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ABSTRACT

GUESSI, L. H. Linear and non-linear transport properties of quantum-dot
devices. 2021. 118p. Thesis (Doctor in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2021.

This thesis investigates (i) the correlation effects in the emergence of bound states in
the continuum (BIC); and (ii) non-equilibrium effects of the asymmetric two-channel
Kondo problem. BICs are discrete states embedded in the continuum. They have localized
wave-function and are originated by the quantum interference effects. In the first project
of this thesis, we investigate the correlation effects in the emergence of a BIC in a two
identical quantum dot device coupled to a quantum wire. This device was modeled by the
two-impurity Anderson Hamiltonian and diagonalized via the Numerical Renormalization
Group method. Given the symmetry between the quantum dots, the system was projected
on the bonding and antibonding orbital representation resulting from the symmetric and
antisymmetric combinations of the quantum dots, respectively. In the non-interacting
regime, the antibonding orbital is a Friedrich-Wintgen BIC. As the Coulomb interaction
grows, the antibonding orbital is indirectly coupled to the continuum via spin-spin and
isospin-isospin interactions with the bonding orbital. In addition, at zero-temperature,
the Coulomb interaction triggers a quantum phase transition between a magnetic and a
non-magnetic phase. The magnetic phase is associated to the emergence of a bound spin
state in the continuum (spin-BIC). The phase transition results from competition between
a singlet isospin state, formed by the isospin-isospin interaction, and a triplet spin state,
formed by the spin-spin interaction, between the two orbitals. The two phases are due to
the conservation of the spin of the antibonding orbital. At low temperature, the spin-BIC
interacts ferromagnetically with the conduction band, and the interaction renormalizes
to zero as T → 0. In the second project of this thesis, motivated by a recent experiment
[Z. Iftikhar et al., Nature 526, 233 (2015)], we investigate the transport properties of
a macroscopic metallic island coupled to two leads. In the low-energy regime, only two
charging states of the island are energetically accessible, which mimic a pseudospin-1/2.
The charge fluctuations on the island emulate a spin-flip mechanism. Therefore, the low-
energy physics of this device is well described by the anisotropic two-channel Kondo model.
To explore the non-linear electronic transport, the system is driven out of equilibrium by
the sudden application of a bias voltage between the leads. Time-dependent Density Matrix
Renormalization Group computations follow the time evolution of the electrical current for
times longer than the transient regime, although not long enough to reach the steady state.
In the symmetric-coupling regime, the time-dependent current and differential conductance
measurements show the universal behavior of the two-channel Kondo effect. In this limit,
the differential conductance scales with the square root of the Kondo temperature and vary
with the square of the bias voltage. In the presence of asymmetry, the transient behavior



can be explained via energy-time uncertainty principle. As a function of the bias voltage,
the conductance displays the expected crossover from non-Fermi liquid to Fermi-liquid
behavior.

Keywords: Bound state in the continuum. Kondo effect. Two channel Kondo effect.
Numerical renormalization group. Density matrix renormalization group.



RESUMO

GUESSI, L. H. Propriedades de transporte linear e não linear em dispositivos
de ponto quântico. 2021. 118p. Tese (Doutorado em Ciências) - Instituto de Física de
São Carlos, Universidade de São Paulo, São Carlos, 2021.

Esta tese investiga (i) os efeitos de forte correlação eletrônica na emergência de estados
ligado no contínuo (BICs - bound states in the continuum); e (ii) os efeitos de não-
equilíbrio no problema Kondo anisotrópico de dois canais. BICs são estados discretos
embebidos no contínuo. Eles possuem função de onda localizada e são originados por
efeito de interferência quântica. No primeiro projeto desta tese, investigamos os efeitos de
correlação eletrônica na emergência de um BIC em um dispositivo de dois pontos quânticos
idênticos acoplados a um fio quântico. Esse dispositivo foi modelado pelo Hamiltoniano
de Anderson de duas impurezas e diagonalizado pelo grupo de Renormalização Numérico.
Dada a simetria entre os pontos quânticos, o sistema foi projetado na representação de
orbitais ligante e antiligante obtida pela combinação simétrica e antissimétrica dos pontos
quânticos, respectivamente. No regime não interagente, o orbital antiligante é um BIC de
Friedrich-Wintgen. Conforme a interação de Coulomb cresce, o orbital antiligante se acopla
indiretamente com o contínuo, via interação de spin-spin e isospin-isospin, com o orbital
ligante. Além disso, à temperatura zero, o aumento da interação de Coulomb desencadeia
uma transição de fase quântica entre uma fase magnética e outra não magnética, sendo
o magnetismo resultado da emergência de um estado ligado no contínuo de um único
spin (spin-BIC). A transição de fase se deve a competição entre um estado singleto de
isospin, formado pela interação isospin-isospin, e um estado tripleto de spin, formado pela
interação spin-spin, entre os orbitais. As duas fases refletem a conservação do spin do orbital
antiligante. No limite de baixas temperaturas, o spin-BIC interage ferromagneticamente
com a banda de condução, mas a interação é renormalizada para zero para T → 0.
No segundo projeto, motivado por um experimento recente [Z. Iftikhar et al., Nature
526, 233 (2015)], estudamos o transporte eletrônico em uma ilha metálica macroscópica
acoplada a dois terminais. No regime de baixas temperaturas, dois estados de carga da
ilha são energeticamente acessíveis, que emulam um pseudo spin-1/2. A flutuação de carga
induzida pela transferência de elétrons entre os terminais e a ilha simula um mecanismo
de spin-flip. A física de baixas energias desse dispositivo é bem descrita pelo modelo
Kondo anisotrópico de dois canais. Para explorar o transporte eletrônico não-linear, o
sistema é tirado do equilíbrio pela aplicação repentina de uma diferença de potencial entre
os terminais. Cálculos de Grupo de Renormalização da Matriz da Densidade permitem
atingir tempos longos o suficiente para descrever o regime de transiente, mas não longo o
suficiente para atingir o estado estacionário. Medidas de corrente e condutância diferencial
dependente do tempo revelaram um comportamento universal do efeito Kondo de dois



canais. A condutância diferencial escala com a raiz quadrada da temperatura Kondo e
varia com o quadrado da diferença de potencial aplicada. Na presença de assimetria de
carga, o regime transiente pode ser explicado pela relação de incerteza energia-tempo. A
condutância diferencial em função da diferença de potencial mostra um crossover de uma
fase de não-líquido de Fermi para uma de líquido de Fermi.

