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ABSTRACT

SILVA, P. C. V. Epidemic modeling with host behavioral responses. 2021. 181p. Thesis
(Doctor in Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2021.

Epidemics have always been the cause of significant economic and life losses. Among the multi-
ple developments of science against infectious diseases, mathematical and computational mod-
els are increasingly important, especially after the development of complexity and network
science. The study and forecasting of epidemics are highly influenced by behaviors of host pop-
ulations, which are unpredictable and difficult to incorporate. In this thesis, we contribute to the
substantial volume of works dedicated to solving this problem. First, we approach the coupling
between disease and information spreading on multiplex networks. We propose a rumor-like
model for the information and a flexible ratio of time scales between disease and information.
We show that increasing the time scale of the information reduces the disease prevalence. We
also show that stiflers may cause an increase in both infection and information levels. This prob-
lem is then further studied with more general models of asymmetrical interaction between con-
tagion phenomena. We show that our previous results on the time scale depend on the form of
interaction between the spreading processes. We also study in more depth these models, numer-
ically describing their transient oscillations and deriving analytical expressions for their steady
states and phase transitions. We then switch to systems with host mobility, which is an important
ingredient of epidemic spreading. We first develop an individual-based mobility and epidemic
model, into which behavioral responses are incorporated as an avoidance of infectious hosts. We
show how this reduces the disease spreading in different regimes of our model. In particular,
for when mobility evolves much faster than epidemics, we derive a semi-analytical approach
to describe the model’s bifurcation diagrams, verifying the existence of a bistable region and
relating the dynamics to some metrics of the underlying networks. Finally, we move to larger
scales and describe mobility as net flows between homogeneous populations. In this metapop-
ulation scheme, we propose a model for behavioral responses that directly reduce the disease
reproduction number. We show that our model can generate different outbreak sizes between
subpopulations. Then we use it to compare strategies in which each subpopulation responds
independently (locally), or the whole population follows the same response curve (globally).
We show which strategy is more effective in different scenarios, for both a random geometric
graph and two metapopulations constructed from real data. With the variety of topics that we
approached, we hope to contribute significantly to the problem of disease-behavior coupling.

Keywords: Epidemic models. Behavioral responses. Multiplex networks. Agent-based model-
ing. Metapopulations.





RESUMO

SILVA, P. C. V. Modelagem epidêmica com respostas comportamentais dos hospedeiros.
2021. 181p. Tese (Doutorado em Ciências) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2021.

Epidemias sempre foram a causa de perdas econômicas e vitais significantes. Entre os múltiplos
avanços da ciência contra doenças infecciosas, modelos matemáticos e computacionais são cada
vez mais importantes, especialmente após o desenvolvimento da ciência de redes e complexi-
dade. O estudo e previsão de epidemias é muito influenciado por comportamentos da população
hospedeira, que são imprevisíveis e difíceis de se incorporar. Nesta tese, contribuímos para o
grande volume de trabalhos dedicados a resolver esse problema. Primeiramente, abordamos o
acoplamento entre a propagação de doenças e informação em redes multiplex. Propomos um
modelo de rumor para a informação, bem como uma razão flexível entre as escalas de tempo
da doença e da informação. Mostramos que aumentando a escala temporal da informação se
consegue uma redução de casos da doença. Também mostramos que stiflers podem aumentar
tanto os níveis da informação quanto da doença. Depois estudamos esse problema mais a fundo
com modelos mais gerais de interação assimétrica entre fenômenos de contágio. Mostramos que
nossos resultados anteriores com a escala de tempo dependem do formato da interação entre os
processos de propagação. Também estudamos esses modelos em mais detalhe, descrevendo nu-
mericamente suas oscilações transientes e derivando expressões analíticas para os estados esta-
cionários e transições de fase. Mudamos então para sistemas com mobilidade de hospedeiros.
Desenvolvemos um modelo de mobilidade individual, em que respostas comportamentais são
incorporadas na forma de esquiva de hospedeiros infectados. Mostramos como isso reduz a
propagação da doença em diferentes regimes do modelo. Em particular, para quando a mobili-
dade progride mais rápido que a doença, derivamos uma abordagem semi-analítica para descr-
ever os diagramas de bifurcação, verificando a existência de uma fase biestável e relacionando
a dinâmica com algumas métricas das redes subjacentes. Finalmente, descrevemos a mobili-
dade como fluxos entre populações homogêneas. Nesse esquema de metapopulação, propomos
um modelo para respostas comportamentais que diretamente reduzem o número de reprodução.
Mostramos que nosso modelo pode gerar surtos de tamanhos diferentes em cada subpopulação.
Então o usamos para comparar estratégias em que cada lugar responde de forma independente
(localmente) ou em que toda a população segue a mesma curva (globalmente). Mostramos qual
estratégia é mais eficiente em diferentes cenários, tanto para um grafo geométrico aleatório
quanto para duas metapopulações de dados reais. Com tal variedade de tópicos explorados,
esperamos contribuir para o problema da interação doença-comportamento.

Palavras-chave: Modelos epidêmicos. Respostas comportamentais. Redes multiplex. Mode-
lagem de agentes. Metapopulações.
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1 INTRODUCTION

Throughout history, humankind changed the way it develops its scientific knowledge
about the Universe multiple times. In the Classical Era of Western history, a highly philosophical
approach prevailed, with experimentation based on simple observations. In the Middle Ages, it
was strongly bound to religion and dedicated to understanding the constructions of God. It
was only after the Renaissance that modern science was born, with personalities like Nicolaus
Copernicus, Galileo Galilei and Isaac Newton using experimentation as the base to develop
knowledge, defining the scientific method as we know.

Early scientists of the Modern Era were considerably generalists, in the sense that they
contributed to our understanding of nature in multiple aspects, from the motion of celestial
bodies to the behavior of living beings. However, as the knowledge accumulated, science was
partitioned into multiple areas and sub-branches, such as biology, chemistry and physics. Nowa-
days, we still recognize the branches of science, and researchers tend to be experts with deep
knowledge in a specific branch and research topic. However, parallel to the specialization of sci-
ence, we see an increasing tendency to interdisciplinarity, the integration between two or more
areas of knowledge to answer complex common questions. Some new areas were actually born
in the overlap between multiple scientific branches. This is the case of the science of complex

systems, or complexity science, as sometimes mentioned.

The concept of complexity itself is older than its dedicated scientific area. In physics,
a system is said to be complex when it has multiple components that interact in such a way
that cannot be described by a unique, higher rule. Spin glasses, which are sets of particles with
magnetic spin that display apparently random orientations, are examples of complex systems
typically studied by physicists. The abundance of such systems in condensed matter physics led
some specialists in this area to consider the concept in a broader context. For example, Phillip
Anderson defended that complexity is what lies in between areas of science in a famous paper
called “More is different”, published in 1972.7 For example, physics provides fundamental laws
that govern elementary particles and atoms; therefore, in a reductionist view, it should be able
to describe any phenomena studied in chemistry. Similarly, living beings are made of atoms,
ions and molecules, so the chemistry should explain the entire biology, and so on. None of
this is true because, according to Anderson, the complex organization of particles, atoms and
molecules leads to entirely new phenomena at higher scales.

These new behaviors that arise from the complexity of interactions are called emergent

phenomena, and are often considered as fundamental to the definition of complex systems. Self-

organization, which is when the system as a whole exhibits an ordered behavior, even though its
components are disordered, is another feature of complex systems. Over time, some scientists
recognized that complexity was the subject of a proper research field for itself. In a later article
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published in 1991, Anderson writes8 p. 11):

A movement is under way toward joining together into a general subject
all the various ideas about ways new properties emerge. We call this
subject the science of complexity. Within this topic, ideas equal in depth
and interest to those in physics come from some of the other sciences.

He was pointing not only to the fact that complexity was a new scientific branch, but
also that problems from other areas rather than physics could be studied in the same fashion.
In fact, the global climate, social groups, cities, the human brain, economics and ecosystems
do all display complex patterns of interactions, emerging phenomena and self-organization. In
the following years after Anderson’s publication, the world would witness the consolidation of
complexity science as an interdisciplinary research field, dedicated to solving problems arising
from multiple contexts, from the micro to the macroscopic world.

In most cases, a complex system is associated with a subjacent complex network. These
entities are represented as graphs, with vertices representing units of the complex system and
edges representing the relationships, connections or interactions between them. For networks
that underlie complex systems, these interactions are typically complicated, seemingly random,
and do not follow a simple rule for all entities – thus, the name complex networks. The study of
these networks themselves, with the use of statistical tools and the definition of useful metrics,
constitutes another research area itself called network science.

The fundamentals of network science come from graph theory, which is an older and
well-established field of mathematics. However, graph theory and network science took differ-
ent directions, mainly due to their different goals. According to Iñiguez and others,9 p. 2):

Graph theory has focused on providing rigorous proofs for graph prop-
erties, such as graph enumeration, coloring, and covering (with appli-
cations ranging from chemistry to circuit design). Current network sci-
ence, instead, is more akin to phenomenological physics by focusing on
observations of real-world networks and ad hoc mathematical concepts
to quantify them, with the goal of gaining intuition of their underlying
generative mechanisms. Due to its aim of pursuing rigorous arguments,
graph theory has so far concentrated on structures that are more analyt-
ically treatable, like random or dense graphs, whereas network science
focuses on the most common features seen in data, such as sparsity and
inhomogeneities in the structure and temporal behavior of large but fi-
nite networks.

The authors of the same paper also argue that both areas developed a gap between
them, with disruption within research questions and academic communities. They also think
that filling this gap in the next years could bring important advances to both fields.

By joining network and complexity science, major scientific developments have been
achieved in the last two decades. The human brain, one of the most intriguing systems that we
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know, can be better understood with models and descriptive metrics from network science.10 In
economics, recognizing product trades and stock markets as complex systems provide important
indices and predictive algorithms11–12 that have solid applications to the real world. Moreover,
infectious diseases in human and animal populations can now be tracked daily and forecasted,
thank to the acknowledgment that complex interaction patterns between hosts are fundamental
to correctly understand epidemic spreading.13–15

In this thesis, we focus on the application of complex systems and networks to epi-
demic spreading. Epidemics are known to cause several life and economic losses. One single
bacterial species, Yersinia pestis, caused multiple pandemics throughout human history, includ-
ing the Plague of Justinian (from 541 to 549) and the Black Death (from 1346 to 1353), some
of the deadliest epidemic episodes known. Influenza-like illnesses (ILI) have also caused great
pandemics, notably the Spanish Flu (1918 to 1920) and COVID-19 (2019 until present), claim-
ing millions of souls each. Other diseases, such as AIDS, dengue fever and tuberculosis, do not
usually cause major worldwide outbreaks, but remain endemic for very long periods, constantly
causing damages and life losses. Finally, animal and plant diseases, such as the classical swine
fever and the citrus greening disease, can also cause substantial economic losses and production
outages.

In the toolbox that science offers against infectious diseases, including drugs, vaccines,
individual prevention methods and vector control, mathematical and computational models are
progressively gaining importance. Disease forecasting can help to guide control policies and
prepare resources (such as hospital beds and protection equipment). However, forecasting is
one major but not the ultimate goal of epidemic modeling. Relatively simple models can be
used to study strategies of targeted quarantining and immunization, the effect of mobility and
host interaction patterns, and the interplay between epidemic spreading and some behavioral
traits like opinion, rumors, vaccine hesitancy and self-protection.

Models for epidemic spreading can also be adapted to a variety of other phenomena, in
what Pastor-Satorras and others16 refer to as the “epidemic metaphor”. The authors also write16

p. 927):

The spread of information, cultural norms, and social behavior can be
conceptually modeled as a contagion process. How blackouts spread
on a nationwide scale or how efficiently memes can spread on social
networks are all phenomena whose mathematical description relies on
models akin to classic epidemic models.

Indeed, the so-called rumor models, which mimic how people start and stop spreading
rumors,17 consist a famous adaptation of epidemic models. We can refer as spreading phenom-

ena or contagion processes to any of these systems that can be reasonably modeled based on
epidemic models.16



30

1.1 The research problem and our contribution to it

Despite the great advances in the field of epidemic modeling over the last years, the area
still struggles with one of its essential features: the crucial influence of host behavior, especially
in human populations. Incorporating the unpredictability of human behavior is recognized as a
major challenge,18 both for disease forecasting and other applications of epidemic models. In
fact, Moran and others19 argue that epidemic forecasting is more difficult than weather forecast-
ing, which, despite being subject to heavily chaotic systems, has little influence from human and
animal behavior in the short term. During new outbreaks of emerging diseases, such as Ebola
and COVID-19, it can be even more difficult to incorporate behavior, as it is highly dependent
on decisions made by policymakers and has profound impacts on the disease dynamics.

In spite of the general unpredictability of human behavior, some of its features and
patterns can be observed from empirical data, and then converted into a modeling framework.
For example, models of opinion dynamics and rumor spreading can be used to describe the
spread of disease-related information on physical and virtual social media, which then influence
the disease dynamics. Mobility is also modified during emerging outbreaks, and the current
availability of mobility data makes it possible to incorporate and predict these changes.

For the work reported in this thesis, we embraced the challenge of the disease-behavior
relationship in multiple aspects. Our primary goal is to contribute to the knowledge in the topic
from a mostly theoretical aspect, with potentially important insights extracted from simple mod-
els. To achieve this goal, we explored new and trending techniques in the field such as multiplex
networks, agent-based temporal networks and microscopic Markov Chains, as well as estab-
lished tools such as metapopulations, homogeneously mixed populations and some tools from
dynamical systems.

1.2 Structure of the text

Multiple works were developed during the PhD course that culminated into this thesis,
and this is reflected in the structure of the manuscript. The next chapter, “Fundamentals”, is
dedicated to presenting the underlying theory that is common to most of the manuscript, divided
into two main topics: populations (Section 2.1), represented by complex networks, and epidemic
dynamics (Section 2.2), including multiple approaches to fundamental epidemic models.

In the following chapters, we expand from the basic concepts and present our contribu-
tions. In Chapter 3, two works regarding the interaction between spreading phenomena, with
emphasis on the asymmetrical interplay between disease and information, are presented and
discussed. In Chapter 4, we expose two more works that have in common the inclusion of host
mobility and protective behavioral responses.

Despite the overlapping points, these works are based on their specific range of previ-
ous works, and consequently we present our literature review within each chapter, instead of
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a single dedicated one for all subjects. The discussions are also presented after each work. Fi-
nally, in Chapter 5, we recall the main conclusions and discuss the takeaways from our work.
Importantly, we remark that there are appendixes in which we develop some calculations and
experiments that are not focal to the main text.
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2 FUNDAMENTALS

Nowadays, the spread of epidemics is considered a complex system, because it is sus-
tained through complex patterns of contacts between hosts. These patterns have been shown to
cause emergent phenomena, such as the propagation of the disease even for very small trans-
mission rates in some complex topologies. Therefore, it is expected that complex networks are
one of the fundamental ingredients of our work.

In this chapter, we present the theoretical basis that is shared by all works developed
in this thesis. We divide this chapter by the two main components that we use to construct
an epidemic model: the population and the dynamics. For the population (Section 2.1), we
present the fundamentals of network theory, which may be of common interest for readers
from other areas of complexity science. For the dynamics (Section 2.2), we present two of
the most fundamental epidemic models, focusing on the SIS (which is the most used during
the rest of the thesis). We describe multiple theoretical approaches for these models, including
homogeneously mixed populations and some mean field approaches for static networks. We
also discuss in brief multiple methods for stochastic simulations.

2.1 Modeling populations

Up to the end of the 20th century, most mathematical models for disease spreading,
ecosystem dynamics and information propagation were based on homogeneously mixed pop-
ulations, regular lattices or simple random graphs without heterogeneity. A homogeneously
mixed population assumes that all its elements interact with each other at equal rates (or proba-
bilities), or in an all-to-all scheme (all elements interact). By the second half of the 20th century,
some researchers from social sciences already employed graphs to represent human popula-
tions.20 In ecology21 and epidemiology,22 some groups also considered metapopulations, but
they were usually connected in a homogeneous scheme as well.

At the beginning of the 21st century, triggered by important results from seminal works,6, 23

it was evidenced that many real-world systems, when represented as graphs, were far from
random in many aspects, such as the distribution of numbers of links (degree) and statistical
correlations. It was also unveiled that dynamical systems, when held on top of these graph
representations, have fundamentally different properties from when executed on homogeneous
populations. This led to the consolidation of network and complexity science as an authentic
area of the knowledge.

Since then, an incredible amount of works have tried to describe and unveil the diverse
properties that can be present on complex networks. In this section, we review some of the most
important concepts learned from this emerging field, aiming to set the ground for the rest of this
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thesis. For a more detailed introduction, we guide the reader to some important references on
the subject.24–29

2.1.1 Complex networks – basic concepts

In this chapter, we shall use the terms graph and network interchangeably. A graph G is
composed by a set of N nodes (or vertices) V , connected by links (or edges) from a set E with
M elements. For a simple (undirected) graph, each element of E is an unordered pair of nodes
(i, j) ∈ V2. A subgraph of G is any subset of V , along with all edges (i, j) ∈ E such that i and j

belong to the subset. Networks can be represented by an adjacency matrix A, whose elements
are defined as:

Aij =

1 (i, j) ∈ E

0 (i, j) /∈ E
. (2.1)

Therefore, A stores non-null values for the pairs of nodes that are linked, and Aij = Aji

for an undirected graph.

We can denote as Ni the neighborhood of node i, this is, the set of nodes that are
connected to i . The number of links that emerge from a node i is called the degree ki of this
node, and can be extracted from the adjacency matrix as ki =

∑N
j=1Aij . The average degree

⟨k⟩ = 1
N

∑N
i=1 ki =

2M
N

tells how well connected are the nodes of a network, and is a starting
metric to compare different networks.

2.1.1.1 Centrality

For many applications, nodes with higher degrees are usually more important for the
dynamics that is held on the network. For instance, with epidemic models, high-degree nodes
are often influential spreaders, meaning that they can contract and transmit a disease more eas-
ily.30 This idea of importance of a node for a given dynamics or structural properties can be
generalized to what is called centrality. A centrality is usually a locally applied metric (mean-
ing that it applies to a single node, edge or a small subgraph), which somehow encodes the
importance of each element for a given context. The idea of “importance” is vague, thus better
explained with examples.

The closeness centrality, defined initially by Bavelas,31 is calculated for connected

graphs (i.e., graphs in which all nodes can be accessed from all other nodes by following the
existing links) as:

li =
1∑N

j=1 di,j
, (2.2)
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where dij is the distance between nodes i and j, often regarded as the minimum number of
links that must be followed from i to reach j (the shortest path length). This centrality metrics
effectively tells how close, in average, a given node is from all other nodes. Another example,
the betweenness centrality32 is defined as:

bi =
∑

j,k∈V,j ̸=k

njk(i)

njk

, (2.3)

where njk is the total number of shortest paths connecting j and k, while njk(i) is the number
of such shortest paths that pass through node i. This measures how much a given node is an
important intermediate when moving between random nodes of the network, and has notable
importance, for example, for traffic networks, where nodes with high bi are subject to heavier
loads of traffic.33

Other popularly known definitions of centrality include: the eigenvector centrality,34

which measures how important a node is for a random walk process on the network; the har-

monic centrality,35 which is a variant of the closeness centrality that applies for non-connected
graphs; the PageRank centrality, which modifies the eigenvector centrality to work with di-
rected (i.e., non-reciprocal) links and long-range jumps; the non-backtracking centrality,36 an-
other modification to the eigenvector centrality that compensates for localization effects, among
many others. For a detailed description of centrality measures, we refer to Chapter 7 of 26 and
references therein.

2.1.1.2 Clustering and correlations

Interactions in real-world complex systems are not independent of one another; this
produces statistical features that can be captured by appropriate metrics. For example, on the
network of friendships of a school, individuals from the same classroom are more likely to be
friends and, even inside a, classroom there are “clubs” of mutual friendship. For large online
social networks, famous people usually interact more with other famous individuals than with
“anonymous” people. Finally, nodes of a network with spatial constraint (e.g. highway networks
between cities) are more likely to connect with closer nodes, which leads to clusters of highly
connected nodes by proximity. These features can be captured by a number of statistical metrics,
of which we discuss two important ones: clustering and assortativity.

Clustering quantifies the tendency of a network to present triangles, i.e., triples of nodes
entirely connected to each other. One measure of the clustering is called transitivity, and applies
to an entire network as follows24, 26:

T =
3 · number of triangles

number of connected triples
. (2.4)
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By connected triples, we understand a subgraph of three nodes that has at least two (but
not necessarily three) links. With the factor 3 on the numerator, the metric falls between 0 and
1, and only reaches 1 in a complete graph (i.e., with each node linked to every other). Networks
with high transitivity present many nodes with the property that “a friend of my friend is also my
friend”. For a different perspective of the same phenomenon, a local metrics called clustering

coefficient is defined, for nodes i ∈ G with ki ≥ 2, as:

ci =
2ei

ki(ki − 1)
, (2.5)

where ei is the number of edges on the subgraph formed by node i and all of its neighbors.
Notice that ki(ki − 1)/2 is the maximum possible value for ei, meaning that 0 ≤ ci ≤ 1. Also,
by convention, ci = 0 if ki < 2.

To quantify the connectivity between individuals with similar degrees, another metric
can be conveniently defined: the degree assortativity.* It is an adaptation of the Pearson correla-
tion coefficient to measure the tendency that hubs (i.e., highly connected nodes) have to connect
with other hubs (positive correlation) or low-degree nodes (negative correlation). As defined by
Newman,26, 37 it is expressed as:

r =

∑
ij∈G(Aij − kikj/2M)kikj∑
ij∈G(kiδij − kikj/2M)kikj

, (2.6)

where δij is the Kronecker delta, yielding 1 if i = 0 and 0 otherwise. The numerator quantifies
the co-occurrence of high-high or low-low degrees between neighbors, subtracted by the ex-
pectancy from a null model (given by kikj/2M ), and the denominator represents the variance
of this quantification, to normalize the metrics into the [−1, 1] interval. For example, networks
of scientific coauthorship and film actor collaborations tend to have a strong assortative pattern38

(r > 0), while metabolic and neural networks tend to be dissortative (r < 0), for instance, with
highly interacting proteins often making many connections with lowly interacting ones.39

2.1.2 Basic network models

To construct a complex network, it is necessary to either extract it from real-world data
or to produce a synthetic one. For the latter case, a considerable variety of models have been
and are still being proposed. More than just algorithms to construct graphs, these models often
prove useful to understand the creation and evolution dynamics of real systems. This happens,
for example, when the model defines procedures inspired on a real mechanism, and the resulting
network presents features that are actually observed on the system in which it was inspired.

* Here we focus on the correlations between degrees, but assortativity can be defined for any scalar
property of nodes.
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In this subsection, we present some of the most popular models used by network sci-
entists to produce simple synthetic networks. These models will also be used through the next
chapters of this thesis.

2.1.2.1 Erdős-Rényi model – The “random network”

One simple way to construct an arbitrarily large network was studied by the Hungarian
mathematicians Paul Erdős and Alfréd Rényi, in a series of papers.40–43 It consists of simply
connecting pairs of nodes at random, with uniform probabilities. The graph generated by the
Erdős-Rényi (ER) model is sometimes called a “random network” ,29 although this term is more
appropriately attributed to any graph constructed with a random process.

In a construction algorithm called G(N, p) model, each pair of nodes is queried once
to form a connection, which may be established with probability p. This produces a graph for
which the final number of links M is a random variable, with average ⟨M⟩ = p·N(N−1)/2. As
the probability is uniform, every node i ∈ V is statistically similar, and the degree distribution
is a binomial:

p(k) =

(
N − 1

k

)
pk (1− p)N−1−k. (2.7)

The G(N, p) is preferred for analytical purposes, because each link is created indepen-
dently of one another. However, its construction has O(N2) computational complexity, while
the desired often has very low p (meaning that most link creation events will fail). If computa-
tional cost is a concern, or if an exact number M of links must be given, the so called G(N,M)

model may be used instead. In this algorithm, at each step, two nodes i and j are randomly se-
lected to form a link, and the steps are repeated until M links are formed. If i and j are already
connected, the step is repeated; this means that, as the graph is constructed, the choice of new
links is no longer independent of existing ones. Therefore the actual distribution differs from
2.7, but the statistical differences between G(N, p) and G(N,M) tend to zero as M (or ⟨M⟩)
tends to infinity. Yet, the G(N,M) algorithm is considerably cheaper for sparse graphs, this is,
when M ≪ N2.

The ER model, due to its simplicity, lacks several statistical properties of real social
systems, and is often not regarded as a complex network. For example, its expectancy for the
clustering coefficient is:29

⟨Ci⟩ =
⟨M⟩
2N2

=
⟨k⟩
N

(2.8)

which, for a large population in which the number of contacts ⟨k⟩ is limited, tends to zero
as N → ∞. This happens because every node is equally likely to interact with each other
node, whereas large social populations impose spatial and organizational constraints to the links,
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resulting in non-vanishing clustering. Another feature from social groups is the heterogeneity
of contacts, in contrast to the homogeneous degree distribution of the ER model.

2.1.2.2 Barabasi-Albert model, scale-free networks and the configuration model

In 1998, an analysis over an empirical survey of citations in scientific papers was made
by Redner,44 showing that the distribution of papers according to their numbers of citations dis-
played a fat-tailed distribution. Albert and others45 found a similar pattern in the number of links
of webpages in the World-Wide-Web at that time. These and other similar results in different
networks were aggregated by Barabasi and Albert23 in a paper that is considered foundational
of the contemporary network science.

In the same papers, the authors propose a network construction algorithm that could
reproduce the fat-tail pattern with a power law degree distribution. In this model, currently
known as the Barabasi-Albert (BA) model, the network is grown from an initially small set of
m0 nodes with an arbitrary connectivity (provided that all nodes have at least one link). At each
step of the algorithm, a new node is added with m ≤ m0 links to the other existing nodes. These
links are chosen following a preferential attachment rule: the probability that a node i already
present is linked to the new node is given by:

plink(ki) =
ki∑
j∈V kj

, (2.9)

therefore proportional to the current degree of i.† This means that highly connected nodes are
more likely to receive more links during the network construction, making their degrees even
higher – a “rich-gets-richer” phenomenon.

With these two ingredients – growth over time and preferential attachment – included,
and for sufficiently large N , the degree distribution of the network converges to23, 29:

p(k) =
2m2

k3
, (2.10)

which is a power law with exponent −3. Although real networks, when subjected to a
power-law fit of their p(k), typically presents values greater (less negative) than −3, the BA
model is a great example of the process mentioned in the head of this section: a network con-
struction model inspired on real mechanisms that reproduces features of the systems in which
they apply. For example, the network of scientific citations is constantly growing as new papers
are added, and highly-cited papers are more likely to be further cited by the new ones.

In general, networks that display a degree distribution shaped as p(k) ∝ k−γ (with
γ > 0) are named scale-free (SF) networks. The BA baseline model, despite its historical im-

† To prevent link repetitions, nodes that were already linked are excluded from the choice of the next
ones.
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Erdös-Rényi Barabasi-Albert Watts-Strogatz

Figure 1 – Samples of different network models. The ER is constructed using G(N, p) algo-
rithm with p = 0.1; the BA graph is made with m = 3; the WS has k = 4 and
p = 0.1.All graphs have N = 60 nodes and have average degrees of ⟨k⟩ ≈ 6.

Source: By the author.

portance, is limited in terms of versatility to construct an SF network (for example, it can only
produce an exponent γ = 3). One common approach to overcome this is the configuration

model (CM),46 an algorithm that allows the creation of random networks with arbitrary degree
distribution p(k) or, more specifically, a given sequence {k1, k2, ..., kN} of degrees. In a simple
implementation of this algorithm, the index i of each node is repeatedly placed ki times in a
container such as a list. Then, at each step, two entries of this list are chosen and the corre-
sponding nodes are linked. It is only required that the sum

∑
i∈V ki is an even number so, by the

end of the process, each node i will have exactly ki links. This implementation does not prevent
multiple links between the same pair of nodes, or even self-loops (this is, links with the same
node at both ends). This can either be avoided during the construction by discarding unwanted
iterations, or after the construction by degree-preserving rewiring.47

Scale-free (SF) networks can be constructed with the CM by drawing ki values from
a power-law probability distribution p(ki) ∝ k−γ

i . Specifically for the generation of SF net-
works, one common additional step is to constrain the values of ki to be no greater than

√
N .

Catanzaro48 and others, who proposed this constraint, showed that otherwise the SF networks
produced by the CM can present strong degree-degree correlations (assortativity), and for this
reason the use of ki ≤

√
N is known as the Uncorrelated Configuration Model (UCM). Uncor-

related networks serve as useful null models for the analysis of network properties and dynam-
ical systems.

2.1.2.3 The Watts-Strogatz (WS) “small-world” model

Another network construction model inspired in a real-world property was proposed
by Duncan Watts and Steven Strogatz in 1998.6 Since decades before, there was already a
common belief that every person in the world could be reached, by following acquaintance
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links, by no more than six steps. Although this sentence is imprecise and not strictly true, the
hierarchical and highly connected structure of the present global population indeed allows for
short acquaintance paths between individuals of geographically distant communities.49 Yet, as
already mentioned, large-scale social networks still have highly clustering coefficients, unlike
ER networks with similar average degrees.

Aiming to mimic these features – low shortest paths and high clustering – Watts and
Strogatz proposed a network that starts from a ring configuration. Each node is (conceptually)
put in the vertices of an N -sized regular polygon, and connected to its k immediate neighbors
both to the clockwise and counterclockwise directions, totaling 2k links for each node. This
configuration has high clustering coefficient (as the neighbors of a node share a significant
amount of links), but still present large average distances due to the sequential aspect of the
ring. Then a rewiring procedure is executed: each edge starting from a node may have its other
end redirected to another randomly selected node, and this occurs with probability p for each
edge. Watts and Strogatz show that, for an intermediate scale of values of p, the average shortest
path of the network, given by:

⟨d⟩ = 1

N(N − 1)

∑
i ̸=j∈V

dij, (2.11)

is considerably reduced from the basic ring (i.e., with p = 0), while the average clustering is
kept high. This algorithm, now known as the Watts-Strogatz (WS) model, is therefore a straight-
forward way to reproduce the relationship between clustering and distances found in real social
networks.

For visualization, in Figure 2.1.2.2, we show one sampled graph from each network
model described up to this point. All samples have N = 60 nodes, and the parameters are such
that their average degree are around 6. In the Erdős-Rényi graph, links are random and fill the
inside of the circular layout more or less homogeneously. In the BA network, though (in which
nodes are sorted by their time of creation), a small set of nodes concentrate more links than
the rest. In the WS network, most links are between close nodes, but some few links from the
rewiring process help to reduce average distances.

2.1.2.4 Random Geometric Networks (RGN)

For the WS model, we use a geometric shape (a polygon) to visualize the initial arrange-
ment of the nodes. We can, however, use a geometric space to establish connections between
nodes, especially if we want to reproduce the features of a real system in which nodes are em-
bedded in space (such as cities, streets and transport stations). One simple and popular way to
do this is called a random geometric network (RGN).50

In order to construct a two-dimensional RGN, we start by uniformly distributing nodes
at random in a rectangular space of dimensions Lx and Ly. Then we connect pairs of nodes
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Random Geometric

Figure 2 – Example of an RGN with Lx = Ly = 1, d = 0.2 and N = 60 nodes. The average
degree is ⟨k⟩ ≈ 6, as in the network samples of Figure 2.1.2.2.

