbitals φi(r, t) are solutions of[
−1

2∇
2
r + veff (r, t)

]
φi(r, t) = i

∂φi(r, t)
∂t

, (2.32)

with effective potential given by

veff (r, t) =
∫ n(r′, t)
|r− r′|

d3r′ + vxc[n](r, t) + v(r, t) . (2.33)

In this scheme, it is usual to adopt the adiabatic local density approximation (ALDA) for
the exchange-correlation potential vxc[n](r, t). This approach employs the functional form
of LDA functional for the time-dependent density, i.e. vALDAxc [n](r, t) = vLDAxc [n(r, t)].101
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The RG theorem can be extended to multi-component systems,102 and because
of that, it can be applied to the many body state Ψ({Rα}, {ri}, t) of N electron and M
nuclei, where there is a one-to-one mapping between the external potentials and the ionic
and electronic densities. This allows to treat systems with the coupling of nuclear and
electronic motions, beyond the BO approximation. Similarly to the case of the electron
system, a set of coupled time-dependent KS equations analogous to the time-independent
case are derived for coupled electron-nucleus system101

[
−1

2∇
2
r + vs(r, t)

]
φi(r, t) = i

∂φi(r, t)
∂t

, (2.34)

[
−1

2∇
2
R + V α

s (R, t)
]
χα(R, t) = i

∂χα(R, t)
∂t

, (2.35)

where the effective potentials in the electronic and nuclear equations, vs(r, t) and V α
s (R, t),

respectively, are given by

vs(r, t) =
∫ n(r′, t)
|r− r′|

d3r′ −
M∑
α=1

∫ Zαnα(R, t)
|r−R|

d3R + vxc[n](r, t) + vext(r, t) , (2.36)

V α
s (R, t) = Zα

M∑
β=1

∫ Zβnβ(R′, t)
|R −R′|

d3R′ − Zα
∫ n(r, t)
|R − r|

d3r +

V α
xc[nα](R, t) + V α

ext(R, t) ,
(2.37)

where the external potentials vext(r, t) and V α
ext(r, t) come from fields with source external

to the system of electron and ions. In this formalism, the exchange-correlation functionals
vxc[n](r, t) and V α

xc[nα](R, t) are defined by the previous equations, and the potentials are
functionals of the nuclear and electronic densities, which are given by

n(r, t) =
N∑
i=1
|φi(r, t)|2 , (2.38)

nα(R, t) =
M∑
α=1
|χα(R, t)|2 . (2.39)

2.3.2 Ehrenfest dynamics

The explicit treatment of the many-body system with the formalism defined by
equations (2.34)-(2.39) can be very difficult, both in terms of computational effort and
the definition of reliable formulations for exchange and correlation energy functionals for
nucleus-electron and nucleus-nucleus. To simplify the task, a widely used approach consists
in treating the nuclear motion classically.101 Applying Ehrenfest theorem to equation 2.35,
the classical trajectory of the α-th nucleus,

Rcl
α (t) =

∫
Rnα(R, t)d3R , (2.40)
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satisfies the equation of motion

Mα
d2Rcl

α (t)
dt2

= Fα(t) (2.41)

with force given by

Fα(t) = −
∫
χ∗α(R, t)∇RV

α
s (R, t)χα(R, t)d3R . (2.42)

A natural approximation for the nuclear densities is to assume that the nuclei are
localized at the classical trajectory Rcl

α (t), and therefore the density can be written as

nα(R, t) = δ(R −Rcl
α (t)) . (2.43)

Within this approximation, it is also reasonable to represent the potential V α
xc[nα](R, t)

only with a self-interaction term, that is, neglecting contributions from correlation and
reducing the exchange energy only to the self-exchange contribution, which corrects the
self-interaction in the Coulomb term.101 Therefore, the equation of motion for the α-th
nucleus is written as

Mα
d2Rcl

α (t)
dt2

= −∇Rcl
α

[
Zα

M∑
β=1
β 6=α

Zβ
|Rcl

α −Rcl
β |
− Zα

∫ n(r, t)
|Rcl

α − r|
d3r + V α

ext(Rcl
α , t)

]
, (2.44)

and the electronic time-dependent KS equation can be simplified to

i
∂φi(r, t)
∂t

=
[
− 1

2∇
2
r +

∫ n(r′, t)
|r− r′|

d3r′
M∑
α=1

∫ Zα
|r−Rcl

α (t)| +

vxc[n](r, t) + vext(r, t)
]
φi(r, t) .

(2.45)

Therefore, equations (2.44) and (2.45) describe the time evolution of coupled electron-
nucleus system. The electronic part is described within the TDDFT framework, and
therefore its time evolution depends on the initial state and on the total potential, which
includes a term to account for the Coulomb interaction with the moving nuclei. The
method for the solution of the time-dependent KS equations are related to the adopted
basis set, and because of that it is described in more detail in Section 2.5.2. The time
dependent KS equations must be solved simultaneously with the Newton equations that
describe the nuclear motion. This is in contrast with a dynamics based on the BO approx-
imation, because the electronic ground state is not obtained for the updated positions of
the nuclei. The approach employed in this thesis considers KS orbitals with fixed occupa-
tion during the simulation, and therefore does not account for electron transitions. Such
limitation is not critical for a description of excited states if the initial stages after the
excitation are simulated.

The initial state for a TDDFT simulation is determined by the solution of the KS
equations at a given configuration of the nuclei, yielding the initial configuration for the
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time-dependent KS orbitals {φi(r, 0)}. Besides the set of initial nuclei positions {Rα(0)},
this configuration is also fixed by the initial nuclei velocities {Vα(0)}, that determine
the ionic temperature. At this point, electronic excitations can be modeled by changing
the occupation of ground state KS orbitals that correspond to the excitation. The time-
evolution of {φi(r, t)} is then obtained by the solution of equation (2.45), which yields
an updated electron density for t + ∆t, where the parameter ∆t fixes the length of the
time step in the simulation. Consequently, an updated set of forces {Fα(t)} defined by
equation (2.44) is obtained and with the updated forces, molecular dynamics (MD) can
be applied to {Rα(t)} and {Vα(t)}. Employing the velocity Verlet algorithm, this is done
according to the equations103

Rα(t+ ∆t) = Rα(t) + Vα(t)∆t+ 1
2

Fα(t)
Mα

∆t2 , (2.46)

Vα(t+ ∆t) = Vα(t) + Fα(t) + Fα(t+ ∆t)
2Mα

∆t . (2.47)

The updated set of nuclei positions define a new KS hamiltonian to perform the time
evolution of {φi(r, t)}, restarting the cycle, which can be repeated to extend the simulated
time. In practice, self-consistent operations are performed to accept the updated orbitals
{φi(r, t+ ∆t)}. In these operations, the time propagation is iterated for a given time step
until a defined criterion is satisfied, for instance, a small variation of the total energy as in
the KS cycle. This self-consistent loop is not related to the self-consistency in the solution
of the KS equations, since the updated orbitals are not eigenfunctions of the updated
hamiltonian, and the procedure is employed to improve the stability of the simulation.103

2.4 Periodic systems

All simulations performed within this work employed periodic boundary condi-
tions, based on the periodicity of crystal solids. In crystals, a lattice is defined by a set of
points that are equivalent under translations defined by T = n1a1 + n2a2 + n3a3, where
ni’s are integers and ai are called lattice vectors. The possible symmetry operations in
three-dimensional space restricts the number of ai vectors sets that can be used to define
lattices, and 14 types of lattices can be obtained, which are called the Bravais lattices.104

A crystal structure is completely defined by associating to each point of the Bravais lat-
tice a set of atoms, called basis, such that the position of each atom in the basis can
be written as, uj = αja1 + βja2 + γja3, where 0 ≤ αj, βj, γj ≤ 1, and these coordinates
are referred to as direct (or relative) coordinates. The crystal is then generated by filling
the three-dimensional space with repeating units, or cells, which can be defined in more
than one way, and those with the least volume, which contain only one lattice point,
are called the primitive or unit cells. Of the possible unit cells, the Wigner-Seitz cell is
obtained by the following procedure: define segments that connect a lattice point to the
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nearest lattice points and build planes normal to each of the segments that cut them in
their midpoints; the volume enclosed by these planes is the Wigner-Seitz cell. Periodic
boundary conditions were employed in all calculations discussed in this thesis. Therefore,
to model systems which lack periodicity in one or more dimensions, such as monolayers
and nanoflakes, large cells were employed to ensure vacuum distances of 15Å between
periodic images, in order to minimize the effect of unwanted interactions.

In the study of crystal solids, the concept of reciprocal lattice has great importance,
for example to investigate crystal structures via X-ray diffraction or in the description
of the electronic states in the crystal.105 The reciprocal lattice is defined by a set of vec-
tors k which define plane waves with the same periodicity of the Bravais lattice, that is,
eik·(r+T) = eik·r. This condition is satisfied if the k vectors are written as linear combina-
tions of reciprocal lattice basis vectors bi, given by

b1 = 2π a2 × a3

a1 · a2 × a3
, b2 = 2π a3 × a1

a1 · a2 × a3
, b3 = 2π a1 × a2

a1 · a2 × a3
. (2.48)

In the reciprocal lattice, the Wigner-Seitz cell is often termed the First Brillouin Zone
(FBZ), and the k’s contained within this region are the essential wavevectors for the
description of electronic states.

The use of the wavevectors k as quantum numbers for the electronic states in
crystal solids emerges as an important consequence of the periodicity of the lattice, since
the potential exerted on the electrons by the ion lattice has the same periodicity. According
to Bloch’s theorem, the wavefunctions of electrons under a periodic potential (V (r+T) =
V (r)) can be written as,104,105

ψik(r) = eik·ruik(r) , (2.49)

where uk(r) is a function with the periodicity of the Bravais lattice. This form can be
evidently employed for KS orbitals of periodic systems. The properties of reciprocal lattice
vectors allow k to be confined to the FBZ, since any vector in the reciprocal space can
be written as a sum of a vector in the FBZ plus a reciprocal lattice vector. Because of
the dependence of the electronic states on the reciprocal space vectors k, the evaluation
of many quantities require integration in the FBZ. For instance, the electronic density is
given by

n(r) = 1
ΩFBZ

∫
FBZ

(∑
i

|φik(r)|2
)
d3k , (2.50)

where ΩFBZ indicates the volume of FBZ and the sum runs over occupied KS orbitals. To
perform these integrations numerically, a mesh of points is selected to sample the FBZ,
and an appropriate choice for the density of this mesh is based on tests with increasing
density until ensuring that the FBZ is well represented, typically called convergence tests.
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2.5 Basis sets

2.5.1 Plane-waves

The application of (2.49) to the KS orbitals typically employs the expansion of the
functions ui,k(r) as a linear combination of a set of basis functions,

uik(r) =
B∑
p=1

cikpχp(r) , (2.51)

and the solution of the KS equations, both in static and time-dependent frameworks is
based on determining the cikp coefficients. The choice of the basis set is an important
aspect for calculations, because the properties of each set can lead to benefits for their
application, depending on factors such as the features of the system under investigation
and the computational cost. Given the periodicity of the systems, a plane-wave basis with
wave vectors given by lattice vectors of the reciprocal space, G, is a natural choice. In
this approach, the KS orbitals are written as

φik(r) =
∑

|G+k|2
2 <Ec

ck(G)ei(k+G)·r , (2.52)

where the number of plane waves in the expansion is limited by the cutoff energy Ec, a pa-
rameter which specifies the maximum kinetic energy of the plane waves. This truncation
at plane-waves at smaller wave vectors is based on the smooth variation of the wave func-
tion and electron density. In practice, an appropriate choice for Ec is based on convergence
tests, in which increasing Ec, and consequently the number of plane-waves in the basis,
is a systematic way to improve the quality of the basis. Including a very large number of
plane-waves in the basis can lead to excessively large computational cost, and therefore,
one of the main drawbacks in the use of this basis is due to the rapid oscillations of the
electron wave functions near the atomic nuclei, which would imply the need of a very
large number of plane waves to accurately describe these functions. Some strategies have
been develop to overcome this difficulty, and the calculations with plane-wave basis set in
this thesis employed the projector augmented-wave method, described in Section 2.6.

2.5.2 Linear combination of atomic orbitals

The use of the basis set expansion allows to change the KS equation (2.14) into a
matricial form, i.e.,

HKS

B∑
p=1

cnpχp(r) = εn
B∑
p=1

cnpχp(r) , (2.53)

B∑
p=1

(∫
χ∗q(r)HKSχp(r)d3r

)
cnp = εn

B∑
p=1

(∫
χ∗q(r)χp(r)d3r

)
cnp , (2.54)

⇒ Hcn = εnScn , (2.55)
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where H and S are the hamiltonian and overlap matrices, respectively, with elements
given by

Hqp =
∫
ϕ∗q(r)HKSϕp(r)d3r ; Sqp =

∫
ϕ∗q(r)ϕp(r)d3r . (2.56)

If these matrices are sparse, the computational cost of calculations can be decreased, and
such property is fundamental, for instance, to develop methods whose cost scales linearly
with the number of atoms.106 The sparsity of the hamiltonian and overlap matrices can be
ensured by using a basis set of confined functions, which have zero value beyond a cutoff
radius rc. This feature is present in the linear combination of atomic orbitals (LCAO)
basis set, in which the basis functions are defined by a product of a radial function and a
spherical harmonic,

χαlmp(r) = ϕαlp(rα)Ylm(r̂α) , for r < rc , (2.57)

where α denotes the atom, with rα = r − Rα, and l,m are the angular momentum
labels. The label p indicates that several functions can be included for the same angular
momentum, usually termed multiple-ζ basis.

In the LCAO basis that was employed in this thesis,106 the minimal basis set
(single-ζ) has a single radial function for each angular momentum which are obtained by
the solution of a radial Schrödinger-like equation for the atom,

(
− 1

2r
d2

dr2 r + Vl(r)
)
ϕ1ζ
l (r) = (εl + δεl)ϕ1ζ

l (r) , (2.58)

where α and p labels were omitted for simplicity. The energy shift δεl is defined to place
the first node of the radial function at the chosen rc, and usually this parameter is fixed
as the same for all atomic species and angular momenta. The scheme adopted to increase
the basis set size defines a split radius rs, and a function that has the same tail of ϕ1ζ

l (r)
beyond rs and is a polynomial R2ζ(r) = rs(al− blr2) for r < rs, with al and bl determined
to ensure continuity and differentiability at rs. This split radius is set based on a the
norm of ϕ1ζ

l (r) for r > rs, and therefore this split norm is an additional parameter to
control the basis set. Then, the second orbital, which is confined within rs, is defined
as ϕ2ζ

l (r) = A(ϕ1ζ
l (r) − R2ζ(r)), where A is a normalization constant. Because of the

formation of bonds and consequent deformation of wave functions, better results can be
obtained by including polarization orbitals in the basis set. This is done by adding a shell
with angular momentum l + 1 to polarize the last occupied orbitals (angular momentum
l). The radial functions are obtained by solving a Schrödinger equation.106 Therefore, the
LCAO basis set is controlled by the choice of the energy shift and split-norm parameters,
which define rc and rs, respectively, as well the number of basis orbitals, and the quality
of results is improved with a larger basis set.
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2.5.2.1 Solution of the time-dependent Kohn–Sham Equations

With the LCAO basis, the time-dependent KS equation (2.45) leads to

i
∂ci
∂t

= S−1Hci , (2.59)

where H corresponds to the the hamiltonian defined by the right side of equation (2.45).
With a small time step ∆t, the solution of this equation is given by103

ci(t+ ∆t) = exp{−i∆tS−1(t)H(t)}ci(t) . (2.60)

Numerically, the exponential propagator can be approximated with the Crank–Nicholson
method, and the equation is written in matricial form

[I + (i∆t/2)S−1(t)H(t)]cn(t+ ∆t) = [I − (i∆t/2)S−1(t)H(t)]cn(t) . (2.61)

All TDDFT simulations discussed in this thesis employed this scheme to solve the time-
dependent KS equations.

2.6 Projector augmented wave method

Strategies to enable an efficient use of plane-wave basis set have been developed
based on the separation between core and valence regions, since wave functions vary more
smoothly far from the nuclei. This distinction is based on contrasting features of the two
types of electronic states: (i) the densities of core electrons are concentrated near the
nuclei, but valence electronic density is spread to more external regions; (ii) the energy
scales of the core and valence states can be clearly distinguished; (iii) core electrons are
practically unaffected by the chemical environment or external perturbations, but valence
electrons are responsible for the formation of chemical bonds.107 Therefore, different ap-
proaches can be used to describe these two types of spatial regions, keeping the accuracy
in the description of the wave function without the need for a high computational cost for
the core regions. In the projector augmented-wave (PAW) method proposed by Blöchl,107

the plane-waves expansion is simplified by the introduction of pseudofunctions, on which
a linear transformation is applied to obtain the true orbitals. This linear transformation
acts on spheres centered on each atom, termed augmentation regions, and therefore, the
pseudofunctions match the real orbitals in the space outside the augmentation regions,
termed intersticial region.

Within the augmentation regions, each true orbital φ(r) is obtained by a linear
combination of partial waves ψi(r), which can naturally be chosen as solutions of the
Schrödinger equation for the isolated atom. Here, i denotes a simplified label for the
atomic site, angular momentum, and the different states which share the same atomic
site and the same angular momentum. For each partial wave, a pseudo-partial wave ψ̃i(r)
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is defined, such that it matches ψi(r) in the intersticial region and has a smooth behavior
within the augmentation region. As readily noted from the definitions, the true orbital
within the augmentation regions is a linear combination of the pseudo-partial waves ψ̃i(r)
with the same coefficients of the linear combination of partial waves ψi(r). Therefore, each
orbital φ(r) can be related to a pseudo-orbital φ̃(r) through

φ(r) = φ̃(r)−
∑
i

ciψ̃i(r) +
∑
i

ciψi(r) . (2.62)

To determine the ci coefficients, projector functions p̃i(r) are defined, one for each
ψ̃i(r) to satisfy the relation∫

p̃∗i (r)ψ̃j(r)d3r = δij ,within the augmentation region , (2.63)

and as a result the coefficients are given by

ci =
∫
p̃∗i (r)φ(r)d3r . (2.64)

Therefore, the relation between the orbital and pseudo-orbital is written as

φ(r) = φ̃(r) +
∑
i

[(∫
p̃∗i (r′)φ(r′)d3r′

) (
ψ(r)− ψ̃(r)

)]
, (2.65)

and this relation defines the linear transformation that maps the pseudo-orbitals to the
real orbitals. Since the ψ(r) and φ̃(r) are identical in the interstitial region, the transforma-
tion acts only within the augmentation regions. In the PAW method, the pseudo-orbitals
φ̃(r) are the variational quantities which are expanded in the plane-wave basis, which
requires smaller basis than the true orbitals due to the smoothness of the pseudo-orbitals.
The states of core electrons are described in a similar way, and core orbitals are given by

φc(r) = φ̃c(r) + ψc(r)− ψ̃c(r) , (2.66)

where no projector functions must be defined and the coefficients in the expansion are
equal to 1. In the frozen core approximation, the states of core electrons are fixed to the
isolated atoms for which the orbitals were generated.

2.7 Computational implementation

Several computational packages capable of performing DFT calculations are cur-
rently available and among their differences, those related to the approach for the so-
lution of the KS equations can be highlighted, such as the employed basis set and the
treatment of core electrons. The largest part of this thesis addresses static properties of
materials within DFT, which correspond to the results discussed in Chapters 3, 4, and 5.
For that, the calculations were performed with the Vienna Ab initio Simulation Package
(VASP),108–110 which is among the most popular and reliable DFT codes. In VASP, the KS
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orbitals are expanded in a plane-wave basis set and the KS equations are solved with the
PAW method within the frozen core approximation, for which optimized PAW projectors
are available. The calculations with VASP employed the GGA-PBE exchange-correlation
functional and D3 vdW correction (except where indicated otherwise). A set of calcula-
tions was performed with the hybrid functional HSE06 to obtain the band gaps discussed
in Chapter 4. Due to the variety of systems investigated and to optimize computational
efficiency along with accuracy, crucial parameters of the calculations, such as the energy
cutoff of the plane-wave basis and the k-points mesh for integrations in the BZ, were
defined separately for each part of the study, specifically for each chapter from 3 to 5.
The detailed computational parameters are provided in Appendix A.