Palavras-chave: Estado ligado no contínuo. Efeito Kondo. Efeito Kondo de dois canais.
Grupo de renormalização numérico. Grupo de renormalização da matrix da densidade.
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1 INTRODUCTION

The development of nanotechnology has taken semiconductor nanostructures to a
level of controllability that allows the experimental materialization of condensed-matter
models. For example, Anderson3 and Kondo4 models precisely describe the low-energy
physics of a single-electron transistor (SET),5–7 constituted by a central region coupled
to metallic terminals. More complex semiconductor nanostructures can probe exotic
condensed matter phenomena.1,8–10 The electronic transport properties of a single-electron
transistor count the number of electrons that leave the source, cross a central region and
reach the drain. Despite the apparent simplicity of the problem, the experimental and
theoretical results cannot be trivially understood. The challenge comes from quantum
mechanical effects, i.e., wave interference and the electron-electron interaction.

Interference effects in a SET-like device are usually explained in the framework of
Fano theory, which describes the interference among different tunneling paths through a
discrete set of states and a continuum.11,12 Depending on the configuration of the system,
the electronic transport can be enhanced or suppressed, due to constructive or destructive
interference, respectively. Other non-trivial phenomena are consequences of the electron-
electron interaction. At first glance, Coulomb blockade physics seems to provide classical
description of the transport properties. However, it fails when higher-order tunneling
processes become relevant at low temperature. In special, spin-flip scattering enhances the
electronical conductance from near zero to nearly ballistic transport across the central
region of a SET, due to the Kondo effect.

In this thesis, we focus on these two phenomena. First, we investigate the effect of
the electron-electron interaction upon the emergence of a bound state in the continuum,
a physical effect due to interference.13,14 Second, we focus on the electronic transport
properties of a hybrid metal-semiconductor single-electron transistor, which accommodates
the charge-degenerate two channel Kondo effect.1,15

1.1 Bound state in the continuum

Basic quantum mechanic textbooks share the common wisdom that free particle
eigenvalues belong to a continuous spectrum, while bound states form discrete sets.16–18

Bound state are usually illustrated by the example of a particle in a box. A third class
of states comes with partial confinement of an electron, known as resonant states. In
this case, the partial electronic confinement acquire a finite lifetime, well described by
the Fermi golden rule. Finally, there is a fourth class of state, called bound states in
the continuum (BICs), a term that describes the electronic confinement of particles with
kinetic energy above the continuum threshold. Even though the last class is less discussed,
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recent quantum mechanics textbooks have started to briefly mention it.19

In 1929, only three years after the development of the Schrödinger equation, von
Newmann and Wigner proved that the wave interference can confine particles with energy
above the continuum threshold.20 Via the potential engineering approach, von Newmann
and Wigner found that a damped oscillatory potential can bind a wave function with
energy embedded in the continuous, i.e., a bound state in the continuum. Despite purely
mathematical, this result hallmarks the search for physical systems that hold a BIC.
Motivated by evidences of atomic and molecular systems supporting a BIC, Stillinger and
Herrick revisited and generalized the von Newmann and Wigner approach for different
classes of potential. In addition, via variational approach, they found a BIC in a two-
electron atom.21 Thereafter, they also independently proposed an epitaxial heterostructure
superlattice that would hold a BIC.22,23 Despite their failed attempt, Capasso et al. has been
the first to experimentally investigate the existence of BICs in heterostructure superlattice.
In fact, Capasso et al. observed a bound state. However, it was a positive-energy defect
state with energy in the bandgap.24

A more practical platform to engineer BICs is constituted by multiple resonances
coupled by conduction channels. The main advantage of this platform is the tunability of
the physical parameters of the system. Exploring such idea, C. W. Hsu et al.14 have divided
the BICs engineered by the perfect interference of resonances into two classes Fabry-Pérot
BICs and Friedrich-Wintgen BICs. The former class covers the states generated by the
interference of two or more resonances far apart. Due to the perfect reflection among
them, the resonances trap waves between them and generate a bound state. The second
class also emerges due to wave interference. However, the BIC is now due to a decoupled
resonance. Specifically, as the resonances are coupled at the same spot of the continuum,
the interference between them broads some resonances and squeezes other. In this platform,
BICs emerge for the set of parameters that give rise to completely destructive interference
among them.

In mode details, Friedrich-Wintgen BICs can be explained following Ref.13 In that
paper, Friedrich and Wintgen investigates the interference of two resonances spatially
coupled to the continuum at the same spot. Fig. 1 shows their main results. In Panel (a),
the effective energy of the resonances as a function of the energy difference displays an
avoided crossing induces by their coupling via continuum. In addition, Panel (b) shows
that while one of the resonance doubles its original breadth, the width of the second one
goes to zero at the symmetric point and, hence, defines a BIC.

BICs are a general wave phenomenon that are not restricted to quantum mechanics.
They are also observed in classical wave system, such as water waves,25 acoustic waves26

and electromagnetic waves.27 The perfect destructive interference among scattered waves
usually happens at the symmetric points. This is the case described by Fabry-Pérot and
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Figure 1 – Panel (a): Effective energies of two interfering resonances as a function of the
energy separation E1 − E2 of the uncoupled resonances. Panel (b): Effective
resonance width of two interfering resonances as a function of the energy
separation E1 − E2.
Source: By the author.