Source: By the author.

whose Euclidean distance is smaller than a given value d. Periodic boundary conditions are
optional, but desired if border effects are to be avoided. Using this algorithm, the resulting
networks present homogeneous properties among nodes, but a strong spatial character. Just like
an ER graph, the expected degree distribution is binomial. However, and unlike the ER model,
the average clustering coefficient is typically high due to shared neighborhoods, and average
shortest path length is also high due to the spatial constraint of the links (assuming that d is at
least one order of magnitude smaller than the dimensions of the space).

In Figure 2 We show an RGN with the nodes’ in their positions that were used for the
network construction. It is visible that triangles (this is, fully connected triples of nodes) are
very frequent, which explains the high clustering coefficient. In the borders, we also find nodes
that are many steps away from some other nodes and, thus, the average shortest path distance is
high.

2.1.3 Directed, weighted and bipartite networks

The basic definition of network given in Section 2.1.1 can be extended in several ways,
usually with the goal of capturing additional features that are observed in the real system being
modeled. This is important to better understand the underlying system and its dynamics.

The links (edges), as described so far, are a symmetric relationship between two nodes
(vertices), meaning that if node i is connected to j, then j is also connected with i. We can also
say that every edge (i, j) ∈ E is an unordered pair, and the adjacency matrix A is symmetric.
We can relax this condition by imposing a direction into the links: we now regard (i, j) ∈ E
as an ordered pair, in which case we say that i points to j. This sentence does not imply that j
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points to i.‡ A network with this property is called a directed network.

For directed networks, many of the metrics must be redefined. For example, the degree
can now refer to three concepts: the incoming degree kin

i of links that point to i, the outgoing

degree kout
i of links that emerge from i, and the total degree ki = kin

i + kout
i . Besides concepts

already defined by graph theoreticians for directed graphs, researchers have worked to rede-
fine existing and create new metrics that are useful for complex directed networks ,51–54 the
PageRank being one such example. Many real systems can be more adequately represented as
directed networks: the links through the WorldWide Web, scientific citations, metabolic net-
works (of chemical reactions between components of a cell55), some online social networks
such as Twitter and Instagram, flights between airports, and many others.

For some systems, it is also convenient to define the weight of each link. Mathemat-
ically, this can be done by including a third entry to the elements of E , now represented as
(i, j, wij), where w is usually a scalar value. Networks with weighted links are called weighted

networks.56 The general idea is that some links are more “intense” than others, but the actual in-
terpretation of the weights is up to each system. For example, transport and traffic systems usu-
ally have different traffic flows between its linked elements, such as volume of people moving
between cities, or numbers of flights between airports. In networks of predator-prey relations,
some species may interact more or less frequently with some others, and the frequencies can be
quantified as weights. Metabolic networks can also be weighted, by considering the fluxes wij

of each reaction from metabolite i to j,57 where the links are also directed.

It is always important to understand the impact of including or disregarding one of these
extensions to the basic definition of a network. Some systems, like the metabolic network, can
have weights that span different orders of magnitude ,57 thus requiring the incorporation of link
weights for detailed analysis. Others, such as migration flows between cities of a small region,
could safely disregard the direction of the links for simple applications, with the advantage
of having no net flows between the cities. It is responsibility of the researcher to adequately
comprise the necessary and sufficient features of a model.

In some situations, we want to only consider interactions between disjoint groups of
elements. For example, in vector-borne diseases, such as dengue and schistosomiasis, the trans-
mission occurs by interactions between different species – the host and the vector species.58 The
relevant links between individuals, therefore, are only between a host and a vector. This system
can be modeled as a bipartite network. Mathematically, we now consider two sets of nodes, U
and V , and the links (i, j) ∈ E are such that i ∈ U and j ∈ V . Other previously mentioned
systems can also have a bipartite representation. For example, the network of co-authorship can
have U as the set of researchers and V as the set of scientific papers, and then have links (i, j)
for each scientist i that has authored a paper j. The regular network between scientists, con-

‡ The exact terminology may vary depending on the context. For example, in a directed online social
network, we can say that i follows j.
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nected by those who share at least one paper, is therefore a projection of the bipartite network,
with the latter carrying more information than its projection. As usual, the choice between con-
sidering the whole bipartite network59 of projecting it into a simpler structure60 depends on the
considered system and the desired precision of the results.

2.1.4 Multilayer and multiplex networks

An important generalization to the concept of networks, especially popular in the last
decade, is that of multilayer and multiplex networks.61–63 A multilayer network (often named
just as “multilayer”) is a composite structure of multiple layers, each one being a network itself
in its basic definition. Each layer encodes its set of links between its own nodes, which are
called intra-layer links, but there can also exist links between nodes of separate layers, which
are called inter-layer links. Mathematically, the multilayer network can be represented as a
set of graphs G = {Gα = (Vα, Eα) : α ∈ {1, ...,M}} and a set of inter-layer links E =

{(i, j) ∈ Vα ×Vβ; α, β ∈ {1, ...,M}, α ̸= β}.62 The adjacency structure can be represented as
a rank-4 tensor, two indices for the layers and two for the nodes. Reference61 provides detailed
mathematical description of multilayer networks, as well as some generalized metrics for this
type of structure.

It is arguable that a multilayer network could be represented as a single regular network,
where nodes are grouped into communities, and links are classified according to the commu-
nities to which its pertaining nodes belong.63 However, it is of conceptual value to represent
the multilayer network as composed of multiple individual networks, especially when model-
ing real systems. For example, we can represent the public transportation of multiple cities as
a multilayer network, with each layer representing a single city, and each node representing a
transport stop. The intra-layer links describe transport lines of a city, usually managed by the
city’s own transport department, while inter-layer links are lines between cities, often managed
by transport companies. In this example, intra and inter-layer links are different, thus justifying
the use of multilayers instead of regular networks with communities.

An important particular case of multilayer networks is called multiplex networks,63

which satisfy the following conditions: (i) every layer has the same number of nodes, and (ii)
each pair of layers either is connected such that each node of a layer is linked to exactly one
node on the other layer, or not connected at all. In other words, there is a one-to-one correspon-
dence between nodes of a connected pair of layers. With this property, it is very common to
interpret a multiplex network as follows: each node and its correspondents in other layers rep-
resent the same entity (an individual, a transport node, a protein, etc), and each layer represents
a different connection structure between these entities.

For example, multiple social media platforms can be represented as a multiplex network,
with each layer as a different platform. Individuals that do not have an account in one of the
platforms can be set as an isolated node. Notice that each layer may have different features,
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such as directed or weighted links, justifying the use of a multiplex network instead of a single
network with communities. Another relevant example for this thesis is of multiple interacting
spreading phenomena. Diseases, as well as information, have their own means of propagation
(direct contact, airborne, sexually transmissible), and to represent multiple diseases we can use
a separate layer for the transmissible contacts of each one.

Finally, dynamical systems in multilayer and multiplex networks are proven to display
interesting emerging phenomena. Nicosia and others64 proven that an explosive phase transi-
tion occurs in a coupled system of neural (synchronization) and nutrient transport dynamics,
each one held in one layer of a two-layer multiplex. De Arruda and others65 study localization
phenomena for disease spreading in multilayers (a single disease that can cross the layers), de-
scribing multiple susceptibility peaks caused by localization on the layers instead of the nodes,
and a barrier effect for a system of three layers.

2.1.5 Temporal networks

We address here yet another way to extend the basic definition of a network. A temporal

network is simply any network whose structure, which can either be the nodes and links, varies
over time.66 Indeed, most real complex systems are not static in time but, depending on the ratio
between the time scale of the system changes and that of the dynamics of interest, the static
graph can be a good assumption. Nonetheless, there are a number of situations in which ne-
glecting the dynamic nature of a network can lead to imprecise results.67 For a detailed analysis
of the topic, we refer to this review 66 by Holme and Saramäki.

There are multiple ways to define a network with temporal dynamics. The evolution of
time can be discrete, so at each time step t the system is represented by a given graph Gt. This
can be used to represent, for example, a network of flights between airports in more detail than
a static network, where (for example) each time step considers the flights that departed during
one day. For continuous time evolution, we can regard each creation and annihilation of a node
or link as an event ϵ, which occurs at a given time tϵ. This could depict, for example, interactions
between people in a party, hospital or other social gatherings. Yet under continuous time, the
interactions themselves could be regarded as instantaneous events, as in the representation of a
network of emails, by considering each message as a network link, regarded as instantaneous.68

The mathematical definition for each of these formulations is different (in terms of sets of nodes
and links), so we do not present them here.

Temporal networks can be either obtained from real data or synthesized using mod-
els. The Barabasi-Albert model itself,23 which is more commonly used for the resulting static
network, was inspired on how real systems typically evolve by the constant inclusion of new
elements, and can be used as a model of dynamic network. Stehlé and others 69 proposed a
model for continuous-time dynamic networks that mimics social interactions, with agents that
alternate between being alone or interacting in groups. By considering a memory effect, their
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model produces heterogeneous patterns of interactions, with some agents being very socially
active and others tending to be more isolated. Starnini and others 70 proposed a discrete-time
dynamic network, also based on agents and inspired on social interactions. Each agent performs
a random walk on a 2D space, alternating between being inactive, performing the random walk
alone of gathering around “attractive” agents (each agent has a social attractiveness score, with
higher values making neighbors to stop around it).

With the mentioned model, Starnini and the collaborators reproduced the behaviors and
parameters of some empirical distributions from the SocioPatterns dataset,71 a research collab-
oration that aims to collect data of human activity and social dynamics in field. For a variety of
environments, like schools, hospitals, workplaces and scientific conferences, they used radiofre-
quency identification (RFID) on each individual to detect proximity between subjects, within
a radius of 1 to 2 meters and only when both subjects are facing each other. The contacts are
aggregated in time intervals of 20 seconds, making each of their dataset a valuable sample of a
social temporal network.

Several examples of applications of temporal networks to epidemic modeling can be
found in the literature. Yet using the SocioPatterns data, Stehlé and others 72 simulated an epi-
demic model on top of the dynamic network of a scientific conference. Considering different
levels of aggregation of the data over time, they showed that the temporal ordering of the con-
tacts itself was not very important for the resulting dynamics in this case, but that the weights
of the aggregated contacts, based on total interaction times, was crucial to obtain correct out-
comes. On the side of synthetic networks, a framework called adaptive networks was used in
the context of epidemic models ,73–76 being particularly popular between 2005 and 2015. These
works typically consider a network in which each node tries to avoid contagion by changing
their contacts, usually rewiring their links from infectious to susceptible individuals. Interesting
phenomena, such as bistability 73 and epidemic bursts ,75 were reported from these types of sys-
tems. Adaptive networks are examples of temporal networks whose evolution is mostly guided
by another dynamical system running on top of them. Finally, we mention epidemic models
based on networks of random walker agents, such as in Frasca and others.4 We extensively
cover these models in Section 4.1.2.

2.2 Modeling epidemic and information dynamics

Despite the inherent complexity of events that lead to disease transmission, mathemati-
cal and computational models can be a useful tool to study epidemic spreading in a population
level. These models can range from simplistic ones, which translate epidemic spreading into a
very minimal set of features, to much more complex and realistic ones, which try to capture
most of the relevant details of the propagation of a real disease.

The earliest epidemic model that we know was developed by Daniel Bernoulli in 1766,
published in 1766.77 In this work, Bernoulli pondered the the collective risks and benefits of
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the inoculation (a precursor of vaccines) against smallpox, a deadly and widespread disease
by the second half of the 18th century. His model included demographic aspects, such as birth
and death rates, and disease parameters that depended on the age of individuals, making it
notoriously complex for a pioneer work. He concluded that, despite the individual risks of
inoculation, its universal application would increase the life expectancy from 26.6 to 29.8 years.

Later, in the 1920 decade, works like those of Kermack and McKendrick78 and of Reed
and Frost79 founded the basis of contemporary epidemic modeling.§ During the 20th century,
the mathematical modeling of epidemics slowly evolved into a research area, and a summary of
important works from this era was made by Anderson and May in 1992.80

By the beginning of 21st century, a great revolution in epidemic modeling was wit-
nessed, pulled by the development of network science,24, 28, 30–81 the advance of computational
power and the access to large-scale real data. Elaborate and realistic models are nowadays used
as predictive tools for global and local epidemics,82, 83 while simpler and often minimalist mod-
els are used to understand the dynamics of these models, as well as specific aspects of disease
spreading such as effect of mobility, immunization strategies and behavioral responses.

In this section, we describe different frameworks through which epidemic models are
defined. They vary in terms of the population type (structured or homogeneously mixed) and
the progression of time (discrete or continuous), and can be defined by deterministic equations
or stochastic processes.

2.2.1 Homogeneously mixed populations

The framework that was dominant in most works during the 20th century80, 84 was that
of homogeneously mixed populations. It is based on a simple hypothesis: each individual of a
given population is equally likely to interact with any other individual at any time. This makes
no distinction between individuals, and imposes no structure of contacts to the population.

In this section, we discuss the most fundamental epidemic models in a homogeneous
mixing framework. The hypothesis can be applied for both discrete and continuous time evolu-
tion, as well as for stochastic simulations. However, here we only deal with a continuous time
and deterministic formulation, which is the most used.

Let us first introduce one of the simplest epidemic models: the Susceptible-Infectious-

Susceptible (SIS). In this model, individuals are put into compartments according to their dis-
ease status: susceptible (S), which does not have the disease and could catch it, and infectious

(I), which has the disease and can transmit it. Susceptible individuals contract the disease upon
contacts with infectious. Let N be the number of individuals and define β ∈ R+ as the prod-
uct between the rate at which each individual makes contacts with others and the probability
that each contact between S and I individuals results in a transmission. The expected rate at
§ Reed and Frost presented their model in 1928, but did not have interest in publishing it, which was

only made in 1952 by Abbey.79
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which new infections occur is β ·NS ·NI/N , where NS and NI are respectively the numbers of
susceptible and infectious individuals, and the factor NI/N comprises the probability that each
contact made by a susceptible points to an infectious individual.

S I
βN /NI

μ

Figure 3 – Schematic representation of the compartment transitions in the SIS model, where S
stands for susceptible and I represents infectious. Along with each arrow is the tran-
sition rate for a homogeneously mixed population with continuous-time evolution.

Source: By the author.

In the basic SIS model, infectious individuals can heal from the disease spontaneously,
at a constant rate µ ∈ R+. When healed, individuals go back to the susceptible compartment,
meaning that no immunity is considered in this simple disease model. Figure 3 depicts the
possible compartment transitions in the SIS, with their respective rates. Putting together all
elements, the rate equations for the evolution of NS and NI read as:

ṄS = −βNS
NI

N
+ µNI (2.12)

ṄI = +βNS
NI

N
− µNI . (2.13)

With the additional constraint that NS + NI = N (constant), the two equations can be
reduced to one:

ṄI = β(N −NI)
NI

N
− µNI . (2.14)

So the system is effectively one-dimensional. We can also divide it by N and write it in
terms of the fractions of the population at each compartment, ρS = NS/N and ρI = NI/N :

ρ̇I = β(1− ρI)ρI − µρI . (2.15)

We also name ρI as the disease prevalence, a concept from epidemiology. Although it
is difficult to solve Equation 2.15 in time, it is straightforward to find the value of ρI such that
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new infections and recoveries are balanced. This is a fixed point of the underlying dynamical
system, and can be found by setting ρ̇I to zero:

0 = ρI(β(1− ρI)− µ). (2.16)

An immediate solution is ρI = 0, meaning that if there are no infectious individuals
at all, there is no epidemic dynamics. This can be named as the healthy state, and often as
disease-free equilibrium (DFE) in math literature. For the analogous stochastic model, it is also
an absorbing state, meaning that once visited it cannot be left (by the lack of infectious units).

Another solution can be obtained by setting to zero the term inside the parenthesis in
Equation 2.16, which solves as:

0 = β(1− ρI)− µ ⇔ ρI = 1− µ

β
. (2.17)

The value ρI = 1 − µ/β corresponds to the endemic stationary state, in which new
infections and heals cancel out. This expression is also related to the concept of herd immunity,
which we discuss further on. A very important epidemiological parameter can also be defined at
this point: the basic reproduction number R0. It is defined as the number of secondary infections
produced by a primary infectious individual, assuming that the population is fully susceptible. In
the simple framework of homogeneously mixed populations, it can be shown to be R0 = β/µ.

The reproduction number defines whether and how strongly a disease can propagate.
One can verify this for the homogeneously mixed population with a stability analysis of the
mentioned fixed points (stationary states). For the SIS, this is as simple as taking the derivative
of the right-hand side of Equation 2.15 with respect to ρI , then evaluating its signal. Using the
product rule, we have that:

dρ̇I
dρI

= β(1− ρI)− µ + ρI · (−β) = β(1− 2ρI)− µ. (2.18)

By replacing ρI with its value at the fixed point, a positive value of dρ̇I/dρI indicates
that the system is unstable at that point, while a negative value implies that it is stable. For the
DFE, with ρI = 0, Equation 2.18 evaluates as β − µ. Therefore, the disease-free equilibrium is
stable if, and only if:

β − µ < 0 ⇔ R0 =
β

µ
< 1. (2.19)

Indeed, if the number of secondary cases produced by a primary one is smaller than 1,
the disease cannot be sustained and vanishes. Otherwise, if R0 > 1, the DFE is unstable. On the
other hand, it can be shown that the endemic solution at ρI = 1− 1/R0 is positive and stable if
R0 > 1, but negative (unphysical) and unstable if R0 < 1. Indeed, when the function 1− 1/R0
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S I R
μβN /NI

Figure 4 – Schematic representation of the transitions in the SIR model, where S stands for sus-
ceptible, I for infectious and R represents removed. Along with each arrow is the
transition rate for a homogeneously mixed population with continuous-time evolu-
tion.

Source: By the author.

crosses the x axis at R0 = 1, it exchanges the stability with the DFE fixed point ρI = 0. In the
theory of dynamic systems, this characterizes a transcritical bifurcation.¶ In physics literature,
R0 = 1 is referred as a critical point, where a phase transition occurs. For epidemiology, it is
also usual to name this point as epidemic threshold. Regardless of the name, this is an important
point at which the epidemics change from a vanishing condition to a stable endemic stationary
state.

We use homogeneously mixed populations to present yet another important model for
theoretical epidemiology: the Susceptible-Infectious-Removed (SIR). In this model, besides S
and I, the removed (R) compartment is included to consider individuals that are either fully
immune to the disease or were removed from the dynamics by other means (such as death).
While infections occur exactly the same way as in SIS, the only difference of the SIR model is
that infectious individuals move (with rate µ) to the R compartment rather than S, meaning that
each individual can catch the disease only once. Figure 4 represents the compartment transitions
in this model.

The dynamic equations, already written in terms of fractions ρS = NS/N , ρI = NI/N

and ρR = NR/N , read as:

ρ̇S = −βρSρI (2.20)

ρ̇I = βρSρI − µρI (2.21)

ρ̇R = µρI . (2.22)

The constraint ρS + ρI + ρR = 1 makes the system effectively two-dimensional. Even
though the definition of the SIR is very similar to that of SIS, its dynamics has a fundamental
¶ We use this and some other concepts of dynamical systems during other chapters of this thesis, for

which we refer the reader to Kuznetsov85 for more details.
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difference: there is no endemic stationary state, as individuals do not return to the susceptible
compartment. If the disease ever spreads, it causes the population to be less susceptible over
time, making it eventually vanish. One can use a separation trick to calculate the fraction of the
population that will have caught the disease by the end of the process. Dividing both sides of
Equation 2.20 by both side of Equation 2.22, we get:

ρ̇S
ρ̇R

=
−βρSρI
µρI

, (2.23)

where we assumed that ρI is not strictly zero. From Equations 2.20 and 2.22, we also deduce
that ρS always decreases with time while ρR increases. This monotonic behavior allows us to
write ρS as a composite function of ρR, which is then a function of the time t. This, in turn,
allows us to apply the inverse chain rule to the left-hand side of Equation 2.23, which along
with simplifications to its right-hand side yields:

dρS
dρR

= −R0ρS. (2.24)

Dividing both sides by ρS (which can be safely assumed as greater than zero) and inte-
grating on dρR, with a variable change from ρR to ρS on the left-hand side, we get:

∫ ρS(t)

ρS(0)

1

ρS
dρS = −R0

∫ ρR(t)

ρR(0)

dρR, (2.25)

which solves on both sides as:

ln

(
ρS(t)

ρS(0)

)
= −R0(ρR(t)− ρR(0)). (2.26)

We can impose some initial conditions to have a final expression. Let us assume that the
epidemic starts with a very small fraction of infectious units ρI(0) = δ → 0, with the rest of
the population susceptible ρS(0) = 1− δ and ρR(0) = 0. Then:

ln

(
ρS(t)

1− δ

)
= −R0(ρR(t)− ρ)R(0). (2.27)

This expression holds for any time t, but we are specifically interested in the end of
the process, say, at time t → ∞. By then, all infectious population will have vanished, thus
ρS(∞) = 1 − ρR(∞). Using this on Equation 2.27, converting the logarithm to its definition,
and finally taking δ → 0, we get:

ρR(∞) = 1− e−R0ρR(∞), (2.28)
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which is a transcendental equation on ρR(∞). Again, there is a trivial solution ρR(∞) = 0,
which represents the case in which the disease is not able to cause a macroscopic outbreak. An-
other solution emerges if R0 > 1, which can be graphically visualized as the crossing between
the functions f(x) = x and g(x) = 1 − e−R0x. Therefore, as with the SIS model, there is a
phase transition between a disease-free and an epidemic phase at R0 = 1.

Models with homogeneously mixed population allow the discussion of another impor-
tant concept in epidemiology: herd immunity.86 This is a state in which the population has
enough immunity to prevent the disease from spreading, even though not all individuals are im-
mune, and is achieved when the effective reproduction number (R) is at most 1. Under homoge-
neous mixing, the effective reproduction number only considers the fraction of the population
that is not susceptible: R = ρS · R0. For example, in the SIS model, setting the condition that
R = 1 gives us 1−ρS = ρI = 1−1/R0, which is exactly the disease prevalence at the endemic
stationary state.

After the first epidemic models on networks,87 and backed up by real data,72 it became
clear that interactions between hosts are very structured and far from homogeneous, with impor-
tant implications into epidemic spreading. Nevertheless, the homogeneous mixing hypothesis
is still of great use for contemporary works, with its analytical tractability as the main strength.
Important results are still obtained using this hypothesis,88–90 being particularly popular among
mathematicians. It is also commonly employed for each subpopulation of a metapopulation,
which are approached in Section 4.1.3.

2.2.2 Networks: Heterogeneous Mean Field (HMF)

Before the 21st century, most works with epidemic models either assumed complete
homogeneous mixing between individuals, or divided the population into other groups (like age
ranges, locations, etc) inside which homogeneous mixing was still assumed. In a seminal paper
published in 2001, Romualdo Pastor-Satorras and Alessandro Vespignani91 considered complex
networks for the contacts between hosts, and came to a striking conclusion: complexity itself

could enhance the epidemic spreading in a network of contacts.

To reach their conclusions, the authors developed an analytical and numerical formula-
tion for epidemic spreading on networks, currently known as Heterogeneous Mean Field (HMF)
or Degree-based Mean Field (DBMF).16 It is still very useful until nowadays, as a simple and
powerful framework to assess the effect of heterogeneous topologies on epidemic models. It is
based on a reductionist assumption that all nodes with the same degree are statistically equiv-
alent (for this section, “node” and “individual” represent the same thing). This is particularly
accurate for configuration model networks, in which the only property that defines a node be-
fore the network construction is its degree. We take the SIS model as an example to describe
the HMF formulation, but with some additional tools it can be useful for SIR-like models too
(see Section 17.8 of 26). Let ρk = ρk(t) be the fraction of individuals with degree k that are in-
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fectious at time t. Assuming continuous-time evolution, the rate equation for ρk can be written
as:

ρ̇k = βkΘk · (1− ρk) − µρk, (2.29)

where β is now the transmission rate for each contact between S and I individuals (in opposition
to the previous section, where β also incorporated the rate of contacts, for simplicity), and µ is
the healing rate of a single I individual. Θk is defined as the probability that a link that comes
from a node with degree k points to an infectious node, and in principle depends both on the
connectivity between degrees and the disease prevalence. For simplicity, we can also assume
that there are no degree-degree correlations in the network, meaning that the probability P (k′|k)
that a link starting from a node with degree k points to a node with degree k′ does not depend
on the starting node’s degree k. It is possible, yet more complicated, to develop the theory on
correlated networks.92–93 Otherwise, P (k′|k) can be proven to be:

P (k′|k) = k′ p(k′)

⟨k⟩
, (2.30)

where ⟨k⟩ =
∑

k kp(k) and p(k) is the network’s degree distribution. The dynamic variable Θk

is evaluated as the probability that a k node points to a k′ node multiplied by the probability that
the k′ node is infectious:

Θk =
∑
k′

P (k′|k)ρk′ =
∑
k′

k′p(k′)

⟨k⟩
ρk′ = Θ. (2.31)

Notice that Θ looses its dependence on k, becoming a single dynamic variable valid for
all nodes. If we start with a guess for Θ, update ρk for every existing k using Equation 2.29,
then update Θ with Equation 2.31 and repeat this update cycle, we get an iterative method to
find the stationary values of the system. The overall prevalence is then given by

∑
k p(k)ρk.

Besides this numerical evaluation, one can analytically calculate the SIS epidemic thresh-
old for the HMF on uncorrelated networks with an interesting trick. By multiplying both sides
of Equation 2.29 by kp(k)/⟨k⟩, then summing over all k values, we get:

∑
k

kp(k)

⟨k⟩
ρ̇k = βΘ

∑
k

kp(k)

⟨k⟩
· (1− ρk) · k − µ

∑
k

kp(k)

⟨k⟩
. (2.32)

The left-hand side of Equation 2.32 is simply the time derivative of Θ, whereas simpli-
fications to the right-hand side lead to:

Θ̇ =
βΘ

⟨k⟩

[
⟨k2⟩ −

∑
k

k2ρkkp(k)

]
− µΘ, (2.33)
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which is an equation for the time evolution of Θ, yet it still carries explicit dependence on ρk

due to the second term inside square brackets. However, as we mentioned, we are interested in
calculating the epidemic threshold, around which the disease prevalence asymptotically goes
to 0. When all the prevalences ρk are sufficiently small, the mentioned term is negligible when
compared to ⟨k2⟩/⟨k⟩, and the dynamics of Θ asymptotically tends to:

Θ̇ ≃ θ

[
β
⟨k⟩
⟨k2⟩

− µ

]
, (2.34)

Which is a linearized rate equation. The stability analysis is then straightforward: if
β⟨k2⟩/⟨k⟩−µ > 0, then variable Θ grows out of the linear regime around Θ = 0, meaning that
an epidemic outbreak occurs. Otherwise, if β⟨k2⟩/⟨k⟩ − µ > 0, then Θ vanishes over time and
the epidemic dies out. We can then state that the epidemic threshold is given by the following
condition:

β
⟨k2⟩
⟨k⟩

− µ = 0 ⇔ β

µ

⟨k2⟩
⟨k⟩

= 1. (2.35)

This led Pastor-Satorras and Vespignani91 to a striking conclusion about scale-free net-
works, which was reinforced by many subsequent works. For scale-free networks with exponent
between 2 and 3, the second moment of the degree ⟨k2⟩ diverges as N → ∞, meaning that, for
sufficiently large N , even a very small transmission rate β would render the system above its
epidemic threshold. This conclusion was later questioned, and partially reviewed under the con-
cept of eigenvector localization and Griffiths effects on networks.94–97 These works point that,
although the system may be above the threshold for propagation, the disease is likely limited to
a very small subgraph with incredibly high connectivity.

Another way to interpret the result from Equation 2.35 is to regard β⟨k2⟩/µ⟨k⟩ as a
good approximation for the basic reproduction number R0 when it is close to 1. If we replace
⟨k2⟩ by the degree’s coefficient of variation, given by cv = σk/⟨k⟩ =

√
(⟨k2⟩ − ⟨k⟩2)/⟨k⟩2, we

get that:

R0 ≈
β

µ
⟨k⟩(c2v + 1). (2.36)

We can interpret this result as follows: the disease will propagate more if (i) the number
of contacts, given by ⟨k⟩, is greater, and (ii) the diversity of degrees on the network, represented
by c2v, is higher. In other words, heterogeneity (or complexity) itself can favor the propagation
of a disease.

2.2.3 Networks: Quenched Mean Field (QMF)

Another mean field approximation for epidemic models on networks, apparently more
detailed than the HMF, was proposed by Chakrabarti and others98 in 2008. Instead of assuming
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that nodes with the same degree are equivalent, it retains the whole structure of the network of
contacts. An approximation is then assumed on the dynamical system itself, rather then on the
network structure. This approach, in its version with continuous-time evolution, is better known
as Quenched Mean Field (QMF).

We again use the SIS model to illustrate the formulation. Let Ai,j , with i, j = 1, ..., N

be the adjacency matrix elements of an undirected and unweighted graph G. As in Section
2.2.2, we define β as the transmission rate of a contact between S and I nodes, and µ as the
recovery rate of I nodes. Denote as ρi = ρi(t) the probability that node i is infectious at time
t. Assuming that two nodes i, j ∈ V are connected, the probability ρi increases over time with
rate β · P (Xi = S,Xj = I|t), where P (Xi = S,Xj = I|t) is the joint probability that, at time
t, node i is susceptible and node j is infectious.

To exactly address this system as a continuous-time Markov chain, we should consider
all the joint probabilities P (Xi = Ai | i = 1, ..., N), where each Ai can either be S or I. This is
a total of 2N states to keep track of, making the state space prohibitively large for analytical and
computational purposes in the case of medium and large graphs (see 99 for an exact approach to
the 2N problem). Instead, one first approximation is to consider that the dynamic probabilities
ρi are statistically independent of each other,|| meaning that any joint probability can be broken
as products between individual probabilities. For example, using this approximation, we write
that P (Xi = S,Xj = I|t) = (1 − ρi(t)) · ρj(t), so dynamical correlations that exist between
the states of nodes i and j are neglected.

Under this approximation, we can join the contributions of each neighbor of node i to
its infection probability, as well as its own recovery rate, to write the time evolution of ρi(t) as:

ρ̇i =
N∑
j=1

Aijβ(1− ρi)ρj − µρi. (2.37)

This defines a non-linear dynamical system for the N individual infection probabilities
ρi instead of the whole Markov chain of size 2N , making the system numerically tractable.
Methods for integration of differential equations, such as Runge-Kutta,100 can be employed
along with initial conditions to solve the time evolution of the system under the QMF hypothesis
(i.e., no dynamical correlations).

It is also possible to extract the epidemic threshold with a stability analysis over the DFE
(disease-free equilibrium). The Jacobian matrix element Jik, given by ∂ρ̇i/∂ρk, is evaluated
from Equation 2.37 as:

Jik =
∂ρ̇i
∂ρk

= Aikβ(1− ρi) − δik [µ +
∑
j

Aijβρj], (2.38)

|| This does not mean that the probabilities evolve independently. Their evolution is tangled, but they
are independent in a statistical sense.
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where δik is the Kronecker delta. As the system is N dimensional, the stability analysis consists
into finding the signal of the Jacobian’s leading eigenvalue evaluated at the fixed point. In the
DFE, all probabilities ρi are zero, and the matrix elements are evaluated as:

Jik = Aikβ − δikµ (2.39)

or, in a matrix form:

J = βA− µIN , (2.40)

where IN is the identity matrix with size N . Denoting the leading eigenvalue of a matrix M as
Λ0(M) (this is, Λ0(M) is the eigenvalue with greatest real part), then the DFE will be unstable
if Λ0(M) = βΛ0(A)− µ > 0 or, equivalently, βΛ0(A)/µ > 1. The epidemic threshold itself is
defined as:

βΛ0(A)
µ

= 1. (2.41)

As we did for the HMF in Section 2.2.2, we can interpret βΛ0(A)/µ as the approximate
value of the basic reproduction number R0 around the critical condition of R0 = 1. This means
that, according to the QMF, networks with larger leading eigenvalue of its adjacency matrix are
more favorable to the spread of a disease. In general terms, the value of Λ0(A) is greater for
networks with higher connectivity, but this is not a universal rule.