The last part of the thesis, presented in Chapter 6, addresses the dynamics of
charge carriers in excited states employing TDDFT. The results discussed in this chapter
were obtained with the code Spanish Initiative for Electronic Structure with Thousands
of Atoms (SIESTA),106 and The Time Dependent Ab Initio Package (TDAP),103 an im-
plementation of TDDFT coupled with molecular dynamics built on top of SIESTA, was
employed to perform the TDDFT simulations. SIESTA employs a LCAO basis set for the
KS orbitals, with the features discussed in Section 2.5.2, and these calculations employed
the LDA-PZ81 exchange-correlation functional, which provides a satisfactory description
of the structural properties of the studied systems. Further details on the employed basis
set, and other computational parameters are given in Appendix A.
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3 SIZE EFFECTS ON THE PROPERTIES OF TWO-DIMENSIONAL MoSe2

Because of the immense potential of TMDs nanoparticles for diverse technological
applications, there is great interest in understanding how to control their physico-chemical
properties. This chapter addresses the role of nanoparticle size. It starts with a brief dis-
cussion of structural and energetic properties of bulk and monolayer MoSe2, a prototype
example of the widely studied TMDs of group 6. The discussion is focused on the compar-
ison between the three most important layer polytypes (2H, 1T, and 1T′) and is followed
by an analysis of finite-size 2D systems, herein termed nanoflakes. The role of nanoflake
size in the relative phase stability is demonstrated, and the major factors that lead to this
trend are examined, along with the electronic properties of the systems.

3.1 Structural and energetic properties of bulk MoSe2

The most prominent structural phases of TMDs with TMs from group 6 (Mo, W)
are the 2H, 1T, and 1T′ layered polymorphs,31,33 which are depicted in Figure 1, and
whose main features were described in section 1.2. With respect to crystal structures, the
2H polytype has hexagonal lattice and belongs to P63/mmc space group, with 2 MQ2

formula units (f.u.) in the unit cell (Z = 2);112 the 1T crystal has hexagonal lattice,
P 3̄m1 space group, and Z = 1,112 whereas the 1T′ crystal structure is formed of an
orthorhombic lattice, space group Pnm21, and Z = 4, which is the ground state structure
of WTe2 · 113 The different coordination environments of the TM atoms within the layers
are indicated by the polyhedra in the figure, namely trigonal prismatic, octahedral, and
distorted octahedral for the 2H, 1T, and 1T′ polytypes, respectively. The displacement
pattern of TM atoms rows that appears throughout the layers of the 1T′ polytype is also
highlighted.

The equilibrium lattice parameters calculated for the 2H, 1T, and 1T′ phases of
MoSe2 are presented in Table 1. The results for the 2H phase can be compared with
experimental data,114 yielding relative differences of 0.9 % for a0 and b0, while b0 is over-
estimated by only 0.2 %. This good agreement reinforces the importance of including the
dispersion correction on top of the DFT-PBE calculation to describe layered solids, as
c0 (layer stacking direction) is overestimated by 11.7 % if no such correction is included,
despite the good accuracy for a0 and b0 (relative error of 0.8 %). Such trends are expected,
because vdW interactions are important for interlayer bonding, whereas intralayer inter-
actions are dominated by chemical bonds.

The nearest neighbor distances within the hexagonal planes of Mo atoms are prac-
tically the same in 2H and 1T, and are given by the respective in-plane lattice parameters
b0. However, in 1T′, Mo–Mo distances differ from b0 due to the displacements of Mo
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Figure 1 – Representation of bulk crystal structures of the 2H, 1T, and 1T′ polytypes of
TMDs. For each polytype, the lateral view of stacked layers is shown in the
top row and a top view of single layer is shown in the bottom row.

Source: Adapted from BESSE et al.111

atoms rows, and are 4.03Å and 2.80Å. A similar trend is observed for the vertical dis-
tance between Mo atoms planes, which is given by c0/2 for 2H and 1T′, and by c0 for 1T.
This distance is very similar in 1T and 2H (difference of 0.03Å), but in 1T′ it is 0.20Å
smaller than in 1T. Thus, the distortion in the layers allows reduced interlayer distances,
because the corrugations generated in Se planes lead to smaller charge density overlap.
The difference of coordination environments has little effect on the Mo–Se bond lengths,
which do not change considerably from one structure to another: 2.53Å in 2H, 2.55Å in
1T, and an average of 2.56Å in 1T′. Based on the relative total energy, the 2H phase
is the most stable among the three polytypes, as expected from the well-known stability
trend based on TM d electron count and orbital splitting induced by symmetry,31,33 al-
ready discussed in Section 1.2. The 1T and 1T′ phases are higher in energy than 2H by
0.68 eV/f.u. and 0.34 eV/f.u., respectively.

Table 1 – Equilibrium lattice parameters of MoSe2 in the 2H, 1T and 1T′ phases, calcu-
lated with PBE+D3.

Polytype a0(Å) b0(Å) c0(Å) α(°) β(°) γ(°)
2H 3.28 3.28 12.96 120 90 90
1T 3.27 3.27 6.51 120 90 90
1T′ 5.94 3.28 12.63 90 90 90

Source: BESSE et al.111



55

3.2 Relative stability of MoSe2 monolayer phases

Isolated monolayers have essentially the same structural features of monolayers in
the bulk crystals, for instance, Mo–Se bond lengths are increased by only 0.01Å in 1T and
1T′, whereas in 2H it is increased by less than 0.005Å. Likewise, the relative stability of
monolayer phases has the same trend of the bulk phases, with very similar relative energies,
namely 0.33 eV/f.u. and 0.70 eV/f.u. for 1T′ and 1T, respectively, relative to the ground
state 2H. These results are expected because the interlayer interactions are dominated by
weak vdW forces, and therefore, it can be expected that a good description of the two-
dimensional systems, that is, without layer stacking, can be achieved without including
the vdW dispersion correction in the total energy. In fact, bond lengths of monolayer
structures optimized with PBE and without the D3 vdW correction differ from PBE+D3
results by less than 0.003Å, and relative energies change by less than 13 meV/f.u. Thus,
all remaining analyses of two-dimensional systems discussed in this chapter were safely
performed without employing the D3 vdW correction.

The lower energy of the 1T′ phase in comparison with 1T can be described based
on the Peierls transition.115 This transition model was originally developed for a one-
dimensional chain of atoms, demonstrating that the formation of dimers decreases the
energy of the system, due to the breaking of degeneracies in energy levels and creation of
a band gap, with a decrease in the energy of occupied electron states. A similar property
is clearly demonstrated by the MoSe2 octahedral monolayers. The 1T monolayer can be
described with the same orthorhombic supercell of the 1T′ phase, as depicted in Fig-
ure 2(a), and the band structures for 1T and 1T′ monolayers across the Brillouin Zone
of each corresponding orthorhombic cells are shown in Figure 2(b), along with the total
density of states (DOS). In the band structure of 1T, there are degeneracies in the high
symmetry point Y, which is on the edge of the reduced Brillouin zone. These degeneracies
are broken by the structural distortions of the 1T′ monolayer, which consist mainly of
the displacements of Mo atoms rows throughout the structure, causing a decrease in the
energy of occupied electron states, analogous to the one-dimensional Peierls transition
model. This is noted by comparing the band structures of Figure 2(b), for instance with
the band gap of around 3 eV that is created at the Y point in the band structure of 1T′ and
consequent decrease in the density of states at the Fermi level. Therefore, the decreased
energy contribution from the electronic bands causes the energetical stabilization of the
1T′ phase in comparison with 1T.

The distortion mechanism of MoSe2 octahedral monolayers causes the 1T phase
to be unstable upon geometrical relaxations, as schematized in Figure 3(a). The 1T con-
figuration is preserved after relaxation only if a 1×1 hexagonal unit cell is employed since
the periodic boundary conditions of the lattice constrain the ions displacements and do
not allow the formation of the pattern o distances between Mo rows. On the other hand,
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Figure 2 – (a) Schematics of the relation between the hexagonal unit cell of 1T mono-
layer and the orthorhombic unit cell of 1T′ monolayer, where an orthorhombic
supercell for 1T is highlighted in the representation of four 1T hexagonal unit
cells. (b) DFT-PBE band structures of the 1T and 1T′ monolayers with or-
thorhombic cell. Energy levels are aligned with respect to the vacuum level,
and dashed horizontal lines indicate the Fermi energy.

Source: Adapted from BESSE et al.111

if hexagonal 2×2, hexagonal 3×3, and orthorhombic 2×1 supercells are employed for the
1T monolayer, a distorted configuration is obtained, in line with results reported for MoS2
monolayers.116 Due to the lattice constraints of each supercell, among the cases investi-
gated, only the hexagonal 2×2 and orthorhombic 2×1 cells generate the same structural
configuration and energy of the 1T′ monolayer. Since no analogous distortion mechanism
exists for the trigonal prismatic structure, no structural distortions are observed in relaxed
2H monolayers.

3.3 Effect of nanoflake size on the relative phase stability

To study finite two-dimensional MoSe2 systems and the role of size in their prop-
erties, (MoSe2)n nanoflakes with n = 15, 63, 108, 130, 154, and 192 were constructed as
carved fragments from 2H and 1T monolayers. These fragments have zigzag edges that
are all Se-terminated in 1T, whereas in 2H-derived fragments both Mo-terminated and
Se-terminated edges are found, as indicated in Figure 3(b) for the example of n = 108,
whereas remaining sizes are shown in Figure 4. Due to the instability of 1T monolayers,
1T nanoflakes are strongly reconstructed after structural relaxations done by minimiza-
tion of atomic forces. As can be seen in Figure 3(b) for n = 108, and in Figure 5 for
the other sizes, the 1T-derived nanoflakes adopt the structural configuration of the 1T′

phase. Therefore, 1T monolayer fragments directly evolve to 1T′ nanoflakes, and there
is no need to include further 1T′ nanoflakes built from fragments of 1T′ monolayer. As
no such structural instability exists for the 2H monolayer, structural relaxations in 2H
monolayer fragments cause no noticeable reconstructions in the core of the nanoflakes,
but the Mo-terminated edges are strongly reconstructed. The Mo atoms are displaced to
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Figure 3 – (a) Effect of structural relaxation on 2H, 1T, and 1T′ monolayers for different
cell sizes. (b) (MoSe2)108 nanoflakes before structural relaxation (2H and 1T
monolayer fragments), and after relaxation (2H and 1T′ nanoflakes).

Source: Adapted from BESSE et al.111

the interior of the nanoflake and the closest Se atoms are displaced outwards. The same
reconstruction pattern, which can be described as a self-passivation of metal atoms, has
been reported from calculations of MQ2 nanoribbons.117 Therefore, hereafter, the carved
fragments after relaxation of 2H and 1T monolayers will be referred to as 2H and 1T′

nanoflakes, respectively.

The relative total energies of relaxed 2H and 1T′ nanoflakes as a function of size
are shown in Figure 6(a). It is observed that the relative energy between the phases is
strongly affected by the nanoflake size, and that contrary to the bulk and monolayer
results, the 1T′ phase has the lowest energy for nanoflakes with n < 150. Therefore, a 1T′

→ 2H phase preference transition is shown to be induced by the increase of nanoflake size.
To gain further insight into the effect of size on the relative stability of the phases, the
relative energy of the relaxed nanoflakes as a function of size was fitted with a function of
form ∆E2H−1T′ = (−0.32 + ae−bn)(eV/f.u.), where −0.32 eV/f.u. is the energy difference
between 1T′ and 2H monolayers, i.e. the function is constrained to converge to this value
for n → ∞. The coefficients obtained by the fitting were a = 1.074 eV/f.u. and b =
0.008/f.u., and based on this, relative energies within a 10 % difference from the monolayer
limit are obtained with n > 420 f.u. The relative energy of unrelaxed nanoflakes (2H
and 1T monolayer fragments) were also evaluated, Figure 6(b), showing that 1T has
the lowest energy only for n = 15. Therefore, the Peierls distortions play an important
role to determine the relative energy trend among nanoflakes and the size-induced phase
transition.

The effect of nanoflake size on the relative energy of the phases can be explained
based on the difference of their edge formation energies since the relative contribution from
edge energy to the total energy of the nanoflake decreases as n increases. Here, the edge
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Figure 4 – Atomic structural configurations of the 2H-(MoSe2)n nanoflakes with n = 15,
63, 130, 154, 192. On the left column, are shown the initial configurations,
obtained as carved fragments of the 2H monolayer, and on the right are shown
the resulting configurations after structural relaxation. Mo and Se atoms are
represented by the black and yellow spheres, respectively.

Source: By the author.

energy per f.u. Eedge is estimated by comparing the total energy of the nanoflakes with
the total energy of the monolayers, En

edge = En
nanoflake − Emonolayer, where En

nanoflake is the
total energy per f.u. of the relaxed nanoflake with n f.u. and Emonolayer is the total energy
per f.u. of the monolayer, in which 2H nanoflakes were compared with the 2H monolayer
and 1T′ nanoflakes were compared with the 1T′ monolayer. The results obtained with this
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Figure 5 – Atomic structural configurations of the 1T- and 1T′-(MoSe2)n nanoflakes with
n = 15, 63, 130, 154, 192. On the left column, are shown the initial configu-
rations, obtained as carved fragments of the 1T monolayer, and on the right
are shown the resulting configurations after structural relaxation. Mo and Se
atoms are represented by the black and yellow spheres, respectively.

Source: By the author.

analysis are shown in Figure 6(c) and show that 2H nanoflakes have higher Eedge than
1T′ nanoflakes, thus corroborating the role of difference of edge formation energy in the
size-induced phase preference transition.

One of the major features of the structural phase diversity in 2D MoQ2 is that these
compounds are semiconductors in the 2H phase and metals in 1T and 1T′.31 Therefore,
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Figure 6 – (a) Relative total energies of 2H and 1T′ relaxed (MoSe2)n nanoflakes as a
function of n. (b) Relative energy between unrelaxed (MoSe2)n nanoflakes (2H
and 1T monolayer fragments) as a function of n. (c) Edge formation energy of
2H and 1T′ relaxed (MoSe2)n nanoflakes as a function of n; the model employed
to estimate the edge formation energy is described in the text.

Source: Adapted from BESSE et al.111

it is also important to investigate how the size effects influence the electronic properties
of the nanoflakes. To perform this analysis the DOS of the systems were obtained, and
results for some examples of nanoflakes sizes, as well as for 2H and 1T′ monolayers are
shown in Figure 7. The absence of energy gap in 1T′ monolayer is also observed for the 1T′

nanoflakes, and the DOS of 1T′ nanoflakes have the same general characteristics as the
1T′ monolayer. On the other hand, although the 2H monolayer has a non-zero band gap,
the 2H nanoflakes exhibit a metallic-like density of states, which is in contrast with the
expected trend of band gap increase due to quantum confinement effects. This is caused
by the existence of edges in the nanoflaes, which can be observed with the distinction of
edge and core atoms adopted for the DOS analysis. The electronic states of 2H nanoflakes
that are within the energy range of the 2H monolayer band gap are mainly derived from
edge Mo d- and edge Se p-states. On the other hand, the contributions from core atoms
are not very relevant in this energy range and are very similar to the DOS of the 2H
monolayer.

3.4 Summary

The bond lengths and coordination environments of MoSe2 in 2H, 1T, and 1T′

phases are essentially the same in bulk and monolayers because interlayer bonding is
dominated by weak vdW interactions. Similarly, the relative stability between the phases
is also not modified by layer stacking, with 2H as the ground state structure. The lower
energy of the distorted 1T′ structure compared to 1T can be explained based on the
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Figure 7 – Local density of states of 2H and 1T′ (MoSe2)n nanoflakes, n = 63, 130, 192,
and of 2H and 1T′ monolayers. The contributions are distinguished between
core atoms and edge atoms. Here, edge atoms are defined as the atoms that
form the outermost rows of each chemical species (Mo and Se). The energy of
the occupied state with the highest energy is set to zero.

Source: Adapted from BESSE et al.111

Peierls transition mechanism because the displacements of Mo atoms rows throughout
the 1T′ monolayer open a band gap in the edge of the Brillouin zone and reduce the
density of states at the Fermi level. Carved fragments of 2H and 1T monolayers were
employed to study (MoSe2)n nanoflakes, and because of the instability of the 1T phase,
octahedral nanoflakes naturally adopt the distorted 1T′ configuration upon structural
optimization. In contrast to bulk and monolayer, 1T′ is the lowest energy phase for small
size (n < 150) (MoSe2)n nanoflakes, and therefore, the nanoflake size has an important
effect on the relative stability of trigonal prismatic and octahedral phases. A size-induced
phase preference transition was shown to occur around n = 150, which is influenced by
the difference of edge formation energies of the two phases, as the 2H phase has larger
edge energy than 1T′. The presence of edges in the 2H phase leads to the formation of
metallic-like electronic states, whereas in the 1T′ no difference is observed between edge-
and core-derived DOS, which both resemble the general features of the 1T′ monolayer
DOS.
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4 DICHALCOGENIDES OF Fe-, Co-, Ni-, AND Cu-GROUPS

Research on 2D TMDs has mostly focused on compounds with early TMs, specially
Mo and W, because they are readily obtained in layered phases. However, novel 2D
materials have been obtained beyond traditional layered solids, and there has been growing
interest in TMDs based on other TMs. Therefore, the screening and understanding of the
physical properties of 2D TMDs based on late TMs, can help to guide the design of
novel 2D materials. Aligned with that, this chapter presents an exploration of the MQ2

compounds withM = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au, and Q = S, Se,
and Te. The discussion addresses the structural properties and relative stability of several
phases, the characterization of interlayer binding in layered phases, and the electronic
band gaps of the materials, to understand the effects of structure dimensionality and the
band offsets trends among monolayers.

4.1 Crystal structures

Beyond the layered polytypes discussed in Chapter 3 (2H, 1T, and 1T′), MQ2 com-
pounds withM from Fe-, Co-, Ni-, and Cu-groups can be found in other crystal structures,
including phases that are not formed by the stacking of weakly interacting layers. To com-
pare the stability and properties of layered and non-layered phases, a set of 11 crystal
structures, represented in Figure 8, was employed. This set is composed of the 2H, 1T, and
1T′ polytypes, plus all crystal structures experimentally reported for any MQ2 composi-
tion (with M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au, and Q = S, Se, and
Te) in two crystal structure databases, the Inorganic Crystal Structure Database,119 and
Crystallography Open Database.120 The layered phases in this set, hereafter termed 2D
structures, also have the PdS2-type structure,121 and the calaverite structure of AuTe2.122

The PdS2-type structure is composed of puckered MQ2 layers formed of pentagonal rings
with four M –Q bonds and one Q –Q bond. The calaverite structure can be described as
a distorted 1T structure, where the angle of the lattice vector in the stacking direction
slightly deviates from 90° and the bond lengths in the MQ6 octahedra are not equal.

The crystal structures that are not formed by layer stacking are here referred to
as 3D structures. The pyrite phase is widely observed among MQ2 compositions with
3d metals from all the selected TM groups,51 and it can be generated by reducing the
interlayer distances of the PdS2-type structure.123 A distorted-pyrite configuration pro-
posed for FeS2124 was also included in the set. The marcasite structure, also reported for
several TMDs, such as FeS2, FeSe2 and CuSe2,52,125 has some similarities with pyrite, as
both can be described in terms of MQ6 octahedra with tetrahedrally coordinated sulfur
atoms. However, pyrite has only corner-sharing MQ6 octahedra, and marcasite has edge
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Figure 8 – Depiction of MQ2 crystal structures, with space groups indicated in parenthe-
ses. Chalcogen atoms are represented by yellow spheres, and metal atoms are
represented by green spheres in layered crystals and blue spheres in non-layered
crystals. The dashed lines indicate the primitive cells.

Source: BESSE; LIMA; DA SILVA.118

sharing in one of the unit cell directions. The structures adopted by Ir dichalcogenides,
IrS2-type,126 and IrTe2-type,127 have a framework of interconnected MQ6 octahedra with
low compactness, which is also a characteristic of the krennerite structure, found for of
AuTe2.128

4.2 Structural properties and relative phase stability

Systems were set up with the 36 MQ2 compositions in the 11 crystal structures
described in the previous section, and their equilibrium geometries were obtained by
minimization of stress tensor and forces on atoms. In Appendix B, the equilibrium lattice
parameters and relative energies of all phases are listed for all compositions, as well as
available experimental lattice parameters. Compared to experimental results, all relative
differences are lower than 3 %, except for 1T-NiTe2, 1T-PtQ2, and calaverite-AuTe2, that
have relative errors between 3 % and 9 %, mainly related to underestimated interlayer
distances. On average, relative error is of 2.0 %, as commonly found with the employed
level of calculation.