Friedrich-Wintgen BICs. In other words, when both resonances are identical, i.e., the
system preserves reflection or rotational symmetry, the scattered waves interfere perfectly
with each other in such a way to confine waves between them. Out of the symmetric point,
BICs leaks to the continuum. These states are also known as symmetry-protected BICs.
However, in more complex systems, multiple sources of scattering waves can also generates
accidental BICs out of the symmetric point.28,29 Different from the symmetric-protect
BIC, accidental BICs cannot be predicted by simple analyzes.

By definition, bound state are zero-width states, with integrable square wave
function and infinite lifetime. Of course, BICs must follow the same definition too, but
with energy above the continuum threshold. In this thesis, BICs follow this standard
definition. Before processeding, we emphasize that certain authors diverge from the previous
definition. Using S-matrix approach, A. K. Jain and C. S. Shastry30 were the first to
highlight that the BIC found by von Newmann and Wigner20 does not have zero width.
Non-zero width BICs have recently been proposed in multi quantum impurity platforms
adsorbed in a graphene sheet.31,32 In these works, the authors investigate the destructive
interference between two impurities and, fine-tuning the parameters of the model, they
verify the formation of a non-zero width BIC. Another non-zero width BICs are known as
quasi-BIC. These states slightly diverges from the standard definition and they appear as
very narrow resonant states.33 The notion of quasi-BICs bring us close to the reality, since
it is almost impossible to achieve the perfect conditions for the emergence of a BIC in
experiments.

In the last decade, the number of works on BICs has increased exponentially
after experimental detection and the applicability of these states in quantum optics and
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nanophotonics.33,34 In both fields, these states are usually known as dark states. Due to
their high-quality factor, BICs became a trend topic in nanophotonics35 and they have
been applied in engineering of high intense lasers.36 These states have also been applied to
the engineering of sensors and filters.14

BICs have never been experimentally detected in electronic system, such as semi-
conductor nanostructures. Because of that, our discussion focus only on theoretical works.
Seridonio’s group31,32,37–39 and Orellana’s group40–42 have investigated the emergence of
BICs in quantum dot and quantum impurity devices. Some of their works also verify the
existence of Majorana bound state in the continuum37,39,43 in a quantum dot device couple
to a Kitaev chain. Even though both groups provide insightful discussions about BICs
in quantum impurity and quantum dot devices, and discuss a wide range of applications,
their results are valid only in the non-interacting regime or in the framework of mean-field
approach. To our knowledge, Zitko et al. have been the first to verify the existence of a
BIC properly considering the Coulomb interaction.44 Specifically, the authors investigate
the electronic properties of a parallel double quantum dot device via Numerical Renormal-
ization Group. As their work has focused on the comparison between the Bethe Anzatz
approach and NRG results, they superficially mentioned the existence of a BIC.

Motivated by the recent studies of BICs in quantum dot device and the inaccuracy
of the description of the strong correlation effects in these setups, this thesis investigates
the influence of strong correlation upon the emergence of BIC. To accomplish this goal, we
study the electronic properties of two identical quantum dots coupled to a quantum wire.
At low-energy, the electronic properties of the experimental setup is precisely described
by the two-impurity Anderson model (TIAM). This is the simplest and most suitable
platform to support this study because the TIAM accommodates a Friedrich-Wintgen
BIC in the non-interacing regime and allows gradual inclusion of the intra-dot Coulomb
interaction.

Exploring inversion symmetry between the quantum-dot orbitals, we rewrite the
TIAM Hamiltonian in terms of the bonding and antibonding orbitals defined by the
symmetric and anti-symmetric linear combinations of the dots. To monitor the effects of
electronic correlation, we calculate the bonding and antibonding spectral densities, which
explicitly provides information about the spectrum and lifetimes. In addition, we discuss
the magnetic susceptibility of these orbitals. Both quantities were accurately calculated
via Numerical Renormalization Group.

Combining the numerical results with Hamiltonian analyses, we have observed, via
spectral density calculation that the antibonding orbital, which is a Friedrich-Wintgen BIC
in the non-interacting regime, gradually broaden as the Coulomb interaction increases. The
antibonding spectral density also displays a threshold behavior that follows the Nozières-
De Dominicis and Doniach-Sunjic power laws in the weak and strong coupling regime,
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respectively. This mechanism shows us that the ground state of the TIAM Hamiltonian is
composed by an isolated component of the antibonding orbital. At zero temperature, the
magnetic susceptibility as a function of the Coulomb interaction shows a quantum phase
transition from a non-magnetic to a magnetic phase. The phase transition is triggered by
the unexpected emergence of a bound spin state in the continuum, which we just call it as
spin-BIC. Different from the ordinary BICs, that emerge as a result of interference, the
spin-BIC emerges due to correlation.

1.2 Charge-degenerate two channel Kondo problem

Quantum many-body system are fascinating condensed matter problems. As a
result of the collective behavior, quasi-particle excitation originates unexpected physical
properties entirely different from the initial conditions. For example, certain systems can
display phase transition,45,46 fractional excitations47–50 and non-Fermi liquid behavior.51,52

The Kondo effect is a well-known example of nontrivil many-body system, which has
attracted the attention of many scientists. For historical reasons, the Kondo model is offen
associated with magnetic impurities. In 1964, J. Kondo showed that, at low temperatures,
the spin-flip scattering of the itinerant electron by the magnetic impurities enhances
the electronical resistivity of metals.4,53 Straightforward generalizations of this model
allowed investigation of phase transitions,54,55 fractional excitations56,57 and non-Fermi
liquid behavior.51,52 For example, in multi-impurity problems, the competition between
the antiferromagnetic coupling among the local moments and Kondo screening generates
a quantum phase transition between a magnetic and non-magnetic phase. In addition, the
multiple impurity models also show non-Fermi liquid behavior if the Kondo interaction
does not fully screen the total local moment. Another example is the multi-channel Kondo
model,51,52 which displays non-trivial physics due to the competition between independent
channels in the screening of a local moment. In particular, the two-channel Kondo model
displays a quantum phase transition from a Fermi liquid to non-Fermi liquid phase, driven
by asymmetry between the couplings, and fractional excitation associated with Majorana
quasi-particles.56–58