For scale free (SF) networks built with the configuration model (CM) (degree distri-
bution p(k) ∼ k−γ), it is shown that its leading eigenvalue diverges as N → ∞, for any
γ > 2.101–103 This again means that the disease can be sustained for a long time even with very
small propagation rates. However, Goltsev and others94 showed that the leading eigenvector of
A is highly concentrated on a finite set of nodes around the greatest hub (node with highest
degree). Therefore, if β is small but above the critical value, the disease activity is also concen-
trated around these subsets. This condition is known as disease localization, and is a current
topic of research.65, 97, 104, 105 The details of how the disease localizes were further unveiled by
Pastor-Satorras and Castellano,104 who shown a finite localization pattern for γ > 5/2 but a
mesoscopic one for γ < 5/2.

Another tricky point about the conclusions of the QMF is its divergence from the HMF
for γ > 3. In this regime, ⟨k2⟩/⟨k⟩ is finite for SF networks and, therefore, the epidemic thresh-
old should be non-vanishing according to HMF. These differences also arise from subtleties of
each mean field treatment, and were addressed by Ferreira,95 Mata106 and others.
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2.2.4 The Microscopic Markov Chain Approach (MMCA)

Another popular theoretical approach for epidemic models on networks is a discrete-
time version of the QMF. Initially proposed by Wang and others,103 it was revisited by Gómez
and others107 and then employed in a multitude of works, and is often known as the Microscopic

Markov Chain Approach (MMCA). To exemplify the method, we use again the SIS model
due to its simplicity. Here we disregard events of instant reinfection, in which an infectious
individual can recover and then be infected again in a single time step.

Let again G be an unweighted and undirected graph, with V as its set of N nodes and
Aij as its adjacency matrix elements, i, j ∈ V . This time, we define β as the probability (rather
than rate) of disease transmission, during a single time step, in a given contact between S and
I individuals. µ is the probability that an I node recovers and becomes S during one time step.
Let ρi = ρi(t) be the probability that node i ∈ V is infectious at time t, where now t = 0, 1, ...

evolves discretely. Assuming that node i is susceptible, the probability that it catches the disease
from node j at time t is given by Aijβρj(t), where Aij tells if i and j are neighbors. The
probability that node i does not catch the disease from any node is then the product of the
probabilities that it does not catch the disease from any neighbor, given by

∏
j(1−Aijβρj(t)).

Therefore, given that i is susceptible, the probability that it catches the disease at time t from
any source node is written as:

qi(t) = 1−
N∏
j=1

(1 − Aijβρj(t)). (2.42)

As in the QMF approach, we disregard correlations between the state of neighboring
nodes. This way, the states of node i and its neighbors are statistically independent, and the
probability that it moves from S to I at time t is simply the probability that it is susceptible,
1 − ρi(t), multiplied by qi(t) from Equation 2.42. The difference equation for the evolution of
ρi is, therefore:

ρi(t+ 1) = (1− ρi(t)) · qi(t) + ρi(t) · (1− µ). (2.43)

This map defines a dynamical system of dimension N , instead of the 2N exact Markov
chain. Computationally, Equation 2.43 defines an iterative method to find the time evolution
and the steady state of the system. It is usually fast and stable, making this a very convenient
tool to study more advanced models in complex networks. We use this approach to study the
coupling between disease and information, as presented in Section 3.2.

The epidemic threshold can, again, be determined by a stability analysis of the DFE
(where ρ =

∑
i ρi = 0). This consists in evaluating the leading eigenvalue of the Jacobian

matrix. The system’s map is given by a set of functions fi : [0, 1]N → [0, 1] such that ρi(t +
1) = fi({ρj(t) |j ∈ V}) (i.e., fi is the right-hand sides of Equation 2.43). The Jacobian matrix
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element is Jik = ∂fi/∂ρk |ρ=0. Let us first calculate the derivative of qi with respect to ρk with
given k ∈ V:

∂qi
∂ρk

∣∣∣∣
ρ=0

= −(−Aikβ) ·
N∏
j=1
j ̸=k

(1 − Aijβρj(t))

∣∣∣∣∣∣∣∣
ρ=0

= +Aikβ. (2.44)

Then the jacobian matrix at the DFE fixed point is then given by:

Jik = − δik · qi|ρ=0 + (1− ρi)|ρ=0 ·
∂qi
∂ρk

∣∣∣∣
ρ=0

+ δik · (1− µ)

= Aikβ + δik(1− µ). (2.45)

In matrix form: J = βA + (1 − µ)IN , where again IN is the N x N identity matrix.
As the system is discrete in time, we need to compare the leading eigenvalue of J with 1. If
Λ0(J) > 1, the DFE is unstable and the system has an epidemic outbreak; otherwise, the DFE is
stable and the epidemics extinguishes. The critical condition (epidemic threshold) is given by:

Λ0J = βΛ0(A) + (1− µ) = 1 ⇔ βΛ0(A)
µ

= 1, (2.46)

which turns out to be the same condition as that of the continuous-time QMF approach (Equa-
tion 2.41), except that now β and µ are probabilities instead of rates. The discussions about
vanishing thresholds, disease localization and related concepts remain the same as those pre-
sented in Section 2.2.3.

2.2.5 Discrete-time Monte Carlo simulations

The analytical and numerical methods described so far are very useful ways to study
simple epidemic models in homogeneously mixed and structured (networked) populations.
They are deterministic, meaning that every run will always return the same result, and pro-
vide some important analytical insights such as the formulae for the epidemic threshold. How-
ever, these methods are all subject to some degree of approximation in order to be tractable,
specially those aimed at large networked populations. Mathematical approximations can be
avoided through the use of stochastic simulations, which promote the dynamics of the models
as they are proposed.

For discrete-time evolution, it is usually intuitive to implement a Monte Carlo simulation
knowing the model’s rules. The basic principle is to draw random numbers that determine which
or how many events will occur at each time step, then execute the state changes. We now briefly
describe how to implement Monte Carlo simulations of the SIS model, both on homogeneously
mixed populations and on networks of contacts.
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In homogeneously mixed populations, all individuals are statistically equivalent, so we
only need to keep track of the number of individuals in each compartment. Let NS = NS(t)

and NI = NI(t) be, respectively, the number of susceptible (S) and infectious (I) individuals
at time step t, with NS +NI = N . Define β as the infection probability, scaled by the average
number of contacts between individuals (as described in Section 2.2.1). Also define µ as the
individual recovery rate. For each susceptible individual, the chance of not being infected by a
single infectious individual is 1 − β. The chance of not being infected by anyone is (1 − β)NI .
Finally, the infection probability for a single susceptible individual is:

q = 1− (1− β)NI , (2.47)

and the expected number of new infections is given by q ·NS . Moreover, the expected number of
recoveries (I → S) is µ ·NI . Instead of drawing random numbers for each of the N individuals,
we can group the events of the same kind, then draw binomial numbers to determine how many

of them will occur. In our case, we can simply draw ηI = Bin(NS, q) and ηS = Bin(NI , µ),
denoting respectively the number of new infections and recovery, where Bin(n, p) represents a
binomial random number with n attempts of probability p. After performing all calculations, we
update the number of infectious individuals as NI(t+1) = NI(t)+ηI−ηS (and NS = N−NI).

For populations defined by a network of contacts, the simplest approach is to keep track
of the state of each individual. Let Xi(t) ∈ 0, 1 be an indicator variable of the state of node
i, with Xi(t) = 1 if i is infectious and 0 otherwise. Redefine β as the probability of disease
transmission of each link between S and I nodes and µ, as usual, the recovery probability. The
probability of infection for node i, given that it is susceptible, is:

qi = 1− (1− β)N
i
I , (2.48)

where N i
I =

∑
j AijXj is the number of infectious neighbors of node i. One usual approach is

to perform a “visit” to each node to determine its state for the next time step. When node i is
visited, its state is checked, and then one of the following is performed: (i) if i is susceptible,
a Bernoulli event (coin toss) with probability qi determines whether it should be infected and
set as I; (ii) if i is infectious, a Bernoulli event with probability µ determines whether it should
be recovered and set as S. Only after all nodes are visited should the node states be updated,
preventing that the results of the simulation are affected by the arbitrary sequence of visits.

2.2.6 Continuous-time Monte Carlo - Guillespie algorithm

Continuous-time evolution is a mathematical concept that cannot be executed in a com-
puter, because finite memory imposes discretization of the numbers at some point. However,
when the events of a stochastic process have occurrence times that are well defined by con-
tinuous functions, this process can be simulated in a computer with a time discretization that
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is essentially its numerical precision scale (the so called machine epsilon). In particular, if the
stochastic process is Markovian (this is, holds no memory of previous states), all events have
exponentially distributed occurrence times, and can be simulated with relative ease.

Exploring this idea, Joseph L. Doob and others created an algorithm to simulate chemi-
cal or biochemical sets of reactions in 1945, which was presented by Dan Gillespie in 1976.108, 109

Despite being proposed for chemical systems, it can be applied to a very broad variety of
stochastic processes, and is now popularly known as Gillespie (or Doob-Gillespie) algorithm.
As proposed in the seminal paper, there are two methods for exact simulation: the direct method

and the first reaction method. Here we shall focus on the direct method, which is more efficient
when the disease parameters are the same for all hosts. Approximate and more efficient methods
were also proposed later.110

Let us again use the SIS model in a homogeneously mixed population, exactly as de-
scribed in Section 2.2.1, to exemplify the method. For a given state of the system, NI(t) and
NS(t), new infections occur with rate βNS(t)NI(t), while new recoveries happen with rate
µNI(t). The total rate at which any event (infection or healing) occurs, is simply given by the
sum:

a(t) = βNS(t)NI(t) + µNI(t). (2.49)

The method is based on two propositions: (i) the time T to the next reaction (event) is
exponentially distributed with rate a = a(t), thus p(T = τ) = ae−aτ ; (ii) the probability that an
event α is the next to occur is proportional to its rate aα. Then, for the well mixed SIS, we can
first draw the time τ to the next event from an exponential random number with rate given by
Equation 2.49, then choose between performing a new infection (with probability βNSNI/a)
or a new healing (with probability µNI/a). If an infection (a healing) event is chosen, we in-
crement (decrement) NI by one unit, and update the current time t to t + τ . By repeating this
process, we simulate the continuous-time evolution of the SIS model with feasible computa-
tional cost, but a time discretization as small as the precision scale used for τ .

For network-structured populations, it is simple to expand the direct method while keep-
ing its computational efficiency, provided that the disease parameters (β and µ) are the same for
all individuals. Even though each S individual has its own rate of infection, we can still group
infection events by links between S and I. Let MSI = MSI(t) be the total number of contacts
(links) between S and I individuals at time t. The rate at which any event occurs is given by:

a(t) = βMSI(t) + µNI(t). (2.50)

Following the same principle for homogeneous mixing, we draw an exponential time τ

with p(T = τ) = ae−aτ , then choose to perform a new infection with probability βMSI/a or a
new recovery with probability µNI/a. If infection is chosen, we select one of the existing S-I
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links at random, then infect the S node. If recovery is chosen, we select a random infectious
node and make susceptible again. The current time t is then updated to t+ τ and the iteration is
repeated.

During this thesis, we may often refer to SIS-like and SIR-like models. With this, we
mean the “cyclic” aspect of the model: if individuals can return to the initial/inactive state and
repeat the transitions, we call it SIS-like; if individuals can only run through the sequence of
compartments once, we call it SIR-like.

Monte Carlo simulations allow the study of an epidemic model even when no theoret-
ical or mean field formulation is known. This comes at the expense of computational cost, as
simulations typically must be repeated many times or for very long periods to produce statis-
tically relevant results. In particular, determining the epidemic threshold can be very tricky, as
most epidemic models possess absorbing states and/or subspaces which, once reached by the
system, cannot be left (such as the DFE).

For SIS-like models, a rough determination of the epidemic threshold can be made
by just plotting the stationary prevalence as a function of β or µ. However, to have a more
precise calculation, alternative methods using the distribution of survival times,111 a small con-
stant source of infection112 or a reflecting boundary113 are considered. One particularly efficient
method is the simulation of the quasi-stationary state,114–115 which recovers the system to a
previous configuration whenever it falls into an absorbing state.

2.2.6.1 Other models

Up to this point, we described the SIS and SIR models. Due to their simplicity, they are
very important for theoretical works, but they lack many details present in real epidemic and
information dynamics. Some of these details can be incorporated through simple modifications.
We use a homogeneously mixed, continuous-time formulation to explain some other models
obtained from the basic SIS and SIR.

In the SIR model, the removed (R) compartment represents individuals that either per-
ished by the disease or acquired lifelong immunity. In reality, however, immunity to many dis-
eases can wane over time, either by pathogen mutation or by reduction in antibody loads. One
simple way to incorporate this is to consider an extra transition on the SIR model, from R back
to S again. This happens spontaneously, with rate α for each R individual. The resulting model
is known as Susceptible-Infectious-Removed-Susceptible (SIRS). It has features from both SIS
and SIR models: the possibility of an endemic stationary state (as in SIS) and of a transient
outbreak peak (as in SIR), depending on the parameters and initial conditions.84

Both SIS and SIR models also consider that a host begins to transmit the disease im-
mediately after it is infected. This is not true for real diseases, in which there is a period
of pathogen development, since the infection, until the host begins to transmit. This period,
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also known as latent period, can be incorporated by the addition of an exposed (E) com-
partment between S and I. This way, once infected, a susceptible host moves to the exposed
compartment first, on which it cannot transmit the disease yet. With rate σ, it spontaneously
moves to the infectious compartment. By applying this respectively to the SIS and SIR mod-
els, we obtain the Susceptible-Exposed-Infectious-Susceptible (SEIS) and Susceptible-Exposed-

Infectious-Removed (SEIR) models.

Finally, and as mentioned in Chapter 1, epidemic models can also be used to describe
the spread of information. One way to adapt an epidemic model for this purpose was considered
by D. J. Daley and D. G. Kendall17 in 1965, to what is called a Daley-Kendal (DK) rumor model.
They considered an SIR-like model, with S interpreted as unaware, I as aware and spreader and
R as stifler (this is, an individual that already knows the information but does not spread it).
Moreover, they proposed a modification to the forgetting (“healing”) process. For each contact
between a spreader (I) and a stifler (R), with rate α, the spreader can become stifler. Moreover,
for each contact between two spreaders, with the same rate, they can both become stiflers. This
emulates the fact that, when an informer notices that the people around do already know the
information or rumor, he or she may loose interest in propagating it.

A slight variation of the DK model was later proposed in a book by D. P. Maki and M.
Thompson.116 The only difference is that, during the contact between two spreaders (I), each of
them become stifler independently with rate σ, instead of both of them. All the other features
remain as in the DK model, in which is known as the Maki-Thompson (MT) model. In Section
3.2 of Chapter 3, we explore an adapted MT model to explore the interaction between disease
and information dynamics.
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3 INTERACTION BETWEEN SPREADING PHENOMENA

Dynamic phenomena in nature rarely occur in isolation. The interaction between dif-
ferent dynamics often lead to highly complex outcomes. Cities are great examples of such
a complexity. Demographic patterns, job offer and demand, public services, product supply
chains, social activities, traffic and transportation are layers of an urban cluster that interact in
a complex setup, such that perturbations in one sphere can affect several others in a sensitive
way.

Spreading phenomena often interact with each other, as well as with other types of pro-
cesses. Examples of disease spreading dynamics that interact are common, such as the dynamics
of multiple influenza strains,117 which are subject to cross immunity (i.e., when host immunity
to one strain provides total or partial immunity to other), making their dynamics to be dependent
on one another. This interaction can give rise to non-trivial phenomena, such as the long-term
survival of “unfit” strains.118 Infection by Human Immunodeficiency Virus (HIV) is known
to facilitate infections by other opportunistic diseases,119–120 especially tuberculosis, but also
hepatitis A and B, candidiasis, toxoplasmosis120 and others. These opportunistic infections can
further compromise the immune system,119 closing a cooperative loop between HIV and other
pathogens. Yet less commonly, there are some cases in which co-infected pathogens reduce the
replication and/or viral loads of HIV,121–123 configuring an asymmetric loop of interaction (a
“win-loose” scheme).

Epidemic spreading has also strong interaction with host’s behavior, especially in hu-
man populations.124–125 Aspects such as host mobility and contact patterns, public mitigation
strategies and adoption of self-protective measures strongly influence (and are influenced by)
the dynamics of a contagious disease.

In this chapter, we describe our contributions to the dynamics of interacting spread-
ing phenomena. By spreading phenomena, we refer both to diseases and to the “epidemic
metaphor”, as mentioned in the introduction of the thesis. Our focus was driven to asymmetri-
cally interacting schemes, both in networks and homogeneous populations. In Section 3.1, we
review the literature on the topic, with special emphasis to asymmetric coupling. In Section 3.2,
we present our first developed work: a study of the disease-information coupling in multiplex
networks, with a rumor-like model for the information and a flexible relative time scale. Based
on open questions from this work, we follow up with another work in Section 3.3, in which we
study asymmetrically interaction spreading processes in a broader sense.
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3.1 Literature review

The major topic of interaction between epidemic spreading and other dynamical systems
(including epidemics itself) is very extensive in the literature, and a thorough review of the
whole topic would go far beyond the scope for this chapter. Instead, we focus on the literature
that is most relevant to our works, divided in two subtopics: the interaction between two or
more contagion processes (Section 3.1.1), and the coupling between disease and host behavior
(Section 3.1.2).

3.1.1 Interacting diseases models

Some early works in epidemic modeling acknowledged the existence of interaction be-
tween infectious agents, and mostly focused in the case of competitive interaction. 117, 126–129 In
1964, Elveback and others,126 motivated by a field report of interaction between pathogens,130

modified the basic Reed-Frost model79 to consider two pathogens that cause temporary or per-
manent immunity to one upon infection by the other. They performed Monte Carlo simulations
on an IBM 7090 computer, being probably one of the earliest works to evaluate an epidemic
model computationally. They conclude that the viral “interference” caused little effect into the
outbreak size, but later works have contradicted this result. This model was revisited by Di-
etz127 in 1979 who, under a more mathematical approach, analytically calculated the equilib-
rium points and local stability criteria.

Castillo-Chaves and others128 later discussed the competition between pathogens in
views of the competitive principle, which states that species within the same niche cannot
coexist for the long-term. They studied a two-strain SIS mathematical model for gonorrhea,
concluding that “in a behaviorally and genetically homogeneous population coexistence is not
possible except under very special circumstances”. However, they acknowledge that hetero-
geneity, in its various manifestations, lead to coexistence in ecological systems. This point was
later developed after the emergence of complexity science. Indeed, in 2005 Newman131 studied
a competitive two-strain SIR model in graphs with specified degree distribution p(k). Using
bond percolation, he deduced that degree heterogeneity may induce a so-called coexistence
phase transition (besides the traditional epidemic transition), after which both pathogens invade
the population, generalizing what was known from general ecological systems to infectious
species.

In 2011, another work by Karrer and Newman132 further studied the competitive two-
strain SIR model. Besides determining conditions for coexistence, they studied the influence of
the relative time scale between the two diseases, measured by their recovery rates. They show
that the relative time scale plays an important role on the behavior of the system, determining
for example the existence and size of a coexistence phase, as shown in Figure 5. By coexistence
in an SIR-like model, it is understood that both strains infect a macroscopic fraction of the
population.
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Figure 5 – Phase diagram of Karrer and Newman’s two-strain SIR-like competing strains
model, with complete mutual cross immunity. The strains are named as red and blue,
with Tr representing the transmissibility of the red strain and α its healing rate (the
blue strain has fixed parameters). Each region’s color represents the dominant strain,
while the smaller purple region is the coexistence phase. It is shown to be highly de-
pendent on α, which is a measure of the relative time scale between the two strains.

Source: KARRER; NEWMAN132

Other recent works brought the problem of competing diseases into metapopulations133

and multiplex networks,134–138 considering that each disease propagates in a separate layer. Funk
and Jansen,134 as well as Marceau and others,135 independently studied SIR-like competing dis-
eases via cross immunity in two-layer multiplexes (or overlay networks, as they call), both
showing that inter-layer degree correlations, link overlapping and degree heterogeneity, can
influence the outcomes of the process. For example, Funk and Jansen state that positively (neg-
atively) correlated layers increase (decrease) the competition between strains, while heterogene-
ity enhances the effect in either case. Both works also study the effect of partial cross immunity,
which tends to facilitate strain coexistence. Competing SIS-like diseases on multiplexes were
studied by Sahneh and Scoglio,136 who obtained similar conclusions about inter-layer correla-
tion for this family of models. Coexistence for a two-strain SIS-like model means long-term
prevalence of both diseases. These works show that the competitive principle for contagious
diseases can be challenged by structural features of the population.

Recent research efforts have also focused on cooperative interactions between diseases.88, 139–144

Chen,140 Cai141 and others studied the cooperative version of the SIR-like model for two dis-
eases, in which being formerly infected by one disease increases the chance of being infected
by the second. They show that the structure of the underlying network (or lattice), more specif-
ically its capability of generating cascaded mutual infections, determine the existence of a dis-
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continuous phase transition. Cui and others143 also study a similar model for power-law degree
distributed networks, using heterogeneous mean-field, reporting also the presence of a discon-
tinuous phase transition.

A few works have also studied cooperative contagion in an SIS scheme. Chen and oth-
ers88 studied two SIS diseases in which the presence of one disease in a host increases its
susceptibility to the other disease, using both a homogeneously mixed population and a two-
dimensional continuous population. They traced the phase diagrams for the homogeneously
mixed case, showing how the phase transitions are modified by the cooperation, and also dis-
playing a variety of bistable regions, into which discontinuous phase transitions are observed.
Hébert-Dufresne and Althouse142 studied a similar model on clustered networks. Besides re-
porting discontinuous phase transitions, they show that, for high enough levels of cooperation,
the network clustering can enhance the propagation of the pair of diseases, both by speeding
up the transient spread and by reducing the epidemic threshold. This means that collaborative
contagion can revert the otherwise hindering effect of network clustering.

Cooperative contagion is a younger research topic compared to the competitive case,
yet received some important advances. However, the case of asymmetric interactions between
diseases is still much less explored than the other ones. An example of such interaction scheme
is the previously mentioned case of HIV and some opportunistic infections that reportedly re-
duced the HIV load,121–123 for which the effect over the epidemic dynamics is still unknown.

Noh and others,145 as well as Ahn and collaborators,146 used heterogeneous mean field
and numerical simulations to study a model with asymmetrical coupling between two types of
particles on networks, following a statistical physics workflow. They focused on finding the
critical exponents and determining the universality classes, letting aside other details about the
model’s dynamics itself. Wu and others147 studied a similar model in a mathematical framework,
also using heterogeneous mean field, determining the model’s phases and their stability criteria.
The model consists of an originally competitive contagion of two SIS diseases, to which a
one-way superinfection mechanism is added: one of the diseases may superinfect hosts that are
infected with the other, replacing it inside the host. This can either configure an asymmetrical
or competitive interaction scheme, depending on the rate (or probability) of superinfection. Wu
shows that the introduction of the superinfection mechanism can sustain coexistence even in a
competitive scheme.

In another context, Zhu and others148 used a similar model to study the effect of a prop-
agating countermeasure (or antivirus) for computer viruses. Their model is similar to that of Wu
and others,147 yet studied under homogeneous mixing and with demographic dynamics which,
in this scenario, represents insertion and removal of computers to/from the web. The idea of
spreading “helpful computer worms” to prevent and/or eliminate malware have been consid-
ered in practice, such as the Welchia149 and CodeGreen worms, though this approach can cause
more harm than good and poses ethical challenges.
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Figure 6 – Schematic representation of the SIS-like interaction scheme from Sanz and others.1

The model is constructed in a multiplex network (left panel), having one layer fo each
disease, and the transitions between the four possible states (SS, SI, IS and II) have
arbitrary parameters (right panel), configuring a very general scheme of interactions
that can be cooperative, competitive or asymmetrical.

Source: SANZ et al.1

Asymmetrical coupling between spreading processes have been mostly studied in the
context of the interplay between epidemics and information. In human populations, the dis-
covery of an epidemics often causes the spreading of information about it, which in general
may work to contain the disease. This scenario has received considerable attention from com-
putational and mathematical models, and we thoroughly describe its literature in Section 3.1.2.
However, these works are directed to the problem of epidemics and awareness, while the general
understanding about asymmetrically interacting spreading phenomena remains underexplored.

Finally, some works have focused on interacting diseases in a general scheme, which can
comprise cooperative, competitive and asymmetric interactions.1, 150–154 Sanz and collaborators1

propose a model for two diseases that can interact through arbitrary changes to the infection and
healing rates due to the presence of a pathogen, so that each transition from any state can have
a unique rate. They study both SIS-like (Figure 6) and SIR-like schemes separately, and apply
heterogeneous mean-field and numerical simulations in both cases to study their phase diagrams
on multiplex networks with known joint degree distribution P (k, l). More recently, this model
received a Markov chain approach from Soriano-Paños,150 as well as Wu and Chen.152

The literature on interacting epidemics is very extensive, and is still growing with re-
cently published papers. For a recent review on the topic we refer the reader to Brodka and
others.155

3.1.2 Coupled disease-behavior models

The interplay between human behavior and epidemic spreading is subject of an intense
area of research.18, 124–125, 156 This interplay can happen in several different ways. Mobility pat-
terns determine where and how fast an early epidemic outbreak spreads, and it can also be
affected by travel restrictions during this stage. Aspects of human daily habits, such as hygiene,
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Figure 7 – A model for the vaccination dilemma, as proposed by Fu and others.2 I a two-step
process, the first one is a public goods game, in which individuals may decide to
vaccinate at a cost −V . The second step is an epidemic SIR-like process, in which
vaccinated individuals are completely immune, and infected individuals have a cost
−I (greater than that of vaccination).

Source: FU et al.2

contact patterns and public space activities are decisive for the spread of infectious diseases.
Conversely, they can be altered by information spread through mass media, social networks
and daily chats, with the aim of containing the spread of diseases. However, the adoption of
individual protection measures, such as hand washing, vector elimination and social distancing,
are subject to individual opinion and personality traits. Vaccination, in particular, has recently
driven considerable attention, due to the rise of anti-vaccine concerns, which may be amplified
by opinion bubbles and other phenomena related to social media.157

Game-theoretical and opinion-dynamics approaches are often used to account for be-
liefs, opinion polarization and echo chamber effects.2, 158–161 For example, Fu and others2 re-
garded vaccination as a public goods game, coupled with an SIR epidemic model (see Figure
7). They show how, according to their model, the vaccination level drops and the epidemic out-
break size raises as the perceived vaccination cost increases, for well-mixed, lattice-structured
and network-structured populations.

Models for opinion dynamics are also used to include behavioral responses to epidemic
spread.162–165 These usually include the idea of conformity (that is, the tendency that people
have to match the attitudes of their social cycle) and often lead to opinion polarization and/or
clustering (“opinion bubbles”). Salathe and Bonhoeffer162 used a voter model to emulate peo-
ple’s opinion dynamics about vaccination, after which an SIR epidemics was propagated. They
found that the probability of outbreaks is greater when the opinion dynamics is more intense,
attributing this to clusters of vaccine-rejection opinion. This work was generalized by Eames,163



69

who considered a multilayer network of parents and children. Opinion dynamics is held on the
parents’ layer, who decide to vaccinate or not their children, while the disease is spread on the
children’s layer. They show that a high overlap between these two layers (meaning that par-
ents that interact are likely to have children that also interact) can cause unvaccinated clusters
and, therefore, higher probabilities of outbreak. These original works were later developed into
further situations regarding the interaction between opinion and epidemic spreading.

A simpler approach consists into accounting for individuals’ risk perception.166–170 This
considers that individuals react to the risk of being infected, which is measured by the num-
ber (or fraction) of infectious neighbors. Bagnoli and others166 developed a simple mean-field
approach to study such a model within typical network topologies, such as small-world and
scale-free, describing the critical level of awareness (i.e., reduction of individual’s susceptibil-
ity under risk perception) as a function of other parameters. Wu and others167 extended this
to include individual’s number of contacts (degree) and global prevalence, besides infectious
neighbors, to account for risk perception. Later on, Massaro and Bagnoli168 also extended their
previous model to a multiplex, evidencing that dissimilarity between the layers would impair
the effect of risk perception, because gathering the risk information from a different neigh-
borhood than your contact layer can be “misleading”. The individual risk perception approach
can be very effective to control a disease, but relies on a feature that is often unpractical: that
infectious individuals almost always display clear symptoms.

Another form of behavioral response is the so called propagating awareness, consisting
into information that is spread from peer to peer (“word-of-mouth”) to stimulate individual pro-
tection methods. As in the risk perception framework, this method disregards individual beliefs
and their influence on the decision to self protect. Nonetheless, by considering awareness as a
disease-like spreading phenomena, powerful theoretical insights can be taken from the interac-
tion between two similar dynamical processes.134, 171–176 Funk and others171 consider a model
for an awareness that is generated from infectious individuals, propagates through their con-
tacts and fades out at each propagation. This is coupled to an SIR epidemic model. Despite
not mentioning multiplex networks, their model allow for separate connectivity structures for
the disease and information propagation. Among other results, they discuss the effects of net-
work clustering and overlap between the layers, showing that better overlapping provides higher
effect of awareness over epidemics.

In a series of two works, Granell and collaborators172–173 studied the disease-awareness
in a different scheme. Their model, which they name UAU-SIS, considers an SIS-like model for
both disease and information awareness and a multiplex structure – one layer for the epidemics
and another for the information. Each individual can be either susceptible (S) or infectious (I)
regarding the disease, and aware (A) or unaware (U) of the information. Aware individuals
propagate the information just like infectious individuals spread the disease, but susceptible-
aware (SA) individuals are less likely to catch the disease at each contact with an infectious.



70

Figure 8 – Critical value of the disease transmission probability βc as a function of the infor-
mation transition probability λ, for different combinations of the disease’s healing
rate µ and the information forgetting rate δ. The corners at each curve are named as
metacritical points.

Source: GRANELL et al.172

In turn, infectious-unaware (IU) individuals can “spontaneously” become aware by noticing
their own symptoms, a state change called “self-awareness”. This way, the disease-information
interplay represents a positive-negative loop, in which awareness impairs the propagation of the
disease, which in turn stimulates the propagation of awareness, akin to the asymmetrical case
explained in Section 3.1.1. In their second work,173 the group also considers a “mass media”
state change, by which unaware individuals spontaneously become aware regardless of their
state (by gathering information from media).

The authors use a microscopic Markov chain approach107 (as presented here in Section
2.2.4) to describe the model, and show how the parameters influence the prevalence and critical
point. They describe what was called a “metacritical point”, depicted in Figure 8 and described
as a phase transition to the critical point. This is an effect of the phase transition of the informa-
tion alone, which tells if the awareness is able to be sustained by itself (that is, without the aid
from the disease) or not. As a consequence, for example, the metacritical point disappears when
the mass media mechanism is introduced. This work was the base for the one that we present in
Section 3.2, and understanding the phase diagram of such disease-awareness systems was part
of the motivation for the work on Section 3.3.

Back to an SIR basis, Wang and others174–175 study a multiplex model for epidemics
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and awareness with vaccination. Information, as well as a disease, is propagated according to an
SIR model, and informed individuals have a probability of vaccinating, becoming permanently
immune. Another condition that they pose for vaccination is the presence of at least ϕ infectious
neighbors (from the layer of information spreading). With all these ingredients, they found that
there is an optimal value of the information transmission probability that minimizes the disease
outbreak size. This feature is not present if ϕ = 0, meaning that the requirement of infectious
neighbors for the decision to vaccinate plays a role on this result.