There are systems in which the structural optimization leads to significant modi-
fications of the structural configurations, and the equilibrium geometries do not keep the
general features of the prototypes shown in Figure 8. For instance, the PdS2-type struc-
ture is unstable for most compositions and is relaxed to the pyrite structure through the
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compression of interlayer spacing, except for PdS2, PtS2, PtSe2, AuS2 and AuSe2. This
trend can be understood based on the mechanism of stabilization of the PdS2-type struc-
ture.123 The formation of octahedral environments in the pyrite structure is favored by
bonds with high ionicity and counterbalanced by the repulsion of orbitals from adjacent
layers. Therefore, the layered phase in stabilized in the cases which haveM dz2 orbitals of
larger spatial extension and lower ionicity. Another example is the 1T′ structure, which
is preserved only in systems with M = Fe, Co, Ni, and the remaining cases adopt the 1T
configuration. The 1T′ structure is not stabilized for all compositions because the Peierls
mechanism related to the displacements of M atoms rows depend on the occupation of
the electronic bands to effectively decrease the electronic energy, as discussed in Section
3.2. The equilibrium 1T and calaverite structures are virtually identical for the majority
of compounds, because calaverite tilting angles deviate from 90° by less than 0.5° and
energy differences are smaller than 10 meV/f.u, but exceptions are found among most of
the compounds with M of the Cu-group. Furthermore, the distorted-pyrite model yields
no considerable differences to the pyrite structure, as energy differences are smaller than
1 meV/f.u., and lattice parameters differ by less than 0.2 %.

The lowest energy structures of all compounds are shown in Figure 9. In agreement
with experimentally reported crystal structures, the pyrite structure is the most common
among the studied materials. Compounds with Fe and Au energetically favor the mar-
casite and krennerite phases, respectively, and those with M of Co-group have lowest
energy in IrS2- or IrTe2-type structures. Layered phases are favored for Ni-group TMDs,
as expected based on the experimentally reported phases for these compounds,31,50,126 and
1T/calaverite geometry is the most common, as PdS2-type occurs only for PdS2. Besides
these compounds, the calaverite structure is also the one with lowest energy for CuTe2.
The role of chemical composition on the bond lengths of the lowest energy phases was
analyzed via the average weighted bond lengths (dav),129 and the results are summarized
in Figure 10(a). As expected, the bond length increases as the chalcogen atomic radius
increases.130 However, the trends for M substitutions are not well defined, which can be
understood based on the lower amplitude of atomic radii among the studied M compared
to Q. For instance, reference atomic radii are 1.00Å, 1.15Å, and 1.40Å for S, Se, Te,
respectively, but among all TMs it varies only between 1.30Å and 1.40Å, except for Ag
(1.60Å).130 Thus, bond length variations due to M substitutions can be more sensitive
to other effects, such as the local coordination environment and charge transfer in the
different phases.

To obtain further insights into the stability of 2D crystals, and to study their en-
ergetic and electronic properties and contrasts with the 3D structures, the lowest energy
2D and 3D structures of each compound were selected as examples. As discussed above,
CuTe2 and all compounds withM from Ni-group, except NiS2, have 2D crystals as lowest
energy crystal structures, which are PdS2-type for PdS2 and 1T/calaverite for the remain-
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Figure 9 – Crystal structures with the lowest total energy for each compound: marcasite
for FeS2, FeSe2, and FeTe2; pyrite for RuS2, RuSe2, RuTe2, OsS2, OsSe2, OsTe2,
CoS2, NiS2, CuS2, CuSe2, AgS2, and AgSe2; IrTe2-type for CoSe2, CoTe2,
RhSe2, RhTe2, and IrTe2; IrS2-type for RhS2, IrS2, IrSe2; 1T for NiSe2, PdSe2,
and PtTe2; calaverite for NiTe2, PdTe2, PtS2, PtSe2, and CuTe2; krennerite
for AgTe2, AuS2, AuSe2, and AuTe2; PdS2-type for PdS2.

Source: BESSE; LIMA; DA SILVA.118

ing. For these compounds, the lowest energy structure among 3D crystals is IrTe2-type for
NiSe2, NiTe2 and PtS2, pyrite for PdS2 and PdSe2, and krennerite for PdTe2, PtSe2, PtTe2
and CuTe2. The other compounds have the 3D structures of Figure 9 as the lowest energy
structures, and their lowest energy 2D structures are 1T′ structure in the cases with M
from Fe-group, and 1T/calaverite in the remaining compositions. All the lowest energy
2D structures have octahedral metal coordination environments, except PdS2. Therefore,
the intralayer trigonal prismatic coordination of TM atoms that occurs in the 2H phase,
is not energetically favored in comparison with the octahedral coordination for the late
TMs, which is in contrast with the MoQ2 and WQ2 materials.

The relative energies between the lowest energy 2D and 3D structures are displayed
in Figure 10(b), which highlights the energetic preference for 2D structures in Ni-group
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Figure 10 – (a) Average weighted bond lengths of the lowest energy crystal structures
of MQ2 compounds, as a function of the chalcogen species. The color and
filling of symbols denote the transition metal species. (b) Relative energy
between the lowest energy layered structure and the lowest energy non-layered
structure of each MQ2 compound. Symbol shape and color indicate the M
period and Q species, respectively. Lines are drawn as guides to the eye, and
their styles (solid, dashed, dotted) indicate the M period.

Source: Adapted from BESSE; LIMA; DA SILVA.118

compounds and CuTe2. The 2D−3D relative energy decreases as Q is changed from S to
Se to Te, mainly because of the decrease of bond strength as atomic radius increase, due
to reduced ionic character. There is a trend of increased stabilization of 2D structures
as M varies between Fe-, Co-, and Ni-groups, which is not followed as M goes from Ni-
group to Cu-group. However, this trend must be understood beyond the simple distinction
between 2D and 3D structures, because of the variety of crystal phases, specially among
the 3D structures. For some compounds, the distinction provides an accurate picture, for
instance, the FeQ2 compounds, for which all 3D structures (except krennerite) have lower
energy than all 2D structures, and PtQ2, that has 2H as the only 2D structure higher
in energy than the 3D structures. However, a different situation is observed for AuQ2,
for which krennerite is the unique 3D structure lower in energy than the 2D structures.
Therefore, the energetic preference for a structural phase, more than the dimensionality
of the structure framework (2D or 3D), is the determinant factor for the relative stability
trends among the compounds and crystal phases investigated here.

4.3 Interlayer Binding

The main interest in layered solids in the context of this thesis is to investigate
potential novel 2D materials. For that, characterizing the interlayer binding is of great
importance, as it can help to assess the possibility to exfoliate ultrathin sheets from 2D
crystals,13,14 and the exfoliation energy (Eexf ) is an important parameter, which measures
the energy required to peel one layer of the crystal surface. It has been shown that Eexf can
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Table 2 – Magnitude of exfoliation energies (Eexf ) of the lowest energy MQ2 layered crys-
tals, obtained with PBE+D3.

Material Eexf (meV/Å2) Material Eexf (meV/Å2)
1T′-FeS2 24.5 1T-NiS2 37.8
1T′-FeSe2 31.0 1T-NiSe2 47.8
1T′-FeTe2 36.0 1T-NiTe2 54.6
1T′-RuS2 28.8 PdS2-type-PdS2 31.9
1T′-RuSe2 32.0 1T-PdSe2 49.4
1T′-RuTe2 37.8 Calaverite-PdTe2 58.0
1T′-OsS2 29.9 Calaverite-PtS2 34.5
1T′-OsSe2 32.5 Calaverite-PtSe2 39.8
1T′-OsTe2 35.7 1T-PtTe2 47.5
1T-CoS2 58.3 Calaverite-CuS2 104.8
1T-CoSe2 56.4 Calaverite-CuSe2 104.9
Calaverite-CoTe2 55.2 Calaverite-CuTe2 89.2
Calaverite-RhS2 65.7 Calaverite-AgS2 123.2
1T-RhSe2 63.9 Calaverite-AgSe2 111.8
Calaverite-RhTe2 62.6 Calaverite-AgTe2 96.4
1T-IrS2 55.6 1T-AuS2 75.6
1T-IrSe2 60.2 Calaverite-AuSe2 83.3
Calaverite-IrTe2 63.0 Calaverite-AuTe2 84.1

Source: By the author.

be assumed to have the same value of the interlayer binding energy,15 that is, the energy
difference between a monolayer in the crystal and an isolated monolayer. Therefore, Eexf
was calculated using

Eexf = (Ebulk
cell /N)− Emonolayer

S
, (4.1)

where Ebulk
cell is the total energy per unit cell,N is the number of layers per unit cell (1 for 1T

and calaverite, and 2 for 1T′ and PdS2-type), and Emonolayer is the total energy of a single
isolated monolayer. The Eexf of the lowest energy 2D crystals of each compound were
evaluated and the results are shown in Table 2. In systems with weakly interacting layers,
vdW forces play an important role in interlayer binding, however, no clear correlation
was found between the magnitude of Eexf and the polarizability of the free atoms of
M and Q in the composition,131 which is in line with literature data for other layered
crystals.15 Furthermore, the wide range of observed Eexf values, from 24.5 meV/Å2 to
111.8 meV/Å2 indicates that other types of interactions also have important contribution
to the magnitude of the exfoliation energy.

All studied materials have larger exfoliation energies than the layered TMDs of Ti-,
V-, and Cr-groups for results obtained with the same methodology, which are all between
10 meV/Å2 and 22 meV/Å2.132 Other theoretical studies of vdW layered crystals have
employed different methods to address the dispersion interactions. It has been found that
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(a) (b)

Figure 11 – (a) Magnitude of exfoliation energies of the lowest energy 2D structures of the
MQ2 compounds, as a function of the magnitude of average effective charge
on the transition metal atoms. The dashed red line is a linear fit for materials
with exfoliation energy below 40 meV/Å2 (R = 0.780). (b) Ratio between the
exfoliation energy calculated from dispersion energy term (Eexf((vdw)) and
from the total energy (Eexf ), as described in the text.

Source: Adapted from BESSE; LIMA; DA SILVA.118

Eexf is close to 20 meV/Å2 for a set of experimentally reported materials.15 A large scale
screening of potential 2D crystals classified materials with Eexf up to 30 meV/Å2 as "easily
exfoliable" and up to 130 meV/Å2 as "potentially exfoliable", based on the magnitude of
change in interlayer distances caused by the use of vdW functionals.14 However, the values
of Eexf can vary greatly depending on the method adopted to describe the dispersion
interactions. For instance, here it was found that PtS2 has Eexf = 34.5 meV/Å2, and
literature data with other methods vary between 10.3 meV/Å2 and 29.4 meV/Å2.15

DFT results for layered TMDs with M from Ti-, V-, and Cr-groups have shown a
correlation between Eexf and the magnitude of charge transfer between M and Q within
the layers, which has been explained as an effect of interlayer Coulomb repulsion due to
the accumulation of negative charge in the adjacent planes of Q atoms.132 To investigate
this property, Bader charge analysis133 was employed to perform the charge partition in
the systems listed in Table 2. In this approach, the space is divided in Bader volumes
by surfaces of zero flux of the gradient of electron density n(r), that is, at each surface
point ∇n(r) · û = 0, where û is the unit vector perpendicular to the surface. Each Bader
volume encloses a single electron density maximum associated with the position of an ion.
Therefore, this scheme allows to decompose the electron density into contributions from
each atom by integrating the density over the Bader volumes, yielding Bader charges of
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Figure 12 – Color map of the electron localization function in planes that contain Q atoms
of adjacent layers in the calaverite structures of PtS2, RhS2, and CuS2.

Source: Adapted from BESSE; LIMA; DA SILVA.118

the atoms, QB,i. The Bader charges in the heterobilayers were obtained with the Bader
Charge Analysis code,134 and effective charges Qi

eff for each atom were obtained according
to Qeff,i = Zval,i−QB,i, where Zval,i is the number of valence electrons included explicitly
in the DFT calculation.

The results of Eexf and average effective charge on M for the lowest energy 2D
crystals are plotted in Figure 11(a), where it can be seen that a correlation between the
Eexf and charge transfer does not exist if all systems are considered. However, a linear
decrease of Eexf with increasing magnitude of charge is observed in the subset of materials
that have Eexf below 40 meV/Å2, which are mostly the materials withM from the Fe- and
Ni-groups. This reinforces the notion that for the systems with high Eexf the interlayer
binding has an important contribution from non-vdW interactions. The magnitude of
charge transfer is directly related with the effect of interlayer repulsion only in systems
with interlayer binding dominated by vdW interactions, which have low values of Eexf .
The non-negligible contribution of chemical bonds to interlayer binding is also revealed
by the analysis of Eexf(vdw), defined as the value of exfoliation energy evaluated only from
the D3 dispersion energy term (EvdW = E6 +E8, as described in Section 2.4). This value
can be compared with Eexf , and the results for the ratio f = Eexf(vdw)/Eexf are shown in
Figure 11(b). The materials that have Eexf < 40 meV/Å2 show f close to one, suggesting
that interlayer binding comes predominantly from vdW interactions. In contrast, the large
fraction of Eexf that comes from the pure DFT total energy in the remaining materials
is likely associated with chemical bonds.

To obtain more insight into the interlayer binding, the bonds in selected systems
were characterized via the analysis of the electron localization function (ELF). The def-
inition of the ELF135 is based on the conditional pair probability of finding an electron
in the vicinity of another same-spin electron, given that a smaller probability of finding
a second same-spin electron indicates an increased localization of the reference electron.
The function is constructed to make 0 ≤ ELF ≤ 1, where values close to 1 corresponds
to higher localization, as found in lone pairs. This approach is capable of providing a
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useful tool for the visualization of key properties of atomic, molecular, and solid systems,
such as the atomic shells and bonding electron pairs, and the analysis of the ELF topol-
ogy can serve as guide to characterize bonding.136 Three materials with calaverite crystal
structure and diverse Eexf were selected as examples and their ELF plots are shown in
Figure 12. Of these, PtS2 has the lowest Eexf and belongs to the set of systems classified
as having weakly interacting layers, based on the preceding discussion. The ELF plot of
PtS2 shows typical features of vdW layered TMDs, such as the peak corresponding to the
electron lone pair of Q in the outermost region of the layer, and no marks of interlayer
covalent bonds. However, as Eexf increases going to RhS2 and CuS2 the values of ELF
in the interlayer region are raised, specially along the directions that connect adjacent Q
atoms, suggesting some degree of interlayer chemical bonds.

4.4 Electronic band gaps and band offsets

The lowest energy 3D and 2D structures for each composition, and the respective
monolayers, were selected as examples to study the electronic properties of the systems, as
represented by the results for RuSe2, shown in Figure 13, and the band structures for all
the compositions are provided in Appendix B. The band structures were calculated with
the HSE06 hybrid functional, keeping the geometries obtained with PBE+D3, employing
k-paths in the FBZ according to definition proposed for a standardization of data in the
literature.137 The compositions that have non-zero in at least one of the structures are
listed in Table 3, where all band gaps are indirect, with the exception of IrTe2-type-PtS2.
The 3D structures with non-zero band gaps are mostly the compounds with M from
Fe-group in the marcasite and pyrite structures. For 2D crystals and monolayers, the
semiconductor systems are the 1T′ structures with M from Fe-group and 1T/calaverite
for Ni-group TMDs. The identification of metals and semiconductors solids in these re-
sults agrees with experimental reports, except for NiS2 and PtSe2, and in these cases the
underestimation of interlayer distances and corresponding broadening of electron states
may be associated with the calculated zero band gap. As for monolayers, PtS2 and PtSe2
have been reported as semiconductors,65,138 in line with the results.

An important property of 2D TMDs of group 6 (e.g. MoS2), that played a fun-
damental role in the rise of interest in these materials, is the transition from indirect to
direct band gap as the number of stacked layers is decreased to the monolayer limit.30

This type of transition is not found in the studied systems, which can be explained by
their crystal structure, since the direct to indirect band gap transition is associated with
the orbital composition of band edge states in the 2H phase and their role in interlayer
coupling effects.64 As expected, there is a trend of band gap decrease due to layer stacking,
and this leads to metallic to semiconductor transitions mainly in Ni-group materials. In
these systems, layer stacking has a strong effect on the band gap, contrary to the Fe-group
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Pyrite-RuSe
2

1Tˈ-RuSe
2

Monolayer 1Tˈ-RuSe
2

Figure 13 – Electronic band structures of the lowest energy 3D and 2D structures and
corresponding monolayer of RuSe2, calculated with the HSE06 functional.
The top of the valence bands are shifted to zero energy.

Source: By the author.

materials and other TMDs, which has been reported for PtS2,65 and PtSe2.139

A set of 17 semiconductor monolayers was found, which band gaps that range
from 0.45 eV to 2.62 eV. These monolayers are the 1T′ monolayers of Fe-group, and the
1T/calaverite monolayers of the Ni-group, except for NiTe2, which is a metal. The band
offsets of these monolayers are depicted in Figure 14, where the VBM and and CBM were
evaluated with respect to the vacuum level, which was measured as the local electrostatic
potential at the middle of the vacuum distance in the simulation cell. The band offsets
trends of these materials can be understood based on the orbital composition of the band
edges, which are primarily of Q p-states and M d-states, where the latter predominates
at the CBM and the former predominates at the CBM. As a consequence, both the VBM
and CBM energies increase as the atomic number of Q increases for systems with sameM ,
because of the increase in the energy of Q p-states and the amplification of level splitting
that pushes VBM and CBM to higher energies, an effect that depends on the spatial
overlap of states and on the energy difference.74 As such, the upshift in the VBM is more
significant, and consequently, the band gap decreases going from S to Te. For systems
with same Q, a clear trend is also observed for the CBM offsets with the substitution of
M , since M d energy levels become more shallow as the atomic number of M increases
and this causes the CBM energy to increase. However, no clear trends are found for VBM
offsets as a function of M for systems with same Q, suggesting a competition between
the two major factors: the natural energy position of states and the role of bond lengths
in the magnitude of level splitting. For Ni-group systems, the VBM goes down in energy
as the atomic number of M is increased, showing that in these systems the dominant
role is played by the decrease of level repulsion. As a consequence of the trends in VBM
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Table 3 – Band gaps (in eV) calculated with HSE06 functional of the MQ2 compounds
in the lowest energy 3D and 2D crystals, and respective monolayers for the
compositions with non-zero band gaps.

Compound 3D crystal 2D crystal Monolayer
FeS2 2.10 0.29 1.26
FeSe2 1.52 0 1.00
FeTe2 1.06 0 0.59
RuS2 1.57 0.73 1.66
RuSe2 1.14 0.33 1.65
RuTe2 0.65 0 1.23
OsS2 0.64 1.30 1.63
OsSe2 0.45 0.89 1.65
OsTe2 0.40 0 1.48
RhS2 0.96 0 0
IrS2 1.08 0 0
IrSe2 0.67 0 0
NiS2 0 0 1.11
NiSe2 0 0 0.54
PdS2 0 0.80 2.20
PdSe2 0 0 1.10
PdTe2 0 0 0.45
PtS2 0.22 0.25 2.62
PtSe2 0 0 1.91
PtTe2 0 0 1.07
AuS2 0.51 0 0

Source: BESSE; LIMA; DA SILVA.118

and CBM offsets, the band gap increases going from Ni to Pt. Notice that PdS2 shows
deviations from some trends because it is the only system with the PdS2-type structure.

Based on the monolayers band offsets, the band alignments formed at monolay-
ers junctions can be predicted assuming the validity of Anderson’s rule. As discussed in
Chapter 1, this approach adopts the same vacuum level for the monolayers upon the
formation of the junction, and the heterobilayer band offsets are evaluated directly from
the natural band offsets of isolated monolayers. Because of the weak interlayer interac-
tions, this approximation is expected to have good validity in vertically stacked vdW
heterostructures. Therefore, the band alignments of all pairs obtained by combinations
of the semiconductor monolayers were determined according to the usual classification of
semiconductor heterojunctions discussed in Section 1.3 (type-I, type-II, and type-III), as
schematized in Figure 15, which also displays the results. The majority of band offsets
trends discussed above lead to a simultaneous increase or decrease in the VBM and CBM
energies, and therefore, the majority of junctions are classified as type-II. Type-I band
alignment is more common if a monolayer with M from the Ni-group is present, because
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Figure 14 – Valence and conduction band offsets of the 17 semiconductor MQ2 monolayers
obtained with the HSE06 functional. The VBM and CBM values with respect
to vacuum level are shown.

Source: BESSE; LIMA; DA SILVA.118

of the opposite trends in the VBM and CBM offsets found in these materials. Finally,
type-III is the less common and occurs for 10 systems. The validity of Anderson’s rule
to describe band alignments and band gaps is vdW heterostructures is discussed more
deeply in the next chapter.