The development nanostructure fabrication has allowed the realization of many-
body physics in a well-controllable platform. One example is the observation of the Kondo
effect in quantum dot devices.5,6, 59 In these setups, the electronic confinement in the
central region induces the formation of a local moment due to the strong electron-electron
interaction. As the local moment is coupled to the continuum, at low temperatures, this
experimental setup reproduces the Kondo physics originally found in dilute magnetic alloys.
The only difference is that in a single-electron transistor, the Kondo effect enhances rather
than opposing electron transport through the dot. In 1998, Goldhaber-Gordon et al.5

and Cronenwett et al.59 experimentally encountered the Kondo physics in a quantum-dot



28

device. Two years later, van der Wiel et al. achieved unitary conductance regime.6 These
are some examples that explain why the Kondo physics is still being investigated, until
today.60

As a next step, Goldhaber-Gordon generalized the single electron transistor to
display two-channel Kondo physics. Although a single electron transistor is composed
by two conduction channels, the transport between them is coherent, which makes the
system act as a single channel. To overcome this limitation, Oreg and Goldhaber-Gordon
theoretically proposed an experimental setup composed by a standard single-electron
transistor plus a huge quantum dot, in which the second dot emulates an independent
second lead. In this setup, coherent transport between the leads and the dots is barred by
the finite energy necessary to change the large dot.61 Five years latter, R. M. Potok et al.
experimentally implemented the two-channel Kondo model,8 they offered data confirming
the occurence of two channel Kondo effect and found the anomalous power-law

√
T for the

differential conductance. Following the same idea, in 2015, A. J. Keller et al. reproduce the
crossover and the universal behavior for the two channel Kondo effect in a semiconductor
nanostructure.9

The Kondo effect arises when two degenerate quantum states are coupled to a
continuum.52 For example, the Kondo physics can explain the enhancement of electronic
transport in a superconducting quantum dot,62 in a spinless quantum dot device,63,64 in a
carbon nanotubes quantum dot65 and the screening of the charging degrees of freedom
on a metallic island.15 In the last setup, the degenerate states are two charge states of
a metallic island. At low temperature, the charge degrees of freedom of the island is
restricted to N + 1 and N electrons, where N is the number of electrons. These two states
mimics a pseudospin-1/2 and charge fluctuation emulates a spin-flip mechanism. Based
this reasoning on, Matveev has been able to describe the low-energy of this system by the
anisotropic Kondo Hamiltonian.15,66–68 The device is known as the charge-degenerate two
channel Kondo Hamiltonian.

Following Matveev’s ideas,15,68 Iftikhar et al. fabricated a hybrid metal-semiconductor
single-electron transistor that exhibits the charge-degenerate two-channel1 and three-
channel10 Kondo effect. The setup comprises a huge metallic island coupled to three large
electrodes through quantum point contacts. In the Fig.2, the quantum point contacts act as
source and drain (QPC1,2); the third one (QPCp) is used to probe the in situ conductance
in the two channel Kondo regime. The red lines represent the spin-polarized edge channels
in an integer quantum-Hall regime induced by a magnetic field, B ≈ 3.9T. To reach the
three channel Kondo regime, the coupling at QPCp becomes comparable to the ones at
QPC1,2. A gate potential Vg tunes the charging energy of the metallic island to reach the
charge-degenerate point.

In Refs.1 and,10 the authors have verified the emergence of two and three channel
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Figure 2 – Experimental setup of a hybrid metal-semiconductor single-electron transistor.
The central metallic island is coupled with three large electrodes through
quantum point contacts. While two quantum point contacts act as a source and
drain (QPC1,2), the third one (QPCp) is used to probe the in situ conductance of
the device. A gate potential Vg tunes the charging energy of the metallic island.
The red lines represent a spin-polarized edge channels of an integer quantum
Hall effect induced by a magnetic field B ≈ 3.9T. The inset schematically
displays the single-electron transistor.
Source: Adapted from IFTIKHAR. et al.1

Kondo phases via linear-conductance measurement as a function of the temperature.
Specifically, they have observed the characteristic amplitudes G2K = 0.5e2/h and G3K ≈
0.691e2/h and the universal behavior of the linear conductance as a function of temperature
for the two-channel and three-channel Kondo phases, respectively. In addition, for the
two-channel Kondo experiment, they observed the crossover from the two-channel to
the single-channel Kondo phase and, in the three-channel case, the crossover from a
three-channel to a single-channel or a two channel-Kondo phase in Ref.10

In Ref.,69 Mitchell and co-authors studied the nonuniversal behavior of the linear
conductance as a function of the temperature measured by Iftikhar et al.1 Via Numerical
Renormalization Group, they have been able to reproduce the experimental conductance
curves and compute the difference between the universal and nonuniversal conductances.
The universal conductance was calculated for T � T2CK � D, where T2CK is the two
channel Kondo temperature and D is the bandwidth. In addition, the authors have briefly
discussed the non-equilibrium conductance, on the basis of the Emery-Kivelson solution.
In another work, van Dalum and Fritz, in colaboration with Mitchell, have explored in
more detail the electrical and heat transport properties for the Emery-Kivelson solution.70
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In the context of Kondo physics, Emery-Kivelson solution does not precisely
describe the charge-degenerate two channel Kondo effect. To obtain the quadratic form of
the Hamiltonian, it must set by hand an azimutal coupling between the pseudospin-1/2
and the leads. The Emery-Kivelson solution was studied in the 1990s by Shiller and
Hershfield.71–73 On the basis of this solution, they calculated the low-temperature and
low-voltage scaling laws for the differential conductance. In a technical work, Shiller
and Hershfield in colaboration with Majumdar have emphasized that including terms
previously not considered in the Emery-Kivelson solution changes the low-temperature
and low-voltage scaling coefficient, indicating nonuniversal behavior. However, they point
our that in a wideband regime the universal behavior is restored.74

Motivated by the recent experiment of Iftikhar et al.,1 we investigate the non-
equilibrium properties of the charge-degenerate two channel Kondo (CD-2CK) model.
Specifically, we focus on the time-dependent current and differential conductance. This
part of the project analyzes the universal and nonuniversal behavior of the differential
conductance. To go beyond the Emery-Kivelson solution, we employ the time-dependent
Density Matrix Renormalization Group (tDMRG),75,76 which precisely describes the
dynamic properties of the Kondo effect with relatively small computation effort.77,78 The
system is driven out of equilibrium by the sudden application of a bias voltage between
the source and drain. Based on tDMRG, we are able to follow the time evolution for times
longer than the transient regime, although not long enough to reach the steady state.