The disease-awareness interplay is still an active area of research, with recent works
exploring the diverse aspects of such systems.177–181

3.2 Epidemic spreading with awareness on multiplex networks

The content described in this section was published as a paper in Physical Review E.182

Copyright © 2019 by American Physical Society. All rights reserved.

As we described, most works about epidemics with propagating awareness use an epi-
demic model for the information. However, information may be more adequately modeled by
rumor models, which use a different “recovery” mechanism – in this case, the loss of interest
into spreading the information. By considering stiflers into such a model, we can incorporate
individuals that hold the information but do not propagate it, and verify if this plays a role in the
disease-awareness coupling. Additionally, most works consider that the epidemics and infor-
mation propagate in the same time scale, in a sense that the healing rates of both processes are
similar or equal. As shown in Section 3.1 (for instance, in Figure 5), changing this time scale
relationship can sometimes cause a relevant effect in the system’s dynamics. In this section, we
present our contribution to this research field: an SIS-like disease model coupled with a “cyclic”
rumor model for the awareness, with a flexible time scale ratio between the two processes. This
work was published in PRE,182 and chronologically was the first one developing during the
author’s PhD.

As in previous works,172–173 our model considers the propagation of a disease in a pop-
ulation, simultaneously to the spreading of information about it, by which individuals become
aware of the disease and of prevention methods, reducing their own contagion probabilities.
This coupled dynamical system run in a two-layer multiplex network, one layer for the disease
spreading and the other for the information awareness to mitigate the disease. We identify each
pair of linked nodes from each layer as the same “individual”; the only difference from one
layer to the other one lies in the structure of connections inside the layers. The links on the
“epidemic layer” represent contacts that can possibly transmit the disease, whereas links on the
“informational layer” represent pairs of individuals that share information with each other, like
in social online networks.
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3.2.1 Model description - Baseline model

The model for the epidemic spreading adopted here is a reactive SIS (susceptible-
infected-susceptible) compartmental model in which, at each time step ∆t = 1 of the dynamics,
each infectious (I) node tries to transmit the disease to each of its susceptible (S) neighbors on
the epidemic layer with probability β, and then tries to recover with probability µ.

For the spreading of information awareness to prevent the transmission we use a cyclic
Maki-Thomson rumor model for complex networks,183 which we call UARU (unaware-aware-
stifler-unaware). Notice that we use the letter R here for the stifler compartment to avoid con-
fusion with the susceptible (S) state in the SIS model. A stifler is an informed node who does
not propagate the information anymore. When an aware (spreader) node contacts an unaware
(ignorant) neighbor in the informational layer, it tries to pass the rumor about the disease. If
the contacted neighbor, however, is an aware or stifler node, the node that makes the contact
can become stifler. A stifler individual can also forget the information about the disease trans-
mission, becoming ignorant about the disease transmission again. We again use a discrete time
approach107 by considering a reactive formulation in which, at each time step ∆t = 1, each
aware (A) node first tries to inform each of its unaware (U) neighbors with probability γ, and
then becomes a stifler (R) with probability σ at each contact with an A or R neighbor. Besides,
each stifler node becomes ignorant (U) upon forgetting with probability α.

By combining the epidemic and the informational states of each node, we can describe
the overall state of each individual. In our model, we have six different states, i.e., SU (suscep-
tible and unaware), SA (susceptible and aware), SR (susceptible and stifler), IU (infected and
unaware), IA (infected and aware) and IR (infected and stifler). Using these overall states, we
define the interaction between the epidemics and awareness by adding two other features. First,
a susceptible node that is informed (aware or stifler) will reduce its contagion probability by a
factor Γ (with 0 ≤ Γ < 1) for each contact, meaning that it will get the disease from each of its
infected neighbors with probability Γβ (less than β). Such a feature represents the adoption of
prevention methods against the disease. Second, an additional transition called self-awareness

is considered: if not informed by a neighbor, an infected-unaware (IU) node can, during the
same time step, become aware with probability κ, by knowing its own condition. This process
simulates the case in which an infected subject recognizes the symptoms of the disease and
becomes aware of the infection.

The following reaction equations - representing respectively the (3.1) infection of an
unaware susceptible, (3.2) infection of an aware susceptible, (3.3) infection of a stifler suscep-
tible and (3.4) healing of an infected node - describe all possible epidemic transitions (where x

is used to represent an arbitrary informational state):
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Figure 9 – Schematic illustration showing the states of the nodes in the network and the associ-
ated transition probabilities between states, indicated by the Greek letters.

Source: SILVA et al.182

SU + Ix
β−→ IU + Ix, (3.1)

SA+ Ix
Γβ−→ IA+ Ix, (3.2)

SR + Ix
Γβ−→ IR + Ix, (3.3)

Ix
µ−→ Sx. (3.4)

The informational transitions - respectively (3.5) information of an unaware node, (3.6)
self-awareness of an infected unaware, (3.7) “stifling” of an aware node by contacting another
aware node, (3.8) “stifling” of an aware via contact with a stifler and (3.9) forgetting of the
information - are represented by these equations (x and y represent arbitrary epidemic states):

xU + yA
γ−→ xA+ yA, (3.5)

IU
κ−→ IA, (3.6)

xA+ yA
σ−→ xR + yA, (3.7)

xA+ yR
σ−→ xR + yR, (3.8)

xR
α−→ xU. (3.9)

Figure 9 presents the possible transitions between the six states, grouped according to
the epidemic and informational dynamics.
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The timescale of the model is controlled according to a defined probability. With prob-
ability π, only the rumor transitions (awareness, self-awareness, stifling and forgetting) can
happen during the current time step. With the complementary probability (1− π), the epidemic
transitions (infection and recovering) can occur. By setting the value of π, it is possible to em-
ulate different timescales between the two processes. For instance, a value of π close to 1.0

means that the rumor propagates much faster than the infectious agent.

3.2.2 Modified model

Besides the baseline model that we have described, we propose a minor modification
that can generate some unexpected behaviors. We extend the idea of self-awareness to stifler
nodes, considering that a stifler, which is also infected by the disease, is less likely to forget the
information. That is, a node who knows about its own infection does not inform other nodes and
also impair the transmission of other nodes, creating additional stiflers around it. This behavior
is approximately observed in the case of HIV transmission, in which some infected individuals
knows about its own infection but do not voluntarily notify their sexual partners,184 acting as
infected-stiflers. We include this feature by reducing the probability that an infected-stifler node
forgets the information by a factor of (1−κ) (so that the self-awareness parameter also reduces
the rate at which infected-stiflers become infected-unaware). We refer to this version of the
model as modified model, whereas the version without this modification is referred to as baseline

model.

In the following section, we describe our results with both baseline and modified mod-
els.

3.2.3 Results

We performed extensive Monte Carlo (MC) simulations of our model, where we consid-
ered a multiplex network composed by two layers with scale-free organization and N = 1000

nodes each. Each layer was generated independently by using the configuration model185 with
power-law exponent γsf ≈ −2.5 and minimum degree kmin = 4, with a resulting average
degree ⟨k⟩ ≈ 7.4 in each layer. The node correspondence between the two layers is done at
random, generating thus no relevant degree correlation for corresponding nodes in each layer.
In order to further study the model, we also developed a Markov chain approach that consists
of solving a set of fixed point equations that provide the stationary fractions of nodes in each
state. The Markov chain method is described in appendix A.

In Figure 10, the stationary density of infected nodes ρ∗I (prevalence) is plotted against
the infection probability β, for different values of the parameters γ (information spreading prob-
ability), Γ (immunization factor for informed nodes) and π (relative time scale). For this first
analysis, we only used the baseline model. Symbols represent the results from MC simulations
of the model, while solid lines correspond to the solution of the Markov chain approach. To
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Figure 10 – Stationary density of infected nodes ρ∗I (disease prevalence) as a function of the
disease propagation probability (β), for different values of γ, Γ and π, using the
baseline model. For π = 0.5, the rumor spreading and the epidemic propagation
have the same time scale, whereas for π = 0.1 (0.9) rumor events are slower (faster)
than the events of the epidemic process. The solid lines are Markov chain calcula-
tions (see appendix A), whereas symbols are results from Monte Carlo simulations.
Other parameters of the model are set to: µ = 0.9, α = 0.6, κ = 0.5 and σ = 0.6.

Source: SILVA et al.182

calculate stationary densities by MC simulations, we run the dynamics for T = 1200 time
steps, ignore the first 400 time steps and calculate the average fraction of nodes in the desired
state over the remaining 800 steps. Each data point corresponds to an average over 103 inde-
pendent realizations of the dynamics. At the initial state of each realization, 20% of the nodes
are randomly chosen and assigned the state IA (infected-aware), whereas the remaining 80%
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of nodes are set to the SU state (susceptible unaware).* For the Markov chain calculations, ini-
tially each node begins the process with probability piIA(0) = 0.2 for the infected-aware state
and piSU(0) = 0.8 for the susceptible-unaware state, with the remaining state probabilities being
set to zero.

Analyzing Figure 10, we can first check that the information about the disease helps in
both reducing the prevalence and increasing the epidemic threshold, by comparing curves with
different values for the information spreading probability γ. The prevalence is also decreased
when the immunity provided by the awareness is total (Γ = 0.0) rather than partial (Γ = 0.5).
Additionally, and more difficult to notice from Figure 10, the prevalence is increased if the
relative time scale parameter π is greater, i.e., when the transitions of the rumor process are
faster than those of the epidemic process. This is an intriguing result as, intuitively, we expect
that a faster informational process should be more efficient in preventing the disease spreading.
An insight into this counterintuitive effect can be obtained by studying simpler versions of the
present model within a mean-field approach or homogeneous mixing, which we did in later
works,90, 186 one of which is presented here in Section 3.3.

To investigate in more detail how the variation of the relative timescales between the
two processes affects the prevalence, we consider the behavior of the infected, aware, stifler and
unaware stationary densities as a function of the parameter κ (probability of self-awareness for
an infected-unaware node). Figure 11 shows these stationary densities for two different values
of π. Each curve is normalized by its value when there is no self-awareness (i.e., κ = 0).
We notice that, in both cases, the self-awareness is beneficial to the disease prevention, as the
densities of aware (A) and stifler (R) nodes increase, thus reducing the density of unaware (U)
nodes and the disease prevalence (I). Figure 11 also shows good agreement between Markov
chain method and Monte Carlo simulations for these normalized curves.

The picture changes if we consider the modified model, described in Section 3.2.2. Fig-
ure 12 shows the same plot as in Figure 11 for the modified model, also with Monte Carlo and
Markov chain simulations. For π = 0.1, as it happens in the baseline model, both densities
of aware and stifler nodes increase with κ. However, for π = 0.9, when the rumor propagates
faster than the disease, the fraction of aware (A) nodes decreases with κ, whereas the fraction
of stiflers (R) increases very rapidly with κ. This means that the propagation of the information
is hindered by the self-awareness of infected stiflers, as they resist to forget the information
(unaware) and then become aware (spreaders) again. Notice that, although the stifler population
increases in comparison to the aware population, the density of unaware nodes still decreases
with κ, meaning that less individuals are unprotected from the disease. Nevertheless, the preva-
lence (I) increases with κ in this case.

This is another counterintuitive result, because the disease prevalence is greater even

* Even if it is usual to start simulations with a very small fraction of active individuals, we start at 20%
to prevent the system from falling into the absorbing (healthy) state while in the active phase.
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Figure 11 – (Baseline model) Stationary densities of nodes in states I (infected), A (aware), R
(stifler) and U (unaware) normalized by their non-self-awareness value (at κ = 0)
as a function of κ, for (a) π = 0.1 (slow rumor spreading) and (b) π = 0.9 (fast
rumor spreading). Squares are the results of Monte Carlo simulations, whereas the
solid lines are Markov chain calculations (see the appendix). The dotted lines are
guides to the eyes. Other parameters are set to: β = 1.0, µ = 0.9, γ = 0.5, α = 0.6,
Γ = 0.0, σ = 0.6.

Source: SILVA et al.182

though the unaware population is smaller. To understand this, we look at the susceptible popula-
tion: if most susceptible individuals are unaware of the disease, the information is concentrated
at infected nodes and thus is not effective in controlling the disease. In Figure 13, we study the
relative distribution of the susceptible population between unaware (SU), aware (SA), stifler
(SR) and the combination of the previous two (SA + SR), using the modified model only. For
the case of slower information (π = 0.1), the fraction of informed susceptible nodes (SA, SR)
increases with κ, as expected. However, when π = 0.9, the opposite happens: the fraction of
SA and SR decreases and the fraction of susceptible-unaware (SU) nodes increases, meaning
that the fraction of susceptible nodes that are protected by the information decreases with κ in
this case. Therefore, even if the unaware population is reduced with κ (as reported in Figure
12.b), the information is actually concentrated at infected individuals, making the protection
inefficient. In other words, the fraction of informed individuals always increases with κ but, for
large π, susceptible individuals become less informed as κ increases, and thus the number of
infections increases.

Hence, we conclude that the timescale, controlled by the parameter π, plays a funda-
mental role on the outbreak size, meaning that the relative timescale between epidemics and
information determines if the self-awareness is beneficial or not for the disease prevention. We
also study how the parameter π changes the behavior of the prevalence with κ on the modified
model, by analyzing the prevalence ρ∗I vs κ curves for eleven different values of π. Figure 14
shows such curves, normalized by the value of the prevalence when κ = 0.
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Figure 12 – (Modified model) Normalized stationary densities vs κ using the modified model
(see text), for (a) π = 0.1 (fast epidemic spreading) and (b) π = 0.9 (fast ru-
mor propagation). Squares and solid lines correspond to MC simulations and the
Markov chain approach, respectively. Parameter values are the same as those in
Fig. 11.

Source: SILVA et al.182
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Figure 13 – Stationary densities for the susceptible nodes as a function of the self-awareness
probability κ, normalized by their values with κ = 0, using the modified model, for
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By analyzing the plots in Figure 14, we can conceive the influence of the timescale.
For small π (faster epidemics, slower information), the prevalence exhibits its normal decreas-
ing behavior with κ for both baseline and modified models. On the other hand, for larger π

(slower epidemics, faster information), the curves for the modified model flip their slope for
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Figure 14 – Normalized disease prevalence ρ∗I(κ)/ρ
∗
I(κ = 0) vs κ for the (a) baseline and (b)

modified models. The values of the timescale parameter π increase from the darker
to the brighter color, showing how the curves change their behavior with κ as π
increases. Other parameters are set to: β = 1.0, µ = 0.9, γ = 0.5, α = 0.6,
Γ = 0.0, σ = 0.6.

Source: SILVA et al.182

larger κ values, whereas they maintain the same behavior for the baseline model. This means
that, when the informational processes are considerably faster than the disease transmission,
the self-awareness process can generate too many stiflers and impair the information spread-
ing, increasing the prevalence. For both baseline and modified models, the time scale plays
an important role on determining the effectiveness of the information on reducing the disease
prevalence.

The results presented so far were taken using a pair of scale-free (SF) networks. One
natural question is whether the observed phenomena are due to the particular topology that
we used. To answer that, we simulated the (modified) model using combinations of two other
topologies: the Watts-Strogatz (WS)6 and Erdős-Rényi (ER)41 models. The ER layers were
generated with connection probability p = 0.008, which produces an average degree of ⟨k⟩ ≈ 8

(for N = 1000 nodes). The WS layers were generated with an initial (and average) degree
k = ⟨k⟩ = 8 and rewiring probability pr = 0.01, which produces layers with average clustering
coefficient C ≈ 0.47 and average shortest path length l ≈ 5. For the simulations, we used
the following pairs of epidemic/informational (in this order) layers: ER/ER, ER/SF, ER/WS,
WS/WS, SF/WS and the previously used SF/SF pair.

Figure 15 shows the results of Markov chain calculations using other topologies. On the
first (left) plot, we show the prevalence as a function of the self-awareness parameter κ, for a
high value of the time scale (π = 0.9, meaning faster informational processes). On the second
(right) plot, we show the prevalence as a function of the time scale parameter π for a fixed value
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Figure 15 – Markov chain calculations of the normalized prevalence for the modified model, us-
ing different pairs of network models between the configurational scale-free (SF),
Erdős-Rényi (ER) and Watts-Strogatz (WS) models. On the left panel, the preva-
lence is shown as a function of the self-awareness parameter (κ) for a fixed value of
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as a function of π for a fixed value of κ = 0.8, normalized by prevalence when
π = 0.01. Other parameters are set to the same values as in Figure 14.
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(κ = 0.8) of the self-awareness. All prevalence values are normalized by the first value of the
sequence. For all pairs of topologies, the basic results that we presented before - the increasing
of the prevalence with π and the reversed behavior with κ for high values of π are consistently
preserved.

By noticing that the network topology did not influence the observed behaviors with
the SIS/UARU model, we tend to conclude that these are essential characteristics of the model
itself. This possibility was part of the motivation for two of our subsequent works.90, 186 one of
which is presented in Section 3.3.

3.2.4 Epidemic critical point and phase diagrams

Following the procedure proposed in,107 we can calculate the epidemic critical point
for our model. We show in Section A.2 of appendix A that the phase transition curve between
the endemic and the healthy state is, for both baseline and modified models, given by β/µ =

(Λmax(H))−1, where the elements of matrix H are defined as:

Hij = [1− (piA + piR)(1− Γ)]Aij (3.10)

Where Aij is the epidemic layer adjacency matrix and Λmax represents the greatest eigen-
value. This result is the same as in the model from Granell with no mass media,172 only replacing
the probability that node i is simply aware piA by the probability that it is “protected” piA + piR,
whose value is calculated by solving the Markov chain equations equations without epidemics
(that is, null probability of infection for all nodes).

One first notorious fact is that the epidemic critical point does not depend on the relative
time scale π, as it does not change the individual “forces” of the epidemic and informational
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processes. It also does not depend on κ, as self awareness is irrelevant when the prevalence is
very small.

Figure 16 shows the phase transition curves in the β x γ plane, for four different values
of the protection factor Γ. At the left of each curve lies the healthy phase (no disease in stationary
state), whereas the endemic phase (ρ∗I > 0) is at the right. On the inset, we show how the
epidemic critical point depends on the protection factor Γ.
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Figure 16 – Phase diagrams of the SIS/UARU calculated via Markov chain approach. The left
panel shows the γ (rumor transmission probability) vs β (disease transmission prob-
ability) phase transition curves between the healthy and endemic phases, for differ-
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transition curves for β as a function of Γ, for different values of the information
transmission probability γ. The diagram is the same for the modified and baseline
models, and does not depend on π and κ. Other parameters are set to: µ = 0.9,
α = 0.6, σ = 0.6.
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One of the main differences to the simpler SIS/UAU model presented by Granell and
others172 is that the “metacritical” point is not present, as in the model with mass media173

from the same authors. This happens because the rumor model UARU is always in the active
phase, i.e., there is always a fraction of nodes that is aware, provided that γ > 0. Therefore,
our SIS/UARU model presents only two phases: healthy and endemic, lacking a phase in which
both disease and information are extinct. In our model, therefore, the population can be either
informed and healthy or informed and endemic. Although information exists even without dis-
ease, the density of informed individuals is enhanced by the presence of disease (provided that
there is self-awareness), as it can be seen in Figures 11 and 12.

3.2.5 Discussion

In this work, published on Physical Review E in 2019,182 we studied epidemic spreading
with information propagated according to a rumor model. To our knowledge, it was the first
work to use a rumor model and a stifler compartment to the spreading of awareness about
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a disease. We shown some interesting and non-intuitive phenomena which, apart from their
possible consequences to real systems (if applicable), bring some relevant theoretical questions.

First, we report that an aware population is not necessarily more protected against the
disease, especially if the information is retained on infectious stiflers (that do not propagate
the information). This feature is introduced by the use of stiflers, besides a modification to the
baseline model, and thus represents an essential difference from models that use simple epi-
demic models for the information. Second, we report that the disease prevalence is greater with
a “faster” information (i.e., one that evolves in a shorter time scale) than with a “slower” one.
We came to know, after publishing, that this result was already reported in a similar model.187

Despite analogous, their model is not equivalent to ours, which raises an interesting question:
what features that such a model must have to display this non-intuitive behavior with the rela-
tive time scale? This question is not simple to answer, but it would help understanding to which
extend these results should be expected in real systems, where many other factors come into
play.

As shown in Figure 15, the behaviors that we reported do not seem to qualitatively
depend on the network topology, at least for the number of nodes (N = 1000) that we used and
the chosen topologies (ER, WS, SF). This motivates the study of such models with no network
structure, which reveal the fundamental and intrinsic properties of the dynamical systems (as
done in88). Besides, the study of an epidemic model without a contact structure to the population
often leads to analytically more tractable equations.

This motivated our collaborators, Federico Vazquez and Fátima Velásquez-Rojas (who
also participated on the current work), to develop a mean-field analysis of the epidemic with
awareness model.186 They wrote rate equations for the baseline model and without the stifler
compartment (SIS/UAU), for more analytical tractability, and used them to find analytical ex-
pressions for the fixed point of the system when both the epidemics and the information are
active. They also found analytical expressions for the epidemic critical point, which were used
to trace the phase diagrams. We observed the same behavior of the prevalence with the relative
time scale, both from analytical calculations performed by them and from Monte Carlo simula-
tions made by our group. This provided a relevant advance to the theoretical understanding of
these models.

Despite the important advances, we still wanted to better understand some of the points
raised by these works with epidemics and awareness. In the next section, we preset a subsequent
work that was greatly motivated by the results of our previous ones.

3.3 Asymmetrically interacting contagion

The work presented in this section was published as an open-access paper in Physical
Review Research. Copyright © 2021 by American Physical Society. All rights reserved.
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The propagation of an epidemics and the concurrent propagation of awareness about it
is an example of two spreading phenomena that interact asymmetrically, with strong analogy to
a predator-prey system. For the SIS/UARU and SIS/UAU models, as well as for that presented
in,187 the “prey” (i.e., the disease) has its population increased if its intrinsic time scale is slower
than that of the “predator” (i.e., the awareness). However, it remained unknown whether this
behavior is a general feature of asymmetrically interacting spreading process and, if not, what
are the conditions to produce this behavior.

Motivated by this open question, we looked for other models of asymmetric interaction
between spreading processes. We found two models that could serve as useful templates to
address this question. These models are mostly found in the literature of interacting diseases,
not of epidemic with awareness. However, as discussed in Section 3.1.1, the literature on this
subject is mostly focused on the symmetrical (competitive and collaborative) cases, with only
a few works dealing with asymmetrical interaction. Moreover, many works do not deal with
flexible time scale of one process with respect to the other, often assuming that they are equal.
We understood this as a research gap, which we could help filling by studying the question
raised by our previous work.

We decided to work on models without network structure (homogeneously mixed pop-
ulations), continuous time and infinite-sized populations – thus a rate equation formulation, as
described in Section 2.2.1, allowing for more analytical power and showing the models’ intrin-
sic properties. In the following section, we describe the two models of interacting diseases that
we picked to develop this work, showing the main findings. Besides some interesting properties
of the dynamics in the asymmetric regime, we found some differences between the two models
that helped us to understand the generality of our previous findings.

While the main application for asymmetrically interacting contagion is the interplay
between disease and awareness, the already mentioned reports of HIV viral load decrease after
infection by other diseases121–123 open room for applications of our work to the interaction
between pathogens.

3.3.1 Description of the models

In what follows, regardless of the model considered, we assume that there are two dis-
eases (I and II) that interact. Moreover, we consider that disease I is the “prey” (it is impaired
by the other disease) and disease II is the “predator” (it is benefited from the first disease), in
an analogy with the asymmetrical interaction of predator-prey systems. As in our first work
(described in Section 3.2), the parameter π controls the relative time scale between the two
diseases. Due to the continuous time evolution, however, it is implemented in a different way:
the rates of all processes promoted by disease I are multiplied by 1 − π, whereas the rates of
disease II processes are multiplied by π. Making π to range between 0 and 1, we sweep through
scenarios in which disease I is faster (π < 0.5) or slower (π > 0.5) than disease II, as well as
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the balanced case (π = 0.5). Although π does not add a new degree of freedom of the model,
the advantages of using this approach are: (i) it allows us to control the relative time scale with
a single parameter; (ii) the “overall rate” of the system, which can be regarded as ∼ (1−π)+π,
is kept constant when varying π; (iii) plotting variables as a function of π is simple because it
is limited between 0 and 1; and (iv) it simplifies the comparison of results with our previous
work.182 Let us now describe each of the models scrutinized in the rest of the section.

3.3.1.1 Model A: interacting diseases through susceptibility change

In this variant, we consider that the presence of one disease impairs the spreading of the
second one by changing the individual’s susceptibility to catch the other disease. It has been
used to describe the dynamics of competing pathogens with partial cross immunity117 and for
collaborative contagion,1, 88 but its asymmetrical version is still largely unexplored. The latter
regime is a good prototype to describe the interplay between epidemics and awareness, due to
its mathematical similarity to models used for this purpose.

In this model, each individual can either be susceptible to both diseases (S1S2), infected
by one disease and susceptible to the second one (I1S2 and S1I2), or infected by both diseases
(I1I2). We denote as I1 and I2 individuals that are, respectively, infected by disease I and II,
regardless of their state with respect to the other disease. For completely susceptible individuals
S1S2, the baseline contagion rate of disease I (II) when in contact with an individual infected by
disease I (II) is β1 (β2). For individuals already infected by disease I but susceptible to disease
II (I1S2), the contagion rate for disease II is Γ2 ·β2, i.e., it is multiplied by a factor Γ2. The same
holds for S1I2 individuals, for which the contagion rate by disease I is changed to Γ1 · β1. The
healing rates from disease I and II are respectively µ1 and µ2, and are not affected by the other
disease. We also define λ1 = β1/µ1 and λ2 = β2/µ2, which are the basic reproduction numbers
of each disease as if they were independent. Figure 17 represents all the possible transitions for
this model, with their respective time scale factors as explained before.

The asymmetrical interaction between the two diseases can be obtained by setting 0 ≤
Γ1 < 1 and Γ2 > 1. This means that individuals that hold disease II are less susceptible to catch
disease I in comparison to fully susceptible individuals. On the other hand, individuals infected
by disease I are more likely to catch disease II. Therefore, disease I enhances the propagation
of disease II, whereas disease II impairs the propagation of disease I. We represent the density
of individuals in a given state X by ρx, with X being either a composite state (like I1S2) or a
simple state (like I2). Based on the diagram from Figure 17, the time evolution of the composite
state densities is given by the following equations:
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dρs1s2
dt

= −(1− π)β1ρs1s2ρi1 − πβ2ρs1s2ρi2 + (1− π)µ1ρi1s2 + πµ2ρs1i2 (3.11)

dρs1i2
dt

= −(1− π)Γ1β1ρs1i2ρi1 + πβ2ρs1s2ρi2 + (1− π)µ1ρi1i2 − πµ2ρs1i2 (3.12)

dρi1s2
dt

= +(1− π)β1ρs1s2ρi1 − πΓ2β2ρi1s2ρi2 − (1− π)µ1ρi1s2 + πµ2ρi1i2 (3.13)

dρi1i2
dt

= +(1− π)Γ1β1ρs1i2ρi1 + πΓ2β2ρi1s2ρi2 − (1− π)µ1ρi1i2 − πµ2ρi1i2 . (3.14)

The densities are yet subject to the normalization constraint ρs1s2+ρs1i2+ρi1s2+ρi1i2 =

1. This constraint makes the system effectively three-dimensional. One can reduce the number
of equations and simplify the notation by using the following variable change (as done in88):


u = ρi1 = ρi1s2 + ρi1i2 ,

v = ρi2 = ρs1i2 + ρi1i2 ,

w = ρi1i2 .

(3.15)

For which the dynamical equations are:

u̇ = (1− π) [β1(1− u) + (Γ1 − 1)β1(v − w)−

−µ1] u (3.16)

v̇ = π [β2(1− v) + (Γ2 − 1)β2(u− w)− µ2] v (3.17)

ẇ = (1− π) [Γ1β1(v − w)u− µ1w] +

+π [Γ2β2(u− w)v − µ2w]. (3.18)

3.3.1.2 Model B: competing diseases with superinfection

Model B constitutes a modification of models of competing strains, in which a host can-
not have the two diseases at the same time. This could be achieved from model A by setting
Γ1 = Γ2 = 0. However, we also allow the in-host disease replacement via superinfection: if
an individual infected by disease I contacts another one infected by disease II, the first can also
become infected by disease II, which immediately replaces disease I in the host. The other way
around, from disease II to I, is not possible. Superinfection is a phenomenon that is claimed
to occur for some diseases such as HIV188–190 and bacterial pathogens,191 although it does not
necessarily leads to in-host replacement of the first infection. There is a considerable amount of
works about epidemic models with superinfection, both with homogeneous populations192–195

and complex networks145–147 and including other realistic aspects such as demography. Beyond
epidemiological examples, the present model could abstract the interaction between computer
viruses and the spreading of anti-malware, or the dynamics of fake news and fact-checking
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messages. In such scenarios, either the anti-malware or the fact-checked message replaces the
previous "infectious agent". We also note that our model is a particular case of the model dis-
cussed in,147 and can also be interpreted as a generalized predator-prey model.196

Specifically, in model B, we represent susceptible individuals simply by S, and infected
individuals of diseases I and II, respectively, by I1 and I2. The transmission rates are β1 and
β2, the healing rates are µ1 and µ2, and the rate at which I1 individuals are “superinfected” by
disease II when exposed to I2 individuals is given by a modified term α · β2. As in model A,
each term is also multiplied by the corresponding time scale factor ((1 − π) for disease I and
π for disease II), and also λ1 = β1/µ1 and λ2 = β2/µ2 are the basic reproduction numbers of
the independent diseases. The transitions are schematically represented in Figure 18. Despite
the competitive aspect of the model, one can generate an asymmetrical interaction by setting
α > 1. This is because I1 individuals, in this case, are more easily infected by disease II than
susceptible ones, meaning that the spreading of disease II is enhanced by the presence of disease
I, which in turn is in disadvantage due to the competition with disease II.

Using the same notation as before, ρx, for the density of individuals in state X, we write
the dynamical equations:
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dρs
dt

= −(1− π)β1ρsρi1 − πβ2ρsρi2 + (1− π)µ1ρi1 + πµ2ρsr (3.19)

dρi1
dt

= (1− π)β1ρsρi1 − παβ2ρi1ρi2 − (1− π)µ1ρi1 (3.20)

dρi2
dt

= πβ2ρsρi2 + παβ2ρi1ρi2 − πµ2ρi2 , (3.21)

where the normalization constraint is ρs + ρi1 + ρi2 = 1. As in model A, we make the change
of variables u = ρi1 , v = ρi2 to obtain the reduced set of dynamical equations:

u̇ = (1− π) [β1(1− u− v)− µ1]u− παβ2uv (3.22)

v̇ = π[ β2(1− u− v)− µ2]v + παβ2u v. (3.23)

3.3.2 Results

3.3.2.1 Phase diagrams

In the asymmetrically interacting regime, models A and B share a common feature:
for any given set of parameters, there is exactly one stable fixed point within the region of
the phase portrait that corresponds to physically possible solutions. Therefore, unlike what has
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been reported for mutually competitive or cooperative scenarios,88, 192 our models do not present
bistability †. This in intrinsic to the positive-negative feedback of the asymmetric interaction
between the diseases. Both models A and B present four phases, separated by transcritical
bifurcations: (P1) no disease, (P2) disease I only, (P3) disease II only and (P4) coexistence
of both diseases. Here, we investigate the λ1 × λ2 phase diagrams, setting the other parameters
to fixed values. Figure 19 shows the phase diagrams for both models.

