• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.76.1998.tde-07052014-145918
Documento
Autor
Nome completo
Marcelo Ferreira da Silva
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1998
Orientador
Banca examinadora
Oliveira, Luiz Nunes de (Presidente)
Fóglio, Mário Eusébio
Menezes, Jose Carlos Egues de
Título em português
Densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica
Palavras-chave em português
Metais
Modelo de Anderson
Propriedades dinâmicas
Resumo em português
Este trabalho calcula analítica e numericamente a densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica (U=0). Nossos resultados servem como passo inicial para se entender o modelo com a correlação eletrônica. O modelo estudado descreve a interação entre elétrons de um metal e impurezas magnéticas localizadas, e a simplificação, U = 0, torna o Hamiltoniano quadrático permitindo assim que se divida o mesmo em dois termos: um envolvendo apenas operadores pares (canal par) e outro envolvendo apenas operadores ímpares (canal ímpar). Cada termo encontrado difere pouco do Hamiltoniano de Nível Ressonante. Nossos resultados abrangem tanto a diagonalização analítica como a numérica pelo método do Grupo de Renormalização, adaptado para o caso de duas impurezas. A simplicidade do Hamiltoniano permite que (1) se identifique características do modelo que afetam adversamente a precisão do cálculo numeríco e (2) se encontre uma maneira de circundar tais dificuldades. Os resultados aqui encontrados ajudaram o desenvolvimento do cálculo da densidade espectral do modelo correlacionado, desenvolvido paralelamente em nosso grupo de pesquisa.
Título em inglês
Spectral density for the two-impurity Anderson model without electronic correlation
Palavras-chave em inglês
Anderson model
Dynamical properties
Metals
Resumo em inglês
This work calculates analytically and numerically the spectral density for the two impurity uncorrelated Anderson model (U = O). Our results serve as an initial step towards understanding models with electronic correlation. The studied model describes the interaction between conduction-band electrons of a metal and localized magnetic impurities. The simplification U = O turns the Hamiltonian quadratic, allowing us to split it into two parts: one involving only even operators (even channel), the other involving odd operators (odd channel). Each term has a form differing a little from that for the Resonant Level Hamiltonian. Our results include analytic diagonalization as well as numerical calculations using the method of the Renormalization Group, adapted for the two impurity case. The traditional tridiagonalization method imposes particle-hole symmetry, while our treatment preserves the energy dependence of the coupling, between the impurities and the conduction-band, and consequently, the natural asymmetry of the model. The simplicity of the Hamiltonian allowed us to (1) identify characteristics of the model that affect adversely the acuracy of the numeric calculation and (2) find a way to surround such difficulties. The results here found helped the development of the calculation of the spectral density of the correlated model, developed simultaneously in our research group.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-05-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.