Throughout the development of this project, we noticed that the problem is more
complex than we had initially expected. Because of that, we have not been able to conclude
it, yet. Up to now, our numerical results show that: in the two-channel Kondo phase, the
differential conductance shows a universal as a function of the bias, when the differential
conductance is scaled by

√
T2CK . For finite gate potential applied to the island, we show

that the transient regime can be explained by the energy-time uncertainty principle. As
the bias voltage is increased, the differential conductance shows the expected crossover
from Fermi-liquid to non-Fermi-liquid behavior.

1.3 Outline

We organize this thesis as following. Chap. 2 discusses the electronic transport
properties of semiconductor nanostructure in the framework of model Hamiltonians. First,
we summarize the main features of the Kondo model and its straightforward generalizations.
Thereafter, we focus on the electronic properties of a single electron transistor and discuss
the Coulomb blockade. Finally, we focus on two SET-like devices, one composed by a tiny
central region, such as a quantum dot, and another given by a huge metallic island. In the
low-energy regime, these experimental devices are described by the Anderson and Kondo
Hamiltonians, respectively.
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To include all correlation effects into the Anderson and Kondo Hamiltonian, we have
carried out NRG and DMRG computations, respectively. In Chap. 3 we present technical
details on the Numerical Renormalization Group and Density Matrix Renormalization
Group methods. These two approaches are necessary to compute the equilibrium and
non-equilibrium properties of the two models, respectively.

Chap. 4 summarizes the main results concerning correlation effects in the emergence
of a bound state in the continuum. Briefly, we model a two quantum dot device coupled
to a quantum wire by a two-impurity Anderson Hamiltonian. Thereafter, a fixed point
analysis of the model provides an overview of the physical behavior. The numerical results
show us that the intra-dot coulomb interaction indirectly connects the BIC with the
continuum and induces the emergence of a bound spin state in the continuum.

In Chap. 5, we summarize the non-equilibrium transport properties of the charge-
degenerate two channel Kondo model. Our numerical results focus on the transient regime
induced by the sudden application of a bias voltage between the leads, and the physical
analysis is guided by the energy-time uncertainty principle.

Finally, in Chap. 6 we summarize the main conclusions of the two projects.
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2 KONDO EFFECT IN NANODEVICES

The electrical resistivity of pure metals decreases with decreasing temperature.
This effect is a result of the suppression of the crystal lattice vibration caused by the
temperature. However, in the 1930s, measurements showed that, for temperature lower
than a special temperature, nowadays known as Kondo temperature (TK), the electrical
resistivity increases logarithmically.79 This anomalous behavior, associated with magnetic
impurities,80 was only explained 30 years after its first detection. Based on perturbation
theory, J. Kondo showed that the spin-flip scattering induced by magnetic impurity
logarithmically increases the electrical resistivity.4

The complete theoretical description of the Kondo effect was accomplished via
Numerical Renormalization Group by Wilson in 1975.81 Until today, this method stands as
a powerful tool that precisely describes dynamics and thermodynamics properties for the
whole range of temperatures and physical parameters. Thereafter, the Kondo Hamiltonian
was also solved in the framework of other methods, such as the Bethe Ansatz,82 conformal
field theory,83 bosonization,84,85 Fermi liquid theory86 and Density Matrix Renormalization
Group77,78 (DMRG). The two projects developed in this thesis focus on the NRG and the
DMRG approaches. More details about them are presented in Chap. 3.

Even though it is a well-known phenomenon, which has been over 60 years, the
Kondo effect continues instigating physicist.60 Nowadays, with the development of nan-
otechnology, the Kondo physics can be probed on isolated adatoms in metallic surfaces
via Scanning Tunneling Microscope (STM).87 Although the STM has spatial resolution
and probes the density of state, this tool does not tune, as far as I know, the atomic
properties of the impurities. By contrast, semiconductor quantum dots offer a flexible and
well controlled platform. The high controllability of the experimental parameters allows
direct correspondence between condensed matter Hamiltonians and experiments.5,6

To connect experiment with theory, this chapter is organized as follows. Sec. 2.1
presents the anisotropic Kondo Hamiltonian. It also introduces the idea of multi-impurity
and multi-channel Kondo Hamiltonian via straightforward generalization. Thereafter,
Sec. 2.2 specifies the characteristic energies of a single electron transistor (SET) of any
size and geometric shape. In Sec. 2.3 the transport properties of a SET device is described
by the Coulomb blockade concept. Finally, in Secs. 2.4 and 2.5 discuss microscopic models
used to theoretically investigate the electronic properties of a quantum dot and a metallic
island in the SET geometry.