Through a stability analysis, described in Section B.1 of appendix B, we can obtain the
phase transition curves of both models. The boundary between phases (P2) and (P4) in model
A is expressed as:

1

λ2

= 1 + (Γ2 − 1)

(
1− 1

λ1

)
, λ1 > 1, (3.24)

whereas, by the symmetry of the model, the boundary between phases (P3) and (P4) is given
by:

1

λ1

= 1− (1− Γ1)

(
1− 1

λ2

)
, λ2 > 1. (3.25)

From the Equation 3.25, we can check that, when Γ1 = 1 (i.e., no interaction), the
boundary between phases (P3) and (P4) are separated by a vertical line. On the other limit, for
Γ1 = 0, the boundary becomes the identity line λ1 = λ2.

The other two bifurcations are trivial and are given by λ2 = 1 for 0 ≤ λ1 ≤ 1 (boundary
between (P1) and (P3)) and λ1 = 1 for 0 ≤ λ2 ≤ 1 ((P1) and (P2)). It is worth noticing that, for
model A, none of the phase transition curves depends on the time scale parameter π.

The phase transition curves have similar shapes to those reported in other works using
single layer150 and multiplex1 networks, which shows that such feature is essential to the model
itself. It can also be shown that the transition curves between (P1) and (P2) and between (P3) and
(P4) are equivalent to the curve between healthy and endemic phases in a model for epidemics
with awareness.172

For model B, the boundary between (P2) and (P4) is given by:

1

λ2

= 1 + (α− 1)

(
1− 1

λ1

)
, λ1 > 1, (3.26)

which is similar to that in Equation 3.24, only replacing Γ2 by α. The boundary between
(P3) and (P4) is expressed as:

λ1 = [αχ(λ2 − 1) + 1]λ2, λ2 > 1, (3.27)
† For model B, it can be shown that the bistability condition given by Wu and collaborators in147

cannot be met when α > 1, which is our case.
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Figure 19 – Phase diagrams of models A (a1 to a3) and B (b1 to b3), for three different values
of the time scale parameter π. The phases are (P1) no disease, (P2) disease I only,
(P3) disease II only and (P4) coexistence. For model B, the dotted lines indicate the
(λ1, λ2) values used in Figure 20. Inside the coexistence region, there is also the
possibility of damped oscillations, quantified by the Q factor defined in Equation
3.28 and exhibited here as a green scale. The points of the oscillatory region mesh
are calculated in steps of ≈ 0.033 units in λ1 and λ2, then smoothed with bicubic
interpolation. Other parameters are set to: Γ1 = 0.20, Γ2 = 3.0 and α = 2.0.

Source: VENTURA et al.90
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where we define χ (interpreted as the time scale ratio between diseases II and I) as:

χ =
πµ2

(1− π)µ1

.

The trivial boundaries of region (P1) with regions (P2) and (P3) are the same as in model A.
Notice, however, that the parameter χ depends increasingly on the time scale parameter π, and
so does the critical λ1 value from Equation 3.27. This means that, as π increases (i.e., when
disease II propagates on shorter time scales), the phase transition between (P3) and (P4) moves
to lower values of λ2, contracting the region of coexistence and approaching the horizontal line
λ2 = 1 as π → 1 (notice that χ diverges). Therefore, in this model, a faster clock for disease
II makes it more effective to suppress disease I. This is an interesting result that might be used
to control the prevalence of disease (or any other "infectious agent") in the host population. In
the limit of π → 0, the transition between (P3) and (P4) becomes the identity line λ1 = λ2.
The π-dependence of the phase diagrams of model B constitutes an important difference with
respect to model A, and was already reported by Wu and collaborators147 as a dependency on
the recovery rate when keeping the ratios β/µ constant.

The reason for such difference in model B is the existence of superinfection, which is
a process of disease II that modifies the state of an individual for both diseases. In contrast, for
model A, the processes of a given disease can only change its own states, making the relative
time scale irrelevant near the phase transitions.

3.3.2.2 Behavior of the stationary prevalence

We now discuss how the stationary prevalence behaves with some of the parameters of
the models, including the relative time scale π, which will allow us to do a comparison with the
results from Section 3.2.

In the phase of coexistence (region (P4) of the phase diagrams), both models present a
single stable fixed point, for which u, v ̸= 0. One can use the dynamical equations (Equations
3.16 to 3.18 for model A and 3.22 and 3.23 for model B) to derive analytical expressions for the
prevalences at the coexistence fixed point. The derivation and the final expressions are shown
in Section B.2 of Appendix B. As expected, the stationary prevalence of each disease is a non-
decreasing function of its reproduction ratio λ = β/µ, when considering other parameters as
fixed. However, the dependence of the prevalences with the relative time scale parameter π is
not trivial, and is different in each model.

Figure 20 shows the basic behavior of the fixed point prevalences with π for models A
and B. While the prevalence v of disease II decreases with π for both models, the prevalence
u of disease I has opposite behaviors in each of them. In model A, the prevalence w of coin-
fection increases with π. This variant shows the same behavior (if equating disease II with the
information) as reported in our works with epidemics and awareness182, 186 and by Wang and
collaborators187 in complex networks, namely, a faster relative clock of the information induces
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an increase on the disease prevalence. For model B, however, the behavior is the opposite: the
prevalence of disease I decreases with π. Considering also how the time scale parameter dis-
torts the phase diagram of model B (see Figure 19, where the (λ1, λ2) values used in Figure
20 are indicated by dotted lines), we see that a faster clock of the “predator” process (disease
II) effectively decreases the spreading of the “prey” process, leading to its extinction if λ2 > 1

and for sufficiently large π. Therefore, the relationship between the prevalences and the relative
time scale in asymmetrically interacting spreading phenomena is a feature that depends on the
specific shape of the considered model.

In Figures 21 and 22, we further analyze the behavior of the prevalences with π and the
parameters that control the interactions: Γ1, Γ2 for model A and α for model B. We first notice
that the increasing or decreasing trends with respect to π, as observed in Figure 20, are not
changed for different values of the interaction parameters: disease I increases while disease II
decreases with π for model A (Figure 21), whereas both prevalences decrease with π for model
B (Figure 22). To rule out the possibility that there is a region of the parameter space in which
the reported behaviors with respect to π might be different, we show in Section B.3 of Appendix
B that this is not possible, i.e., that the behavior with π is always the same for each model in the
coexistence region.

We can also analyze how the prevalences vary with changes in the interaction parame-
ters. For model A (Figure 21), we see that an increase in Γ1 increases both the prevalences of
disease I (a) and II (b). This is expected, as a greater Γ1 value means a weaker impairing to
the propagation of disease I, which is beneficial for both diseases (as disease II benefits from
disease I). On the other hand, an increase in Γ2 causes a decrease in disease I (c) and an increase
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in disease II (d). This is also expected, as a larger value of Γ2 means a greater benefit to disease
II, which in turn is detrimental to disease I. Therefore, for model A, the effect of the two inter-
action parameters in each disease’s prevalence is intuitive and predictable. The effects are also
numerically influenced by the time scale π, yet not qualitatively changed.

However, for model B, which has a single interaction parameter α, the behavior of
the prevalence is not trivial. From Figure 22, we see that, while disease I prevalence (a) is
always reduced with an increase in α, the behavior of the prevalence of disease II (b) with
α is not uniform, and may have an optimal value that depends on π. This happens because
the superinfection transition, controlled by α, is simultaneously beneficial to disease II and
detrimental to disease I. Thus, as seen from model A, an increase in α certainly reduces the
prevalence of disease I, but has a “conflicting” effect to the prevalence of disease II. While a
value of α close to 1 means almost no benefit to disease II from disease I, a large value α ≫ 1

means an excessive “predation” from disease II, therefore existing an optimal intensity of the
interaction α. This is further illustrated in Figure 23, where we show the prevalence of disease
II in model B as a function of α, for different values of π. As it can be seen, there is an optimal
value of α that maximizes the prevalence, for fixed values of the other parameters.

3.3.3 Damped oscillations: node vs spiral point

Some predator-prey systems, which naturally have an asymmetrical relationship be-
tween two processes, are known to present stable closed orbits (i.e., sustained oscillations).196

For both epidemic models addressed in our work, there are no closed orbits in the physical re-
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gion of the phase portrait ‡. However, in the coexistence phase (region (P4) of Figure 19), the
stable fixed point can be either a node or a spiral point. In the second case, the transient dynam-
ics of the system towards the fixed point may present some damped oscillations. The presence
of such local oscillations is determined by the imaginary part of the eigenvalues of the model’s
Jacobian matrix, calculated at the stable fixed point. For model B, which is two-dimensional,
the Jacobian’s eigenvalues σ1, σ2 can either be both real or complex conjugate to each other.
For model A, which is three-dimensional, the 3x3 Jacobian matrix can either have none or two
non-real conjugate eigenvalues. For both models A and B, one can use the quantity:

Q = max
i=1, ...,d

(∣∣∣∣ Im(σi)

Re(σi)

∣∣∣∣) , (3.28)

to measure the “quality factor” of the oscillations when Re(σi) ̸= 0 ({σi} are the eigen-
values of the Jacobian at the fixed point, d is the dimensionality of the system). This is because
the imaginary part is responsible for the oscillations, and the real part for the damping, thus the
imaginary-to-real part ratio measures the propensity of the system to oscillate around the fixed
point.

In Figure 19, together with the regular phases of the model, we show in (color-coded)
green the numerically calculated values of Q. The coexistence phase can thus be subdivided ac-

‡ This can be proven, for model B, using Dulac’s criterion, as done in.196



95

cording to the existence of a non-real Jacobian eigenvalue: within the white regions, the eigen-
values are real and the fixed point is a node whereas in the green areas, the fixed point is a spiral
point and there may occur oscillations around it. Notice that, for both models A and B, the shape
of the spiral point region depends considerably on the time scale parameter π. Greater values of
π seem to shrink the oscillatory region and reduce the values of Q for model A, but the opposite
appears to happen with model B. Furthermore, we show the difference between a node and a
spiral point in Figure 24, in which the time evolution of the prevalences of model B is shown for
two situations: one with Q = 0 (hence no local oscillations (left)), and another with Q = 3.65

(thus there are damped oscillations before reaching the steady state). Interestingly, we only had
to change the relative time scale parameter π to switch between the two situations.

An important fact is that damped oscillations can only occur when the interaction be-
tween the diseases is asymmetrical, for both models A and B. For model A, we numerically
check this by observing that the oscillatory region of the phase diagram shrinks and disappears
as Γ1 or Γ2 leaves the region for which interactions are asymmetric. For model B, it can be
shown that the Jacobian’s eigenvalue equation (which is quadratic) can only assume non-real
solutions if α > 1. Finally, we note that despite that our deterministic formulation predicts that
the oscillations are always damped, stochasticity - which is intrinsic to real-world systems, and
are inherent when performing Monte Carlo simulations - could cause such oscillations to last
for the long term, as small perturbations to the prevalences could recover the oscillatory pattern.

3.3.4 Discussion

In the work presented in this section, we have studied two minimalist models for in-
teracting diseases in the asymmetrical regime, for homogeneously mixed populations and with
continuous-time evolution. We focus on the influence of the relative time scale between the
two diseases. The simplicity of our framework not only provides us with analytical tractability,
but also reveals the fundamental properties of asymmetrically interacting contagion. The mod-
els are simple enough to be applied to different situations, and the choice for two models is
justified by our goal of achieving a more general understanding about interacting processes.

In their asymmetrical interacting regime, Model A is a mathematical prototype for epi-
demic with awareness, as well as the possibly asymmetrical interaction between HIV and some
specific diseases,121–123 while Model B is inspired in situations such as computer viruses and
spreading countermeasures148, 197–199 or fake vs fact-checked news.

We have unveiled some interesting dynamical features of these models: their phase dia-
grams with respect to the disease transmission rates, the behavior of the stationary prevalences
upon changes in the interaction strength and the relative time scale, and the transient oscillatory
behavior, which interestingly appears only in a sub-region of the coexistence phase. Moreover
for Model B, which has a single parameter (α) that controls the intensity of the interaction,
we show that the prevalence of disease II reaches a maximum for a given value of the interac-
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tion strength. This value depends on the relative time scale (here controlled by π), and so does
the oscillatory region, the stationary prevalences and the shape of Model B’s phase diagram.
This leaves a message for current and future works on interacting diseases: the time scale ratio
between the process can play an important role, and should not always be set to 1.

In the context of our research, this work clarified some important points. The increase
on the prevalence when the time scale of the information spreading was shorter, reported in
Section 3.2, was reproduced in Model A, which has a similar mathematical structure, and with
an unstructured population (homogeneously mixed). Despite not being a conclusive evidence,
this suggests that such behavior is expected when the asymmetric interaction occurs by making
individuals infected with one disease to change their susceptibility to the other. Also in this case,
the phase boundaries do not depend on the time scale, as seen from Figure 19. However, Model
B did not reproduce this behavior, as both prevalences decrease when the predator process
spreads in a shorter time scale. This seems to rely on the shape of the interaction, which occurs
by directly transferring I1 individuals into the I2 compartment, though we still do not fully
understand the reason behind this. Nonetheless, this leaves an important message with respect
to our first work: before extrapolating its conclusions to real systems, we should check if real
world interaction between disease and information happens via change in susceptibility – which
seems a good assumption – and, moreover, if the interference of other aspects of reality would
not break this behavior.
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4 EPIDEMIC SPREADING WITH HOST MOBILITY

Starting in the year of 1346, an unprecedentedly lethal pandemic of bubonic plague
took place in Afro-Eurasia. Known as the Black Death, it is attributed to the bacterium Yersinia

pestis, transmitted primarily by fleas that live on black rats. With an estimated toll of 75 to 200
millions of deaths, it was the first in a series of events known as the “Second plague pandemic”,
with recurrent outbreaks from the 14th to the 18th centuries.

The Black Death is thought to have originated in Asia and spread to Europe and Africa
by ships, which were frequently infested by rats. Although black rats and the rat flea, carried
inside ships, were the main source of primary infections in Europe, it could not explain the
rapid continental spread of the plague, due to the considerably slow movement of the rats, as
well as the low activity of fleas during the winter in northern regions. As explained in ,200 con-
temporary evidence shows that the strain responsible to the black death has a strong tendency to
produce a pneumonic manifestation of the plague, by which patients with compromised lungs
cause person-to-person transmission via droplets, enabling the spread by terrestrial travel. It is
also considered that human flea, besides the rat flea, could have driven the pandemics inland.201

Therefore, human mobility flows by terrestrial paths are the only explanation for the fast con-
tinental spread. Figure 25 shows a map of the year in which the first outbreak was reported in
each region of Europe, northern Africa and western Asia. Black arrows show the possible routes
of primary infections via ships. We see that, despite the early cases were concentrated on cities
reached by marine routes, there was a rapid continental spread of the plague.

The Black Death is an example of how the knowledge about human and animal mobility
can be crucial to understand the dynamics of an epidemics. The mechanisms of the Black Death
pandemic can be further studied with the use of modern methodology, such as network theory
and data about pilgrimage and commercial routes from the 14th century.203

While the spread of the Black Death was considered fast for that age, reaching the whole
European continent during five years, contemporary epidemics can reach worldwide dimensions
in a much shorter time. Demographic and mobility patterns substantially changed since the
Middle Age, with travels between diametrically opposed points of the globe being possible
within less then a 24 hours period, and urban settlements reaching tenths of million inhabitants.
Availability of massive data is also a reality,204 especially during the digital revolution of the
21st century. The currently fast socioeconomic evolution drives constant changes in human
mobility patterns that cannot be neglected.205

In this chapter, we discuss the relationship between mobility and epidemic spread through
the eyes of contemporary scientific methods. In the literature review (Section 4.1), we show
how computational and mathematical tools can be used to model and understand patterns of



98

Figure 25 – Spreading of the Black Death in Europe between 1347 and 1351, which took a
proportionately greater toll of life than any other known epidemic or war up to
that time. The Black Death is widely thought to have been the result of a plague,
caused by infection with the bacterium Yersinia pestis. The color of each region
represents the approximate year in which the first outbreak was registered, while
arrows indicate possible routes of the plague by marine navigation.

Source: ENCYCLOPEDIA BRITANNICA202

human and animal mobility, and present applications to epidemic modeling on metapopulations
and agent-based mobility models. In the following sections (4.2 and 4.3), we present two of
our contributions to the topic. A model that incorporates social distancing behaviors into an
agent-based random walk model is presented in Section 4.2. Collective behavioral responses
(including but not restricted to social distancing) are incorporated into an epidemic model for
metapopulations, which we describe in Section 4.3.

4.1 Literature review

4.1.1 Mobility models and data

Early attempts to describe human mobility, or more specifically migration flows, date
back to the end of the 19th century, when the German-English geographer Ernst Georg Raven-
stein stated some laws to describe the intensity of human migration between geographic regions
depending on their distances, as well as social aspects of the migrating population.206 His laws
were purely observational and defined by sentences, thus not consisting a mathematical for-
mulation. A simple attempt to give a quantitative description of human mobility was made by
Zipf in 1946,207 who tested the hypothesis that the number of people that move between two
connected cities is directly proportional to their populations and inversely proportional to the
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distance between them. This hypotheses is known as the gravity model, due to its similarity with
Newton’s gravitation law.208–209 It became a standard framework to fit real data on traffic, daily
commuting migration and overall mobility between cities,210–211 as well as trade flows.212–214

Among these applications, it is common to use more general expressions for the gravity model,
in the shape215:

Tij =
mimj

f(rij)
, (4.1)

Where Tij is the flow (traffic, trade, etc.) between communities i and j, mi and mj are
respectively the populations of i and j, and f(rij) is some increasing function of the distance
rij between i and j.

Despite its popularity, the gravity model has several limitations, being unable to explain
some large discrepancies on the flows between similar pairs of cities (regarding population and
physical distance). It also has analytical issues, for example allowing the flow between two
cities to be greater than the population of the smaller one, besides lacking a derivation from
empirical principles. In 2012, Simini and others215 proposed an alternative to the gravity model,
based on the case of daily commuting between locations. They start from a stochastic process,
in which workers choose jobs with a preference to those that are closer to their home, to derive
an expression for the flux Tij from location i to j:

Tij = Ti
mimj

(mi + sij)(mi +mj + sij)
, (4.2)

Where Ti is the total outbound flux from i, mi and mj are the populations of i and j

respectively, and sij is the total population in the circle that is centered at community i and has
a radius rij (the distance between the communities), excluding the populations of i and j. The
term sij comes from the process of choosing jobs, thus being more well founded in an empirical
feature than the gravity model. As it is designed for the commuting between locations, Tij is
not necessarily equals to Tji. The authors named this as the radiation model, which has been
widely used since its proposal.216–217

Another fundamental model, created by Stouffer218 but more well known as the version
made by Schneider,219 considers that human displacements are proportional to the intervening

opportunities between the origin and destination. In Schneider’s formulation, the probability
that a trip ends in a given location is equal to the probability that this location has an acceptable
opportunity times the probability that an opportunity in another location closer to the origin of
the trips has not been chosen yet. The meaning of “opportunities” is chosen according to the
type of mobility in question, but is often assumed to be proportional to the population of the
region.

A different approach to describe human mobility between cities is to use machine learn-
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ing and statistical methods instead of phenomenological models. Spadon and others220 propose
such an approach by using machine learning and link prediction algorithms to reconstruct the
network of daily commuters between cities, using data from the Brazilian Institute of Geogra-

phy and Statistics (IBGE). To feed the model, they use not only the population of each city and
the distances between them, but also other 21 urban indicators such as Gross Domestic Product

(GDP), sanitation and criminality. They show that, besides distance and population, GDP and
unemployment rate play a central role on determining the human daily flows between cities,
and reconstruct the real network with 90.40% of accuracy.

For some applications, it is necessary to describe not just the net flows of individuals
between locations, but also the actual mobility of each individual. This can be accomplished
with agent-based mobility models, often in the form of modified random walks.221 These can be
classified regarding the discreteness of time, space and the spatial steps, as well as the existence
of correlations between consecutive steps and directional biases.216

Uncorrelated and unbiased random walks are simple to implement, and somehow plau-
sible to analytical description.222 They have been used for the dispersal of species in synthetic
ecosystems, and more recently for epidemic spreading.4 One such random walk can be con-
structed as follows: at each of a series of discrete time steps, an agent performs a spatial step in
a two-dimensional continuous space (a subregion of R2) with fixed length d, and a uniformly
random angle θ ∈ [0, 2π). Another example is the simple diffusion process, which is a version
of the simple random walk with continuous time and space, and has been used for epidemic
spreading models too (reaction-diffusion process).223–224 Due to the simple implementation,
these random walks are suitable for fundamental applications that need to incorporate individ-
ual mobility in some form. However, it is known that both human and animal mobility have
features that are far from those produced by a simple uncorrelated random walk.225

One simple and very popular extension to the simple uncorrelated random walk is
known as the Levy flights. A Levy flight consists of an unbiased random walk with random
step sizes, whose distribution is given by a negative-exponent power law. This long-tailed dis-
tribution implies that most steps will be short, but a few ones will be long-ranged, displacing the
agent from the surroundings in which it was before. This still configures an uncorrelated random
walk, in the sense that consecutive steps are statistically independent. Levy flights were used to
fit real mobility data of animal motion for several different species,226–229 as well as for humans
when foraging for resources.230 Indeed, there is a hypothesis stating that Levy flights optimize
the search for resources in space,231 thus species naturally develop Levy flight patterns.232

However, more recently and with larger availability of data, the validity of the Levy
flight hypothesis was questioned. In a revisit of animal motion patterns with higher quality
data, Edwards and others233 argue that the flight times are gamma-distributed with an expo-
nential cutoff for very long times. By revisiting the original data on albatross flights226 (which
originally triggered further works on Levy flights), they also argue that the long-distance jumps
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Figure 26 – The exploration and preferential return mobility model, proposed by Song and oth-
ers3 In the left, an agent has visited S=4 different locations up to time t, with fre-
quencies given by the sizes of the circles. For time t + ∆t, the agent may either
choose to visit a new location (upper square) at a random distance ∆r drawn from
a fat-tailed distribution, or to move to a previously visited location (lower square),
chosen proportionally to the current frequency of visits.

Source: SONG et al.3

were spurious. Other recent works234–236 claim that the optimal foraging has no relationship
with Levy flights, including an analytical study236 showing that Levy flights are typically not
the optimal strategies for spatial dimensions d > 2. Nonetheless, other recent works show sup-
portive evidence for the Levy flights in nature and human behavior,237–238 thus making Levy
flights and their applications a current topic of controversy between researchers.

Enhancements to the basic random walk models are often proposed by the community,
specially as real mobility data becomes more available. Song and others3 considered the fact
that humans tend to revisit common locations (such as home, workplaces, etc.) instead of sim-
ply wandering at random, a claim that is backed up by mobile-phone users’ data. They propose
a correlated and biased random walk model, with two main features: (a) preferential return,
meaning that agents have a chance to return to previously visited locations at each move, and
(b) exploration, by which agents can forage new locations, with probability complementary to
the preferential return. The distance distribution during an exploration step has a fat-tailed dis-
tribution, akin to Levy flights. Their model is represented in Figure 26. Within this framework,
they could not only reproduce scaling laws from the empirical data, but also analytically derive
most of the scaling exponents.

Another enhanced random walk mobility model was proposed by Starnini and others70
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They had access to multiple datasets of the SocioPatterns collaboration,71 which collected time
resolved proximity data between human individuals in different contexts such a school, a hos-
pital and a scientific conference. Their model accounts for the fact that people’s interactions
are heterogeneous, and that individuals do not interact with others all the time. Each agent of
their model has a social attractiveness score (0 ≤ a ≤ 1), which influences other’s mobility
around them. An agent may temporarily stop its motion around other agents, with probability
proportional to the most “attractive” of its neighbors. Each agent also has an activity score,
meaning that lower scored agents spend less time engaged on the mobility and interaction ac-
tivities. Otherwise, spatial steps are performed as a simple two-dimensional random walk. The
authors successfully reproduced scaling laws for the duration of peer interactions and the time
interval between consecutive interactions, showing also that the simple unbiased random walk
fails to reproduce these laws.

4.1.2 Epidemic spreading with agent-based mobility models

From the works reviewed in Section 4.1.1, we should be convinced that important fea-
tures can be obtained from random walk-based mobility models. Although the basic random
walk must be adapted to produce realistic results, it is still a good starting point to study epi-
demic spreading on temporal networks driven by agents. In this section, we review works on
this topic, paving the way to later explain our contribution.

Agent-based mobility models were not popular for epidemic modeling up to the 21st
century. An early example was presented by Gonzales and Herrmann,239 who described a simple
SIS disease spreading among agents that move with molecular dynamics. The particles (agents)
move in a 2D square space with periodic bounds, following Newtonian motion and interacting
with a Lennard-Jones potential. The authors show the time series of disease prevalence as a
function of different parameters, such as particle density and temperature (which determines the
average speed). They also compare their model with a simple mean field formulation, showing
some scaling laws. The framework proposed in this work was not much recurrent over the
following years, but it can be considered as a precursor for agent-based epidemic modeling
with mobility.

A pioneer reference of a random walk-based epidemic model was published by Frasca
and others4 in 2006. The authors propose an SIR disease that spreads over agents performing a
discrete-step random walk in a 2D square space. Besides the basic random walk, each agent has
a probability pjump of being reallocated, at each time step, to a new position on space, chosen
uniformly at random. Using only Monte Carlo simulations, they show that, as expected, higher
agent density and probability pjump of the so called long-range jumps implies on higher disease
prevalence. They also describe the time evolution of some metrics of the instantaneous network
of contacts. Buscarino and others5, 240 continued the work, now comparing the simulations with
a homogeneously mixed formulation, and showing that pjump > 0.1 is enough to make the
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Figure 27 – Normalized average clustering coefficient (CG(pj)) and shortest path lengths
(LG(pj)) of the instantaneous networks of mobile agents, as a function of the long-
range jump probability (pj or pjump as in4), for the random walk epidemic model
described by Buscarino and others.5 The curves behave as in the small-world tran-
sition on Watts-Strogatz networks.6

Source: BUSCARINO et al.5

population behave as if it was homogeneously mixed. This occurs because the long-range jumps
break the otherwise strong spatial correlation imposed by the smaller random walk steps (this is
also verifiable in a work by Xia and others241). They also show, for a logarithmic range of pjump

values, how these correlations are broken (by measuring average clustering coefficients and
shortest path lengths), in an effect that is very similar to the small-world phenomena observed
on Watts-Strogatz networks.6 Buscarino further studied the model with Levy walkers instead
of random walkers with jumps, this time tracing an analogy with the behavior of scale-free
networks.

The strong spatial correlations of the pure random walk, as described by Buscarino
and coauthors, make it difficult to analytically describe the epidemic dynamics on this type of
population, except when some other process (like the random jumps) breaks these correlations.
This was somehow exploited by Zhou and Liu,242 who proposed an SIS model with simple
random walkers that could jump between square spaces of different sizes, emulating cities of
different densities. In the case of two or three square regions, one with half the lateral size of the
others, they study the disease prevalence in each region as a function of the jumping probability
between regions, the area of the greater regions and the radius of interaction.
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Zhou also compare their stochastic simulations with an analytical formulation that does
not consider the strong spatial correlations present in populations of random walkers. This
makes their formulation essentially homogeneously mixed, and the notable agreement with
simulations can be explained by two factors: (i) the typically high probability of jump between
regions, which randomizes the agents’ positions and destroys the correlations, and (ii) the typi-
cally high densities of agents, which bring the system closer to a homogeneous mixing behavior.
Zhou and other authors243 employ a similar formulation for the case of a separate region that
represents public transportation, with the agreement explained by the same factors.

Buscarino and others244 also explored the topic of spatial heterogeneity, by setting a
sub-region of the square space to have different transmission probability than the reast of the
space. With an SIR model, they report the occurrence of both local outbreaks, driven by the sub-
region, and global outbreaks in the whole space, depending on the transmission probabilities of
each region. They again show that the model becomes homogeneously mixed for high jumping
probabilities.

Huang and others245 study the case of heterogeneous interaction radius in an SIS model,
where each agent has its own radius around which it can catch the disease. They show that a
greater variance on the distribution of radii decreases the epidemic threshold, as expected, but
interestingly also decreases the stationary prevalence. Feng and others246 also approaches the
case of heterogeneous radii, but in terms of control theory, showing that there is an optimal
distribution of radii to minimize the epidemic spreading. Ichinose and others247 employed a
biased random walk, in which all agents have a net tendency to move towards a given direction,
and infectious ones (of an SIR model) move slower than others. While the effect of the direction
bias is unclear, they show that lower mobility of infectious reduces the outbreak size and delays
the peak of infectious prevalence. Finally, Peng and others248 incorporate vaccination into the
SIS model with heterogeneous radii, showing that an optimal vaccination strategy always exists
regardless of the radii distribution.

The works covered so far in this section represent most of the research on random-
walk-based epidemic models for mobile agents. Thus, although some significant results were
reported, big improvements are yet to be done regarding this topic because, as shown in Section
4.1.1, animal and specially human motion can be constructed upon random walk models, but
heavily deviates from the basic unbiased/uncorrelated case. In Section 4.2, we present our con-
tribution to the topic, including a form of behavioral response to a disease into a random walk
epidemic model.

4.1.3 Epidemic spreading in metapopulations

For the description of larger scale spreading of diseases, agent-based models may be not
ideal, as the big numbers of individuals involved could easily make computational simulations
unfeasible. Instead, the use of net human flows between places, either from real data or from
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synthetic models (as presented in Section 4.1.1), may be more well suited. One particularly pop-
ular way of doing this is to use metapopulations,249 which can be simply defined as populations
composed of other subpopulations.

For modeling purposes, metapopulations were first used in the context of computa-
tional ecology, where they were usually called “patchy environments”,250–251 and each sub-
population was called a patch. For epidemic models, there were some works in the late 20th
century,252–254 but metapopulation epidemic spreading became considerably more popular in
mid 2000s, when network science had already emerged as a field. In this context, Colizza and
others255–256 adapted the heterogeneous mean field approach (described in Section 2.2.2) for
metapopulations, and used it to derive an epidemic threshold for uncorrelated networks. In this
simple context, as well as in many other works, the metapopulation is simply a network in
which each node (subpopulation) is a homogeneously mixed population, and individuals travel
between subpopulations by the links of the network.

For SIR-like models, besides the traditional (called local) epidemic threshold, we also
need to consider the so called invasion threshold256 for metapopulations. Put into words, this
threshold is reached when the mobility between subpopulations is low enough that an outbreak
in one is likely to not propagate to its neighboring subpopulations. Mathematically, it is found
from the so-called R∗, a reproduction number for the disease transmission between subpopu-
lations (and not between individuals). If R∗ < 1, the outbreaks are most likely to remain in a
finite fraction of the subpopulations (even if the regular reproduction number R0 is greater than
1 and local outbreaks occur).

The metapopulation approach can also consider recurrent travel patterns instead of a
simple Markovian random walk (e.g., when the individuals have home places and frequent des-
tinations).257–259 Models for human migration (as explained in Section 4.1.1) can be employed
to determine the net flows between subpopulations and, ultimately, real mobility data can be
incorporated.252, 260 This last possibility led to the use of metapopulations for a variety of real-
istic epidemic simulators, such as the Global Epidemic and Mobility Model (GLEaM).261 This
model incorporates global mobility data based on flights, and divides the global territory by
distance to important airports. Along with a demographic layer and a compartmental epidemic
model, GLEaM was used during the 2009 H1N1 pandemics to assess the risk and disease at-
tack times in multiple countries, as well as the effects of travel restrictions.82, 262 More recently,
metapopulation models were important to address the spreading of COVID-19.263–267 In partic-
ular, Aleta and others267 used detailed data from the city of Boston–US to model the impact of
contact tracing, a strategy that became more powerful than in any preceding pandemics due to
the use of mobile device trackers.