4.4.1 Screening of monolayers for solar energy harvesting

TMD monolayers and vdW heterostructures are promising candidates to develop
solar cells with high power per mass ratio.55,140,141 Therefore, there is interest in finding
novel candidate materials for this application, in particular semiconductor heterojunctions
with type-II band alignments, because of the decreased recombination rate of charge
carriers caused by spatial separation of electron and holes. To screen materials for use
in photovoltaic devices, several properties must be taken into account, and here, as a
first step to perform the screening on the studied TMD monolayers, the power conversion
efficiency (PCE)55 is the only parameter employed. The PCE of the type-II junctions
was evaluated following a widely used approach for screenings of vdW heterostructures
reported in the literature,29,62 which estimates an upper limit for the PCE (η) by142,143

η =
0.65(Ed

g −∆ECBM − 0.30)
∫∞
Ed
g

P (E)
E
dE∫∞

0 P (E)dE . (4.2)

In this expression, a value of 0.65 is adopted for the solar cell fill factor, based on mea-
surements of optimized devices. The open-circuit voltage is estimated by the term in
parentheses, where Ed

g is the band gap of the material with higher VBM (donor), ∆ECBM

is the conduction band offset, and 0.30 is an empirical factor that accounts for losses
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Figure 15 – Scheme indicating the types I, II, and III of semiconductor heterojunctions,
and the classification of junctions formed with the semiconductor monolayers
from Fe- and Ni-groups TMDs. The classification was performed based on
Anderson’s rule and employed the energy levels calculated with the HSE06
functional.

Source: Adapted from BESSE; LIMA; DA SILVA.118

due to energy conversion kinetics. The integral in the numerator gives the short circuit
current, assuming 100 % external quantum efficiency, that is, all photons that shine on
the solar cell generate charge carriers. P (E) is the flux of energy from solar radiation,
which is divided per energy in the integral to obtain the number of charge carriers, and
its integration in the denominator results in the total incident solar power per area. This
is a simple approach, where only the donor band gap and conduction band offset affect
the PCE, and the purpose of its use here is mainly to compare the PCE results with those
of other TMD systems whose performance in photovoltaic devices have been more deeply
examined.

The PCE estimates for monolayers pairs with type-II junction are presented in
Table 4, where only systems with Ed

g − ∆ECBM > 0.30 eV are included. For instance,
the highest value (22.9 %) is obtained for RuTe2/OsSe2, due to the small conduction
band offset (0.02 eV) and donor band gap in the optimal range for solar light absorption
(1.22 eV). Photovoltaic cells with TMDs have been widely investigated with Mo- and W-
dichalcogenides,55 and employing the same model to estimate the PCE estimate for these
materials with DFT-HSE06 band alignments found in the literature74 results in efficiencies
of 9 % to 20 %. Therefore, more than 30 of the studied systems fall within this PCE range
or larger. This approach for PCE estimate can only serve as one preliminary criterion to
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Table 4 – Power conversion efficiency (η) predicted for heterostructures of the MQ2 mono-
layers with type-II band alignments, ordered in decreasing η. The model for cal-
culation is discussed in the text, and employed band edge positions calculated
with HSE06. Only heterojunctions with effective band gap higher than 0.30 eV
are included.

Monolayers η (%) Monolayers η (%) Monolayers η (%)
RuTe2/OsSe2 22.92 PtTe2/PtSe2 13.80 NiSe2/RuS2 7.46
RuTe2/PdS2 21.24 PtSe2/OsS2 13.43 FeSe2/FeS2 7.37
PtTe2/RuTe2 21.23 PtTe2/RuSe2 12.78 RuTe2/OsS2 7.19
PtTe2/OsSe2 20.78 RuTe2/PtS2 12.69 OsSe2/RuS2 7.18
OsSe2/PdS2 20.19 PdSe2/NiS2 12.64 PtSe2/FeS2 6.42
PdSe2/RuS2 20.16 RuSe2/RuS2 11.69 RuSe2/FeS2 5.96
NiS2/FeS2 19.36 OsSe2/OsS2 11.24 PdTe2/PtS2 5.38
FeSe2/RuS2 19.31 FeSe2/NiS2 11.17 PdTe2/FeTe2 5.08
PtTe2/PdS2 18.85 OsS2/FeS2 11.07 PdS2/FeS2 4.91
RuSe2/PtS2 18.72 PdS2/PtS2 10.88 FeTe2/OsS2 3.39
OsSe2/PtSe2 17.39 OsTe2/PtSe2 10.78 OsTe2/OsS2 3.35
OsS2/RuS2 17.22 PtSe2/RuS2 10.65 RuTe2/PdSe2 3.09
RuTe2/PtSe2 16.85 OsTe2/RuSe2 10.10 OsSe2/NiS2 2.98
OsSe2/RuSe2 16.83 PdSe2/FeS2 9.13 RuTe2/FeSe2 2.96
RuTe2/RuSe2 15.96 PtTe2/PtS2 9.02 PtTe2/OsS2 2.70
PtSe2/PtS2 15.83 OsSe2/PdSe2 8.63 RuTe2/NiSe2 2.32
OsTe2/RuTe2 15.76 OsSe2/FeSe2 8.54 OsSe2/FeS2 1.02
RuSe2/OsS2 15.46 RuSe2/NiS2 7.79 RuTe2/RuS2 0.82
OsTe2/OsSe2 15.46 PtSe2/NiS2 7.77 OsTe2/PdSe2 0.20
OsSe2/PtS2 14.74 PdS2/RuS2 7.59 OsTe2/FeSe2 0.09
OsTe2/PdS2 14.17 OsTe2/PtS2 7.58

Source: By the author.

select 2D materials to design junctions for solar cells, because the PCE can be influenced
by properties not taken into account in the model, such as light absorption coefficient,
whose accurate evaluation requires the inclusion of many-body effects. Furthermore, other
factors can affect the operation of devices, not to mention other relevant criteria for the
selection of materials, such as availability, cost, and environmental impact. Therefore,
further investigations are necessary in order determine the potential for application of the
candidate materials.

4.5 Summary

Equilibrium geometries of the 36 MQ2 TMDs compounds with M = Fe, Co, Ni,
Cu, Co, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au; and Q = S, Se, and Te were obtained for 11
crystal structures with layered (2D) and non-layered (3D) frameworks. The analysis of the
relative stability based on the total energy showed that layered structures are the most
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stable among Ni-group TMDs. Among the 2D structures, the octahedral coordination
is more energetically favored: distorted octahedral 1T′ geometry for the Fe-group com-
pounds, and the 1T or calaverite geometry for the remaining compounds, plus the crystal
structure of PdS2. The analysis of interlayer binding of the lowest energy 2D structures
indicated that Fe- and Ni-groups materials have the most easily exfoliable crystals due
to low exfoliation energy, in which interlayer binding is dominated by weak vdW interac-
tions. However, high exfoliation energies are found among the other materials, pointing
to important role of chemical bond in interlayer interactions, as also evidenced by the
analysis of the role of dispersion energy term in the exfoliation energy, and of the electron
localization function. Among the lowest energy monolayers, 17 semiconductor monolayers
were identified, namely the 1T′ monolayers of the Fe-group and the Ni-group TMDs, ex-
cept NiTe2, which are mostly 1T/calaverite monolayers. The band offsets trends of these
monolayers can be understood based on the orbital composition of band edge states, and
the mechanism of level repulsion. Based on the band offsets and assuming the validity
of Anderson’s rule, band alignments types were classified, and type-II junctions were se-
lected for the screening of power conversion efficiency, and this parameter revealed several
promising candidates for solar cells among the studied materials.
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5 INTERLAYER COUPLING EFFECTS ON THE BAND GAP OF VAN DER
WAALS HETEROBILAYERS

Studies for the theoretical design of vdW heterostructures have widely employed
Anderson’s rule to predict electronic band alignments and band gaps, because of the weak
interlayer binding. However, the electronic structure of layered systems can be sensitive to
interlayer coupling effects. Therefore, it is fundamental to develop a deep understanding
of these effects to improve the description of band gaps in vdW heterostructures. This
chapter discusses the structural, energetic, and electronic properties of vdW heterobilayers
composed of TMD MQ2 monolayers (M = Mo, Ni, Pt; Q = S, Se). The main interest is
on the understanding of interlayer coupling effects on the heterobilayers band gap beyond
Anderson’s rule.

5.1 Structural and electronic properties of monolayers

For the study of heterobilayers, a single monolayer phase was selected for each
MQ2 compound, based on the lowest energy phases discussed in the previous chapters:
the 2H phase was selected for the MoQ2 compounds, and the 1T phase was selected for
NiQ2 and PtQ2. The equilibrium lattice parameters, as well as the VBM and CBM with
respect to vacuum level, and the band gap of these monolayers at the DFT-PBE level are
presented in Table 5. All monolayers are semiconductors, with band gaps ranging from
0.14 eV to 1.79 eV, and their heterobilayers are also expected to have non-zero band gaps,
based on the difference between the lowest CBM and the highest VBM of each pair of
monolayers, except for NiS2/NiSe2, since the VBM of NiSe2 is higher than the CBM of
NiS2. Therefore, the selected systems comprise an interesting set to examine the role of
interlayer coupling on the heterobilayers band gaps.

The mechanisms of interlayer coupling are largely influenced by the features of the

Table 5 – Equilibrium structural and electronic properties of the MQ2 monolayers (M =
Mo, Ni, Pt; Q = S, Se) obtained with PBE+D3: lattice parameter (a0), VBM
and CBM with respect to vacuum level, and band gap (Eg).

Monolayer a0 (Å) VBM (eV) CBM (eV) Eg (eV)
2H-MoS2 3.17 −5.93 −4.19 1.74
2H-MoSe2 3.30 −5.29 −3.77 1.52
1T-NiS2 3.33 −5.77 −5.20 0.57
1T-NiSe2 3.52 −4.96 −4.82 0.14
1T-PtS2 3.56 −6.37 −4.58 1.79
1T-PtSe2 3.72 −5.67 −4.32 1.35

Source: BESSE et al.144
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Figure 16 – Electronic band structures of the MQ2 monolayers(M = Mo, Ni, Pt; Q = S,
Se). The local projection onto angular momentum states is indicated by the
size of the colored circles, and the vacuum level is adopted as energy reference.

Source: By the author.

monolayer wave functions, considering for instance the important role of pz states, that are
delocalized in the interlayer region.64,65 The band structures of the MQ2 monolayers are
shown in Figure 16, where the local projection onto angular momentum states is indicated.
Aside from the differences in the dispersion of the bands, the 2H and 1T monolayers also
have important differences in the wave function features of band edges. For instance, in
the 2H monolayers, there are two almost degenerated VBM states, one mostly composed
of Mo dz2- and Q pz-states at Γ, and one at K composed mainly of the in-plane Mo
dxy- and dx2−y2-, and Q px- and py-states. On the other hand, in the 1T monolayers, the
VBM at Γ is composed primarily of Q px- and py-states, and a lower-lying band at Γ,
which is the topmost valence band in the Γ–K and Γ–M lines, has a high contribution
from out-of-plane Q pz-states. Given the important role of out-of-plane pz states, such
differences can influence the interlayer coupling upon heterobilayer stacking. Furthermore,
in both monolayers phases, it can be seen that the VBM has predominant contribution
of Q pz-states, and the conduction band has a higher contribution from M d-states.

5.2 Heterobilayers equilibrium structural properties and interlayer binding

The representation of the structures of systems with periodic boundary condi-
tions is an evident choice for crystals, but its application has some particularities for
the vertically stacked vdW heterostructures. In these systems, the structures of different
monolayers must be defined by the same set of lattice vectors. For two stacked monolayers
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(a) (b)

30º

Figure 17 – (a) Depiction of two hexagonal lattices with a 4 : 3 lattice parameter ratio,
distinguished by the color and size of circles that represent lattice points.
The dashed lines indicate the cells, including a common supercell for both
lattices. A common cell containing one unit of the larger cell can be obtained
if a small strain is employed. (b) In this case, one of the lattices is rotated by
30°, allowing to obtain a smaller common supercell, with a strain of around
0.5 % in both lattices.

Source: By the author.

with same type of lattice, as in the systems studied herein, one first approach is applying
strain on both monolayers so that both lattice parameters are made to coincide. However,
large strains should be avoided, because the original electronic properties of the monolay-
ers, such as band alignments and bands gaps, can be severely modified. Within the set of
monolayers investigated, lattice parameters mismatches between monolayers range from
0.9 % to 17.3 %, which indicates that generating unit cells to model the heterobilayers by
simply stacking strained monolayers unit cells is not a viable approach for all possible the
15 heterobilayers. As an alternative, lattice parameters a and b of monolayers A and B
must be be commensurate, or forced to be so by application of strain, to allow the con-
struction of a common unit cell with lattice parameter c such that c = Pa = Qb, with P
and Q integers, as shown in Figure 17(a). One limitation of the approach is that depending
on the magnitudes of the integers P and Q, the size of the supercell can be prohibitively
large to perform the calculations. An additional degree of freedom to be introduced that
can help to reduce the size of the commensurate cell is an interlayer twist between the
two monolayer lattices, with a relative angle between the correspondent lattice vectors of
each monolayer, as exemplified Figure 17(b).

The search for matching cells was performed with the CellMatch software,145 which
allows to systematically screen interlayer rotations and control the maximum number of
atoms in the supercell and the largest strain in the monolayers. In the search, matching
heterobilayer unit cells were allowed to have up to 100 atoms, and a maximum 1.5 %
strain on each monolayer. This approach was adopted to obtain all heterobilayers cells,
even though some pairs of monolayers have small lattice mismatches that would yield small
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Table 6 – Matching monolayer supercells found for the vertical stacking of the MQ2 mono-
layers (M = Mo, Ni, Pt; Q = S, Se). The relation between each monolayer su-
percell and the unit cell is presented in Wood’s notation. The number of atoms
in the heterobilayer unit cell (Nat), its lattice parameter (a) and corresponding
strain in each monolayer lattice (εi) are presented.

L1/L2 Monolayer 1 Monolayer 2 Nat a(Å) εi(%)

MoS2/MoSe2 (
√

13×
√

13)R13.9° (
√

12×
√

12)R30.0° 75 11.42 0.0
MoS2/NiS2 (

√
13×

√
13)R13.9° (

√
12×

√
12)R30.0° 75 11.47 ±0.5

MoS2/NiSe2 (3× 3) (
√

7×
√

7)R19.1° 48 9.40 ∓1.1
MoS2/PtS2 (3× 3) (

√
7×
√

7)R19.1° 48 9.46 ∓0.4
MoS2/PtSe2 (2× 2) (

√
3×
√

3)R30.0° 21 6.39 ±0.9
MoSe2/NiS2 (

√
7×
√

7)R19.1° (
√

7×
√

7)R19.1° 42 8.76 ±0.5
MoSe2/NiSe2 (

√
13×

√
13)R13.9° (

√
12×

√
12)R30.0° 75 12.03 ±1.3

MoSe2/PtS2 (4× 4) (
√

13×
√

13)R13.9° 87 13.01 ∓1.3
MoSe2/PtSe2 (2× 2) (

√
3×
√

3)R30.0° 21 6.52 ∓1.1
NiS2/NiSe2 (

√
13×

√
13)R13.9° (

√
12×

√
12)R30.0° 75 12.09 ±0.7

NiS2/PtS2 (
√

13×
√

13)R13.9° (
√

12×
√

12)R30.0° 75 12.17 ±1.4
NiS2/PtSe2 (3× 3) (

√
7×
√

7)R19.1° 48 9.92 ∓0.7
NiSe2/PtS2 (

√
7×
√

7)R19.1° (
√

7×
√

7)R19.1° 42 9.36 ±0.7
NiSe2/PtSe2 (

√
13×

√
13)R13.9° (

√
12×

√
12)R30.0° 75 12.78 ±0.9

PtS2/PtSe2 (
√

13×
√

13)R13.9° (
√

12×
√

12)R30.0° 75 12.87 ±0.2

Source: BESSE et al.144

strain with the simple 1× 1 stacking of monolayers cells, such as MoSe2 with NiSe2, and
NiSe2 with PtS2. This was done to enable a general description of the interlayer coupling
throughout all heterobilayers, because, in contrast with the 1 × 1 cells, the generated
vertical stacking configurations are not restricted to symmetric stackings, which exhibit
the strongest interlayer coupling for specific TMD systems.146 The heterobilayers matching
cells are described in detail in Table 6, where Wood’s notation147 is used to denote the
relation between monolayers supercells and unit cells, e.g., (

√
13×
√

13)R13.9° means that
the cell has lattice parameter

√
13 times larger than the original unit cell and is rotated

by 13.9° with respect to it.

The equilibrium structural configurations of the heterostructures were obtained by
minimization of the stress tensor, allowing relaxation of in-plane lattice parameters cells,
and of forces on every atom. Structural parameters are presented in Table 7 along with
corresponding monolayer strains, which have magnitudes no larger than 1.8 %. Lattice
parameters were only slightly affected by the relaxation, with changes smaller than 0.5 % in
all systems, except for NiS2/NiSe2, in which the change was of 1.08 %. In light of the weak
interlayer binding, these variations can be attributed merely to a redistribution of strain
among the monolayers, since the initial configuration had strains with the same magnitude
in both monolayers, but they have different energy responses to strain. To better describe
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Table 7 – Equilibrium lattice parameters of heterobilayers (a0), strains in the two mono-
layer lattices (εi), equilibrium interlayer distances (d), interlayer binding ener-
gies (Eb), lattice parameters that minimize strain energy (as), and monolayer
effective charges (Qi) obtained with Bader charge analysis. The results were
obtained from calculations with PBE+D3.

L1/L2 a0(Å) ε1(%) ε2(%) d(Å) Eb(meV/Å2) as(Å) Q1 (e/f.u.) Q2 (e/f.u.)
MoS2/MoSe2 11.41 −0.1 0.0 3.33 24.20 11.41 −0.01 0.01
MoS2/NiS2 11.47 0.5 −0.5 3.18 16.16 11.46 0.00 0.00
MoS2/NiSe2 9.44 −0.7 1.5 3.26 22.39 9.43 −0.01 0.01
MoS2/PtS2 9.47 −0.3 0.5 3.22 21.93 9.47 0.00 0.00
MoS2/PtSe2 6.38 0.7 −1.1 3.24 22.72 6.37 −0.01 0.01
MoSe2/NiS2 8.76 0.5 −0.5 3.27 22.95 8.76 0.01 −0.01
MoSe2/NiSe2 12.00 1.0 −1.5 3.27 23.58 12.00 0.00 0.00
MoSe2/PtS2 13.03 −1.1 1.5 3.22 23.40 13.03 0.01 −0.01
MoSe2/PtSe2 6.53 −0.9 1.4 3.28 23.96 6.53 0.00 0.00
NiS2/NiSe2 12.22 1.8 0.3 2.38 32.29 12.08 −0.05 0.05
NiS2/PtS2 12.20 1.7 −1.1 2.96 21.31 12.18 −0.01 0.01
NiS2/PtSe2 9.95 −0.3 1.1 2.92 23.57 9.92 −0.02 0.03
NiSe2/PtS2 9.39 1.0 −0.3 3.04 22.85 9.37 0.01 −0.01
NiSe2/PtSe2 12.84 1.3 −0.4 2.89 24.97 12.79 −0.01 0.01
PtS2/PtSe2 12.88 0.3 −0.1 3.00 22.65 12.86 −0.01 0.01

Source: BESSE et al.144

the role of strain energy in the equilibrium lattice parameters of heterobilayers, the relative
energies of the monolayers unit cells were calculated with strain ranging from −1.0 % to
1.0 %. In this range, the energy as a function of the lattice parameter can be well fitted
by a quadratic relation ∆E = αi(a− a0i)2, where a0i is the equilibrium lattice parameter,
as displayed in Figure 18(a). Thus, the energy contribution from strain in a heterobilayer
can be written as

Estrain(a) = α1(a− a1)2 + α2(a− a2)2 , (5.1)

where a is the lattice parameter of the heterobilayer cell, and a1 and a2 are the equi-
librium lattice parameters of the monolayers, in the supercells listed in Table 6. With
this expression, the number of formula units from each monolayer (Ni) is already taken
into account, since the parameters are related by ai = lia0i, and Ni = l2i . Therefore, the
redistribution of strain in the monolayers is such that Estrain is minimized, as follows,

dEstrain
da

∣∣∣∣
a=as

= 0⇒ as = α1a1 + α2a2

α1 + α2
. (5.2)

The lattice parameters as obtained by this approach are close to the equilibrium lattice
parameters a0, as shown in Table 7, with mean absolute deviation of 0.02Å, and a sig-
nificant difference (0.14Å) is observed only for NiS2/NiSe2. All subsequent analyses of
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Figure 18 – Relative energy of the monolayers due to strain as a function of the lattice
parameter, with strain data ranging from −1.0 % to 1.0 % in intervals of
0.1 %. The solid lines are fittings of the data by ∆E = αi(a− a0i)2, and the
αi coefficients are provided.

Source: By the author.

the interlayer binding and electronic properties employed the equilibrium parameters a0

obtained via structural optimization.