34

2.1 Kondo model

In its simplest form, the Kondo effect deals with the spin-flip scattering between
the conduction electrons and a local magnetic moment. The Kondo physics is captured by

HK =
∑
kσ

εkc
†
kσckσ + J⊥

2
∑
kk′

(
S+c†k↓ck′↑ + S−c†k↑ck′↓

)
+ Jz

2
∑
kk′Sz

(
c†k↑ck′↑ − c

†
k↓ck′↓

)
,(2.1)

where the first term describes a non-interacting, half-filled conduction band with semi-
bandwidth D and linear dispersion εk. The second and third terms describe the perpen-
dicular and parallel component of the spin-spin interaction between the magnetic moment
and the free electrons, respectively. For spin-1/2, S = (S+, S−, Sz) is given by the Pauli
matrices. Spin-flip scattering dynamically generates a low-energy scale, known as Kondo
temperature (TK), that depends on the coupling amplitudes J⊥, Jz and the density of
state of the metallic host.

Specifically, the Kondo Hamiltonian describes the spin-flip scattering of a conduction
electron with momentum k and spin σ to a new state with momentum k′ and spin σ̄,
where σ̄ = −σ. This mechanism changes the electronic properties of the system only if
the local moment flips at a rate that distinguishes it from the conduction electrons. For
example, at high-temperatures, T � TK , the spin-degrees of freedom play no role because
the rate of flipping is much smaller than the thermal energy. For T � TK , the coupling
energy exponentially increases due to the renormalization of J⊥ and Jz. In this regime,
the average time between spin flips is smaller than the characteristic thermal time ~/kBT .
In other words, the spin flips so fast that the conduction electrons cannot follow it. As
a result, the conduction electrons surround the local moment and screen it, due to the
time-delay in the scattering process. This phenomenon originates the Kondo cloud with
correlation length ξK = ~vF/kBTK and a resonant peak with semi-width kBTK pinned at
the Fermi level.

|J⊥
|ρ

2Jzρ

fm Kondo afm Kondo

Figure 3 – Sketch of the scaling trajectories for the anisotropic Kondo model obtained via
Poor man’s scaling.
Source: By the author.

Poor man’s scaling explains the renormalization of the spin-flip scattering terms in
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the Kondo Hamiltonian. Integrating out the high-energy states of the conduction band,
Anderson verified that this approach conserves the conventional form of the Hamiltonian
and only corrects the coupling parameters J⊥ and Jz.88 The renormalization of the
coupling parameters are displayed in the flow diagram sketched in Fig. 3. For J < 0, i.e.,
ferromagnetic coupling, the left side of the diagram shows that the coupling parameter
flows to zero at low-energy. The local moment decouples from the continuum. In the
opposite regime, the right side of the diagram shows that the antiferromagnetic coupling
(J > 0) diverges. The exponential growth of the coupling parameter is the key mechanism
to explain the Kondo screening.

The Kondo Hamiltonian can be straightforwardly generalized by substituting
the local moment with spin-1/2 to another with spin-N/2 and adding M independent
conduction channels. As each channel is capable of fully screening a local moment with
spin-1/2, three different regimes are identified. For M = N , the total local magnetic
moment is exactly screened by the conduction electrons. In particular, Eq. 2.1 illustrates
the case N = M = 1. The under-screnned regime occurs for N > M . As the continuum
can not fully screen the total magnetization of the system, there will always be a residual
magnetic moment at low temperature. Finally, the over-screened case is achieved by
M > N . The latter generates an unstable phase when the M -channels equally screen
the local moment. Even though the magnetic moment is fully screened, the system keeps
scattering electrons at zero energy.

Two local moments with spin-1/2 and one channel reproduces the under-screened
case when both spins couple ferromagnetically. For this configuration, the Kondo Hamilto-
nian is rewritten as

H2IK =
∑
kσ

εkc
†
kσckσ +

∑
i=1,2

JiSi · s+ IS1 · S2, (2.2)

where Si is the spin operator of the i-th local moment, for i = 1, 2, and s is the spin-
operator of the conduction electrons. Despite being defined differently, the two first terms
of H2IK have the same structure as Eq. 2.1 for J⊥ = Jz. In addition, the third term on the
right-hand side describes the direct spin-spin interaction between S1 and S2. For I > 0,
the direct coupling is antiferromagnetic and it favors the formation of a singlet state. Since
there is no magnetic moment, the Kondo effect is suppressed. In the opposite regime, i.e.,
I < 0, the ferromagnetic coupling recombines the local moments in a triplet state. In this
regime, the conduction electrons screen only half of the local moment of the triplet state.
The competition between the antiferromagnetic coupling between the local moments and
the Kondo screening triggers a quantum phase transition (QPT). This model has been
studied in multiple quantum dots devices and impurity systems. More details about this
QPT is in Chap. 4, in the framework of two-impurity Anderson model.

The two-channel Kondo model is the simplest configuration that describes the
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over-screened regime. Mathematically, the Hamiltonian is given by

H2CK =
∑

kσ,j=1,2
εkc
†
jkσcjkσ +

∑
j=1,2

Jjsj(0) · S. (2.3)

For T � TK , two non-coherent conduction channels compete to screen the localized spin-
1/2. This Hamiltonian was first proposed in the 80s by Nozières and Blandin in the context
of magnetic impurities.51,52 In special, the two-channel Kondo model describes a non-Fermi
liquid phase and a quantum critical point when the two channels compete in equal footing
to screen the local moment. In the presence of a coupling asymmetry or magnetic field,
the system crosses over to a Fermi liquid phase described by the single-channel Kondo
effect or a non-Kondo phase, respectively.

2.2 Single electron transistor

A single electron transistor, or just SET, is a nanodevice that controls the electron
flow through a central region. Fig. 4 sketches the device composed by a metallic island
of any size and geometric shape coupled to three electrodes. From the two electrodes,
electrons tunnel in and out of the central region. The electrodes act as a source and
drain. The electron flow between them is modulated by a potential barrier and an applied
bias voltage (eV = VL − VR). In addition, a gate potential (Vg) controls the electron flow
between the leads. Specifically, Vg shifts the density of states and controls the charging
energy of the island. The high controllability of such device makes it a suitable platform
to reproduce condensed matter models, such as the Kondo and Anderson model.