Despite the notorious progress of metapopulation models for epidemic spreading, most
models still do not include host behavioral changes due to an ongoing outbreak. Realistic sim-
ulators need to be constantly calibrated with real data to account for human decisions and be-
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havioral responses, which are indeed complex and somehow unpredictable. However, some pat-
terns of the human behavior can be incorporated into epidemic models (as the ones presented in
Section 3.2), potentially making simulations more resilient through time. Therefore, as already
justified, it is of great interest to develop epidemic models that include behavioral responses.

We contribute to the literature on this topic by expanding a proposed model for social
distancing and other containment measures in general, applying it to metapopulations. This
model can be applied either locally (at subpopulation level) or globally (for the whole metapop-
ulation). We address the question of which of these formulations is better in different scenarios,
and study other aspects of the proposed model. This work is described in Section 4.3.

4.2 Mobile agents with behavioral responses to epidemics

The work presented in this section was published in the journal Chaos, Solitons and

Fractals in 2022.268

As we discussed in section 4.1.2, agent-based mobility models are abundant, but rel-
atively few ones have been employed for epidemic modeling. Among these works, most deal
with a simple unbiased random walk with random long-range jumps, but real mobility is shown
to be far from unbiased.70 In this section, we present our contribution to the topic, by studying
epidemic spread among agents that perform a modified random walk. In particular, consider-
ing that human behavioral responses are highly demanded for computational epidemiology (see
section 3.1.2), we modify the basic random walk to make susceptible agents avoid contacts with
infectious ones.

The idea of avoiding contacts with infectious individuals resembles works on a more
well studied type of system, called adaptive network. It was initiated by Gross and others,269, 270

who proposed a simple model in which susceptible individuals (represented as nodes of a net-
work) can randomly change links that point to infectious nodes, redirecting them to other sus-
ceptibles. This generates a dynamic network that evolves simultaneously to the disease spread-
ing, with susceptible nodes forming highly connected clusters between themselves to exclude
infected ones. This behavior produces rich dynamical phenomena such as bistability, oscilla-
tions and hysteresis. The model later received refined analytical treatments271–272 and motivated
a series of subsequent studies.273–276 In particular, Zhou and others275 proposed a variant of the
adaptive rewiring model that considers network growth and isolation avoidance, showing that
the combination of these two factors can produce multiple epidemic bursts in an SIS model
before the disease is eradicated.

In the present work, we merge the richness of adaptive behavioral responses with the
modeling potential of mobile agents. As the model itself considers a very simple adaptive mech-
anism, in which susceptibles are fully and instantaneously aware of the epidemic state of their
neighbors, the aim of this work is not to provide results that are directly applicable to the real
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world. Instead, our goal is to study its basic dynamical properties, proposing the merge between
mobility models and adaptive responses.

We also use a simple semi-analytical approach for the case in which the disease dynam-
ics is slow compared to the agents’ mobility. While it still relies on computational simulations, it
allows to easily extract, among other results, the stationary prevalences and the phase diagrams,
including the transcritical and saddle-node bifurcations that our model presents. Ultimately, it
also provides an interpolated functional form for the reduction of contacts due to the adaptive
mechanism. This can be applied into the local/regional dynamics of more complex models,
such as those with metapopulations,253–254, 277–280 to include behavioral responses to epidemic
spreading.

4.2.1 The model

4.2.1.1 Epidemic model

The epidemic model employed in this work is the reactive Susceptible-Infected-Susceptible
(SIS) with discrete time evolution. Each agent can either be susceptible (S) to the disease or in-
fected (I). At each time step, an infected agent that interacts with a susceptible one can transmit
the disease with probability β. In addition, an infected agent can also be healed with probability
µ. Infection and healing events are only applied in the next time step, so the order of agent visits
does not matter, and reinfection after healing in a single time step is not allowed.

4.2.1.2 Basic mechanism of motion and interaction

For the baseline population dynamics, we use the simple random walk with hard inter-
action circles, as in references,4, 5, 240 but with no long-range jumps. A population of N agents
is initially distributed at random in a square space of length L with periodic boundary condi-
tions. At each time step, each agent can perform a random move of fixed length v and uniformly
random direction θ. Thus, the horizontal (x) and vertical (y) coordinates of the position of the
agent at time t+ 1 after a random move are given by:

x(t+ 1) = x(t) + v cos(θ)

y(t+ 1) = y(t) + v sin(θ)
(4.3)

Each agent has an interaction radius r, meaning that if two agents have a spatial dis-
tance smaller than r they interact reciprocally. With this interaction scheme, one can construct
a snapshot network at each time step of the model.

To avoid any dependency on the implementation, both epidemic and positional state
changes are calculated at each time step, but they are only applied after all changes were calcu-
lated.
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Figure 28 – Schematic representation of the possible mobility steps and the epidemic model.
A susceptible (S) agent can either perform a random move (RM) to a direction
chosen at random, or a preventive move (PM), in which it chooses one of its infected
neighbors (if more than one is present) and move away from it.

Source: Adapted from VENTURA et al.268

We incorporate an adaptive reaction to the local presence of infected individuals, repre-
sented in Figure 28. At each time step, each susceptible (S) individual chooses, with probability
pa, to flee from an infected neighbor by moving in its opposite direction, using the following al-
gorithm: (i) if there is exactly one infected neighbor, the susceptible agent moves in its opposite
direction with step size v, which we call a preventive move. Here opposite direction means that
the displacement vector makes an angle of π with the relative position vector that goes from the
S to the I agent (see Figure 28). (ii) If there are two or more infected neighbors, the susceptible
chooses one of them at random and promotes a preventive move away from it. (iii) If there
are no infected neighbors, it simply promotes a random move to a uniformly random direction,
as already described. Also, with probability 1 − pa, the susceptible promotes a random move
regardless of its infected neighborhood. Therefore, in this model, infected agents do not react
by the local mechanism, i.e., they do not perform preventive moves.

Notice that, for simplicity, the “awareness radius” of the agents is the same as their inter-
action radius r. Another simplification is that every infected individual is immediately perceived
as such, which can be interpreted, for example, as if the disease symptoms are clear and display
immediately after infection. The diagram in Figure 29 illustrates the decision algorithm for the
motion of an agent, based on its own state. Table 1 displays all the symbols and acronyms that
are used in the work of this section.

We perform Monte Carlo simulations of the SIS model under two different motion
schemes for the mobile agents: (i) simple random walk (RW), for which no reaction mecha-
nism is considered (i.e., pa = 0) and (ii) random walk with local reactions (LR), for which
we use pa = 1, except where explicitly mentioned. We also compare our model with a ho-
mogeneously mixed population (HM) with an average number of contacts per unit time given
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Figure 29 – Scheme of the decision algorithm for the motion of each agent, at each time step.
With the local reaction mechanism, susceptible agents may decide to move away
from an infected neighbor, if there is one, with probability pa.

Source: Adapted from VENTURA et al.268

Table 1 – List of symbols used in section 4.2.

Symbol Meaning
N Number of agents
NI Number of infected agents
L Size of the square space
r Interaction radius of the agents
v Size of spatial step
pa Probability of avoiding infected neighbors
ttr Simulation transient period
tav Simulation stationary period (data collection)
nex Number of independent executions

β Infection probability
µ Healing probability
λ = β/µ Infection-to-healing ratio
kH = (N/L2)πr2 Homogeneous degree
RH = λ kH Homogeneous reproduction number
ρI = NI/N Disease prevalence
ρ∗I Steady state disease prevalence

HM Homogeneously mixed population
RW Random walker agents
LR Random walk + local reaction agents

Source: VENTURA et al.268
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by:

kH =
N

L2
· πr2 (4.4)

Which is the expected average degree of the population if agents were uniformly dis-
tributed in space. We call kH the homogeneous degree. We can also name:

RH = λkH (4.5)

The homogeneous reproduction number (i.e., the epidemic reproduction number if the
nodes were homogeneously mixed with kH contacts per time step in average), where λ = β/µ

is the infection-to-healing ratio of probabilities.

4.2.2 Basic results

We start the analysis by studying the stationary state prevalence ρ∗I of the system under
a fixed initial infected fraction ρI(0). We perform simulations under four different regimes
with respect to the density of agents and the relative time scale between epidemic and motion
dynamics.

In Figure 30, we show the stationary prevalence as a function of the homogeneous re-
production number RH , for ρI(0) = 0.30. In each execution, the model is first simulated for
a transient period of ttr time steps, and then for tav additional steps during which the data is
collected and averaged. Each point is also an average of a number nex of such independent
executions. In the regime in which the epidemics is slow compared to the motion dynamics
(µ = 0.005 - panels (a) and (c) of Figure 30), we use nex = 50, tav = 10000 and ttr from 1000

to 10000 depending on the point, ensuring it is enough to skip the transient stage. For the regime
in which epidemics and motion have similar time scales (µ = 0.1 - panels (b) and (d)), we use
nex = 500, tav = 1000 and ttr from 200 to 2000.

First analyzing the low density regime (panels (a) and (b)), we notice that the local reac-
tion mechanism (LR) considerably raises the epidemic threshold, both with respect to homoge-
neously mixed (HM) and random walking (RW) populations. In the high density regime (panels
(c) and (d)), we notice an abrupt phase transition from healthy to endemic stationary states with
the LR population, which is not observed within the other models. Such phenomenon was al-
ready reported for SIS-like models on adaptive networks,269, 273, 274 and is actually a fingerprint
of another important feature: a bistable phase caused by a saddle-node bifurcation.

Yet from Figure 30, we notice that our LR model deviates from homogeneous mixing
even in the condition of slow epidemics (panels (a) and (c)), while the simple random walk
(RW) can be reasonably described by HM in this regime, as observed in previous works.242–243
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Figure 30 – Stationary prevalence as a function of the homogeneous reproduction number
RH , for different models of population (HM, RW and LR), under four different
regimes: (a) low density, slow epidemics; (b) low density, similar time scale; (c)
high density, slow epidemics; (d) high density, similar time scale. High (low) den-
sity is obtained by setting the L = 10 (35), for which the homogeneous degree is
kH = 12.57 (1.03). The slow epidemics is performed with µ = 0.005, while the
similar time scale regime uses µ = 0.1. Other parameters are: N = 400, r = 1.0,
v = 0.3. Different values of RH are obtained by varying the infection probability
β.

Source: Adapted from VENTURA et al.268

We evaluate the effect of the probability of avoiding infectious contacts pa in Figure 31,
which shows the prevalence curves at the low density and similar time scale regime for different
values of pa. For intermediate values of the parameter, the curves monotonically fill the range
between full avoiding mechanism (LR pa = 1) and simple random walk (RW, equivalent to LR
with pa = 0).

To show that our model presents bistability in the high density regime, we plot in Fig-
ure 32 time series of the LR model for different initial infected fractions ρI(0), averaged over
nex = 50 executions each, and observe the basins of attraction. The system can converge to two
different stationary states, depending on the initial conditions. For this figure, we use N = 1600

individuals in the population to reduce stochasticity effects. Yet, the gray-shaded region repre-
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Figure 31 – Stationary prevalence ρ∗I as a function of the homogeneous reproduction number
RH in the low density and similar time scale regime (as in Figure 30.b), for different
values of the avoidance probability pa. Parameters are: µ = 0.1, r = 1, v = 0.3,
L = 35, N = 400 (thus kH = 1.03). Each curve is an average over nex = 500
executions.

Source: Adapted from VENTURA et al.268

sents the approximate location of an unstable fixed point where, due to stochastic fluctuations,
each execution of the simulation can take different courses.

As reported in previous works with adaptive networks,73, 75, 281 susceptible individuals
can form highly connected clusters due to the behavioral response mechanism. We report such
feature in our model by noticing that, during transient stages of simulations under high density
regime, susceptible agents form spatial clusters that are densely connected due to proximity.
Figure 33 shows a “snapshot” network of the population during transient stage of a typical
execution, clearly showing the presence of clusters of susceptibles (blue circles), which we
call S-clusters. The time evolution of this transient behavior can be captured by the average
degrees (normalized by kH) among susceptible and infected agents, as shown in Figure 34 (a),
along with the prevalence (b) for a single execution starting with ρI(0) = 0.13. The simulation
starts with ⟨kS⟩ = ⟨kI⟩ = kH , but the degree of susceptible agents (blue curve) quickly raises
as the S-clusters are formed, whereas the degree of infected agents drops. For this particular
execution, the avoidance mechanism was able to reduce and eventually eliminate the disease,
but the initial prevalence falls into the shaded region in Figure 32, meaning that the destiny of
the system could have been different.

The formation of S-clusters is related to the spatial gaps that are left by the infected
agents performing simple random walks. Susceptible agents tend to move into such gaps and
form the observed clusters, which move and change throughout the time.

For some of the models of adaptive networks,269, 272 susceptibles follow rules that ex-
plicitly make them prefer connections between each other, which easily explains the formation
of strong S clusters. However, Gusmán-Risau and Zanette274 have shown that susceptibles can
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Figure 32 – Time evolution of the prevalence, starting from different initial conditions. This
shows the bistability. The light gray stripe shows the region at which stochasticity
allows the system to go both directions, causing the average curve to lay in between
them. Parameters are: β = 0.0009, µ = 0.005, r = 1, v = 0.3, N = 1600 and
L = 20 (thus kH = 12.57). Each curve is an average over nex = 50 executions.

Source: Adapted from VENTURA et al.268

increase their connectivity only with an avoiding mechanism, which is the case in our model.

In other works, clusters of susceptibles were observed both when S individuals actively
seek connections to other susceptibles269, 272 and when they simply avoid infectious contacts.274

Our model is an example of the latter, reinforcing that the S-clusters can occur without explicit
preference to susceptibles in the rewiring mechanism.

The S-clusters are transient. If the prevalence at a given time and the disease transmis-
sibility are not high enough, the lack of infectious contacts causes the disease to disappear,
along with the S-clusters. However, if the prevalence and/or transmissibility are high enough,
the infected agents eventually break the S-clusters and the disease takes over the population,
which reaches a steady unclustered regime. The break of the susceptible clusters is similar to
that observed by Zhou and others75 during the epidemic bursts present in their model.

Due to this ambiguity of trajectories from the clustered regime, it is clear that such
clusters are closely related to our model’s bistability. In the next section, we develop a semi-
analytical approach that corroborates this hypothesis.

4.2.3 A semi-analytic approach for slow epidemics

For slow epidemic evolution, achieved by sufficiently low values of β and µ, we can
not only approximate the discrete time dynamics of the disease to a continuous one, but also
assume that any metrics related to the population of agents is a function of the prevalence, as
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t = 180

Figure 33 – Snapshot network of the population with 400 agents after t = 180 steps of a sim-
ulation with β = 0.001, µ = 0.005, r = 1, v = 0.3 and kH = 12.57. Red squares
represent infected agents, while blue circles are susceptible. The average degree of
susceptible agents is ⟨kS⟩ = 21.5 and of infected agents is ⟨kI⟩ = 9.4. The preva-
lence is around 7%.

Source: Adapted from VENTURA et al.268

the population quickly responds to the slow changes in epidemic states. With this in mind, the
SIS dynamics is given by the following rate equation for the overall prevalence ρI :

ρ̇I = βlSI − µρI (4.6)

Where lSI = LSI/N is the number of links LSI that connect susceptible to infected
agents normalized by the population size N , and is a function of the prevalence ρI . Effectively,
this approximation promotes a time scale decoupling of the epidemic and motion dynamics.

We know no analytical method to estimate the functional form of lSI = lSI(ρI) for
mobile agents, but we can directly sample it from Monte Carlo simulations of the population
with no epidemic dynamics (µ = β = 0), this is: each agent receives a given state at the
beginning, S or I, and holds it during the whole simulation. This way, we can manually set
the number of infected agents NI to achieve a desired value of the prevalence ρI = NI/N .
We calculate lSI at each time step in the stationary state, then average its value over time and
over independent executions. This process is repeated for different values of ρI , enough to
have a precise shape of the lSI(ρI) curve, which is then interpolated to obtain a continuous
approximation. For this work, we apply a spline interpolation of third order. Figure 35 shows
the data acquired by this method. In the a) panel, we see how the LR model deviates from the
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Figure 34 – Time evolution of the average degree of susceptible (blue) and infected (orange)
agents for a single execution, shown in panel a), along with the prevalence in panel
b). The degrees are normalized by the homogeneous degree kH . Parameters are the
same as in Figure 32, with ρI(0) = 0.13 and a single nex = 1 execution.

Source: Adapted from VENTURA et al.268

mass-action law used for homogeneous mixing.282

Once obtained, the function lSI(ρI) can be used to determine the epidemic dynamics in
the slow regime. For instance, the fixed points are the values ρ∗I for which ρ̇I = 0 in Equation
4.6. This is equivalent to solve the equation:

ρ∗I = λlSI(ρ
∗
I) (4.7)

Where λ = β/µ is the infection-to-healing probability ratio. In Figure 35.b), the fixed
points can be found as the crossings between λlSI(ρI) and the identity line (gray dashed line).
Also according to Equation 4.6, the stability of the solution is given by the slope of λlSI(ρI) at
the fixed point: if greater than 1 (i.e., the slope of the identity line), the solution is unstable, and
if less than 1 it is stable.

Notice from Figure 35.b) that each curve represents a different phase of the LR model.
For λ = 0.1, the only solution is the trivial ρI = 0, i.e., the healthy state. For λ = 0.2, the
system presents two more solutions, of which one is stable (the one with greater ρI), while
the healthy state remains stable. This characterizes the bistable phase, obtained after a saddle
node bifurcation. Finally, for λ = 0.4, the healthy solution is unstable (as the initial slope of
λlSI(ρI) is greater than 1), characterizing the regular epidemic phase. This phase is reached
after a transcritical bifurcation.
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Figure 36 – Comparison between the fixed points of λ · lSI using the semi-analytical approach
(solid lines are stable solutions, dashed ones are unstable) and the results of Monte
Carlo simulations, using ρI(0) = 0.3 (blue squares) and 0.01 (red circles) as the
initial prevalence. We use N = 400 for the lSI curves and N = 1600 for the Monte
Carlo simulations, r = 1, v = 0.25, kH = 12.57 and µ = 0.005. Each point is
an average over nex = 50 executions with ttr = 5000 and tav = 10000. Different
values of RH are obtained by varying the infection probability β.

Source: Adapted from VENTURA et al.268
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Figure 37 – Phase diagrams of the mobile agents model with local reaction (LR) mechanism,
using the semi-analytical approach. The y axis parameter is the agent’s step size v
in the upper panel, and the local reaction probability pa in the lower panel, while
different values of RH are obtained by varying the transmission probability β. A
dashed line with squares represents a transcritical bifurcation, while a dash-dotted
line with circles is a saddle-node bifurcation. Other parameters are: N = 400,
r = 1, v = 0.3 (lower panel) and pa = 1 (lower panel).

Source: Adapted from VENTURA et al.268

To compare the semi-analytical approach with Monte Carlo simulations of the epidemic
dynamics, we plot the fixed points (both stable and unstable) obtained from the lSI(ρI) curves as
a function of the disease transmission rate β, rescaled as the homogeneous reproduction number
RH = βkH/µ. The results are in Figure 36, where fixed points of the semi-analytical approach
are represented as solid (stable) and dashed (unstable) lines, and the stationary prevalences ob-
tained from Monte Carlo simulations are represented as squares (starting from ρI(0) = 0.30)
and circles (starting from ρI(0) = 0.01). The region where both the healthy and endemic solu-
tions are stable (according to the semi-analytical approach) is shaded on the plot.

We first notice the good agreement between the semi-analytical and Monte Carlo formu-
lations in Figure 36. Notice that, in the bistable region, the stationary prevalence of the Monte
Carlo simulations depends on the initial conditions, although there is some disagreement at the
edges of the bistable region, which may be attributed to stochasticity and population’s finite
size.

Using the sampled and interpolated approximation for lSI(ρI), we can numerically cal-
culate the critical points. In Figure 37, we show two phase diagrams: one for the agents’ step
size v (upper panel) and another for the local reaction parameter pa, both as a function of the
homogeneous reproduction number RH .

Notice that, as the step size v increases, the bistable region shrinks and disappears, as
the fast motion prevents the agents from forming S-clusters. For greater velocities, the critical
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Figure 38 – Degree distributions for snapshots of the dynamic network, averaged over time
steps and executions, using simulations of the local reaction (LR) model with no
epidemic dynamics (β = µ = 0). We group the degrees according to the state of
target nodes: susceptibles (a), infecteds (b) and both (c). Each dashed line is the
average of the distribution with the same color. As a null model, we show a Poisson
distribution (“x” symbols) that represents homogeneously random interactions in
each situation, as explained in text. Other parameters are: N = 400, r = 1, v = 0.3,
pa = 1, kH = 12.57 and a fixed prevalence ρI = 0.2. Also tav = ttr = 1000, and
nex = 60.

Source: Adapted from VENTURA et al.268

value of RH approaches that of a homogeneously mixed population (i.e., RH = 1). From the
pa phase diagram (lower panel), we infer that the size of the bistable region grows with the
parameter pa that controls the intensity of the local reaction, as expected.
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4.2.4 Characterization of the dynamic network

We can further study the structure of the networks that are formed by this model in
the clustered regime by looking at the degree distributions. To simplify the execution, we also
remove the epidemic dynamics for this measurement, so the S and I agent states are static. We
consider the connectivity between different classes of agents, so for example kSS is the number
of links of a susceptible agent that point to other susceptibles, kSI is the number of links of
a susceptible that point to infected agents, and so on. Also kS and kI are the total degrees
of susceptibles and infecteds, respectively. Figure 38 shows each of these degree distributions,
grouped by the state of the link targets. As a reference, we also plot a Poisson distribution (gray x

symbols) f(k; s) = e−ssk/k! with s = kH(1− ρI) (a), s = kHρI (b) and s = kH (c). These are,
in each case, the expected degree distributions if the agents were homogeneously distributed
at random in the space. Each vertical line also shows the average of each distribution of the
corresponding color.

From Figure 38.a), we can see how susceptibles are highly connected to each other,
but weakly connected to infected agents, as the kSS distribution spans over higher values than
the kIS . In panel b), we see that kII is well described by the equivalent Poisson distribution
because infected agents perform simple random walks, whereas kSI is slightly reduced due to
the local reaction mechanism. Finally, panel c) shows how the overall degree distributions are
distorted and broadened from the basic Poisson curve, similar to the effect observed by Gross
and others269 in adaptive networks. It also shows that, in average, susceptible agents are more
connected than infected ones.

Yet under the same framework that considers static disease states, we can analyze how
the average degrees, as well as some other network metrics, vary with the prevalence, in order
to determine where the S-clustering regime occurs. Figure 39 (b) shows the average degrees
of susceptible (⟨kS⟩), infected (⟨kI⟩) and (⟨k⟩) agents of the snapshot network, normalized by
the homogeneous degree kH , as a function of the prevalence. The peak on the ⟨kS⟩ curve is a
consequence of the S-clusters, and it is also visible in the total average degree ⟨k⟩. The average
degree of infected agents ⟨kI⟩, on the other hand, is always smaller than kH , as a consequence
of the local reaction mechanism itself, which reduces the contacts with infected agents.

In Figure 39.b), we show the average clustering coefficient C and the degree assortativ-
ity rdeg of the snapshot networks also as a function of the prevalence. The value of C, which
is naturally high on dense random geometric networks, is enhanced at the range in which the
S-clusters occur, having a good correlation with the ⟨kS⟩ curve. The assortativity rdeg is also en-
hanced by the avoidance mechanism, displaying a broader peak, which means that the effect of
the mechanism into the assortativity prevails even when the S-clusters are not very expressive.
As also reported in,269 the increase in degree correlations may be an effect of the segregation
between S and I agents, as reported in the degree distributions in Figure 38.
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Figure 39 – Average degrees normalized by the homogeneous degree kH (a) and other metrics
(b) as a function of the (static) prevalence ρI , for snapshot networks of the LR
model with no epidemic dynamics (β = µ = 0). Other parameters are: N = 400,
r = 1, v = 0.25, pa = 1, kH = 12.57. Moreover ttr = 1000, tav = 10000, and
nex = 40.
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We finally notice that the range of unstable prevalences in Figure 35.b) is compatible
with the region at which ⟨kS⟩ and C have their peaks in the plots of Figure 39 meaning that, as
observed, the S-clusters are unstable when the epidemic dynamics is active, causing the disease
to either spread globally by breaking the S-clusters or be eradicated, as explained in section
4.2.2. This reinforces the relationship between the S-clusters and the model’s bistability.

4.2.5 Discussion

We propose a simple mechanism to incorporate behavioral responses to epidemics in a
population of mobile agents, based on the avoidance of contacts with infectious individuals. We
show that, with such mechanism, we can merge the rich dynamical features of adaptive contacts,
initially studied on networks, with the potential of mobile agents for epidemic modeling.

For the low density regime, which is often used to reproduce empirical data,70 the local
reaction mechanism considerably suppresses the disease propagation. This is because, when the
agents are spatially sparse, the susceptibles easily find the direction to avoid infected agents.
In the high density regime, the stationary prevalence is not strongly reduced from the homo-
geneous mixing scenario, but new dynamical features are introduced: the bistability and the
clusters of susceptibles.

In the bistable regime, the transient S-clusters can either succeed to eradicate the disease
or permit it to spread, depending on the initial prevalence. The bistability is inherited from the
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adaptive contact changes, but the collective motion of susceptibles between the gaps left by
infected agents is an interesting feature that is exclusive of our spatial model.

We also apply a simple semi-analytic approach to describe the dynamic features of the
LR model in the slow epidemics regime, based on simulating the population with static epi-
demic conditions. This framework can be generalized to a variety of other dynamic population
models, provided that the epidemic dynamics is slow, and a functional form of the behavioral
reduction of contacts can be extracted from it.

Finally, we characterize the networks obtained by snapshots of the population with static
epidemics in the steady state. We show how the local reaction mechanism deviates the behavior
from the simple random walk, pointing to how the infective contacts are avoided while sus-
ceptibles are joint into highly connected clusters. In a practical point of view, this represents a
situation in which space is limited and infected individuals do not change their behavior, and is
not realistic due to several aspects. However, and as our main goal, we seed merging between
adaptive reactions and mobile agent models, calling for further works in the topic.

4.3 Behavioral responses on metapopulations

The work presented in this section was published in the journal Epidemics in 2022.

In section 4.1.3, we presented a quick literature review on the subject of epidemic mod-
els over metapopulations. This framework is one of the most frequently used for more realistic
works with epidemic spreading, as it allows for a reasonable and tractable representation of
populations from a city to worldwide level.283 Despite the topic of behavioral responses to
epidemics has been widely studied lately, it has been focused on homogeneously mixed popu-
lations and simple networks/multiplexes of contacts, while most works on metapopulations still
use overly simple assumptions for behavioral responses.

In the work covered by this section, we address this by proposing a dynamic model of
behavioral responses to epidemics in a metapopulation. By dynamic, we mean that the responses
are incorporated into the system as extra dynamical variables, coupled to the epidemic spreading
variables.

The spreading of COVID-19 has clearly demonstrated the variety of ways in which
humans react to an epidemic. For instance, without forceful government intervention, traffic
in Seoul’s subway declined sharply following the first deaths in South Korea.284 Conversely,
several communities in other regions of the world defied social distancing measures.285–286 Es-
pecially in the events of emerging diseases, such as COVID-19, public health authorities base
many decisions on the forecasts produced by epidemic models. Therefore, it is of paramount
importance to include the effect of behavioral changes as something inherently attached to the
spreading of the epidemic.

Our model is based on a recently proposed model89 for the effects of social distancing on
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homogeneously mixed populations, which we adapted to metapopulations. Besides the proposal
and study of the dynamics, we also aim to understand the role that social distancing and other
contention measures can play in the spread of emerging diseases, and shed some light on the
scenario in which the response is heterogeneous across regions.

4.3.1 Model description

We implement a discrete and stochastic SIR metapopulation model composed by V sub-
populations.249, 287–288 In each subpopulation, individuals can interact with each other and spread
the disease following the classical SIR model. These subpopulations are connected through a
certain network, so that an individual may travel to another subpopulation only if it exists a
direct link between the source and target subpopulations.

To include the effect of contention measures, either policy-driven or as a consequence
of fear of infection, we consider an additional coefficient that modifies the transmissibility of
individuals. This coefficient mimics the behavioral responses of the population, and evolves
according to the densities of infectious and recovered individuals.89 In section 4.3.2, we study
this model in an homogeneously mixed population. For the remaining sections, we apply the
model to a metapopulation system.

4.3.1.1 Epidemic spreading

For the SIR compartmental model, individuals are assigned compartments according to
their infectious status: susceptible (S) if they do not have the disease and can catch it; infectious
(I) when they have the disease and can transmit it to susceptibles, and removed (R) when they
no longer transmit the disease after being infectious (either by recovery or deceasing). At each
model’s epidemic update, the following rules determine the transitions between compartments:

• S → I: a susceptible individual in subpopulation i can become infectious with probability
Pi(S → I) = 1−(1−aiβ/Ni)

Ii , where β is the individual transmission probability, Ni is
the number of individuals in subpopulation i and Ii is the number of infectious individuals
in the same subpopulation. The term ai is called the coefficient of contact reduction, and
depends on the considered scenario as we describe later on.

• I → R: an infectious individual is moved to the R (removed) compartment with probabil-
ity µ, which is the inverse of the average infectious period. After this event, the individual
no longer participates on the epidemic dynamics.

Throughout this section, we set µ to 1/4 and the basic reproductive number R0 = β/µ

to 1.5, which is compatible with the parameters of an influenza-like disease. We define NS =∑V
i=1 Si as the total number of susceptible individuals in the whole population and, analogously,

NI and NR for the infectious and removed compartments. The coefficient of contact reduction
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Table 2 – List of symbols used for the work with metapopulations
with behavioral responses.

Description Symbol
Individual infection probability β
Recovery probability/rate µ
Basic reproduction number R0 = β/µ
Contact reduction coefficient ai
Response strength exponent k
Long-term coefficient l
Mobility coefficient τ
Threshold for infectious fraction εI

Individual counts in each state in subpopulation i Si, Ii, Ri

Global individual counts in each state NS , NI , NR

Global fractions in each state ρS , ρI , ρR

Number of nodes (subpopulations) on network V
Number of links on network M
Number of individuals in subpopulation i Ni

Total number of individuals in population Npop

Maximum distance for connection on RGN d
Link weight between subpopulations i and j Tij

Long-term scenario LT
Short-term scenario ST
network RGN

Source: VENTURA et al.289

ai is what determines the behavioral responses to the epidemics, and we consider different
strategies for such a response, each one with a different definition of ai:

1. Social distancing based on global information

This scenario is based on the one proposed by Eksin and others in,89 which here we extend
to metapopulations. The coefficient of contact reduction emulates the social response to
an increase in the number of infections, and it is a function of the total (global) number
of infected and recovered individuals, given by:

ai =

(
1− (NI + l ·NR)

N

)k

(4.8)

Since ai only depends on global quantities, its value is the same for all subpopulations.
The parameter k is the response strength, an adjustable exponent that calibrates the in-
tensity of the response against the number of cases. The coefficient l is called coefficient

of long-term, and determines the importance of the R compartment to the behavioral re-
sponse. Following,89 l = 0 represents the short-term scenario (ST), where the response
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weakens when the incidence drops. The case l = 1 is the long-term scenario (LT), in
which the awareness is proportional to the total accumulated number of cases. These two
limiting cases differ in many aspects, which we describe throughout the rest of the section.