The analysis of the role of the strain energy in the equilibrium lattice parameters
supports the notion that the interlayer binding is ruled majorly by weak interactions,
since intralayer bonds are virtually unaffected by it. This is also evidenced by the equi-
librium interlayer distances (d) and interlayer binding energies (Eb) of Table 7: d ranging
from 2.89Å to 3.33Å, and Eb from 16 meVÅ−2 to 25 meVÅ−2, typical values for vdW het-
erostructures.67,148,149 As occurred in the comparison between a0 and as, the single system
that has Eb significantly larger than the remaning is NiS2/NiSe2, which has d = 2.38Å and
Eb = 32.29 meVÅ−2, indicating stronger interlayer binding in this system. The contrast of
NiS2/NiSe2 with the other heterobilayers can be explained by considering the band align-
ments, since NiS2/NiSe2 is the only system in which natural band offsets of monolayers
indicate a type-III band alignment, see Table 5. This feature points to the energy over-
lap of occupied states in NiSe2 with empty states in NiS2, which contributes to increase
interlayer charge transfer, leading to the stronger binding observed in this system. This
also leads to the difference between a0 and as observed in this system, because, in con-
trast with the remaining heterobilayers, the change of lattice parameter upon relaxation
is not primarily ruled by minimization of strain energy. To obtain more information on
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Figure 19 – PBE+D3 VBM and CBM of the MQ2 monolayers (M = Mo, Ni, Pt; Q = S,
Se), where in each pair the monolayers have the same strain they of the re-
spective equilibrium heterobilayer configuration. Background colors indicate
the junction type that results from Anderson’s rule.

Source: By the author.

the interlayer charge transfer, Bader charge analysis was employed to perform the charge
partition in the systems (see Section 4.3 for the description of the method). The mono-
layers effective charges, shown in Table 7, are the sums of the Qeff,i of all atoms of each
monolayer. As expected, monolayer effective charges are small, and the largest magnitude
of interlayer charge transfer occurs in NiS2/NiSe2, namely 0.05 e/f.u., in comparison with
all remaining values that are at most 0.03 e/f.u.

5.3 Heterobilayers band gaps via Anderson’s rule and direct calculation

The band edge positions of the monolayers with respect to the vacuum level,
displayed in Table 5, can be employed to predict the band alignments of heterobilayers,
according to Anderson’s rule, as discussed in Chapter 1. However, to better describe the
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Figure 20 – (a) Representation of the band edge positions for isolated monolayers A and
B, the corresponding A/B heterobilayers, and the definition of heterobilayer
band gap evaluated with Anderson’s rule (EAR

g ) and by direct calculation of
the heterobilayer band structure (EDC

g ), which differ by shifts in the VBM
(∆EVBM) and CBM (∆ECBM). (b) Values of EAR

g and EDC
g , as a function

of ∆Eg = EDC
g − EAR

g , where the color regions indicate systems for which
∆Eg < −0.10 eV on the left (green), and systems for which ∆Eg > 0.10 eV
on the right (yellow).

Source: Adapted from BESSE et al.144

heterobilayers configurations, the strain on the monolayers should also be considered.
Therefore, Figure 19 shows the VBM and CBM with respect to vacuum level of the
monolayers pairs with the same strain of the equilibrium configuration of the respective
heterobilayers. These results can be compared with those displayed in Table 5, showing
that band edge shifts of up to 0.13 eV are caused by strain. However, the band alignment
classifications, indicated by the background color in Figure 19, are not changed by strain,
except for MoS2/PtSe2, which changes from type-I to type-II, due to the small conduction
band offset between the monolayers. Type-I band alignment is found in 6 systems, type-II
in 8, and type-III occurs only in NiS2/NiSe2.

With the monolayers band offsets displayed in Figure 19, band gaps of hetero-
bilayers can be calculated based on Anderson’s rule. Assuming the same vacuum level
alignment for both monolayers, Anderson’s rule band gap (EAR

g ) is given by the differ-
ence between the lowest CBM and highest VBM among both monolayers, as depicted in
Figure 20(a). For systems with type-I band alignment, the band gap is the same as one
of the monolayers, and type-II band alignment yields an interlayer band gap. These band
gap values can be contrasted with EDC

g , obtained from direct calculations of the hetero-
bilayers band structures, which are all shown in Appendix C. The EAR

g and EDC
g for the

15 heterobilayers are listed in Table 8, and the comparison between them is displayed
in Figure 20(b). It is observed that for 7 heterobilayers both values differ by less than
0.10 eV, but in the other systems, represented in the regions with colored background in
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Table 8 – Heterobilayers band gaps evaluated employing Anderson’s Rule (EAR
g ), for iso-

lated monolayers with same strain as in heterobilayers, and via the direct cal-
culation of heterobilayers band structures (EDC

g ).

Heterobilayer EAR
g (eV) EDC

g (eV)
MoS2/MoSe2 1.10 1.17
MoS2/NiS2 0.53 0.50
MoS2/NiSe2 0.22 0.31
MoS2/PtS2 1.32 1.23
MoS2/PtSe2 1.33 1.15
MoSe2/NiS2 0.12 0.39
MoSe2/NiSe2 0.05 0.00
MoSe2/PtS2 0.60 0.76
MoSe2/PtSe2 0.88 0.98
NiS2/NiSe2 0.00 0.00
NiS2/PtS2 0.62 0.47
NiS2/PtSe2 0.53 0.24
NiSe2/PtS2 0.20 0.27
NiSe2/PtSe2 0.20 0.05
PtS2/PtSe2 1.08 0.83

Source: BESSE et al.144

the figure, the difference between the two values, ∆Eg = EDC
g −EAR

g , can have magnitude
of up to 0.28 eV.

The results show that although Anderson’s rule can describe the band gap of some
heterobilayers with fairly good accuracy, interlayer coupling can play a significant role,
and therefore, it is not negligible in general. As indicated in Figure 20(a), the role of
interlayer coupling in the band gap can be linked to effects on valence or conduction
band edges. Furthermore, the heterobilayers with significant ∆Eg can be divided into two
subgroups, as indicated by the colored regions in Figure 20(b), that is, systems for which
∆Eg < −0.10 eV, and systems for which ∆Eg > 0.10 eV. Such contrasting trends suggest
that different mechanisms may participate in the total effect of interlayer coupling on the
band gap. The evaluations of EAR

g employed monolayers with the same strain as in the
equilibrium configuration of heterobilayers, so that the interlayer coupling effects on ∆Eg
can be investigated separately from possible effects of strain.

5.4 Interlayer hybridizations

The systems for which ∆Eg < −0.10 eV are mostly those composed of two 1T
monolayers, that is, the heterobilayers with M = Ni and Pt, except for NiS2/NiSe2 and
NiSe2/PtS2. Figure 21(a) shows the electronic band structures of the constituent mono-
layers and of the heterobilayer for the representative 1T-NiS2/1T-PtS2 system. The band
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(a)

(b)

Figure 21 – (a) Band structures of the (a) 1T-NiS2/1T-PtS2 and (b) 2H-MoS2/1T-PtS2
heterobilayers, and of the respective isolated monolayers in the same super-
cell of the heterobilayers. For the monolayers, local projection onto angular
momentum states is indicated by the size of the colored circles, and energy
is given with respect to the vacuum level. For the heterobilayers, the color
scale denotes the local projection onto each monolayer, and the zero energy
level is adopted as the average of the vacuum electrostatic potential on the
two sides of the cell.

Source: Adapted from BESSE et al.144

structures of monolayers correspond to the same supercell of the heterobilayer, to en-
able a direct comparison between them. From the top of the valence band, it is clear
that the heterobilayer band structure differs from a superposition of the monolayers band
structures. The VBM of the heterobilayer is located along the K-M line of the Brillouin
zone, and has a different dispersion in comparison with the monolayers. Furthermore,
the heterobilayer VBM is located above the original VBMs of the monolayers, visible in
the heterobilayer band structure, and is delocalized over the two monolayers, as can be
seen by the color scale in the plot, which measures the local projection of electron states
onto each monolayer. These features suggest that the heterobilayer VBM arises from the
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hybridization of lower-lying states of the monolayers, in particular, the bands composed
primarily of anion pz-states, whereas the original NiS2 VBM is primarily composed of
in-plane Q px- and py-states. Therefore, the negative deviation of the band gap in com-
parison with Anderson’s rule can be attributed to the VBM upshift caused by interfacial
hybridizations.

A similar picture can be observed in the 2H-MoS2/1T-PtS2 heterobilayer, shown
in Figure 21(b). Here, a VBM upshift occurs primarily at the Γ point of the Brillouin zone
and arises from the interaction of the hybridized Mo dz2- and S pz-states close to the VBM
of MoS2, and lower-lying S pz-states of PtS2. Thus, the examples of 1T-NiS2/1T-PtS2 and
2H-MoS2/1T-PtS2 illustrate the role of the interfacial hybridizations in ∆Eg, which can be
summarized by the scheme of Figure 22(a). Since Q pz-states extend into the out-of-plane
direction, they have the strongest effect upon layer stacking, and in the 2H phase the
topmost Q pz-states are hybridized withM dz2-states. The band splittings that occur due
to these interfacial hybridizations can lead to a VBM upshift and corresponding decrease
of the band gap, provided that the splitting (Es) is larger than the energy distance (α) of
the interacting states to the original VBM of the monolayers, which is generally composed
of in-plane states, that do not show significant interlayer interactions.64,65 The magnitude
of the band splitting is influenced by the energy difference of interacting states (∆E)
resembling the energy splitting relation of molecular orbital theory,150 Es = 1/(a+ b∆E),
as displayed in Figure 22(b). The ∆E and Es parameters in this plot were measured at
the M point for 1T/1T heterobilayers, and at Γ point for 2H/2H and 2H/1T, since these
are the points where splittings are more noticeable, due to the location of the interacting
pz states in the Brillouin zone.

In contrast with the important effect of interfacial hybridizations on the VBM
upshift, the conduction bands of the heterobilayers are not as strongly affected by the
interlayer coupling. This can be attributed to the predominance of the contribution of
M d-states in the monolayers conduction bands, as discussed in Section 5.1, because
these states are mostly localized far from the interfacial region and are weakly influenced
by interlayer coupling. A significant effect on the conduction band, with downshift of
the CBM, was found only in PtS2/PtSe2, the 1T/1T heterobilayer with the smallest
conduction band offset of the monolayers (0.27 eV). Therefore, interfacial hybridizations
mainly influence ∆Eg by the effect on the valence band. However, the VBM upshift, given
by Es−α as seen in Figure 22(a), corresponds to ∆Eg in few systems, namely MoS2/PtS2,
NiS2/PtS2, and NiSe2/PtSe2, within a 0.02 eV margin. Thus, this effect does not account
entirely for ∆Eg in all systems and other effects can play an important role, as evident by
the cases in which ∆Eg > 0, particularly the heterobilayers with ∆Eg > 0.10 eV, namely
MoSe2/NiS2 and MoSe2/PtS2, as shown in Figure 20(b).
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Figure 22 – (a) Schematic representation of the valence band upshift due to interlayer
hybridization, where the states associated with hybridizations of each mono-
layer phase are indicated. (b) Values of ∆E and Es, evaluated at the M point
for 1T/1T heterobilayers, and at the Γ point for 2H/1T and 2H/2H. Solid
lines are fittings with form Es = 1/(a+ b∆E) for each set of points.

Source: Adapted from BESSE et al.144

5.5 Interfacial dipole

Beyond interlayer hybridizations, ∆Eg also has contributions from the interfacial
electric dipole formed by the contact of two monolayers. The dipole causes a relative shift
between levels localized in different monolayers, and therefore, it leads to a contribution to
∆Eg in systems with type-II band alignments, since intralayer band gaps, which define Eg
in systems with type-I junction, are not changed by the dipole. Thus, in type-II junctions,
the total ∆Eg is the result of contributions from interfacial hybridization and dipole. This
can be understood based on the scheme of Figure 20(a): as the shift due to hybridization
(∆EVBM) is measured with respect to the original VBM of monolayer A, in the absence of
hybridization effects in the conduction band, ∆ECBM is the shift of the CBM of monolayer
B with respect to this level, given by the dipole induced shift (D). Therefore, it is expected
that

∆Eg = D −∆EVBM , (5.3)

for heterobilayers with type-II junction. The dipole term in ∆Eg comes from Anderson’s
rule assumption of the same vacuum level alignment on both sides of the junction. The
approximation may keep some degree of validity for weakly interacting systems if the
interfacial dipole is small.

To verify if (5.3) is satisfied, D was measured as the step of the electrostatic poten-
tial in the vacuum region of cell, introduced to correct the asymmetry of the electrostatic
potential in the periodic systems.151 The results are displayed in Figure 23, which show
that the expected relation has good validity, except for PtS2/PtSe2, due to the hybridiza-
tion effect on the CBM, as previously discussed. Although the band offsets of Figure 19
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Figure 23 – Band gap deviation from Anderson’s rule versus the difference between the
energy shift due to the interfacial dipole and valence band upshift caused by
interlayer hybridization, for systems with type-II band alignment. In the A/B
nomenclature of each monolayer, the CBM is on monolayer B.

Source: Adapted from BESSE et al.144

indicate that MoS2/PtSe2 and NiS2/PtSe2 form type-II junctions, they have small offsets
of conduction bands and valence bands, respectively, with differences of 0.02 eV. Because
of that, with the shift introduced by the interfacial dipole, they adopt type-I band align-
ment, and their ∆Eg < 0 comes entirely from the VBM upshift caused by hybridization.

The previous analysis shows a significant magnitude of energy shift due to the in-
terfacial dipole, despite the weak interlayer binding. To describe the origin of the electric
dipole across the interface, a simple model can be proposed, assuming that, in view of the
weak interlayer coupling, the dipole arises solely from a perturbation of the charge den-
sity outside the monolayers upon the formation of the contact. Here, the charge density
is described by a single band edge state in a potential barrier, such as depicted in Fig-
ure 24(a) for monolayer A. The wave function decays exponentially, with decay constant
k =

√
2(E − V ), where E is the energy of the electron state and V is the potential in the

region. In the case of the isolated monolayer A, V is the vacuum potential and E − V is
the difference between VBM of A and the vacuum level, or the ionization potential of A
(φA), and ψA(z) ∝ e−z

√
2φA , on both sides of the monolayer. In contact with the other

monolayer, the potential outside monolayer A changes to the energy of the lowest available
state, which is the CBM of B, and thus V in this case is the electron affinity of monolayer
B (χB), yielding ψ′A(z) ∝ e−z

√
2(φA−χB). This change in the wave function corresponds to

a change in the charge density, and the difference between the two configurations can be
integrated to obtain the resulting electric dipole,

mA = −C
∫ ∞

0
z(e−2z

√
2(φA−χB) − e−2z

√
2φA)dz = −C

(
1

φA − χB
− 1
φa

)

= −C χB
φA(φA − χB) ,

(5.4)
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(b)(a)

Figure 24 – (a) Schematic depiction of the change in the tail of wave function of mono-
layer A due to the contact with monolayer B. (b) Dipole moment factor of
(5.5) versus the step of electrostatic potential in the vacuum region of the
heterobilayer cells.

Source: Adapted from BESSE et al.144

where C is a positive constant. Similarly for monolayer B, mB = C ′(χA/(φB(φB − χA))),
and assuming C = C ′, it follows that the total dipole moment is proportional to,

mA/B = χA
φB(φB − χA) −

χB
φA(φA − χB) . (5.5)

To evaluate the magnitude of the interfacial electric dipole in the heterobilayers,
the same parameter D that gives the dipole induced energy shift can be employed since it
is proportional to the dipole in the cell.151 Thus, with the same definition for the positive
sign of D used in Figure 23, it is expected that mA/B is linearly correlated to −D by
a positive constant. As shown in Figure 24(b), where φ and χ values were obtained for
strained monolayers, the linearly relationship is shown to be largely followed, irrespective
of the junction type. The set of NiQ2/PtQ2 heterobilayers shows a slight systematic
shift from the trend displayed by the remaining systems, suggesting additional electron
accumulation on the NiQ2 side, which can be attributed to the interlayer hybridizations.

Two of the heterobilayers are not included in the plot of Figure 24(b), and have
large deviations from the model predictions, namely MoSe2/NiS2 and NiS2/NiSe2, for
which (mA/B,−D) are (−8.55,−0.32) and (−4.53,0.48), respectively. In the latter, the
discrepancy is a consequence of the enhanced charge transfer of this system, as discussed
in Section 5.2. As for MoSe2/NiS2, the model fails because it assumes that the wave
function can be described with a single decay constant, since it describes the monolayers
with semi-infinite thickness. However, φMoSe2

− χNiS2
is very small (0.11 eV), which leads

to a large decay length of charge density, and a large predicted dipole, much larger than
the observed one.
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5.6 Summary

The structural and electronic properties of a set of 15 heterobilayers formed of
MQ2 monolayers (M = Mo, Ni, and Pt; Q = S, Se) were studied to investigate the
role of interlayer coupling on these properties. The stacked heterobilayer configurations
were obtained by a search of matching monolayer supercells, allowing interlayer rotations
to minimize strain and the size of the cells. Relaxation of the cells had minor effect
on the lattice parameters, which can be traced to a redistribution of strain among the
monolayers to minimize strain energy, because of the weak binding interlayer binding, as
also suggested by the interlayer binding energies. The exception is NiS2/NiSe2, in which
the type-III band alignment leads to enhanced interlayer charge transfer. Despite the weak
interlayer binding, interlayer coupling effects lead to important effects on the electronic
properties of the heterobilayers, as indicated by the band gap deviations of up to 0.27 eV
in comparison with Anderson’s rule. Two main mechanisms were found to influence the
band gap deviation: (i) interfacial hybridizations that mainly involve chalcogen pz orbitals
lead to band splittings in the valence band and VBM upshifts that decrease the band gap,
and (ii) the formation of the interfacial electric dipole with the monolayers contact causes
a relative shift of band edges located at different sides of the interface, which affects the
band gap in type-II junctions. A simple model was proposed to describe the origin of the
interfacial dipole, based on the perturbation of charge density decay upon the formation
of the contact. This model was able to account for a correlation between the magnitude
of the interfacial dipole and the band edge positions of monolayers.
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6 INTERLAYER CHARGE CARRIER TRANSFER IN MoS2/PtSe2 VERTICAL
HETEROBILAYER

Because of the importance of the interfacial charge transfer process in semicon-
ductor junctions, it is fundamental to advance in the understanding of this process, going
beyond the description of band alignment and addressing other aspects such as the dy-
namics of charge transfer. In this chapter, the dynamics of interlayer transfer of charge
carriers in excited states of vdW heterostructures is investigated with the example of the
2H-MoS2/1T-PtSe2 heterobilayer. The structural and electronic properties of the system
are discussed, and based on the electronic band structure, an excitation is chosen to study
the time-evolution of charge carriers occupation in the excited state and the mechanisms
of interlayer transfer of electrons and holes.

6.1 Ground state configuration of MoS2/PtSe2

Based on the monolayer band offsets discussed in Chapter 5, the 2H-MoS2 and 1T-
cePtSe2 monolayers are expected to form a type-I junction, with CBM and VBM located
in the PtSe2 side. Therefore, an excitation across the band gap of MoS2 is expected to
induce the transfer of both electrons and holes to PtSe2. The same type of band offset
results from the calculations employed here, for which the VBM of PtSe2 is higher than
that of MoS2 by 0.49 eV, and the CBM is lower by 0.42 eV . Equilibrium lattice parameters
are also similar to the results listed in Chapter 5, and are 3.18Å and 3.77Å for MoS2 and
PtSe2, respectively, with relative differences of 0.3 % and 1.3 % compared to the results
listed in Chapter 5. To model the vertically stacked heterobilayer, a matching supercell
was searched following the same procedure discussed in Chapter 5. However, the method
employed to carry out the TDDFT simulations is restricted to the Γ-point of the FBZ, and
because of that, a large unit cell should be employed as way to ensure that a BZ sampling
with only Γ-point is adequate. Therefore, the chosen matching supercell corresponds to
(3
√

3× 3
√

3) MoS2 and (
√

19×
√

19) PtSe2, with ±0.4 % strain in the monolayers. Since
the results of structural relaxation of the supercells discussed in Section 5.2 show that the
lattice parameters are only slightly modified, in this case only the atomic positions were
allowed to relax by minimization of forces, to obtain the equilibrium interlayer distance.

The electronic band structure of the heterobilayer is shown in Figure 25, which
shows the VBM upshift effect discussed in Chapter 5, that is, the heterobilayer VBM
is higher in energy than the original VBM of PtSe2 and is delocalized among the two
monolayers. This feature does not modify the expected trend of transfer of both electrons
and holes from MoS2 to PtSe2, since in the heterobilayer band structure there are still
valence states located in PtSe2 with higher energy than the VBM of MoS2 and also
conduction band states primarily confined to PtSe2 with lower energy than the CBM of
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Figure 25 – Electronic band Structure of the 2H-MoS2/1T-PtSe2 vertical heterobilayer
with a (3

√
3 × 3

√
3) MoS2 / (

√
19 ×

√
19) PtSe2 matching, obtained with

DFT-LDA. Color scale indicates local projection of the electronic states onto
each layer. Zero energy is set at the valence band maximum at Γ point. The
vertical purple arrow indicates an excitation across the direct band gap of
MoS2

Source: By the author.