Island

DrainSource

Gate

VRVL

Vg

Figure 4 – Sketch of a single electron transistor. The irregular blue circle illustrates a
metallic island, of any size and geometry. The two green semi-ellipses describe
the source and drain, while the green rectangle represents the gate voltage Vg.
Source: By the author.

Charge quantization and the strong electron-electron interaction in the central
region controls the electronic transport in the SET. These two physical phenomena
originates the Coulomb blockade physics that, at first glance, explains the classical
electronic transport in a SET. However, according to the size and geometry of the island
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and the temperature of the experimental setup, a variety of quantum effects emerges,
and a microscopic theory must be used. Specifically, in this thesis we use the Anderson
Hamiltonian to investigate the electronic properties of a quantum dot device and the
Kondo Hamiltonian to describe the transport properties of a huge metallic island.

Different physical regimes described by a SET-like device are closely related to
its characteristic energies. For example, the Coulomb energy and the mean level energy
space play an important role as a consequence of the electronic confinement on the island.
Both characteristic energies can be tuned by the geometry shape and size of the island.
In addition, different transport regimes can be accessed by tuning other characteristic
energies, such as the coupling, thermal energy and external bias voltage.

The Coulomb energy plays an important role, due to the electronic confinement in
the central region. For Vg = 0, the electrostatic energy of the island with N electrons is
defined by

Eel(N) = e2N2

2C (2.4)

where C is the capacitance of the central region. The Coulomb, or charging energy, is the
energy necessary to add/remove an electron to/from the island. It can be estimated by

Ec(N ± 1) ≡ Eel(N ± 1)− Eel(N) = e2

C
(±N + 1/2). (2.5)

Traditionally, however, in a quantum dot physics the term charging energy is associ-
ated by the energy difference between the charging energy for N ± 1 and N electrons.
Mathematically,

∆Ec = Ec(N ± 1)− Ec(N) = e2

C
, (2.6)

and modulates the energy to add (+) and remove (-) an electron from the central region. In
addition, as the capacitance is directly proportional to the size of the island, the charging
energy become inversely proportional to the size of the island.

Like in the particle-in-a-box problem, the electronic confinement on the island
generates quantized states. As a consequence, a new energy scale, known as mean level
energy space (δs), arises. This characteristic energy is defined by the average of the energy
difference between two successive discrete states.

To estimate the magnitude of these two characteristic energies, let us suppose that
the central region is a metallic cubic of size L. From Coulomb’s law, the charging energy
in Eq. 2.6 become Ec ' e2/L. In addition, the mean level energy space can be estimated
by the Fermi energy (EF ) divided by the number of electrons on the central region, i.e.,
δs ' EF/N . Considering that there is one valence electron per atom, the number of atoms
can be roughly estimated by (L/a)3, where a being the interatomic distance. The ratio
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between the two characteristic energies is
δs
Ec
' EFL

e2N
= EFa

e2
L

aN
' N−2/3. (2.7)

Here we have used e2/a ' EF . Now, suppose that Ec ' 1meV is a fixed parameter. If the
island is huge enough to host billions of electrons, δs ' 10−8eV. In this case, δs does not
play any role because δs � Ec. The opposite regime can be observed in a tiny metallic
island with several electrons. For example, if N = 30, the ratio δs/Ec ' 0.1. This number
shows that even though the Coulomb energy predominates, the discreteness of the island
influences into the electronic transport of a SET like-device.

The coupling energy, usually represented by Γ, defines the coupling strength between
the leads and the central region. The tunneling rate is estimated by the Fermi golden rule

1
τ

= Γ
~

(2.8)

with Γ = 2πV2ρ0, ρ0 being the density of state of the leads, and V being the hybridization
amplitude between the leads and the island.

To achieve the Coulomb blockade regime, the coupling energy must be weak enough
to suppress the charge fluctuation and strong enough to quantize the electronic number on
the island. The energy-time uncertainty principle provides a good estimate of the resistance
Rt of the potential barrier in the system to achieve the such configuration. Assuming that
the time for an electron to tunnel into the island can be defined by ∆t = RtC, as in an
RC-circuit, and ∆E = Ec, the resistance become

Rt > h/e2. (2.9)

Rt must be larger than h/e2 for the charge be quantized.

Different from the previous characteristic energies discussed in this section, the
thermal energy is an external energy. In the equilibrium framework, the thermal energy
modulates electronic excitation processes in units of kBT , where kB is the Boltzmann
constant. Therefore, the Coulomb blockade regime is achieved for kBT � Ec. Outside of
this condition, there is no charge quantization.

The bias voltage (eV ) is also an external energy, however, it is suddenly introduced
into the leads. The bias shifts the Fermi level of the source and drain by a factor ±eV/2
and drives the system out-of-equilibrium. In addition, it generates an electrical field that
induces electron flow through the island. In non-equilibrium, time-translation symmetry is
broken and all excitation processes become time dependent. At first glance, in the limit
t→∞, known as steady-state regime, the bias voltage induces excitation processes with
energy eV . This behavior is similar to thermal excitations. However, in the short time limit,
known as transient regime, energy excitation become time dependent and the previous
analogy cannot be used anymore. The non-equilibrium regime in a SET-like device is
discussed in more detail in the Chapter 5.
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2.3 Coulomb blockade regime

In a SET-like device, the Coulomb blockage regime is reached for Ec much larger
than δs, kBT and Γ. Despite the complexity introduced by the Coulomb interaction,
the electronic transport is qualitatively explained by classical arguments when only real
tunneling processes are considering.

For finite Vg, the electrostatic energy in Eq. 2.4 is generalized by

Eel = Ec

(
N − q

e

)2
(2.10)

with Ec ≡ e2/2C. The induced charge q/e on the island is a continuous parameter
modulated by the gate potential Vg. Panel (a) in Fig. 5 plots the electrostatic energy as a
function of q/e for N − 1, N and N + 1 electrons on the island. Whenever q is half-integer,
the charging energy with N to N ± 1 electrons are degenerate. This charge degenerate
point allow charge fluctuation on the island. Outside of this condition, the island takes
the configuration with lower energy.