2. Social distancing based on local information

In this variant of the previous setup, we consider that each subpopulation (node) responds
individually, according to its own number of cases. The expression for the coefficient of
contact reduction is:

ai =

(
1− (Ii + l ·Ri)

Ni

)k

(4.9)

3. Constant response after threshold

For comparison, we also implement a more traditional scenario in which the transmis-
sibility is reduced by a constant factor a0 once the overall number of cases NI + NR

overcomes a given threshold N · εI (with 0 ≤ εI < 1). Here we use only the global and
cumulative information, thus ai is defined as:

ai =

1 NI +NR < NεI

a0 NI +NR ≥ NεI
(4.10)

and is the same for all subpopulations. This scenario can be considered as a baseline in
which social distancing (or governments policies) is constant and independent of the state
of the system, and it is a benchmark that is often assumed as the behavioral response in
metapopulation epidemics.124, 263, 265, 290

4.3.1.2 Mobility model

Following a standard metapopulation framework, the mobility between subpopulations
is modeled as a random walk through the links of a graph of V nodes and M links. It is con-
trolled by a master parameter τ called the mobility coefficient, as well as the weights Tij of
existing links between subpopulations (nodes) i and j. During a mobility update, each individ-
ual in subpopulation i travels to subpopulation j with probability pij = τ · Tij/Ni(0), where
Ni(0) is the number of individuals attributed to subpopulation i at the initial time step. Within
this scheme, we have the following features:

• If all links are reciprocal and symmetric (i.e., Tji = Tij for all connected pairs of sub-
populations i, j), then the net fluxes between the subpopulations are balanced and the
population of each one remains approximately constant, fluctuating around Ni(0). We
use this configuration throughout this work.
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Figure 40 – Scheme of the epidemic and mobility models in a metapopulation. The SIR epi-
demic dynamics occur inside each subpopulation, where homogeneous mixing is
assumed. Also at each time step, individuals move between neighboring subpopu-
lations i and j according to a mobility matrix Tij .

Source: VENTURA et al.289

• The average number of individuals expected to travel from i to j is τ · Tij , with small
variations due to fluctuations of Ni(t) around Ni(0).

• The probability that an individual in subpopulation i travels anywhere is pi = τ
∑

j Tij/Ni(0),
and may vary for each subpopulation. We always set τ to be small enough so that pi < 1

for every subpopulation i.

During a single time step, we first perform the epidemic interactions in each subpop-
ulation, then update the number of individuals that are in each state. After this, we apply the
mobility rules to determine how many individuals move through each link, and update the ac-
tual numbers of individuals in each site only after all fluxes have been calculated. This way, the
results do not depend on the order at which we “visit” the subpopulations to perform the calcu-
lations. The mobility and epidemic models are schematically represented in Figure 40. Table 2
shows the meaning of each symbol and acronym used during this work.

4.3.2 Analytical insights for homogeneously mixed populations

For sufficiently low mobility between subpopulations, the local dynamics can be well
described by an isolated homogeneously mixed system. Also for sufficiently high number of
individuals, we can use rate equations for the expected fractions of the population in each
compartment, substituting S/N , I/N and R/N by ρS , ρI and ρR, respectively. The chosen
expression for the behavioral response mechanism is simple enough to allow for analytical ma-
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nipulation. Particularly, in the long-term (LT) scenario (i.e., with l = 1 in Equations 4.8 and
4.9), these rate equations can be integrated to find the trajectory of the dynamical system. In
this section, we explore this tractability to extract some insights from the model.

4.3.2.1 Long-term scenario

Considering the dynamics of a single isolated subpopulation, the dynamical equations
for the average fractions ρS , ρI and ρR of susceptible, infectious and removed individuals can
be written as:

ρ̇S = −µR0 ρSρI · a(ρI , ρR) (4.11)

ρ̇I = µR0 ρSρI · a(ρI , ρR)− µρI (4.12)

ρ̇R = µρI , (4.13)

where R0 = β/µ is the basic reproduction number and µ is now interpreted as the
recovery rate (instead of probability). For the long-term scenario, a(ρI , ρR) = (1−(ρI+ρR))

k =

ρkS , given that ρS+ρI +ρR = 1. As described in89 and similarly to what we presented in section
2.2.1 for SIR, we can divide Equation 4.11 by Equation 4.13 to obtain a separable differential
equation:

dρS
dρR

= −R0ρ
k+1
S (4.14)

For k > 0 and assuming that ρR(0) = ρ0 ≥ 0 and ρI(0) = δ → 0, its solution is given
by:

ρS =

[
1

(1− ρ0)k
+ kR0(ρR − ρ0)

]− 1
k

(4.15)

Alternatively, writing ρI as a function of ρR:

ρI = 1− ρR −
[

1

(1− ρ0)k
+ kR0(ρR − ρ0)

]− 1
k

(4.16)

Equation 4.16 represents the trajectory of the system in a ρI vs ρR diagram, showing
how the fraction of infectious individuals peaks as the fraction of removed increases in the LT
scenario. The solid lines in Figure 41 show such trajectories for different values of the response
strength k, ρ0 = 0 and R0 = 1.5. Also, the final ρR prevalence at the end of the outbreak can be
found by solving Equation 4.16 for ρI = 0 besides the trivial solution ρR = ρ0.

For k = 0, Equation 4.14 solves as a simple SIR model which, for ρR(0) = ρ0 and
ρI(0) = δ → 0, leads to a ρI vs ρR trajectory given by:
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ρI = 1− ρR − (1− ρ0)e
−R0(ρR−ρ0) (4.17)

In the long-term scenario with k > 0, the contact reduction coefficient a(ρI , ρR) is a
decreasing function of ρR + ρI , which in turn can only increase over time. This means that
a(ρI , ρR) will also always decrease as if the disease contention measures are held forever. This
is not reasonable to assume for the long term behavior of a real situation and, for this reason,
we can consider that at some point after the main outbreak, a(ρI , ρR) is set to 1 again, which
we call henceforth a system release (representing a release of the contention measures).

For instance, consider that a system release occurs when the fraction of infectious indi-
viduals reaches a small value δ > 0 after the main outbreak initiated. This comprises the fact
that, during the time evolution given by Equations 4.11 to 4.13, ρI(t) tends to but never actually
reaches zero. For the calculation of the ρI vs ρR trajectories though, we can consider δ → 0.
After the system is released, the trajectory follows Eq. 4.17 with ρ0 set to the final size of the
first outbreak. In Figure 41, the dashed lines represent the secondary outbreaks produced after
the system’s release.

Figure 41 – Analytical trajectories of the homogeneously mixed long-term (LT) scenario with
system release after the first outbreak (i.e., complete lift of the contention mea-
sures). The trajectories are combinations of Equations 4.16 (solid lines) and 4.17
(dashed lines) with ρ0 set to the size of the first outbreak. R0 is set to 1.5.

Source: VENTURA et al.289

As observed in the figure, a system release can generate a second outbreak which, for
higher values of k, can be greater than the first one. This happens because, although the long-
term scenario effectively reduces the size of the first outbreak (both in ρR and ρI), it may leave
the system under its herd immunity threshold, and thus vulnerable to new outbreaks.291 In this
homogeneous model, the threshold for herd immunity is given by ρherd = 1−R−1

0 , meaning that
for ρR ≥ ρherd the fraction of infectious individuals can no longer increase. If the disease dies
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out before the prevalence reaches that value, the system will experience a new outbreak if the
social distancing measures are relaxed and the disease is reintroduced in the population. Note
that the critical value of k for reaching herd immunity at the first outbreak is k = 1, for which
the final outbreak size is exactly solved as ρ∗R = 1−R−1

0 , as noticed by Eksin and others.89

4.3.2.2 System resets

Besides releasing the system after the first outbreak, we propose another way to work
with multiple outbreaks in the LT scenario. What makes the a(ρI , ρR) coefficient to be by de-
fault strictly decreasing is its dependence on ρR, which holds a “long-term memory”. We can
modify such memory by subtracting a constant ρ0 from the prevalence that’s considered for the
contact reduction coefficient a(ρI , ρR). If we do this right after the main outbreak and set ρ0 to
the recovered fraction at that time, then a(ρI , ρR) is momentarily reset to 1 (i.e., no contention
measures), but the system will still react in the event of another outbreak. We call this a system

reset (the memory of the population is reset, but the contention measures still apply), in con-
trast with the simpler system release described in the previous section (in which the contention
measures are completely removed). We are again assuming that ρI is arbitrarily small at the end
of an outbreak.

During this new round of the dynamics, Equation 4.11 divided by Equation 4.13 yields
the following differential equation:

dρS
dρR

= −R0 · (ρS − ρ0)
kρS (4.18)

which is still separable, but for ρ0 > 0 solves into a less insightful expression:

R0 · (ρR − ρ0) = Pρ0,k(ρS) (4.19)

where we define:

Pρ0,k(ρS) =

∫ 1−ρ0

ρS

du
u(u+ ρ0)k

= (4.20)

= − 1

k(u+ ρ0)k

(
1 +

ρ0
u

)k

2F1

(
k, k; k + 1,−ρ0

u

)∣∣∣∣1−ρ0

ρS

where 2F1 is the Gaussian hypergeometric function. Equations 4.19 and 4.20 provide
ρR for any given ρS . For each of these values, ρI is calculated as ρI = 1 − ρS − ρR, which
finally allows the construction of a ρI vs ρR trajectory.

Figure 42 shows the trajectories of the model with system resets, for different values
of k. The first outbreak of each execution is represented by solid lines, and are traced using
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Equation 4.16. For the executions that did not achieve the herd immunity threshold (which is
shown as a black dot-dashed line), subsequent outbreaks are represented by dashed lines and
traced using Equations 4.19 and 4.20. In this scenario, stricter contention measures (that is,
higher k) always cause smaller infectious peaks, but can generate more secondary outbreaks,
making it more difficult to comply with the measures. The inset of Figure 42 shows in more
detail the secondary outbreaks for k = 2, 4 and 8, where we can see that there are multiple
outbreaks with decreasing peak size.

Figure 42 – Analytical trajectories of the homogeneously mixed long-term (LT) scenario with
system resets. The first outbreak (solid lines) follows Equation 4.16, while subse-
quent outbreaks (dashed lines) are traced using Equations 4.19 and 4.20. The inset
shows a sub-region of the main plot (indicated by a blue dotted rectangle) where
secondary outbreaks are more easily visible, showing how there may be multiple
and successively smaller peaks. R0 is set to 1.5.

Source: VENTURA et al.289

4.3.2.3 Short-term scenario

For the short-term (ST) scenario, the coefficient of contact reduction depends only on
ρI , being written as a(ρI) = (1 − ρI)

k = (ρR + ρS)
k. This breaks the separability of the

differential equation obtained by dividing Equations 4.11 and 4.13, leaving no simple method
to solve it for arbitrary values of k. We can still use a classic Runge-Kutta100 of order 4(5) to
integrate the equations in time, and plot the ρI vs ρR trajectories.

Figure 43 shows the numerically solved trajectories of the system for different values
of k. The main difference with respect to the LT scenario is that the system eventually reaches
the herd immunity condition within the first and only outbreak. Higher values of k reduce the
size of the peak in ρI , at the expense of larger time-span in which the contention measures have
to be sustained. This cannot be visualized in Figure 43 as the time parameter is implicit, but
we further explore the interplay between peak size and time span in section 4.3.4.1. Note also
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Figure 43 – Numerical trajectories of the homogeneously mixed short-term (ST) scenario,
obtained from Runge-Kutta integration of Equations 4.11 to 4.13 starting with
ρI(0) = 1 · 10−5 and ρR(0) = 0. R0 is set to 1.5. Unlike the LT scenario, the
system always reaches the herd immunity condition in a single outbreak, without
considering any modification to the baseline model.

Source: VENTURA et al.289

that even for very large values of k the final fraction of removed individuals is beyond the herd
immunity threshold.

4.3.3 Global strategies and the heterogeneity of local features

The previous analysis has shown that, even if local disease extinction might be achiev-
able with social distancing, it renders the system vulnerable to further reintroductions of the
pathogen. Thus, if mobility between subpopulations is allowed, there could be spill overs from
those with still ongoing outbreaks to those which contained the epidemic. To study this type of
events, we now focus on the proposed model in a metapopulation using Monte Carlo simula-
tions, with the algorithm described in section 4.3.1. For the metapopulation, we use a typical
sample of a random geometric network (RGN) of V = 50 subpopulations, constructed in a
square space of length 1 and connecting subpopulations that are closer than d = 0.25. At this
initial point, all links are unweighted and reciprocal. This gives an expected average degree of
V πd2 ≈ 9.82, though the specific realization we used through this section has an average de-
gree of 7.2. We choose such a network topology because it emulates the spatial distribution of
cities in small to mid scale, where size hierarchy and long-range links are not very present.

Once this unweighted graph is constructed, we set the initial population of each sub-
population i proportional to its degree ki, according to Ni(0) = ⌊Npopki/(2M)⌋, where we set
Npop = 107. This makes the overall population to be not exactly equal but very close to Npop,
only deviated due to truncation. Then we set the weights of existing links between subpopula-
tions i and j as Tij = Ni(0)Nj(0)/Npop = Tji. Within this scheme, the local population sizes
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fluctuate around N(0) over time, as explained before. Moreover, the most connected subpopu-
lations are also most populous ones, though the RGN is reasonably homogeneous in this sense.
For consistency of the results, we also use a fixed subpopulation as the seed of the disease, seed-
ing 10 infectious individuals at the beginning of the simulations, with all other subpopulations
starting with susceptibles only. The seeded subpopulation was chosen to be around the center
of the square space.

4.3.3.1 Long-term (LT) global scenario

For the long-term (LT) scenario with global information, we can compare the outcomes
of the simulations with those of a constant response after a threshold (explained in section
4.3.1.1). Figure 44 shows the outbreak size (total number of infected individuals) in each sub-
population for the two strategies, each one averaged over 1000 independent executions. The
constant coefficient of contact reduction a0 = 0.78 was chosen to yield a global outbreak size
of ∼ 0.20, approximately equal to that obtained with the LT global scenario with k = 2. We
notice that the LT scenario provides more heterogeneous outcomes between subpopulations
compared to the constant response. Specially, as it can be seen in Figure 45, subpopulations
that are farther from the seed tend to have smaller outbreak sizes. This happens because, in the
global LT scenario, the intensity of contention measures due to public awareness is the same
for all subpopulations and increases with time, thus subpopulations that are seeded later have
smaller effective reproduction numbers.

a) b)

Figure 44 – Comparison of the average outbreak size in each subpopulation between a) global
LT scenario and b) global constant response with threshold. For the LT scenario, a
response strength k = 2 was used, while the constant response uses a0 = 0.78 and
a threshold of εI = 10−3, meaning that the contact reduction is triggered after 104

overall infections (out of Npop = 107 individuals) are registered. Both simulations
use τ = 1 · 10−3 as the travel parameter.

Source: VENTURA et al.289

The fact that our proposed model for behavioral responses with global strategy produces
more heterogeneous outbreak sizes is notorious, as this is generally observed after outbreaks of
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Figure 45 – Local outbreak size (given by the maximum of Ri/Ni over time) in each subpopula-
tion as a function of its shortest path length to the seed, for global LT scenario with
response strength k = 2 (circles) and for constant response with factor a0 = 0.78
(squares). The y-axis values represent averages over 1000 independent executions.
The boxes show the inner quartiles of each set. The mobility coefficient is set to
τ = 1 · 10−3.

Source: VENTURA et al.289

real diseases. In particular, this situation is compatible with the one observed in 2020 during the
COVID-19 pandemic in those countries that imposed strict global lockdowns even if only part
of the country was severely affected.292–294

4.3.4 The efficiency of local and global strategies

We now describe a framework to compare local and global strategies in terms of their
efficiency, characterized by the costs and benefits of each strategy in each scenario. Direct com-
parison of simulations with global and local strategies using the same response strength k is
inappropriate, as global strategies require greater values of k to yield similar effects. We there-
fore define two metrics, one for the cost and another for the effectiveness, and compare local
and global strategies in parametric plots of such metrics (with k as an implicit parameter). As
long-term and short-term strategies are qualitatively different, we apply different metrics to
characterize each one.

4.3.4.1 Short-term (ST) scenario

The short-term scenario, in which the contact reduction coefficient only responds to the
(either local or global) density of infectious individuals, is characterized by a slow progression
of the system towards its herd immunity. A higher value of the response strength k represents
a more effective response, which reflects into a smaller prevalence peak (i.e., the maximum ρI)
yet longer outbreak duration. The outbreak size (i.e., maximum of ρR) however does not vary
much with k, as it essentially depends on the herd immunity limit of the system. Therefore,
the infectious peak size ρmax

I is a reasonable measure of effectiveness in this case, with smaller
peaks attributed to more effective strategies.
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Figure 46 – Parametric curves for the effectiveness and cost of local and global ST scenario,
for values of k ranging from 3 to 90. The first plot is for the seeded subpopulation,
whereas other plots are arithmetic averages over sets of subpopulations according
to their shortest path length to the seeded subpopulation. The last (lower right) plot
is an arithmetic average over all subpopulations. The arrows indicate the direction
towards which k increases. The mobility factor is set to τ = 1 · 10−3. The metric
ρmax
I is the maximum over time of the local infection prevalence ρI , while J is given

by Equation 4.21.

Source: VENTURA et al.289

Higher values of k also imply more time in which contention measures are active to
control disease propagation. This translates into ai being smaller than 1 during longer times.
We can quantify “how much and for how long” the contention measures are applied with the
quantity:

J i =
∞∑
t=0

(1− ai(t)) (4.21)

which accounts for the intensity and time span of the contact reduction. This provides,
in a broad sense, a metric for the cost of the short term scenario, considering that contention
measures typically bring social and economical costs to the population. Notice that these metrics
must be calculated for each subpopulation.

For the same population and RGN structure described in section 4.3.3, we compare
local and global strategies with respect to ρmax

I and J for simulations with different values of k.
Figure 46 shows the plots of these metrics against each other, grouped by sets of subpopulations
according to their distance to the seeded subpopulation. The metric values are averaged over
1000 independent executions.
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From the plots, it is clear that local strategies outperform global ones for all subpopula-
tions, as the former produces much smaller peaks sizes for similar values of J in the considered
range. This means that, for the ST scenario, the use of local information about contagions is
more efficient than using a unified, global strategy. This happens because using global informa-
tion may not be well suited for the epidemic situation of a given subpopulation. For instance,
subpopulations that are far from the seed effectively apply the contention measures before the
epidemic arrives, but as these measures are relaxed at some moment (when the global preva-
lence decreases), these subpopulations will still undergo an intense outbreak, given that they
were only subject to minor outbreaks and the majority of the individuals in these subpopula-
tions are susceptible.

Although we only display the results for a single value of the mobility coefficient τ =

10−3, the same conclusions are obtained for τ = 10−2 and 10−4, but the advantage of local
strategies over global ones is more pronounced with lower mobility rates. This is expected,
because with lower τ values, the dynamics of each subpopulation is less coupled by mobility,
making local strategies more practical.

4.3.4.2 Long-term (LT) scenario

In the long-term scenario, the overall intensity of contention measures increases with
time (though it can locally decrease due to migration), as they are proportional to both I and
R densities. As shown in section 4.3.2 for homogeneous mixing, for sufficiently high k, the
epidemic spreading is halted before herd immunity is achieved, leaving the system vulnerable
to secondary waves in case of a system release without other immunization policies. We can
still characterize the effectiveness of the strategy in this first wave, either by its outbreak size
(ρmax

R ) or by the peak size (ρmax
I ). For consistency with section 4.3.4.1, we chose to work with

ρmax
I as well.

For the cost of the strategy, J (given by Equation 4.21) does not provide a reliable
measure, as in this case ai does not tend to 1 again at the end of the main outbreak, making
J overly sensitive to the time taken until the epidemic vanishes. We choose instead to simply
work with amax = 1−min a(t), which is the maximum level of contact reduction adopted by the
subpopulation during the simulation. This metric disregards the temporal evolution of ai, but
still provides a number that is proportional to the social costs of contention measures adopted.

Using the same RGN setup, we find that the cost vs effectiveness curves are more com-
plex for the LT scenario than for the ST one. Figure 47 shows the ρmax

R x amax parametric curves
for local and global strategies, and for three values of the mobility master parameter τ = 10−2,
10−3 and 10−4. In this case, there is not a clear advantage of local strategies over global ones, and
this depends both on mobility levels and the distance to the seed. For instance, when τ = 10−2

(Figure 47.a)), a local strategy is better for the seed, while it is generally worse for more distant
subpopulations. For immediate neighbors of the seed (one step away), the curves cross each
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Figure 47 – Parametric curves for the effectiveness and cost of local and global LT strategy, for
the mobility parameter (a) τ = 10−2, (b) τ = 10−3 and (c) τ = 10−4. The k values
range from 0.25 to 50. The leftmost panels represent the seeded subpopulation, the
middle panels represent an arithmetic average over its immediate neighbors, and the
rightmost panels show the averages over all subpopulations. The arrows indicate the
direction towards which k increases. The cost amax is the maximum value of 1− ai
reached during the simulation.

Source: VENTURA et al.289
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other, making the optimal strategy to depend on the value of k.

For lower mobility values (Figure 47.b) and c)), another interesting feature is evident:
the curves for the local strategies are not monotonic with the cost, meaning that two strategies
(given by two different values of k) may have the same cost but notably different effectiveness.
This happens because the LT strategy can affect the invasion threshold and attack rate of the
system,256 preventing some subpopulations from being reached by the disease for sufficiently
high k. In this case, as the strategy is based on local prevalences, these subpopulations will not
have to implement contention measures, which explains the decrease in the strategy cost.

4.3.5 Local and global strategies on real topologies

The results from the previous section are highly relevant from a theoretical perspective.
They unveil interesting behaviors for when the system is close or not much above its invasion
threshold, a theoretical value of mobility in which the disease no longer propagates between
subpopulations. However, human mobility flows in almost any realistic scenario puts the sys-
tem far above its invasion threshold, even when considerable travel restrictions are employed.
Therefore, we still need to study our model in a more realistic setup.

Instead of simply adjusting the travel coefficient τ of our RGN to match that of some
real system, we decided to directly simulate our model in metapopulations created from real
mobility data. For this, we successfully gathered data from two countries that are significant
different in scale and demographics: Spain and Brazil.

The Spanish metapopulation was reused from a recent work from our collaborators,
Alberto Aleta and Yamir Moreno.265 The mobility was retained from a pilot project of the
country’s Ministry of Development, built using mobile phone data from 16 million users (from a
total estimated population of ∼ 47 millions inhabitants). The used data was acquired during the
last two weeks of October 2017, then averaged and symmetrized to be used as a metapopulation.
Each subpopulation represents one of the 47 mainland provinces, 3 island provinces and 2
autonomous cities, in a total of 52 subpopulations, for which the number of inhabitants was
provided by the Spanish Statistical Office.

The Spanish mobility matrices consider all transportation means, and the flows are
renormalized for a very confident overall picture of the country’s mobility. For Brazil, how-
ever, we could not access a publicly available dataset as complete as that from Spain. Instead,
we aggregated mobility data from three different datasets: (i) passenger and cargo flights from
the National Agency of Civil Aviation (ANAC); (ii) interstate passenger buses from the National

Agency of Terrestrial Transport (ANTT); (iii) daily commuters, from a survey of pendular mi-
gration promoted by the Brazilian Institute of Geography and Statistics (IBGE) as part of its
national census of 2010. The mobility data from sources (i) and (ii) were averaged during the
whole year of 2019, then renormalized to daily flows and symmetrized to weight the links of
the metapopulation. The subpopulations, in this case, represent the 27 federative units of the
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country, of which population data was also provided by IBGE.

Even though the Brazilian dataset does not represent the totality of the country’s mobil-
ity, we believe that it still represents well the relative flows. We repeated our simulations with a
150% multiplier on the travel fluxes, but observed no qualitative changes in results.
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Figure 48 – Parametric effectiveness/cost curves of local and global strategies with ST scenario,
using metapopulations from real data (upper plot: Spain; lower plot: Brazil). As
every subpopulation is connected by at least one traveler, they are all one step far
from the seed. Each point is an average over 1000 executions.

Source: VENTURA et al.289

Once the real data is converted into metapopulations, the simulation procedure follows
the same as in section 4.3.4. We compared local and global strategies for the ST and LT sce-
narios, using the appropriate metrics in each case. Figures 48 and 49 show the results both for
the Brazilian (upper plots) and Spanish (lower plots) datasets. In both countries, the seeded
subpopulation is the most populous one: São Paulo state for Brazil, and Madrid for Spain.

Multiple insights can be extracted from the plot of results. First, for the ST scenario, the
conclusion that a local intervention strategy is better than a global one remains valid, although
the difference between them is smaller than in our theoretical setup, especially for Spain. Sec-
ond, the LT scenario now presents a simpler conclusion: local strategies are better for the seeded
subpopulation, while global ones are better for the other regions. This result is reasonable be-
cause, in a global strategy, distant subpopulations anticipate the arrival of the disease in a global
scheme, reducing the peak size. However, the seeded subpopulation must act earlier, thus mak-
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Figure 49 – Parametric effectiveness/cost curves of local and global strategies with LT scenario,
using metapopulations from real data (upper plot: Spain; lower plot: Brazil). As
every subpopulation is connected by at least one traveler, they are all one step far
from the seed. Each point is an average over 1000 executions.

Source: VENTURA et al.289

ing a local strategy more plausible. We postulate that a strategy in which the seeded subpop-
ulation locally implements strong contention measures while other subpopulations implement
milder measures in a global scheme can overcome the results of pure local/global strategies.

Finally, an important insight is about the idea of scale. The differences between global
and local strategies are clearly milder in the Spanish metapopulation than in the Brazilian one.
In a broad sense, this means that our conclusions are more relevant for populations of larger
scales. In more depth, notice that Brazil has a larger population and geographical extension
then Spain, with mobility between federative units proportionally smaller from those between
Spanish provinces. Besides, in our dataset, the larger Brazilian subpopulation has roughly the
same population of the whole Spain, meaning that the former is a coarser representation of re-
ality. It is intuitive to conclude that global and local strategies will diverge more for populations
of larger scale.

4.3.6 Discussions

We have presented a model that incorporates dynamical behavioral responses to epi-
demics, which could be driven by governmental policies or by the endogenous response of
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individuals (e.g. fear of infection), in the context of metapopulations. The emerging features of
the model are very rich, showing a complex landscape of outcomes depending on the imple-
mented strategy.

First, we have shown that for isolated populations, strong and long lasting social dis-
tancing measures (LT) are able to ablate the epidemic, however leave the population vulnerable
to secondary outbreaks. Indeed, as long as the prevalence is below the herd immunity threshold,
a reintroduction of the pathogen after the measures are lifted will lead to a second wave. On the
other hand, soft social distancing measures (ST), aimed at reducing the peak without eradicat-
ing the disease, contain the exponential growth of the epidemic and leave the system over the
herd immunity threshold, preventing further outbreaks. Note, however, that for a severe disease
in which the infection fatality rate is substantial, larger prevalence implies a larger number of
deaths. Thus, stronger social distancing policies will reduce the number of deaths at the expense
of leaving the system vulnerable, while softer measures will control the spread but increase the
number of deaths. These observations are particularly important in the context of metapopula-
tions. Since subpopulations are not isolated, in the absence of additional control measures, the
disease might be seeded again in disease-free areas by individuals who where infected in other
regions. Thus, besides long and short term strategies, we also need to incorporate whether the
contention measures use global or local information.

We compared the LT and ST scenarios of our model, in an attempt to address the ques-
tion of whether the contention measures are more efficient if implemented and managed locally
(at each subpopulation) or globally (equally to the whole population). For the ST strategy, we
measured its cost by the J metric that quantifies the intensity and duration of the contention
measures, and used the maximum number of simultaneous infections (i.e., the peak size) to
quantify the strategy’s performance. We showed that the local strategy always outperformed
the global one, which is valid for any value of the mobility parameter. This also holds for real
network topologies, although the difference is milder in a smaller scale country like Spain.

For the LT scenario, we quantified the cost by the maximum intensity reached by the
contention measures, and the performance by the peak size. In this case, the cost/benefit rela-
tionship was more complex, and depended on the mobility rate and the distance to the seeded
subpopulation. Global strategies are generally better for distant subpopulations (with respect to
the seed). This situation was precisely the one that emerged in the first wave of infections in
2020 during the COVID-19 pandemic in countries that imposed country-wide lockdowns even
if only one region was severely affected.292–294 Yet, this is reversed if the mobility is low enough
so that the local strategy can stop the epidemics before these nodes are reached. For the seeded
subpopulation, local strategies are typically preferred, while global strategies are better for more
distant subpopulations. This was also backed up by the results with real networks. For this type
of scenario, therefore, the choice between global and local strategies is not trivial and should be
addressed appropriately.
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5 CONCLUSIONS

At this point, we are ready to recall our main goals for the present thesis, as well as
how we made our way into achieving them. The common objective for all of our works was
to address the problem of host behavioral reactions to the spreading of epidemics, through
mathematical and computational modeling. This goal was sought in a variety of situations and
approaches, which resulted in multiple works, not all of them presented in this thesis. Each
work had its own set of specific goals which, together with the main goal, created an audacious
research schedule.

As discussed in the introduction (Chapter 1), behavioral responses to epidemics may
come in a great variety of ways. Complexity science and network science come as great tools
to assess this problem, providing methods to deal with the complexity and chaoticity of interac-
tions and behaviors of host populations. We hope that the arguments presented in the introduc-
tion were sufficient to motivate the reader to understand in more detail complex systems and
the problem of disease-behavior dynamics.

In Chapter 2, we introduced the fundamentals of two important fields to our work: com-
plex networks and epidemic models. In Section 2.1, we presented the basic and extended defini-
tions of networks, some important statistical metrics and the fundamental models used to build
synthetic networks. In Section 2.2, we presented multiple approaches to implement and study
epidemic models: homogeneously mixed rate equations, heterogeneous mean field, quenched
mean field, Markov chain approach and stochastic simulations. We mostly used the SIS model
to exemplify each approach, as it is the most used model through our work, but the formulations
are also applicable to the SIR-like model family. We hope that this Chapter of fundamentals can
be useful for new researchers from both epidemiology and complex networks, even if their
research interests are different than ours.

Following up, we divided our selected research work into two major chapters, accord-
ing to their common points. In Chapter 3, we discuss epidemic dynamics that interact. In the
literature review (Section 3.1), we present a great range of works regarding (i) the interaction
between two or more spreading processes, and (ii) the interaction between diseases and human
behavior in multiple aspects. Even though these two topics deal, in practice, with different prob-
lems, we believe that they should be seen as adjacent in a theoretical point of view, because they
deal with closely related models and often come to overlapping conclusions.

Our first contribution, described in Section 3.2, is a great example of this proximity: it
deals with both interacting spreading phenomena and disease-behavior coupling. We study an
epidemic model with information-based awareness, by which individuals try to protect them-
selves from infection. We tackle two research gaps of the field by that time: (i) the inclusion
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of stiflers and a rumor-like recovery transition, and (ii) the role of the epidemic-to-information
relative time scale. We found that, when the information runs at a longer time scale (intrinsic
clock) than the epidemics, it is more effective at reducing the disease prevalence, in agreement
with another recent work.187 Moreover, with a modification to the basic model, we found that
it is possible that, for the same disease, one population can be more informed than another
but still have greater disease prevalence; this is an effect of adding stiflers to the information
model, which hinders its propagation. These conclusions further advance our understanding of
the disease-information interaction, and the work is published in Physical Review E,182 with a
sequel in the same journal.186

After this work, we kept our motivation on the subject and decided to better understand
the gaps left from it. Could the relationship between prevalence and relative time scale be an
artifact of the specific model that we constructed? Did it depend on the multiplex topology? We
addressed these questions by first “downgrading” from multiplex networks to homogeneously
mixed populations, and then looking at different models to investigate the time scale relation-
ship. These models should consider an asymmetric interaction between two spreading agents
and, after some preliminary research, we ended with two representative models: model A, sim-
ilar to that of our first work, and model B, which implemented the asymmetrical interaction in
a different fashion.