MoS2. Therefore, the photoexcitation across the direct band gap of MoS2, denoted by the
purple arrow in Figure 25, is expected to lead to the transfer of electrons and holes to
PtSe2. Due the large size of the employed supercell, there are enough bands sampled in
the Γ-point and the bands have low dispersion. Furthermore, although the band edges of
the heterobilayers are located out of the Γ-point, energy differences to the respective band
edges at the Γ-point are only 0.05 eV and 0.09 eV for the VBM and CBM, respectively.

6.2 Time evolution of charge carriers occupations

To model the initial stages of the dynamics of an excited state of the heterobi-
layer, a photoexcitation across the direct band gap of MoS2 was modeled by inverting
the occupation of the VBM and CBM states of MoS2. Although in the simulations the
system is not in thermal equilibrium and therefore temperature is undefined, as discussed
in Section 2.3, TDDFT formalism depends on the initial state. Thus, to obtain initial
configuration for the system, ion positions and velocities were obtained from constant
energy MD simulations at ground-state to thermalize the system at target temperatures
Ti, which define the initial configurations. Two different Ti were employed to evaluate the
role of electron-phonon coupling in the charge transfer, namely Ti = 77 K and 300 K. The
time-evolved orbitals of the VBM and CBM of MoS2 correspond to the wave functions
of electrons and holes, and have fixed occupation along the simulation. Therefore, the
occupations of electrons and holes in PtSe2 were evaluated by population analysis via
the projection of the electron and hole orbitals onto the localized basis functions of atoms
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Figure 26 – Occupation of electron (left column) and hole (right column) on the PtSe2
layer for the initial ionic temperatures of 77 K (top row) and 300 K (bottom
row).

Source: By the author.

that belong to the PtSe2 monolayer. In this approach, the occupation of the charge carrier
with orbital φi(r; t) is given by

ρi =
∑
µ

|ciµ|2 +
∑
ν 6=µ

Re
(
c∗nµcnνSµν

) , (6.1)

where ciα are the coefficients of the expansion of φi(r; t) onto the atomic orbital basis, µ
is restricted to atomic orbitals of the atoms that belong to the PtSe2 monolayer, and ν
runs over are all the atomic orbitals.

The time evolution of electron and hole occupations in PtSe2 are shown in Fig-
ure 26, for the two Ti. The expected trends of charge carrier transfer are verified, that
is, the occupations of both charge carriers in PtSe2 increase, although electron transfer
occurs at a greater magnitude than hole transfer. The initial occupations are larger than
zero because of the delocalization of the MoS2 band edge states across the interface, which
is increased by the atomic displacements from the equilibrium, as seen by the effect of
Ti. The ultrafast transfer of carriers is also observed, especially for electrons, with al-
most complete transfer within the simulated time scale of 200 fs. These results can be
contrasted with the interlayer transfer of holes reported for the MoS2/WS2 heterobilayer,
within the theoretical framework.71 By simulating a photoexcitation across the band gap
of MoS2, the hole occupation on WS2 shows periodic oscillations, which were found to be
induced by the dipole coupling of states across the interface and the enhancement caused
by interfacial dipole built-up with hole transfer. No analogous of the charge oscillations
of hole occupation was observed here, which can be attributed to weaker interlayer dipole
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Figure 27 – Time evolution of Γ–point energy states for (a) Ti = 77 K and (b) Ti = 300 K.
Zero energy is set to the Γ–point VBM at t = 0. The blue and red lines denote
the states of hole and electron, respectively, and the remaining (brown) lines
are the nearby states.

Source: By the author.

coupling, because of the important role played by the spatial overlap of wave functions,
which strongly depends on the stacking configuration.71 In MoS2/PtSe2, the monolayers
do not share the same structural phase, which limits spatial overlap of wave functions and
hinders the strong coupling required for the charge oscillations. Similarly, the difference
between monolayers phases has also been proposed as the cause for the slow charge carrier
transfer experimentally observed in 2H-MoS2/1T′-ReS2.75

6.3 Mechanisms of interlayer charge carrier transfer

Further insights into the mechanisms of interlayer transfer of electron and hole,
can be obtained by the analysis of the time evolution of the energy states, Figure 27.
These plots show the energy of the time-evolved states, which are not the eigenstates of
the ionic configurations of each time step. For Ti = 77 K, the marked change in the rate of
increase of electron occupation on PtSe2 at around 60 fs corresponds to the level crossing
of the electron orbital with lower energy conduction band states that are predominantly
located at the PtSe2 side. Therefore, the fast electron transfer can be attributed to the
level crossing with direct intermixing of states,152 since before the level crossing only a
slow increase in the electron population in PtSe2 is observed, which is related to electron
transfer to lower energy empty PtSe2 states, likely via slow electron-phonon coupling pro-
cess. The key role of electron-phonon coupling do initiate the transfer of charge carriers
is revealed by the absence of variations in hole and electron occupation for simulations
performed with clamped ions (Ti = 0 K). The level crossing is enabled by the energy
decrease of the electron state due to the gain of spectral weight from PtSe2 states with
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lower energy. Another source is the build-up of negative charge on the PtSe2 side, which
generates an interfacial dipole and promotes relative energy shift of states spatially con-
fined at different sides of the junction. The accumulation of negative charge on PtSe2
arises from the imbalance of electron and hole transfer, since in the initial stages of the
simulation the hole occupation in the PtSe2 layer is virtually unchanged before 50 fs.

The transfer of holes is slow because the hole relaxation to states with lower energy
(higher electron energy), which are predominantly located at PtSe2, is hindered by the
larger energy gap between these bands and the hole state. For instance, in the equilibrium
configuration, Figure 25, the energy gap between the MoS2 CBM and lower conduction
band states, that reside in PtSe2, is of 0.11 eV, and the gap between MoS2 VBM and
higher energy valence band states of PtSe2 is of 0.36 eV. Indeed, the time-evolution of the
energy of the hole state, Figure 27, shows that the hole transfer to PtSe2 is related to
occupation of PtSe2 states below the MoS2 VBM. This is corroborated by the projection of
the hole state onto the eigenstates of the ionic configurations along the simulation, which
show that, the contribution of hole occupation from PtSe2 states above the MoS2 VBM
is virtually none. A level crossing is also observed to facilitate hole transfer for t > 150 fs,
but the energy of valence band states below the hole state are not as sensitive to the
electric dipole induced by imbalanced charge transfer as the conduction band states. This
indicates a higher interlayer delocalization of states in the valence band, in agreements
with the conclusions of Chapter 5, that could to some degree limit the effect of level
crossing.

The role of electron-phonon coupling in the charge carrier transfer can be analyzed
based on the results for Ti = 300 K. In this case, because the ions are more displaced from
their equilibrium positions, the broadening of electronic states is more pronounced. In
consequence, the initial electron and hole states have a significant degree of mixing with
PtSe2 states, as evident by the electron and hole occupations on PtSe2 for t = 0, both
larger than 20%, as shown Figure 26 b,d. This intermixing might also contribute to the
slight increase in the energy of the electron state during a short time in the initial 15 fs,
since the electron state also gains spectral weight from neighboring higher energy PtSe2
states. The increased contribution of the transfer process by electron-phonon coupling
causes a rapid increase in the electron occupation on PtSe2 since the start of the simula-
tion, in contrast with the results for Ti = 77 K. Because of that , no marked change in the
rate of interlayer electron transfer is observed at the level crossing of the electron state
and lower energy empty states. The more intense contribution of electron-phonon coupling
mechanism due to higher Ti is not sufficient to cause hole relaxation to the PtSe2 states
above the MoS2 VBM, and because of that the hole transfer is still small in comparison
with electron transfer.
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6.4 Summary

The interlayer transfer of charge carriers in the excited state was studied in the
2H-MoS2/1T-PtSe2 heterobilayer, which was selected because its band alignment allows
to investigate the simultaneous interlayer transfer of electrons and holes created by a
photoexcitation across the direct gap of MoS2. Fast electron transfer has been observed,
similar to reports for other TMD heterobilayers in the literature, in contrast with the small
hole transfer across the interface. This reveals a mechanism of effective charge separation,
due to the imbalance of charge carrier transfer, despite a type-I band alignment suggested
by the natural band offsets. One leading factor for the imbalance is the weak coupling of
the hole state created in MoS2 with the higher energy valence states of PtSe2 close to the
VBM. The mixing of states promoted by the level crossing that is induced by the electric
dipole was found to play an important role in the fast charge carrier transfer process,
especially for weak electron-phonon coupling at low ionic temperature.
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7 CONCLUSION

This thesis presented a contribution to the knowledge of 2D TMDs by studying
various types of systems, such as bulk crystals, monolayers, nanoflakes, and vdW het-
erostructures, and a wide range of physical properties of this materials, as summarized
with the main findings of the thesis in Figure 28. This variety of topics was designed to
address relevant open problems in the very active research field of 2D TMDs. To perform
the investigations, a theoretical approach was adopted, employing calculations based on
DFT to obtain structural, energetic, and electronic properties of the systems. The dy-
namics of excited states in heterobilayers was studied by means of calculations with a
combined TDDFT and MD framework.

Starting with a prototypical vdW layered TMD, MoSe2, energetic and structural
properties of the bulk crystal were obtained. It was shown that the weak vdW bonding
between stacked layers in the three polytypes (2H, 1T, and 1T′) leads to a similarity
of bond lengths and coordination environments between bulk and isolated monolayers,
and also of the relative stability of phases, that is not affected by layer stacking. The
role of the Peierls transition mechanism in the relative stability of 1T′ and 1T phases
was demonstrated, and this effect causes nanoflakes of the octahedral phase to naturally
adopt the distorted 1T′ configuration upon structural relaxation. It was found that the
size of (MoSe2)n nanoflakes plays a crucial role in the relative phase stability, and 1T′

is the lowest energy structure for small sized nanoflakes, in contrast with the monolayer
limit, with a transition occurring for n close to 150. The difference of edge formation
energy between the phases is an important factor for the transition, because the 2H phase
has larger edge energy than 1T′. The nanoflake size also influences electronic properties
of the systems, and in contrast with the semiconductor 2H monolayer, the nanoflakes of
this phase have metallic-like electronic states in the energy range of the monolayer band
gap, which are mainly derived from edge atoms.

To extend the exploration of novel 2D materials for TMDs based on Fe-, Co-, Ni-,
and Cu-groups, the equilibrium geometries of 11 crystal structures were obtained for the
36 MQ2 compounds (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au; Q = S, Se,
Te). The set of crystal structures was defined based on experimental reports for any of the
studied compositions and included layered and non-layered structures. The layered crystal
structures were shown to be more energetically favored for the Ni-group TMDs. Among
the lowest energy layered crystals of each composition, the Fe- and Ni-groups materials
have the lowest magnitude of exfoliation energies. In these systems, interlayer binding
is dominated by vdW interactions which suggests they can be more easily exfoliated
into mono- and few-layer sheets. The large exfoliation energies of the remaining systems,
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Size induced phase evolution

Role of edges in the electronic properties

Figure 28 – Graphic summary of the systems studied in the thesis and the main findings.

Source: By the author.

combined with the low contribution of dispersion energy and the features of the ELF,
indicates a strong contribution of chemical bonds to the interlayer binding. The lowest
energy layered structures of each compound were also selected to screen the electronic
properties of monolayers, and a total of 17 semiconductors were found, namely, the Fe-,
and Ni-groups materials. The band offsets trends for these monolayers are determined
by the orbital composition of band edge states and level repulsion mechanism. These
results were employed to predict band alignments within Anderson’s rule approximation
and to estimate PCE for heterobilayers with type-II junctions, and based solely on this
parameter, promising candidates to develop heterojunctions for photovoltaic devices were
found.

The role of interlayer coupling effects on the electronic properties of vdW het-
erostructures and accuracy of Anderson’s rule to describe the band gaps were investigated
in the 15 heterobilayers of MQ2 (M = Mo, Ni, Pt; Q = S, Se). The equilibrium geometries
and interlayer binding of the systems were obtained, showing the features expected by
weak interlayer binding, such as low magnitudes of interlayer charge transfer and inter-
layer binding energy, and negligible effect of stacking on the intralayer chemical bonds.
Despite the weak interlayer binding, non-negligible deviations of band gaps from Ander-
son’s rule were observed, and two sources of the deviations were identified: (1) band gaps
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can be decreased due to valence band upshifts that are caused by interlayer hybridization
of electron states, specially pz-states of the Q atoms; (2) in type-II junctions, the forma-
tion of interfacial electric dipole contributes to increase the band gap. Because of the weak
interlayer binding, the formation of the interfacial dipole can be explained by the change
in the decay length of charge density tails outside the monolayers due to the contact. This
model describes a correlation between the magnitude of the interfacial dipole and band
edge positions of the constituent monolayers, irrespective of junction type.

The dynamics of interlayer charge carrier transfer in van der Waals heterostruc-
tures was studied for the case of the 2H-MoS2/1T-PtSe2 heterobilayer. The band align-
ment of this system indicates that simultaneous transfer of both electrons and holes to
the PtSe2 side should occur following an excitation across the direct band gap of MoS2,
a characteristic of type-I junctions. The fast transfer of electrons was observed, but hole
transfer occurs at a slower rate, and the transfer of both charge carriers is enhanced by
level crossings promoted by the interfacial electric dipole formed due to the imbalance
in charge transfer. A crucial factor for the different rate of charge carriers transfer is the
stronger coupling of the MoS2 CBM with lower energy PtSe2 states in the conduction
band, due to the smaller energy difference, when compared to the coupling of MoS2 VBM
and valence band edge states of PtSe2. Interestingly, as a consequence of the imbalance
in charge carrier transfer, an effective charge separation was observed, despite the type-I
band alignment.

7.1 Papers and manuscripts

The findings discussed in this thesis have been reported in three published papers
and one manuscript under preparation. During the period of the PhD studies, the au-
thor also collaborated in other seven published papers, and two manuscripts are under
preparation. All published papers and manuscripts are listed below.
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J. L F. Beyond the Anderson rule: importance of interfacial dipole and hybridization
in van der Waals heterostructures. 2D Materials, v. 8, p. 041002, 2021.

• SILVEIRA, J. F. R. V.; BESSE, R.; DA SILVA, J. L. F. Stacking order effects on
the electronic and optical properties of graphene/transition metal dichalcogenide
van der Waals heterostructures. ACS Applied Energy Materials, v. 3, n. 4, p.
1671-1680, 2021.

• CATURELLO, N. A. M. S.; BESSE, R.; SILVEIRA, J. F .R. V.; LIMA, M. P.
DA SILVA, J. L. F. First-principles insights into the role of edges in the binding
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APPENDIX A – COMPUTATIONAL PARAMETERS

All calculations employed a total energy convergence criterion of 10−6 eV was used
for the self-consistent solution of the KS equations. In VASP calculations of MoSe2 for the
studies of Chapter 3, the KS orbitals were expanded in a plane-wave basis set with a cutoff
energy of 390 eV, except for stress tensor calculations, for bulks and monolayers, in which
the cutoff energy was increased to 520 eV due to the slow convergence of the stress tensor
with the size of basis set. These values of cutoff energy are 1.125 and 1.500 times larger
than the maximum energy recommended for the employed PAW projectors (ENMAX
parameter in the terminology of VASP PAW projectors), which were found adequate for
the simulation of TMDs systems in a previous study.132 Based on the same study, the k-
points meshes for integrations in the FBZ were chosen, and 30Å−1 dense k-points meshes
were employed for bulk solids. The same density was employed in the in-plane mesh for
monolayers, and only the Γ-point was sampled in calculations of nanoflakes. To select
the parameters for VASP calculations in the study of late TMs dichalcogenides discussed
in Chapter 4, convergence tests were performed with two representative systems, pyrite-
FeS2 and 1T-NiTe2, as shown in Figure 29. Based on the results, the parameters employed
were cutoff energy of 690 eV to obtain equilibrium volumes and 490 eV for the remaining
calculations, which correspond to 1.750 and 1.250 times the largest ENMAX among all
the employed PAW projectors. Numerical integrations in the BZ were carried out with
40Å−1 dense k-points meshes, but the density was cut in half for HSE06 calculations due
to the high computational cost. The calculations related to the discussions of Chapter 5
employed a cutoff energy of 438 eV, which was set based on the highest ENMAX among
the chemical species, defining the cutoff energy as 1.125×ENMAX. To obtain equilibrium
geometries, the cutoff energy was increased based on the convergence tests shown in
Figure 30, and stress tensor calculations were performed with cutoff energy of 780 eV
(2.0×ENMAX). To choose the k-mesh for Brillouin Zone integrations, convergence tests
were performed with the 1T-NiSe2 monolayer, which is the system with smallest band
gap. Based on the results, shown in Figure 30, a density of 40Å−1 was employed. For the
calculations performed with SIESTA, electron wave functions were expanded in a basis
set of double-ζ plus polarization LCAO, associated with an energy shift δεl of 50 meV, and
split norm of 0.15 for the generation of the double-ζ functions. The same k-point mesh
density used for the study of vdW heterobilayers was employed, except in the TDDFT
simulations, which employed only the Γ-point, as is explained in Chapter 6. The time-step
of TDDFT and MD simulations was 24.19 as.
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Figure 29 – Convergence tests of the cutoff energy and k-points mesh for representative
systems in the study of late TMs dichalcogenides.

Source: By the author.
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monolayer, employed to define the parameters for the study of heterobilayers.

Source: By the author.
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APPENDIX B – SUPPLEMENTARY DATA: DICHALCOGENIDES OF Fe-,
Co-, Ni-, AND Cu-GROUPS

Table 9 – Equilibrium lattice parameters and relative total energies of FeS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.26 3.26 5.09 90.0 90.0 120.0 832
1T′ 5.29 3.23 11.19 90.0 90.0 90.0 608
2H 3.14 3.14 11.58 90.0 90.0 120.0 979
Calaverite 5.70 3.23 5.09 90.0 89.7 90.0 831
PdS2-type 5.38 5.38 5.38 90.0 90.0 90.0 16
Pyrite 5.38 5.38 5.38 90.0 90.0 90.0 17
Pyrite (Exp.) 5.42 5.42 5.42 90.0 90.0 90.0
distorted-Pyrite 5.38 5.38 5.38 90.0 90.0 90.0 17
distorted-Pyrite (Exp.) 5.42 5.42 5.42 90.0 90.0 90.0
Marcasite 4.41 5.38 3.38 90.0 90.0 90.0 0
Marcasite (Exp.) 4.44 5.39 3.37 90.0 90.0 90.0
Krennerite 14.23 7.68 3.27 90.0 90.0 90.0 1074
IrS2-type 17.76 3.40 5.44 90.0 90.0 90.0 236
IrTe2-type 16.55 3.40 4.47 90.0 82.2 90.0 300

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 BAYLISS.124
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Table 10 – Equilibrium lattice parameters and relative total energies of FeSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.43 3.43 5.33 90.0 90.0 120.0 533
1T′ 5.55 3.41 11.28 90.0 90.0 90.0 334
2H 3.27 3.27 12.14 90.0 90.0 120.0 611
Calaverite 6.05 3.35 5.32 90.0 88.5 90.0 526
PdS2-type 5.74 5.74 5.74 90.0 90.0 90.0 56
Pyrite 5.74 5.74 5.74 90.0 90.0 90.0 56
Pyrite (Exp.) 5.79 5.79 5.79 90.0 90.0 90.0
distorted-Pyrite 5.74 5.74 5.74 90.0 90.0 90.0 56
Marcasite 4.75 5.74 3.58 90.0 90.0 90.0 0
Marcasite (Exp.) 4.80 5.78 3.58 90.0 90.0 90.0
Krennerite 15.51 8.21 3.34 90.0 90.0 90.0 807
IrS2-type 19.21 3.60 5.80 90.0 90.0 90.0 226
IrTe2-type 17.62 3.59 4.83 90.0 83.8 90.0 286

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 KJEKSHUS; RAKKE; ANDRESEN.125

Table 11 – Equilibrium lattice parameters and relative total energies of FeTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.71 3.71 5.62 90.0 90.0 120.0 501
1T′ 5.92 3.69 12.12 90.0 90.0 90.0 333
2H 3.72 3.72 12.53 90.0 90.0 120.0 606
Calaverite 6.42 3.73 5.60 90.0 90.3 90.0 499
PdS2-type 6.22 6.22 6.22 90.0 90.0 90.0 97
Pyrite 6.21 6.21 6.21 90.0 90.0 90.0 97
Pyrite (Exp.) 6.29 6.29 6.29 90.0 90.0 90.0
distorted-Pyrite 6.22 6.22 6.22 90.0 90.0 90.0 97
Marcasite 5.18 6.20 3.86 90.0 90.0 90.0 0
Marcasite (Exp.) 5.34 6.26 3.85 90.0 90.0 90.0
Krennerite 16.69 8.68 3.73 90.0 90.0 90.0 650
IrS2-type 21.06 3.87 6.27 90.0 90.0 90.0 220
IrTe2-type 19.06 3.80 5.30 90.0 86.8 90.0 277

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 TENGNER.153
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Table 12 – Equilibrium lattice parameters and relative total energies of RuS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.41 3.41 4.90 90.0 90.0 120.0 1349
1T′ 5.54 3.46 11.00 90.0 90.0 90.0 783
2H 3.30 3.30 11.26 90.0 90.0 120.0 1566
Calaverite 6.53 3.03 4.86 90.0 91.8 90.0 1200
PdS2-type 5.62 5.62 5.62 90.0 90.0 90.0 0
Pyrite 5.62 5.62 5.62 90.0 90.0 90.0 0
Pyrite (Exp.) 5.61 5.61 5.61 90.0 90.0 90.0
distorted-Pyrite 5.62 5.62 5.62 90.0 90.0 90.0 0
Marcasite 4.54 5.64 3.59 90.0 90.0 90.0 115
Krennerite 15.18 8.20 3.08 90.0 90.0 90.0 1409
IrS2-type 18.28 3.61 5.68 90.0 90.0 90.0 359
IrTe2-type 17.36 3.61 4.57 90.0 81.6 90.0 437

Source: BESSE; LIMA; DA SILVA;118 LUTZ et al.154

Table 13 – Equilibrium lattice parameters and relative total energies of RuSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.57 3.57 5.20 90.0 90.0 120.0 992
1T′ 5.76 3.61 11.50 90.0 90.0 90.0 455
2H 3.44 3.44 11.85 90.0 90.0 120.0 1118
Calaverite 6.27 3.52 5.21 90.0 89.4 90.0 993
PdS2-type 5.96 5.96 5.96 90.0 90.0 90.0 0
Pyrite 5.96 5.96 5.96 90.0 90.0 90.0 0
Pyrite (Exp.) 5.93 5.93 5.93 90.0 90.0 90.0
distorted-Pyrite 5.96 5.96 5.96 90.0 90.0 90.0 0
Marcasite 4.86 5.98 3.78 90.0 90.0 90.0 79
Krennerite 16.91 8.56 3.13 90.0 90.0 90.0 1070
IrS2-type 19.65 3.75 5.98 90.0 90.0 90.0 444
IrTe2-type 18.39 3.79 4.92 90.0 82.8 90.0 401

Source: BESSE; LIMA; DA SILVA.118
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Table 14 – Equilibrium lattice parameters and relative total energies of RuTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.82 3.82 5.58 90.0 90.0 120.0 807
1T′ 6.09 3.86 12.13 90.0 90.0 90.0 440
2H 3.69 3.69 12.48 90.0 90.0 120.0 970
Calaverite 6.63 3.81 5.58 90.0 90.0 90.0 807
PdS2-type 6.41 6.41 6.41 90.0 90.0 90.0 0
Pyrite 6.41 6.41 6.41 90.0 90.0 90.0 0
Pyrite (Exp.) 6.39 6.39 6.39 90.0 90.0 90.0
distorted-Pyrite 6.41 6.41 6.41 90.0 90.0 90.0 0
Marcasite 5.27 6.42 4.04 90.0 90.0 90.0 31
Marcasite (Exp.) 5.29 6.40 4.01 90.0 90.0 90.0
Krennerite 19.02 8.95 3.27 90.0 90.0 90.0 986
IrS2-type 21.38 4.06 6.49 90.0 90.0 90.0 291
IrTe2-type 19.69 4.06 5.36 90.0 83.7 90.0 361

Source: BESSE; LIMA; DA SILVA;118 LUTZ; JUNG; WÄSCHENBACH;155 ZHAO; SCHILS;
RAUB.156

Table 15 – Equilibrium lattice parameters and relative total energies of OsS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.48 3.48 4.96 90.0 90.0 120.0 1282
1T′ 5.52 3.53 11.07 90.0 90.0 90.0 529
2H 3.34 3.34 11.20 90.0 90.0 120.0 1618
Calaverite 6.57 3.04 4.98 90.0 89.9 90.0 1072
PdS2-type 5.64 5.64 5.64 90.0 90.0 90.0 0
Pyrite 5.64 5.64 5.64 90.0 90.0 90.0 0
Pyrite (Exp.) 5.62 5.62 5.62 90.0 90.0 90.0
distorted-Pyrite 5.64 5.64 5.64 90.0 90.0 90.0 0
Marcasite 4.55 5.66 3.63 90.0 90.0 90.0 85
Krennerite 16.08 8.13 3.03 90.0 90.0 90.0 1355
IrS2-type 18.36 3.64 5.69 90.0 90.0 90.0 374
IrTe2-type 17.41 3.65 4.58 90.0 81.9 90.0 462

Source: BESSE; LIMA; DA SILVA;118 STINGL; MÜLLER; LUTZ.157
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Table 16 – Equilibrium lattice parameters and relative total energies of OsSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.64 3.64 5.20 90.0 90.0 120.0 1012
1T′ 5.74 3.68 11.58 90.0 90.0 90.0 276
2H 3.48 3.48 11.79 90.0 90.0 120.0 1203
Calaverite 6.35 3.61 5.19 90.0 89.6 90.0 1010
PdS2-type 5.98 5.98 5.98 90.0 90.0 90.0 0
Pyrite 5.98 5.98 5.98 90.0 90.0 90.0 0
Pyrite (Exp.) 5.95 5.95 5.95 90.0 90.0 90.0
distorted-Pyrite 5.98 5.98 5.98 90.0 90.0 90.0 0
Marcasite 4.86 5.99 3.82 90.0 90.0 90.0 58
Krennerite 15.03 8.65 3.74 90.0 90.0 90.0 926
IrS2-type 19.75 3.83 6.04 90.0 90.0 90.0 340
IrTe2-type 18.42 3.83 4.93 90.0 83.3 90.0 420

Source: BESSE; LIMA; DA SILVA;118 STASSEN; HEYDING.158

Table 17 – Equilibrium lattice parameters and relative total energies of OsTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.88 3.88 5.54 90.0 90.0 120.0 914
1T′ 6.08 3.92 12.23 90.0 90.0 90.0 416
2H 3.72 3.72 12.50 90.0 90.0 120.0 1101
Calaverite 6.72 3.88 5.54 90.0 90.2 90.0 918
PdS2-type 6.42 6.42 6.42 90.0 90.0 90.0 0
Pyrite 6.42 6.42 6.42 90.0 90.0 90.0 0
Pyrite (Exp.) 6.40 6.40 6.40 90.0 90.0 90.0
distorted-Pyrite 6.42 6.42 6.42 90.0 90.0 90.0 0
Marcasite 5.26 6.43 4.08 90.0 90.0 90.0 24
Krennerite 16.09 9.08 4.00 90.0 90.0 90.0 988
IrS2-type 21.40 4.09 6.49 90.0 90.0 90.0 310
IrTe2-type 19.71 4.10 5.36 90.0 84.1 90.0 381

Source: BESSE; LIMA; DA SILVA;118 STINGL; MÜLLER; LUTZ.157
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Table 18 – Equilibrium lattice parameters and relative total energies of CoS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.30 3.30 4.61 90.0 90.0 120.0 309
1T′ 5.62 3.31 9.88 90.0 90.0 90.0 396
2H 3.22 3.22 10.53 90.0 90.0 120.0 867
Calaverite 5.77 3.27 4.62 90.0 90.3 90.0 310
PdS2-type 5.47 5.47 5.46 90.0 90.0 90.0 0
Pyrite 5.47 5.47 5.47 90.0 90.0 90.0 0
Pyrite (Exp.) 5.53 5.53 5.53 90.0 90.0 90.0
distorted-Pyrite 5.47 5.47 5.47 90.0 90.0 90.0 0
Marcasite 4.48 5.45 3.45 90.0 90.0 90.0 25
Krennerite 13.74 7.57 3.28 90.0 90.0 90.0 484
IrS2-type 18.95 3.36 5.40 90.0 90.0 90.0 13
IrTe2-type 16.81 3.35 4.46 90.0 89.9 90.0 7

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118

Table 19 – Equilibrium lattice parameters and relative total energies of CoSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.48 3.48 4.96 90.0 90.0 120.0 175
1T′ 5.92 3.47 10.48 90.0 90.0 90.0 242
2H 3.36 3.36 11.18 90.0 90.0 120.0 635
Calaverite 6.00 3.49 4.97 90.0 90.5 90.0 175
PdS2-type 5.78 5.78 5.78 90.0 90.0 90.0 69
Pyrite 5.78 5.78 5.78 90.0 90.0 90.0 69
Pyrite (Exp.) 5.86 5.86 5.86 90.0 90.0 90.0
distorted-Pyrite 5.78 5.78 5.78 90.0 90.0 90.0 69
Marcasite 4.82 5.77 3.62 90.0 90.0 90.0 61
Krennerite 14.55 8.10 3.50 90.0 90.0 90.0 383
IrS2-type 19.93 3.58 5.75 90.0 90.0 90.0 30
IrTe2-type 17.82 3.55 4.79 90.0 89.8 90.0 0

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118
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Table 20 – Equilibrium lattice parameters and relative total energies of CoTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.76 3.76 5.32 90.0 90.0 120.0 63
1T′ 6.42 3.74 11.27 90.0 90.0 90.0 133
2H 3.61 3.61 12.03 90.0 90.0 120.0 484
Calaverite 6.52 3.76 5.33 90.0 90.1 90.0 60
PdS2-type 6.24 6.24 6.24 90.0 90.0 90.0 44
Pyrite 6.24 6.24 6.24 90.0 90.0 90.0 44
Pyrite (Exp.) 6.32 6.32 6.32 90.0 90.0 90.0
distorted-Pyrite 6.24 6.24 6.24 90.0 90.0 90.0 44
Marcasite 5.27 6.23 3.89 90.0 90.0 90.0 62
Marcasite (Exp.) 5.30 6.30 3.88 90.0 90.0 90.0
Krennerite 15.85 8.73 3.79 90.0 90.0 90.0 303
IrS2-type 21.61 3.86 6.21 90.0 90.0 90.0 36
IrTe2-type 19.25 3.84 5.18 90.0 90.3 90.0 0

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 TENGNER.153

Table 21 – Equilibrium lattice parameters and relative total energies of RhS2 in the 11
studied crystal structures, obtained with PBE+D3. The PdS2-type structure
is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.49 3.49 4.68 90.0 90.0 120.0 421
1T′ 6.20 3.42 9.84 90.0 90.0 90.0 549
2H 3.36 3.36 10.75 90.0 90.0 120.0 1379
Calaverite 6.10 3.46 4.67 90.0 90.8 90.0 419
PdS2-type 5.71 5.71 5.72 90.0 90.0 90.0 128
Pyrite 5.71 5.71 5.71 90.0 90.0 90.0 128
distorted-Pyrite 5.71 5.71 5.71 90.0 90.0 90.0 128
Marcasite 4.63 5.66 3.69 90.0 90.0 90.0 212
Krennerite 14.30 7.89 3.44 90.0 90.0 90.0 551
IrS2-type 19.78 3.56 5.64 90.0 90.0 90.0 0
IrTe2-type 17.68 3.57 4.59 90.0 90.1 90.0 58

Source: BESSE; LIMA; DA SILVA.118
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Table 22 – Equilibrium lattice parameters and relative total energies of RhSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.65 3.65 4.94 90.0 90.0 120.0 245
1T′ 6.53 3.57 10.33 90.0 90.0 90.0 363
2H 3.50 3.50 11.30 90.0 90.0 120.0 965
Calaverite 6.45 3.61 4.94 90.0 91.3 90.0 250
PdS2-type 6.04 6.03 6.03 90.0 90.0 90.0 53
Pyrite 6.03 6.03 6.03 90.0 90.0 90.0 53
Pyrite (Exp.) 5.99 5.99 5.99 90.0 90.0 90.0
distorted-Pyrite 6.04 6.04 6.04 90.0 90.0 90.0 53
Marcasite 4.97 6.00 3.85 90.0 90.0 90.0 108
Krennerite 15.07 8.34 3.63 90.0 90.0 90.0 385
IrS2-type 20.81 3.76 5.97 90.0 90.0 90.0 24
IrS2-type (Exp.) 20.91 3.71 5.95 90.0 90.0 90.0
IrTe2-type 18.65 3.75 4.89 90.0 90.2 90.0 0

Source: BESSE; LIMA; DA SILVA;118 GELLER; CETLIN;159 HULLIGER.160

Table 23 – Equilibrium lattice parameters and relative total energies of RhTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.94 3.94 5.24 90.0 90.0 120.0 122
1T (Exp.) 3.92 3.92 5.41 90.0 90.0 120.0
1T′ 6.75 3.90 11.25 90.0 90.0 90.0 263
2H 3.76 3.76 12.11 90.0 90.0 120.0 682
Calaverite 6.83 3.93 5.24 90.0 89.9 90.0 116
PdS2-type 6.46 6.46 6.46 90.0 90.0 90.0 0
Pyrite 6.46 6.46 6.46 90.0 90.0 90.0 0
Pyrite (Exp.) 6.44 6.44 6.44 90.0 90.0 90.0
distorted-Pyrite 6.46 6.46 6.46 90.0 90.0 90.0 0
Marcasite 5.40 6.45 4.10 90.0 90.0 90.0 109
Krennerite 16.04 8.90 3.96 90.0 90.0 90.0 299
IrS2-type 22.22 4.05 6.42 90.0 90.0 90.0 55
IrTe2-type 20.05 4.03 5.24 90.0 90.7 90.0 0

Source: BESSE; LIMA; DA SILVA;118 GELLER.161
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Table 24 – Equilibrium lattice parameters and relative total energies of IrS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.53 3.53 4.72 90.0 90.0 120.0 458
1T′ 6.07 3.54 10.09 90.0 90.0 90.0 589
2H 3.38 3.38 10.85 90.0 90.0 120.0 1754
Calaverite 6.12 3.53 4.72 90.0 90.4 90.0 461
PdS2-type 5.70 5.70 5.70 90.0 90.0 90.0 218
Pyrite 5.70 5.70 5.70 90.0 90.0 90.0 218
Pyrite (Exp.) 5.68 5.68 5.68 90.0 90.0 90.0
distorted-Pyrite 5.70 5.70 5.70 90.0 90.0 90.0 218
Marcasite 4.78 5.66 3.65 90.0 90.0 90.0 253
Krennerite 14.43 7.93 3.50 90.0 90.0 90.0 697
IrS2-type 19.80 3.60 5.63 90.0 90.0 90.0 0
IrS2-type (Exp.) 19.78 3.57 5.62 90.0 90.0 90.0
IrTe2-type 17.69 3.60 4.62 90.0 90.1 90.0 99

Source: BESSE; LIMA; DA SILVA;118 HULLIGER;160 MUNSON.162

Table 25 – Equilibrium lattice parameters and relative total energies of IrSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.70 3.70 4.97 90.0 90.0 120.0 265
1T′ 6.50 3.64 10.46 90.0 90.0 90.0 395
2H 3.52 3.52 11.42 90.0 90.0 120.0 1248
Calaverite 6.42 3.69 4.96 90.0 90.3 90.0 266
PdS2-type 6.04 6.04 6.04 90.0 90.0 90.0 207
Pyrite 6.04 6.04 6.04 90.0 90.0 90.0 207
distorted-Pyrite 6.04 6.04 6.04 90.0 90.0 90.0 207
Marcasite 5.04 6.00 3.85 90.0 90.0 90.0 224
Krennerite 15.18 8.35 3.68 90.0 90.0 90.0 483
IrS2-type 20.97 3.78 5.96 90.0 90.0 90.0 0
IrS2-type (Exp.) 20.96 3.74 5.94 90.0 90.0 90.0
IrTe2-type 18.65 3.78 4.91 90.0 90.3 90.0 22

Source: BESSE; LIMA; DA SILVA;118 JOBIC et al.126
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Table 26 – Equilibrium lattice parameters and relative total energies of IrTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.96 3.96 5.27 90.0 90.0 120.0 121
1T (Exp.) 3.93 3.93 5.39 90.0 90.0 120.0
1T′ 6.84 3.91 11.31 90.0 90.0 90.0 279
2H 3.77 3.77 12.15 90.0 90.0 120.0 886
Calaverite 6.84 3.97 5.26 90.0 90.1 90.0 120
PdS2-type 6.48 6.48 6.48 90.0 90.0 90.0 150
Pyrite 6.48 6.48 6.48 90.0 90.0 90.0 150
distorted-Pyrite 6.48 6.48 6.48 90.0 90.0 90.0 150
Marcasite 5.44 6.45 4.12 90.0 90.0 90.0 249
Krennerite 16.21 8.92 3.96 90.0 90.0 90.0 344
IrS2-type 22.58 4.05 6.40 90.0 90.0 90.0 41
IrTe2-type 20.06 4.04 5.27 90.0 90.8 90.0 0
IrTe2-type (Exp.) 19.98 4.00 5.31 90.0 90.8 90.0

Source: HOCKINGS; WHITE;49 BESSE; LIMA; DA SILVA;118 JOBIC et al.127

Table 27 – Equilibrium lattice parameters and relative total energies of NiS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.39 3.39 4.44 90.0 90.0 120.0 152
1T′ 5.81 3.38 9.61 90.0 90.0 90.0 219
2H 3.47 3.47 9.79 90.0 90.0 120.0 728
Calaverite 5.87 3.39 4.43 90.0 90.1 90.0 152
PdS2-type 5.57 5.57 5.58 90.0 90.0 90.0 0
Pyrite 5.57 5.57 5.57 90.0 90.0 90.0 0
Pyrite (Exp.) 5.69 5.69 5.69 90.0 90.0 90.0
distorted-Pyrite 5.57 5.57 5.57 90.0 90.0 90.0 0
Marcasite 4.55 5.55 3.52 90.0 90.0 90.0 31
Krennerite 13.76 7.44 3.37 90.0 90.0 90.0 311
IrS2-type 18.80 3.34 6.13 90.0 90.0 90.0 133
IrTe2-type 17.95 3.39 4.42 90.0 88.1 90.0 103

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118
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Table 28 – Equilibrium lattice parameters and relative total energies of NiSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.59 3.59 4.68 90.0 90.0 120.0 0
1T′ 6.19 3.56 9.92 90.0 90.0 90.0 68
2H 3.47 3.47 10.61 90.0 90.0 120.0 522
Calaverite 6.21 3.59 4.69 90.0 89.8 90.0 0
PdS2-type 5.88 5.88 5.87 90.0 90.0 90.0 33
Pyrite 5.87 5.87 5.87 90.0 90.0 90.0 33
Pyrite (Exp.) 5.96 5.96 5.96 90.0 90.0 90.0
distorted-Pyrite 5.87 5.87 5.87 90.0 90.0 90.0 33
Marcasite 4.85 5.95 3.67 90.0 90.0 90.0 54
Krennerite 14.64 7.91 3.60 90.0 90.0 90.0 138
IrS2-type 19.86 3.65 5.92 90.0 90.0 90.0 77
IrTe2-type 18.30 3.60 4.80 90.0 89.9 90.0 20

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118

Table 29 – Equilibrium lattice parameters and relative total energies of NiTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.86 3.86 5.08 90.0 90.0 120.0 4
1T (Exp.) 3.85 3.85 5.26 90.0 90.0 120.0
1T′ 6.66 3.84 10.72 90.0 90.0 90.0 82
2H 3.69 3.69 11.64 90.0 90.0 120.0 373
Calaverite 6.71 3.86 5.07 90.0 90.3 90.0 0
PdS2-type 6.34 6.34 6.34 90.0 90.0 90.0 77
Pyrite 6.34 6.34 6.34 90.0 90.0 90.0 78
Pyrite (Exp.) 6.37 6.37 6.37 90.0 90.0 90.0
distorted-Pyrite 6.34 6.34 6.33 90.0 90.0 90.0 78
Marcasite 5.27 6.44 3.93 90.0 90.0 90.0 140
Krennerite 15.98 8.52 3.88 90.0 90.0 90.0 126
IrS2-type 21.72 3.90 6.38 90.0 90.0 90.0 145
IrTe2-type 19.69 3.89 5.20 90.0 90.2 90.0 69