These two models were found to present different behaviors regarding the relative time
scale and the prevalence of the “prey” disease. This did not invalidate the results of our first
work, but pointed that they were not valid for all classes of asymmetrically interacting models.
As the same effect of our awareness model was observed for a homogeneously mixed popula-
tion, we also concluded that it was intrinsic to the model and not an effect of topology. Finally,
we used the achieved momentum to further investigate these models. We numerically evaluated
their transient oscillations, determined a global maximum for model B, and derived analytical
expressions that show the robustness of our conclusions. We believe that this work can be of
great use for researchers interested in asymmetrical contagion, either between diseases, between
disease and information, or any other similar system.

In Chapter 4, we dive into another important topic: host mobility. In general, mobility
is known to promote disease spreading, and understanding its patterns is crucial to study the
geographical disease spreading, such as in the Black Death example. We merge host behavior
with host mobility using two different approaches: individual mobility models and net mobility
flows. In our literature review (Section 4.1), we first present how scientists have tried to capture
human and animal mobility with models, and then discuss the literature on epidemic models
both at the individual level and with metapopulations.

Both of our works on the topic of mobility were started during an internship in Zaragoza
– Spain.In the first one, we adapted a previously implemented model of random walking agents
to include a social distancing-alike behavioral response. We used the literature on adaptive
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networks, started by Gross and others,73 as a guideline to our model. Despite some consider-
able differences, we could reproduce the bistable behavior reported with adaptive networks and
caused by increased clustering of susceptible individuals when avoiding infectious ones. We
developed a semi-analytical approach, decoupling the mobility and epidemic dynamics, which
allowed us to precisely determine the phase diagrams and bifurcations of the system, as well as
to relate its phenomenology to some network metrics. This is a notorious achievement, as epi-
demics with random walking agents can rarely be approached beyond the basic homogeneous
mixing hypothesis.

Moving to our latest described work (in Section 4.3), we address behavioral responses
to epidemics in metapopulations, which are massively used in realistic epidemic simulations.
By adapting a model for contention measures first proposed in homogeneously mixed popula-
tions,89 we show that behavioral responses produce heterogeneous outbreak sizes through sub-
populations, contrasting with a simple reduction to the reproduction number, which is a widely
used approach. We then use our framework to compare the effectiveness of employing the con-
tention measures locally and globally, using both scenarios proposed by Eksin.89 We conclude
that, in the ST scenario (where the prevalence can be controlled until natural herd immunity
is produced), it is always better to use a local strategy, while in the LT scenario (where the
contention measures seek to extinguish the disease until artificial immunization is available),
the choice between global and local intervention depends on many factors and details, with a
global scheme in general being better for network as a whole but worse for the seeded subpop-
ulations. These results are further validated by the use of data-driven metapopulations of Spain
and Brazil.

After reviewing our work, we are confident that we contributed to the problem of
disease-behavior coupling in multiple theoretical contexts. Each of our works provided valu-
able knowledge on how to model these situations, and we expect that this knowledge can be
used by other researchers. We also provided some insights about the situations that we model,
such as the “more informed yet more infected population” effect described in Section 3.2, and
the evaluation of local and global strategies with the metapopulation model.

Yet in the theoretical domain, we unveil many open questions and follow-ups from
our works, which are described in the discussions of each corresponding sections. Most of
all, our greatest hope is that our contributions can be utilized by researchers that work with
more realistic epidemic models. These, as we are witnessing, can have very prominent impacts
into policy-making, resource planning and even individual attitude against infectious diseases,
paving the way to a more developed society.
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APPENDIX A – MARKOV CHAIN APPROACH FOR THE SIS/UARU MODEL

In order to predict the behavior of the SIS/UARU model in a double-layer network, as
described in section 3.2 of the main text, we developed a microscopic Markov chain approach
to write dynamical equations for relevant probabilities of our system. For that purpose, we
followed the methodology described in.107

A.1 The Markov chain equations

For each node i of the network and for each time stamp t, the probabilities that it is in
each possible state of the model is defined as p. Such state can either be from a single process
(e.g., piI(t) is the probability that node i is infected (I) at time t) or a “composite” state (e.g.,
piSU(t), p

i
IA(t), etc.). For convenience, we label the corresponding nodes in different layers with

the same number.

The first step is to build the transition trees for all possible changes of states and their
respective transition probabilities. For each tree, we represent the root as one of the possible
composite states of a node (SU, SA, SR, IU, IA and IR) at time t, and the leaves at each
of the possible resulting states at time t + 1, starting from the state at time t. The branches
represent each of the possible transitions. The probabilities of such transitions are written above
the corresponding branches.

As described previously for the numerical simulations, we separate the transitions into
two groups - the epidemic and informational - and only one of the transitions groups is per-
formed in a time step. Figure 50 shows the trees for the SIS/UARU model. The baseline model
corresponds to all the factors in black. The modified model has the same factors of the baseline
model, except for the IR → IU transition, in which the correct factors are displayed in red. The
modification is interpreted as a reduction on the forgetting probability for IR nodes.

The probability of each event on the informational side of Figure 50 is multiplied by π,
which is the probability that the informational group is chosen to be updated in the current time
step. On the other hand, probabilities from the epidemic side carry a factor of 1 − π. There-
fore, for instance, the probability that an infected-aware (IA) node gets healed and becomes
susceptible-aware (SA) is of (1 − π) · µ, following the corresponding probability tree on the
epidemic group.

The transition probabilities for processes which involve contact with neighboring nodes,
namely qiU (infection of an unaware node), qiA (infection of an aware node), riU (awareness by
contacting an aware neighbor) and riA (“stifling” - lost of interest) are defined by the following
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Figure 50 – Probability trees with all the possible transitions for each state. The informational
group has an associated probability of π, whereas the epidemic group carries the
complementary probability 1− π. For the modified model, the IR → IU transition
follows the factors in red (instead of the ones in black).

Source: SILVA et al.182

set of equations:

qiU = 1−
∏
j

(1− Aij p
j
I β), (A.1)

qiA = 1−
∏
j

(1− Aij p
j
I Γβ), (A.2)

riU = 1−
∏
j

(1−Bij p
j
A γ), (A.3)

riA = 1−
∏
j

(1−Bij (p
j
A + pjR)σ) (A.4)

where Aij and Bij represent the adjacency matrices for the epidemic and informational
layers, respectively. Here, we point out that our goal is to study the stationary state of the system,
in which all probabilities do not change in time. Therefore, the time label t of all probabilities
defined here (e.g, piSU(t), r

i
U(t)) were removed.
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Based on the transition trees drawn in Fig. 50, we can write down the Markov chain
equations for the probabilities of each node i being in each of the six compartments (SU, SA,
SR, IU, IA, IR) of the model as a fixed point set of equations, in which the time dependence is
already removed:

piSU = piSU [π(1− riU) + (1− π)(1− qiU)] +

+ piSR[πα] +

+ piIU [(1− π)µ] (A.5)

piSA = piSU [πr
i
U ] +

+ piSA[π(1− riA) + (1− π)(1− qiA)] +

+ piIA[(1− π)µ] (A.6)

piSR = piSA[πr
i
A] +

+ piSR[π(1− α) + (1− π)(1− qiA)] +

+ piIR[(1− π)µ] (A.7)

piIU = piSU [(1− π)qiU ] +

+ piIU [π(1− riU)(1− κ) + (1− π)(1− µ)] +

+ piIR[πα(1− κ)] (A.8)

piIA = piSA[(1− π)qiA] +

+ piIU [π(r
i
U + (1− riU)κ)] +

+ piIA[π(1− riA) + (1− π)(1− µ)] (A.9)

piIR = piSR[(1− π)qiA] +

+ piIA[πr
i
A] +

+ piIR[π(ακ+ 1− α) + (1− π)(1− µ)] (A.10)

Equations A.6 to A.10 represent the baseline model. For the modified model, in which
the IR → IU has a modified probability, Equations A.8 and A.10 are respectively replaced by:
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piIU = piSU [(1− π)qiU ] +

+ piIU [π(1− riU)(1− κ) + (1− π)(1− µ)] +

+ piIR[πα] (A.11)

piIR = piSR[(1− π)qiA] +

+ piIA[πr
i
A] +

+ piIR[π(1− α) + (1− π)(1− µ)] (A.12)

We solve the system of 6N equations (where N is the number of nodes on the network)
by the fixed point method, in which the LHS values are updated by applying previous values at
the RHS expressions. As explained in the main text, the initial conditions are set to: piIA = 0.2,
piSU = 0.8 and piIU = piIR = piSA = piSR = 0, for i = 0, 1, ..., N − 1. The solutions of these
equations are shown in Figures 10, 11 and 12 as solid lines, where we can see a good agreement
between the Markov chain predictions and Monte Carlo simulations.

A.2 Epidemic critical point

From the Markov chain equations, we can derive the epidemic critical point between the
healthy and the endemic phases. The basic idea is to analyze the stability of the healthy solution
piI = 0, i = 1, 2, ..., N , using a perturbative approach.

We first add Equations A.8 to A.10 to obtain the evolution of the probability piI =

piIU + piIA + piIR that node i is infected:

piI = (1− π)[piI(1− µ) + piSUq
i
U +

+ (piSA + piSR)q
i
A] + πpiI (A.13)

Notice that this equation holds both for the baseline and modified models, as the infor-
mational terms add up to πpiI in any case. We now use the following approximation for the qiU
and qiA transition probabilities, which is valid when piI is sufficiently small for any node i:

qiU ≈ β
∑
j

Aijp
j
I (A.14)

qiA ≈ Γβ
∑
j

Aijp
j
I (A.15)

Rewriting Equation A.13 with these approximations yields:
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piI ≈(1− π)
{
piI(1− µ) + β [piSU+

+ Γ(piSA + piSR)]
∑
j

Aijp
j
I

}
+ πpiI (A.16)

Sending the terms with piI to LHS and leaving the terms with
∑

j Aijp
i
I on the RHS,

we end up with the following self-consistent relation for piI , which does not depend on the time
scale π:

piI ≈
β

µ
[piSU + Γ(piSA + piSR)]

∑
j

Aijp
j
I (A.17)

Equation A.17 is a matrix equation of the shape −→p = (β/µ)H−→p . The trivial solution
piI = 0 for every node i is stable on Equation A.17 if all eigenvalues of the matrix H , with
elements defined as:

Hij =[piU + Γ(piA + piR)]Aij =

=[1− (piA + piR)(1− Γ)]Aij (A.18)

Are not greater than µ/β. Noticed that we also approximated piU = piSU + piIU ≈ piSU ,
and the same for A and R compartments. Therefore, the expression for the healthy/endemic
phase transition curve is:

β

µ
=

1

Λmax(H)
(A.19)

The values of piA and piR can be found by solving the Markov chain equations for the
informational model only, with no interference of the disease.
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APPENDIX B – ANALYTICAL DERIVATIONS FOR THE INTERACTING
DISEASES MODELS

In section 3.3, we discussed two models for interacting diseases in the asymmetrical
regime, studying their dynamics in homogeneously mixed populations. This formulation pro-
vides much greater analytical power, and most of our results were based on closed-form equa-
tions or simple numerically tractable expressions. In this appendix, we show some intermediate
steps that conduct to the results we discussed in the main text.

For simplicity, and to avoid a heavily loaded notation (specially in the two last sections),
we represent by u, v and w the fixed point values of the prevalences (this is, their values in the
stationary state), and use the explicit time dependence (u(t), v(t) and w(t)) to represent the
actual dynamical variables. As a reminder: u is the prevalence of disease I (“prey”), v is the
prevalence of disease II (“predator”) and w is the prevalence of coinfection (only for model A);

B.1 Phase transition curves

The phase diagrams in Figure 19 were drawn based on analytical expressions, which can
be derived from a simple stability analysis of the dynamical system of each model. In general,
stability analysis involves the calculation of the Jacobian matrix, but here we show that this can
be done with a simple perturbative analysis, which is highly analogous to the Jacobian method,
yet offers a more intuitive perspective.

B.1.1 Model A

The phase transitions in an epidemic model are typically determined by changes in the
stability of the trivial solution (i.e., for which the prevalence is zero), commonly called the
disease-free equilibrium (DFE) in math jargon. For a model of two diseases, we have to analyze
the DFE stability of each disease. We shall start with disease I, but due to the symmetry of
Model A, the exact same procedure is valid for the DFE of disease II.

Consider the dynamical equations for u and v (from Equations 3.16 and 3.17):

u̇(t) = (1− π) [β1(1− u(t)) + (Γ1 − 1)β1(v(t)− w(t))− µ1] u(t) (B.1)

v̇(t) = π [β2(1− v(t)) + (Γ2 − 1)β2(u(t)− w(t))− µ2] v(t) (B.2)

And assume that the system is close to the DFE of disease I, i.e.:
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u(t) = 0 + ϵu(t)

v(t) = v + ϵv(t)

w(t) = 0 + ϵw(t)

(B.3)

Where ϵu, ϵv and ϵw are arbitrarily small dynamic variables, and v is the stationary
prevalence of disease II with no influence of disease I. By applying Equation B.3 in Equations
B.1 and B.2, we perform a variable change on the dynamical system. Retaining up to first order
in Equation B.1 and zeroth order in Equation B.2, we get:

ϵ̇u(t) ≃ (1− π) [β1 · (1) + (Γ1 − 1)β1 · (v)− µ1] ϵu(t) (B.4)

0 = π · [β2(1− v)− µ2] · v (B.5)

Equation B.4 is a linear differential equation for ϵu(t) (notice that it decouples from the
other variables), whose solution is ϵu(t) = ϵu(0) e

at, where a = (1−π)[β1+(Γ1−1)β1v−µ1].
It will exponentially decay in time, meaning that disease I’s DFE is stable, provided that a < 0.
By setting a = 0, we get the critical value of λ1 = β1/µ1 in which the DFE changes its stability:

(1− π)[β1 + (Γ1 − 1)β1v − µ1] = 0

µ1 · [λ1 + (Γ1 − 1)λ1v − 1] = 0

λ1[1 + (Γ1 − 1)v] = 1

λ1 = [1 + (Γ1 − 1)v]−1 (B.6)

Where we had to assume that π − 1 ̸= 0 ̸= µ1. Equation B.5, in turn, only ensures
that v is one of the stationary solutions of the simple SIS model with parameters β2 and µ2, as
stated before. In particular, it must be the stable solution. If the DFE of disease II is the stable
solution, then v = 0, and the critical value of λ1 for disease I’s DFE is λ1 = 1, which is actually
the frontier between phases P1 and P2 in Figure 19. * If disease II’s DFE is unstable, then the
stable solution is the one that solves β2(1− v)− µ2 = 0, this is (for µ2 ̸= 0):

v = 1− 1

λ2

(B.7)

And the critical λ1 for disease I’s onset is, as reported in the main text, given by:

1

λ1

= 1− (1− Γ1)

(
1− 1

λ2

)
* Indeed, this is the critical value for an SIS disease without interference of another disease.
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Which is the expression for the edge between phases P3 and P4 in figure 19. Notice that
we conveniently flipped a signal to indicate that, in the asymmetrical regime, Γ1 < 1.

We can repeat the exact same procedure for disease II, as the shape of the dynamical
equations is symmetric between the diseases. This would again result in the critical stability
condition for the DFE of disease II to be λ2 = 1 if u = 0 is the stable solution for disease I,
and:

1

λ2

= 1 + (Γ2 − 1)

(
1− 1

λ1

)
(B.8)

If u = 1− 1/λ1 is the stable solution instead. We again remark that, for Model A, none
of the stability conditions depend on the relative time scale parameter π.

B.1.2 Model B

As discussed, the same is not true for Model B, as one of the phase edges depends on
π. Let us perform the perturbative stability analysis to the DFE of disease I. The dynamical
equations (Equations 3.22 and 3.23 in the main text) are:

u̇(t) = (1− π) [β1(1− u(t)− v(t))− µ1]u(t) − παβ2u(t) v(t) (B.9)

v̇(t) = π[ β2(1− u(t)− v(t))− µ2]v(t) + παβ2u(t) v(t). (B.10)

Under the perturbative transformation around the DFE:

u(t) = 0 + ϵu(t)

v(t) = v + ϵv(t)
(B.11)

Equations B.9 (up to first order) and B.10 (up to zeroth order) become:

ϵ̇u(t) ∼= (1− π) [β1(1− v)− µ1] · ϵu(t)− παβ2ϵu(t) · (v) (B.12)

0 = π[β2(1− v)− µ2] · v + 0 (B.13)

By extracting (1 − π)µ1 from the right-hand side of Equation B.12 and using λ1 =

β1/µ2, λ2 = β2/µ2, we get:

ϵ̇u(t) ∼= (1− π)µ1

{[
β1

µ1

(1− v)− 1

]
ϵu −

πµ2

(1− π)µ1

α
β2

µ2

vϵu

}
∼= (1− π)µ1 [λ1(1− v)− 1− χαλ2v] · ϵu(t) (B.14)
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Which, again, is a linear decoupled differential equation whose solution is exponential,
which decays to zero provided that λ1(1− v)− 1− χαλ2v < 1. As a remainder, χ is the time
scale ratio between diseases II and I, defined as χ = πµ2

(1−π)µ1
(Equation 3.28 from the main text).

The critical condition for stability is such that:

λ1(1− v)− 1− χαλ2v = 0

λ1(1− v) = 1 + χαλ2v (B.15)

As in Model A, the value of v is given by the stable fixed point prevalence of disease II
(i.e., the stable solution of Equation B.13). In the DFE of disease II, v = 0 and, according to
equation B.15, the critical condition for disease 1 is λ1 = 1. This is the edge between phases P1
and P2 in Figure 19. If the DFE of disease II is unstable, the solution is v = 1− 1/λ2, and the
critical condition for disease I’s onset is given by:

λ1

(
1−

(
1− 1

λ2

))
= 1 + χαλ2

(
1− 1

λ2

)
λ1 = λ2(1 + χα(λ2 − 1)) (B.16)

Which represents the edge between phases P3 and P4 in Figure 19. Notice the explicit
dependence on the time scale χ, which is unique to this curve in the models that we studied
here. Mathematically, this dependence comes from the superinfection term, as it can be seen
in Equation B.14. More intuitively, it comes from the fact that a process from disease II can

directly affect the prevalence of disease I (in Model A, the interaction only occurs through
“indirect” ways). This essential difference between Models A and B is the key to determine
whether the relative time scale will influence the critical curves of an interacting epidemic
model.

To conclude this section, we calculate the stability condition for the DFE of disease II,
as no longer the equations are symmetric in Model B. Applying the perturbative transformation:

u(t) = u+ ϵu(t)

v(t) = 0 + ϵv(t)
(B.17)

To Equations B.9 and B.10, we get:

0 = (1− π)[β1(1− u)− µ1]u − 0 (B.18)

ϵ̇v(t) ∼= π [β2(1− u)− µ2]ϵv(t) + παβ2 · (u) · ϵv(t) (B.19)
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Extracting πµ2 from Equation B.19 and using λ2 = β2/µ2, we get the uncoupled linear
differential equation:

ϵ̇v(t) ∼= πµ2[λ2(1− u)− 1 + αλ2u]ϵu(t) (B.20)

Whose solution will exponentially decay if λ2(1 − u) − 1 + αλ2u < 0. The critical
condition is:

λ2(1− u)− 1 + αλ2u = 0

λ2[1− u+ αu] = 1

λ2 = [1 + (α− 1)u]−1 (B.21)

Which is very similar to the critical condition of disease II in model A (see Equation
B.6). For u = 0 (disease I’s DFE) being the stable solution, λ2 = 1 is the critical condition for
disease II’s DFE stability, and the expression for the edge between phases P1 and P3 in figure
19. When the stable solution for disease I is u = 1− 1/λ1, Equation B.21 reads:

1

λ2

= 1 + (α− 1)

(
1− 1

λ1

)
(B.22)

Which is the expression for the edges between phases P2 and P4 in Figure 19.

B.2 Coexistence fixed point

The stationary prevalences displayed in Figures 20 to 23 were all obtained from numer-
ical evaluation of closed-form analytical expressions. While finding the stationary prevalence
of a disease when the other is extinct is trivial, this is not as straightforward when both diseases
coexist in the long term. In this section, we show how to analytically calculate the prevalences
for the coexistence fixed points of both models. For simplicity, we shall continue to use u, v and
w to denote the fixed point values of the prevalences, and u(t), v(t) and w(t) to denote their
time-dependent counterparts.

B.2.1 Model A

We find the fixed points by setting u̇(t) = v̇(t) = ẇ(t) = 0 in the dynamical equations
3.16 to 3.18. Using the fact that u, v > 0 at the coexistence, we divide equation 3.16 by (1 −
π)µ1u, equation 3.17 by πµ2v and equation 3.18 by (1−π)µ1, obtaining the following reduced
system of equations:

0 = λ1[1− u+ (Γ1 − 1)(v − w)]− 1 (B.23)

0 = λ2[1− v + (Γ2 − 1)(u− w)]− 1 (B.24)

0 = λ1Γ1(v − w)u− w + χ[λ2Γ2(u− w)v − w] (B.25)
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in which only equation B.25 is non-linear. The disease II time scale factor χ is the same as
defined in Eq. 3.28. Using also the definition:

si = 1− 1

λi

, i = 1, 2, (B.26)

where si is the solution for a non-interacting SIS model with reproduction ratio λi, we can
further simplify equations B.23 and B.24 respectively to:

u− (Γ1 − 1)(v − w) = s1 (B.27)

v − (Γ2 − 1)(u− w) = s2, (B.28)

from which it is intuitive to see that the interaction between the diseases (represented by Γ1 and
Γ2) causes a deviation from the non-interacting solutions, s1 and s2.

At this point, we split the solution in two cases: (a) the simpler case Γ1 = 0 (i.e., when
disease II completely inhibits infection by disease I) and (b) the more general case Γ1 > 0.

B.2.1.1 Case Γ1 = 0

In this case, equation B.27 simplifies to:

u− w = s1 − v (B.29)

Combining this equation with B.28, we get a 2x2 system for v and (u − w), for which
the solution is:

v =
s2 + (Γ2 − 1)s1

Γ2

(B.30)

u− w =
s1 − s2
Γ2

(B.31)

Now using that Γ1 = 0 in Equation B.25, we obtain an expression for w in terms of
known variables:

w =
χ

1 + χ
λ2Γ2(u− w)v (B.32)

Plugging Equations B.30 and B.31 in the above equation, and then using it back to
Equation B.31, we get the full expressions for the fixed points when Γ1 = 0:

u = s1−
[
1− χ

1 + χ

s1 − s2
1− s2

][
s2 + (Γ2 − 1)s1

Γ2

]
(B.33)

v =
s2 + (Γ2 − 1)s1

Γ2

(B.34)

w =
χ

1 + χ

s1 − s2
1− s2

[
s2 + (Γ2 − 1)s1

Γ2

]
, (B.35)
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where we have also replaced λ2 = 1/(1 − s2). With some analysis of the above expressions,
noticing that χ/(1 − χ) is an increasing function of χ > 0, we can infer that u and w increase
with χ (and thus with π), whereas v does not depend on the time scale factor. This is in agree-
ment with the plots in figure 21 (a) and (b). For the most general case, we argument about the
increasing behavior of the prevalences with π in section B.3 of this Appendix.

B.2.1.2 Case Γ1 > 0

In this case, the fact that equation B.25 is quadratic on its variables cannot be avoided.
Our strategy is to use equations B.23 and B.24 to write u, v, (u−w) and (v−w) as functions of
the variable w and the model parameters. This can be used in equation B.25 to find the solution
for w and, consequently, for the other variables.

We can isolate v in equation B.28 and apply it to equation B.27, obtaining:

u = m[P12 − (Γ1 − 1)Γ2w] (B.36)

v = m[P21 − (Γ2 − 1)Γ1w], (B.37)

where we simplified the notation using the definitions

P12 = s1 + (Γ1 − 1)s2 (B.38)

P21 = s2 + (Γ2 − 1)s1 (B.39)

m = 1/[1− (Γ1 − 1)(Γ2 − 1)]. (B.40)

We can also manipulate equations B.36 and B.37 to obtain:

u− w = m[P12 − Γ1w] (B.41)

v − w = m[P21 − Γ2w] (B.42)

Now we plug the above expressions into equation B.25 which, after redistributing the
terms and dividing them by Γ1Γ2m

2 (m > 0 for asymmetrical interactions and, by hypothesis,
Γ1 > 0), becomes the quadratic equation aw2 + bw + c = 0, where:

a = λ1(Γ1 − 1)Γ2 + χλ2(Γ2 − 1)Γ1 (B.43)

b = −
{
λ1[P12 + (Γ1 − 1)P21]+

+χλ2[P21 + (Γ2 − 1)P12] +
1 + χ

m2Γ1Γ2

}
(B.44)

c =
P12P21

Γ1Γ2

(Γ1λ1 + χΓ2λ2) (B.45)
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For asymmetrical interactions, it is possible that a = 0 in the coexistence region. Thus
we write the coexistence fixed point of the system as:

w =

−b−
√
b2−4ac
2a

a ̸= 0

−c
b

a = 0
(B.46)

u = m[P12 − (Γ1 − 1)Γ2w] (B.47)

v = m[P21 − (Γ2 − 1)Γ1w] (B.48)

From the above expressions, it is difficult to extract the behavior of the prevalences with
respect to the time scale parameter χ (or π). However, in appendix B.3 we present an alternative
argument that reinforces the behavior observed in Fig. 21.

B.2.2 Model B

Model B has a much simpler procedure to find analytical expressions for the coexistence
fixed point u and v, for general values of the parameters. Knowing that u, v > 0, one can divide
eq. 3.22 by (1− π)µ1u and eq. 3.23 by πµ2v and set their left-hand sides to 0, obtaining:

0 = λ1(1− u− v)− 1− χαλ2v (B.49)

0 = λ2(1− u− v)− 1 + αλ2u (B.50)

which is a 2x2 linear system in u and v. Passing convenient terms to the left side of each
equation, one can write the system in terms of s1 and s2 as defined in B.26:

s1 = u+ ϕv (B.51)

s2 = (1− α)u+ v (B.52)

where we define ϕ as:

ϕ = 1 + αχλ2/λ1 (B.53)

The solution of this 2x2 system is:

u =
s1 − ϕs2

1 + ϕ(α− 1)
(B.54)

v =
(α− 1)s1 + s2
1 + ϕ(α− 1)

(B.55)
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B.3 Behavior of the prevalences with π

By plotting the values of the fixed point prevalences, analytically derived in the previous
section, we could analyze the behavior of such prevalences with the time scale parameter π for
models A and B (e.g. Figure 20). However, as our plots can only cover a subset of the whole
parameter space, a valid question is whether the observed increasing/decreasing behaviors with
π are valid for any set of parameters (respecting the asymmetrical interaction condition). In
this section, we analytically support the statement that the reported behaviors are robust in both
models, i.e., they remain consistent throughout the parameter space.

B.3.1 Model A

A possible approach to determine the slope of the fixed point prevalences u, v, w with
π is to differentiate the Equations B.46 to B.48 with respect to χ (notice, from the definition
in Equation 3.28, that χ is an increasing function of π). This procedure, however, can be very
tedious and provides little or no analytical insight. An alternative approach is to implicitly dif-
ferentiate the reduced equations B.23 to B.25 w.r.t. χ, obtaining more insightful expressions.

Let us define here u′ = ∂u/∂χ, v′ = ∂v/∂χ and w′ = ∂w/∂χ. Implicit differentiation
of equations B.23 to B.25 yield:

0 = −λ1u
′ + (Γ1 − 1)λ1v

′ − (Γ1 − 1)λ1w
′ (B.56)

0 = −λ2v
′ + (Γ2 − 1)λ2u

′ − (Γ2 − 1)λ2w
′ (B.57)

0 = Γ1λ1(v
′ − w′) + Γ1λ1(v − w)u′ − w′ +

[Γ2λ2(u− w)v − w] +

χ[Γ2λ2(u
′ − w′)v + Γ2λ2(u− w)v′ − w′] (B.58)

With some rearrangement, the above expressions can be written as a linear system given
by:

A
−→
x′ =

−→
b (B.59)

where
−→
x′ = (u′, v′, w′)T , and

A =

 −λ1 (Γ1 − 1)λ1 −(Γ1 − 1)λ1

(Γ2 − 1)λ2 −λ2 −(Γ2 − 1)λ2

Awu Awv Aww

 (B.60)

with
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Awu = Γ1λ1(v − w) + χΓ2λ2v (B.61)

Awv = χΓ2λ2(u− w) + Γ1λ1u (B.62)

Aww = Γ1λ1u+ χΓ2λ2v + 1 + χ (B.63)

Moreover, the vector of independent coefficients is

−→
b = (0, 0,−[Γ2λ2(u− w)v − w])T = (0, 0, bw)

T (B.64)

Using Cramer’s rule, we can obtain the χ-derivatives as functions of the model param-
eters and the prevalences:

u′ = (bwλ1λ2/ detA) (1− Γ1)Γ2 (B.65)

v′ = (bwλ1λ2/ detA) (1− Γ2)Γ1 (B.66)

w′ = (bwλ1λ2/ detA) [1− (Γ1 − 1)(Γ2 − 1)] (B.67)

Thus, in the asymmetrically interacting regime (0 ≤ Γ1 < 1 and Γ2 > 1), u′ has the
same sign as w′ (thus u and w have the same slope with χ and π), whereas v′ (v) has opposite
sign (slope). By showing that the ratio bw/ detA is positive, we could demonstrate that u and w

actually increase with π, while v decreases. Although we could not mathematically determine
the signals of bw and detA for arbitrary model parameters, we collected robust numerical ev-
idence that bw and detA are both negative in the coexistence phase (region (P4) in figure 19)
for a wide set of model parameters, and so the ratio bw/ detA is positive. This suggests that the
behaviors shown in figures 20.a) and 21 are robust and should remain for the whole coexistence
region.

B.3.2 Model B

For model B, one can extract the dependence of the prevalences with π (or χ) directly
from their analytical expressions (Equations B.54 and B.55), noticing that ϕ = 1 + αχλ2/λ1

is an increasing function of χ. The prevalence v of disease II, as in equation B.55, is clearly
a decreasing function of ϕ for α > 1 (which is the asymmetrically interacting case). From
equation B.54, we can also directly infer that the prevalence u of disease I also decreases with
ϕ for s2 > 0 (or equivalently, λ2 ≥ 1). However, the coexistence phase (region (P4)) also
comprehends a region at which λ2 < 1, for which we should check the behavior with ϕ more
carefully. Taking the partial derivative of u with respect to ϕ, we get:

∂u

∂ϕ
=

−s2 [1 + ϕ(α− 1)]− (s1 − ϕs2)(α− 1)

(1 + ϕ(α− 1)2)
(B.68)
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From the above expression, the condition ∂u
∂ϕ

< 0 can be simplified as:

s2 + (α− 1)s1 > 0, (B.69)

which is equivalent to the condition that λ2 is above its critical value for coexistence, expressed
by equation 3.26. This means that ∂u

∂ϕ
< 0 in the whole coexistence region and, therefore, both

prevalences v and u are decreasing functions of ϕ, χ and π. This is consistent with the observed
behaviors in figures 20.b) and 22.
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