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118
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Table 30 – Equilibrium lattice parameters and relative total energies of PdS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.60 3.60 4.45 90.0 90.0 120.0 261
1T′ 6.18 3.57 9.88 90.0 90.0 90.0 358
2H 3.87 3.87 9.53 90.0 90.0 120.0 1143
Calaverite 6.24 3.60 4.46 90.0 89.9 90.0 263
PdS2-type 5.52 5.59 7.46 90.0 90.0 90.0 0
PdS2-type (Exp.) 5.46 5.54 7.53 90.0 90.0 90.0
Pyrite 5.90 5.90 5.90 90.0 90.0 90.0 77
distorted-Pyrite 5.90 5.89 5.90 90.0 90.0 90.0 77
Marcasite 4.77 5.78 3.81 90.0 90.0 90.0 129
Krennerite 14.17 7.76 3.56 90.0 90.0 90.0 419
IrS2-type 19.30 3.56 6.56 90.0 90.0 90.0 286
IrTe2-type 21.71 3.53 4.39 90.0 88.8 90.0 174

Source: BESSE; LIMA; DA SILVA;118 GRØNVOLD; RØST.122

Table 31 – Equilibrium lattice parameters and relative total energies of PdSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.79 3.79 4.67 90.0 90.0 120.0 0
1T′ 6.51 3.77 10.05 90.0 90.0 90.0 139
2H 3.62 3.62 10.72 90.0 90.0 120.0 827
Calaverite 6.57 3.78 4.68 90.0 90.0 90.0 1
PdS2-type 6.20 6.21 6.19 90.0 90.0 90.0 49
PdS2-type (Exp.) 5.74 5.87 7.69 90.0 90.0 90.0
Pyrite 6.20 6.20 6.20 90.0 90.0 90.0 49
distorted-Pyrite 6.20 6.20 6.20 90.0 90.0 90.0 49
Marcasite 5.05 6.21 3.93 90.0 90.0 90.0 97
Krennerite 14.98 8.19 3.77 90.0 90.0 90.0 96
IrS2-type 20.55 3.94 6.13 90.0 90.0 90.0 128
IrTe2-type 19.51 3.83 4.86 90.0 90.6 90.0 65

Source: BESSE; LIMA; DA SILVA;118 GRØNVOLD; RØST.122
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Table 32 – Equilibrium lattice parameters and relative total energies of PdTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 4.07 4.07 5.01 90.0 90.0 120.0 3
1T (Exp.) 4.03 4.03 5.13 90.0 90.0 120.0
1T′ 7.07 4.02 10.69 90.0 90.0 90.0 155
2H 3.87 3.87 11.58 90.0 90.0 120.0 549
Calaverite 7.04 4.08 5.02 90.0 89.5 90.0 0
PdS2-type 6.61 6.61 6.61 90.0 90.0 90.0 101
Pyrite 6.61 6.61 6.61 90.0 90.0 90.0 101
distorted-Pyrite 6.61 6.61 6.61 90.0 90.0 90.0 101
Marcasite 5.42 6.77 4.16 90.0 90.0 90.0 206
Krennerite 16.17 8.78 4.08 90.0 90.0 90.0 87
IrS2-type 22.29 4.15 6.63 90.0 90.0 90.0 222
IrTe2-type 20.78 4.12 5.22 90.0 91.0 90.0 121

Source: BESSE; LIMA; DA SILVA;118 FURUSETH; SELTE; KJEKSHUS.163

Table 33 – Equilibrium lattice parameters and relative total energies of PtS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.61 3.61 4.58 90.0 90.0 120.0 0
1T (Exp.) 3.54 3.54 5.04 90.0 90.0 120.0
1T′ 6.20 3.58 10.18 90.0 90.0 90.0 55
2H 3.45 3.45 10.34 90.0 90.0 120.0 1695
Calaverite 6.25 3.61 4.59 90.0 90.0 90.0 0
PdS2-type 5.47 5.55 7.85 90.0 90.0 90.0 155
Pyrite 5.84 5.84 5.84 90.0 90.0 90.0 597
distorted-Pyrite 5.84 5.84 5.84 90.0 90.0 90.0 597
Marcasite 4.80 5.59 3.93 90.0 90.0 90.0 704
Krennerite 14.34 7.69 3.63 90.0 90.0 90.0 417
IrS2-type 21.39 3.65 5.53 90.0 90.0 90.0 427
IrTe2-type 17.20 3.65 5.16 90.0 91.6 90.0 365

Source: BESSE; LIMA; DA SILVA;118 FURUSETH; SELTE; KJEKSHUS.163
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Table 34 – Equilibrium lattice parameters and relative total energies of PtSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.79 3.79 4.75 90.0 90.0 120.0 0
1T (Exp.) 3.73 3.73 5.04 90.0 90.0 120.0
1T′ 6.50 3.75 10.42 90.0 90.0 90.0 82
2H 3.61 3.61 10.90 90.0 90.0 120.0 1241
Calaverite 6.57 3.79 4.75 90.0 89.9 90.0 0
PdS2-type 5.76 5.89 8.16 90.0 90.0 90.0 356
Pyrite 6.16 6.16 6.16 90.0 90.0 90.0 481
distorted-Pyrite 6.16 6.16 6.16 90.0 90.0 90.0 481
Marcasite 5.35 5.95 3.90 90.0 90.0 90.0 533
Krennerite 15.12 8.12 3.81 90.0 90.0 90.0 266
IrS2-type 21.81 3.85 5.98 90.0 90.0 90.0 401
IrTe2-type 19.09 3.85 4.98 90.0 92.5 90.0 328

Source: BESSE; LIMA; DA SILVA;118 FURUSETH; SELTE; KJEKSHUS.163

Table 35 – Equilibrium lattice parameters and relative total energies of PtTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 4.07 4.07 5.03 90.0 90.0 120.0 0
1T (Exp.) 4.03 4.03 5.22 90.0 90.0 120.0
1T′ 6.95 4.02 10.93 90.0 90.0 90.0 127
2H 3.84 3.84 11.68 90.0 90.0 120.0 827
Calaverite 7.04 4.06 5.05 90.0 89.9 90.0 4
PdS2-type 6.60 6.60 6.63 90.0 90.0 90.0 376
Pyrite 6.61 6.61 6.61 90.0 90.0 90.0 376
distorted-Pyrite 6.61 6.61 6.61 90.0 90.0 90.0 376
Marcasite 5.37 6.81 4.18 90.0 90.0 90.0 519
Krennerite 16.35 8.69 4.07 90.0 90.0 90.0 170
IrS2-type 22.83 3.99 7.08 90.0 90.0 90.0 375
IrTe2-type 20.67 4.11 5.30 90.0 91.8 90.0 305

Source: BESSE; LIMA; DA SILVA;118 FURUSETH; SELTE; KJEKSHUS.163
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Table 36 – Equilibrium lattice parameters and relative total energies of CuS2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.48 3.48 4.28 90.0 90.0 120.0 715
1T′ 6.38 3.35 8.81 90.0 90.0 90.0 777
2H 3.67 3.67 9.09 90.0 90.0 120.0 894
Calaverite 6.31 3.41 4.29 90.0 90.7 90.0 671
PdS2-type 5.75 5.75 5.76 90.0 90.0 90.0 0
Pyrite 5.75 5.75 5.75 90.0 90.0 90.0 0
Pyrite (Exp.) 5.79 5.79 5.79 90.0 90.0 90.0
distorted-Pyrite 5.75 5.75 5.75 90.0 90.0 90.0 0
Marcasite 4.67 5.79 3.59 90.0 90.0 90.0 2
Marcasite (Exp.) 4.65 5.66 3.52 90.0 90.0 90.0
Krennerite 13.77 7.50 3.97 90.0 90.0 90.0 211
IrS2-type 18.68 3.60 5.83 90.0 90.0 90.0 51
IrTe2-type 17.78 3.58 4.70 90.0 82.1 90.0 70

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 KJEKSHUS; RAKKE.164

Table 37 – Equilibrium lattice parameters and relative total energies of CuSe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.69 3.69 4.56 90.0 90.0 120.0 231
1T′ 6.68 3.61 9.38 90.0 90.0 90.0 280
2H 3.75 3.75 9.76 90.0 90.0 120.0 533
Calaverite 6.66 3.69 4.53 90.0 90.7 90.0 188
PdS2-type 6.09 6.09 6.09 90.0 90.0 90.0 0
Pyrite 6.09 6.09 6.09 90.0 90.0 90.0 0
Pyrite (Exp.) 6.12 6.12 6.12 90.0 90.0 90.0
distorted-Pyrite 6.09 6.09 6.09 90.0 90.0 90.0 0
Marcasite 5.00 6.15 3.75 90.0 90.0 90.0 4
Marcasite (Exp.) 5.02 6.20 3.75 90.0 90.0 90.0
Krennerite 14.74 7.96 4.00 90.0 90.0 90.0 65
IrS2-type 19.99 3.78 6.19 90.0 90.0 90.0 43
IrTe2-type 19.25 3.72 4.95 90.0 84.4 90.0 64

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA;118 KJEKSHUS; RAKKE; ANDRESEN.125
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Table 38 – Equilibrium lattice parameters and relative total energies of CuTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.99 3.99 5.00 90.0 90.0 120.0 2
1T′ 4.95 4.02 15.37 90.0 90.0 90.0 95
2H 3.91 3.91 11.00 90.0 90.0 120.0 293
Calaverite 6.98 4.03 4.98 90.0 90.7 90.0 0
PdS2-type 6.55 6.56 6.56 90.0 90.0 90.0 29
Pyrite 6.56 6.56 6.56 90.0 90.0 90.0 29
Pyrite (Exp.) 6.12 6.12 6.12 90.0 90.0 90.0
distorted-Pyrite 6.56 6.56 6.56 90.0 90.0 90.0 29
Marcasite 5.48 6.68 3.99 90.0 90.0 90.0 68
Krennerite 16.01 8.55 4.25 90.0 90.0 90.0 2
IrS2-type 21.98 4.03 6.68 90.0 90.0 90.0 99
IrTe2-type 20.85 3.96 5.25 90.0 89.7 90.0 81

Source: BITHER et al.;51 BESSE; LIMA; DA SILVA.118

Table 39 – Equilibrium lattice parameters and relative total energies of AgS2 in the 11
studied crystal structures, obtained with PBE+D3. The PdS2-type structure
is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.71 3.71 4.42 90.0 90.0 120.0 926
1T′-derived 6.07 3.69 12.66 90.0 90.0 90.0 721
2H 4.10 4.10 9.08 90.0 90.0 120.0 1097
Calaverite 7.03 3.48 4.48 90.0 89.2 90.0 819
PdS2-type 6.15 6.15 6.17 90.0 90.0 90.0 0
Pyrite 6.16 6.16 6.16 90.0 90.0 90.0 0
distorted-Pyrite 6.16 6.16 6.16 90.0 90.0 90.0 0
Marcasite 4.95 6.19 3.88 90.0 90.0 90.0 13
Krennerite 15.21 8.18 3.87 90.0 90.0 90.0 325
IrS2-type 19.78 3.90 6.23 90.0 90.0 90.0 49
IrTe2-type 19.04 3.87 4.97 90.0 81.4 90.0 68

Source: BESSE; LIMA; DA SILVA.118
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Table 40 – Equilibrium lattice parameters and relative total energies of AgSe2 in the 11
studied crystal structures, obtained with PBE+D3. The PdS2-type structure
is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.91 3.91 4.67 90.0 90.0 120.0 365
1T′ 7.51 3.73 9.48 90.0 90.0 90.0 397
2H 3.68 3.68 10.76 90.0 90.0 120.0 862
Calaverite 7.30 3.78 4.68 90.0 89.8 90.0 283
PdS2-type 6.48 6.48 6.48 90.0 90.0 90.0 0
Pyrite 6.48 6.48 6.48 90.0 90.0 90.0 0
distorted-Pyrite 6.48 6.48 6.48 90.0 90.0 90.0 0
Marcasite 5.27 6.56 4.01 90.0 90.0 90.0 15
Krennerite 15.46 8.48 4.12 90.0 90.0 90.0 86
IrS2-type 21.06 4.04 6.60 90.0 90.0 90.0 51
IrTe2-type 20.15 4.00 5.30 90.0 82.1 90.0 70

Source: BESSE; LIMA; DA SILVA.118

Table 41 – Equilibrium lattice parameters and relative total energies of AgTe2 in the 11
studied crystal structures, obtained with PBE+D3. The PdS2-type structure
is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 4.22 4.22 5.07 90.0 90.0 120.0 81
1T′ 4.38 4.48 17.69 90.0 90.0 90.0 169
2H 4.29 4.29 10.75 90.0 90.0 120.0 401
Calaverite 7.62 4.20 5.06 90.0 90.1 90.0 60
PdS2-type 6.94 6.94 6.96 90.0 90.0 90.0 53
Pyrite 6.95 6.95 6.95 90.0 90.0 90.0 53
distorted-Pyrite 6.94 6.95 6.95 90.0 90.0 90.0 53
Marcasite 5.75 7.10 4.23 90.0 90.0 90.0 80
Krennerite 16.58 9.02 4.37 90.0 90.0 90.0 0
IrS2-type 22.88 4.26 7.14 90.0 90.0 90.0 112
IrTe2-type 22.44 4.21 5.45 90.0 90.1 90.0 122

Source: BESSE; LIMA; DA SILVA.118
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Table 42 – Equilibrium lattice parameters and relative total energies of AuS2 in the 11
studied crystal structures, obtained with PBE+D3.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.71 3.71 4.38 90.0 90.0 120.0 424
1T′ 6.35 3.75 9.43 90.0 90.0 90.0 662
2H 4.03 4.03 9.16 90.0 90.0 120.0 1540
Calaverite 6.43 3.72 4.37 90.0 89.9 90.0 428
PdS2-type 5.64 6.20 7.17 90.0 90.0 90.0 148
Pyrite 6.15 6.15 6.15 90.0 90.0 90.0 184
distorted-Pyrite 6.15 6.14 6.15 90.0 90.0 90.0 184
Marcasite 5.17 5.72 4.10 90.0 90.0 90.0 183
Krennerite 15.29 7.82 4.02 90.0 90.0 90.0 0
IrS2-type 16.93 3.72 7.69 90.0 90.0 90.0 374
IrTe2-type 22.46 3.64 4.62 90.0 82.0 90.0 294

Source: BESSE; LIMA; DA SILVA.118

Table 43 – Equilibrium lattice parameters and relative total energies of AuSe2 in the 11
studied crystal structures, obtained with PBE+D3.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 3.90 3.90 4.65 90.0 90.0 120.0 126
1T′ 6.78 3.91 9.82 90.0 90.0 90.0 331
2H 3.66 3.66 10.79 90.0 90.0 120.0 879
Calaverite 6.75 3.89 4.66 90.0 89.9 90.0 122
PdS2-type 6.05 6.44 7.22 90.0 90.0 90.0 278
Pyrite 6.46 6.46 6.46 90.0 90.0 90.0 273
distorted-Pyrite 6.46 6.46 6.46 90.0 90.0 90.0 273
Marcasite 5.26 6.48 4.04 90.0 90.0 90.0 291
Krennerite 15.52 8.20 4.13 90.0 90.0 90.0 0
IrS2-type 21.96 4.14 6.15 90.0 90.0 90.0 304
IrTe2-type 21.68 3.90 5.01 90.0 89.9 90.0 228

Source: BESSE; LIMA; DA SILVA.118
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Table 44 – Equilibrium lattice parameters and relative total energies of AuTe2 in the 11
studied crystal structures, obtained with PBE+D3, and reference experimental
data. The PdS2-type structure is changed to pyrite after relaxation.

Structure a0 (Å) b0 (Å) c0 (Å) α (°) β (°) γ (°) ∆E (meV/f.u.)
1T 4.19 4.19 5.04 90.0 90.0 120.0 11
1T (Exp.) 4.11 4.11 5.03 90.0 90.0 120.0
1T′ 7.05 4.08 10.82 90.0 90.0 90.0 211
2H 3.94 3.94 11.57 90.0 90.0 120.0 579
Calaverite 7.25 4.18 5.06 90.0 89.9 90.0 6
Calaverite (Exp.) 7.19 4.41 5.07 90.0 90.0 90.0
PdS2-type 6.91 6.90 6.91 90.0 90.0 90.0 359
Pyrite 6.89 6.89 6.89 90.0 90.0 90.0 359
distorted-Pyrite 6.90 6.89 6.89 90.0 90.0 90.0 359
Marcasite 5.73 7.03 4.23 90.0 90.0 90.0 400
Krennerite 16.56 8.78 4.38 90.0 90.0 90.0 0
Krennerite (Exp.) 16.51 8.80 4.45 90.0 90.0 90.0
IrS2-type 18.00 4.06 9.58 90.0 90.0 90.0 302
IrTe2-type 22.64 4.14 5.28 90.0 90.3 90.0 292

Source: BESSE; LIMA; DA SILVA;118 REITHMAYER et al.;121 TUNELL; KSANDA.128
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Figure 31 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Fe-group sulfides (MS2, M = Fe, Ru, Os). Zero energy is set to the
VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 32 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Fe-group selenides (MSe2, M = Fe, Ru, Os). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 33 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Fe-group tellurides (MTe2, M = Fe, Ru, Os). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 34 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Co-group sulfides (MS2, M = Co, Rh, Ir). Zero energy is set to the
VBM, indicated by horizontal dashed line.

Source: By the author.



146

Γ Y L I|I
1

Z F
1
|Y X

1
|X A|K H|M L

-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

IrTe
2
-type CoSe

2

LDOS

LDOS

M d

Q p

Γ K M Γ A H L A|K H|M L
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

1T-CoSe
2

LDOS

Γ Y L I|I
1

Z F
1
|Y X

1
|X Γ N|M Γ

-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

IrTe
2
-type RhSe

2

LDOS Γ K M Γ A H L A|K H|M L
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

1T-RhSe
2

LDOS

ΓX SY Γ ZU R T Z|X U|Y T|S R
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

IrS
2
-type IrSe

2

LDOS Γ K M Γ A H L A|K H|M L
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

1T-IrSe
2

LDOS

Figure 35 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Co-group selenides (MSe2, M = Co, Rh, Ir). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 36 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Co-group tellurides (MTe2, M = Co, Rh, Ir). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 37 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Ni-group sulfides (MS2, M = Ni, Pd, Pt). Zero energy is set to the
VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 38 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Ni-group selenides (MSe2, M = Ni, Pd, Pt). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.



150

Γ Y L I|I
1

Z F
1
|Y X

1
|X Γ N|M

-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

IrTe
2
-type NiTe

2

LDOS

LDOS

M d

Q p

Γ Y L I|I
1

Z F
1
Y X

1
|X Γ N|M Γ

-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

Calaverite-NiTe
2

LDOS

Γ X S Y Γ Z U R T Z|X U|Y T|S R
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

Krennerite-PdTe
2

LDOS Γ Y L I|I
1

Z F
1
|Y X

1
|X Γ N|M Γ

-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

Calaverite-PdTe
2

LDOS

Γ X S Y Γ Z U R T Z|X U|Y T|S R
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

Krennerite-PtTe
2

LDOS Γ K M Γ A H L A|K H|M L
-4

-2

0

2

4

E
n
er

g
y
 (

eV
)

1T-PtTe
2

LDOS

Figure 39 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Ni-group tellurides (MTe2, M = Ni, Pd, Pt). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 40 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Cu-group sulfides (MS2, M = Cu, Ag, Au). Zero energy is set to
the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 41 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Cu-group selenides (MSe2, M = Cu, Ag, Au). Zero energy is set
to the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 42 – DFT-HSE06 electronic band structures of the lowest energy 3D and 2D crys-
tals of the Cu-group tellurides (MTe2, M = Cu, Ag, Au). Zero energy is set
to the VBM, indicated by horizontal dashed line.

Source: By the author.
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Figure 43 – DFT-HSE06 electronic band structures of monolayers of the Fe-group TMDs
(MQ2, M = Fe, Ru, Os; Q = S, Se, Te). Zero energy is set to the VBM,
indicated by horizontal dashed line.

Source: By the author.
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Figure 44 – DFT-HSE06 electronic band structures of monolayers of the Co-group TMDs
(MQ2, M = Co, Rh, Ir; Q = S, Se, Te). Zero energy is set to the VBM,
indicated by horizontal dashed line.

Source: By the author.
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Figure 45 – DFT-HSE06 electronic band structures of monolayers of the Ni-group TMDs
(MQ2, M = Ni, Pd, Pt; Q = S, Se, Te). Zero energy is set to the VBM,
indicated by horizontal dashed line.

Source: By the author.
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Figure 46 – DFT-HSE06 electronic band structures of monolayers of the Cu-group TMDs
(MQ2, M = Cu, Ag, Au; Q = S, Se, Te). Zero energy is set to the VBM,
indicated by horizontal dashed line.

Source: By the author.
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APPENDIX C – BAND STRUCTURES OF VAN DER WAALS
HETEROBILAYERS
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Figure 47 – Band structures of the heterobilayers of MQ2 monolayers (M = Mo, Ni, and
Pt; Q = S, Se). The color scale denotes the local projection of states onto
each monolayer. For each system, the band gap and smallest direct band gap
are indicated, and the VBM is at zero energy.

Source: By the author.
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