N− 1 N N+ 1

−1.0 0.0 1.0
0.0

1.0

q/e

E
e
l/
E
c

eV

Vg

V
g
=
V
L V

g
=
V
R

q
2e

(a) (b)

Figure 5 – Panel (a): Electrostatic energy as a function of the charge q/e. The three
curves represent the electrostatic energy of the island with N − 1, N and N + 1
electrons. Panel (b): Schematic Coulomb blockade diagram as a function of
the bias voltage (eV ) and the gate potential (Vg). Current flows in the orange
region.
Source: By the author.

Applying a zero-bias voltage (eV → 0) between the source and drain, an electron
crosses the island only if q/e is half-integer. At this special point, an electron tunnels in and
out of the island without changing the energy of the system. For other q/e, the tunneling
is blocked by the Coulomb interaction. This pattern is known as Coulomb blockade. Note
that this behavior is e− periodic because the charging energy is the only relevant energy
into the system. The periodicity is missed when the mean level space energy is of the same
order as Ec.
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Panel (b) of Fig. 5 shows the Coulomb blockade diagram as a function of the
bias voltage and the gate potential. For finite bias voltage, an electron crosses the island
whenever the bias voltage is larger than the charging energy. Such regime is achieved for
the set of parameters indicated in the orange region. In the white region, the charging
energy blocks the current. The zero-bias regime corresponds to the point q/2C.

2.4 Quantum dot device

A semiconductor quantum dot is a SET-like device able to host a few dozens
of electrons. Due to the size of the island, the electronic confinement induces a mean
energy level scale comparable to the charging energy. Specifically, δs/Ec = 0.1− 0.5 for a
tiny quantum dot. The Coulomb blockade physics also explain the electronic transport
properties of a quantum dot when only real tunneling process are under consideration.
As higher order tunneling processes become relevant at low temperature, the classical
arguments used so far fails. Thus, a microscopic theory must be adopted to completely
describes the electronic properties of the dot.

There are two higher order tunneling processes in a quantum dot: i) cotunneling;
and ii) spin-flip scattering. These two processes describe virtual tunneling involving two
electrons; however, only in the second one does the spin degree of freedom of the dot
change. In the cotunneling process, an electron tunnels from the source to the drain due
to the intermediation of a nonresonant state. For example, let us suppose that the dot is
full of electrons at kBT = 0. An electron from the source can only tunnel into the dot to a
non-occupied state and, thereafter, tunnel to the drain. Another possibility is an electron
from the dot going to an excited empty state and, subsequently, tunneling to the drain
while one electron from the source occupies the vacant position. We should emphasize that
there are infinities possibilities of cotunneling thought the dot; however, we only describe
the most probables one. Cotunneling is only relevant at low temperatures because the
time prescribed by the energy-time uncertainty principle for the system to achieve the
energy resolution kBT is longer than the time for the virtual process.

In a quantum dot device, spin-flip scattering is also a virtual tunneling process
involving two electrons. This process is predominant when the dot has an odd number
of electrons at low temperature. For example, let us assume that a quantum dot is fully
occupied and has only an up-spin valence electron. For this initial configuration, an electron
tunnels from the source to the drain due to two intermediate virtual processes. First, an
electron from the source with spin down tunnels into the dot and, subsequently, an electron
from the dot with spin up tunnels to the drain. Second, an electron with spin up from
the dot tunnels into the source or drain and, thereafter, an electron with spin down from
the source tunnels into the dot. In these processes the initial and final spin orientation
of the quantum dot are different. As this process mimics the spin-flip scattering in the
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Kondo Hamiltonian, discussed in Sec. 2.1, at low temperatures one expects a Kondo effect
to arise in quantum dot devices.

To contemplate real and virtual tunneling processes, in this section we model a
quantum dot by the single-impurity Anderson Hamiltonian. Despite its simplicity, this
microscopic model captures the charge fluctuations in the quantum dot and the Kondo
effect induced by the strong correlation effects.

2.4.1 Anderson model

Fig. 6 illustrates the energy representation of a quantum dot device in a SET
geometry. The blue lines describe the discrete states of the dot while the green rectangles
represent the source and the drain. The quantum dot state can be empty, simply or doubly
occupied according to its energy position relative to the Fermi level. Assuming that a state
is above or below, it must be empty or doubly occupied, respectively. Furthermore, for
large Coulomb interactions, the valence state of the dot must be singly occupied. See for
example the configuration in Fig. 6.

Ec

δs

Quantum dotSource Drain

µN+3

µN+2

µN+1

µN

µN−1

µN−2

D

−D

EF

D

−D

EF

Figure 6 – Energy representation of a quantum dot device. The green rectangles illustrate
a non-interacting, half-filled conduction band with bandwidth 2D, while the
blue lines between them defines the discrete states of the dot. The orange circles
represent the electrons with spin orientation indicated by the arrows.
Source: By the author.

At low-energy, only the quantum dot states around the Fermi level are energetically
accessible, while all the other states are frozen. Under these circumstances, the low-energy
physics of the quantum dot can be precisely described by the single-impurity Anderson
model (SIAM), in which the dot state closest to the Fermi level can be empty, simply
or doubly occupied. In the framework of the Anderson model, the empty configuration
corresponds to the level µN in Fig. 6 without the spin-up electron. In the presence of an
extra electron, as displayed in Fig. 6, the energy level of the dot gets energy εd. Finally, in
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the presence of a spin-down electron, the dot acquires energy 2εd + U . In this model, U
describes the charging energy of the dot. Note that the other states do not interfere in the
low-energy physics of the dot, because the system does not have enough energy to modify
them. Furthermore, even if Vg is high enough to shift the higher energy states close to the
Fermi level, the same properties must be observed, because the states are energetically
periodic.

Mathematically, the single-impurity Anderson Hamiltonian is given by

HSIAM =
∑
kα

εkc
†
kαckα + εdd

†d + Und↑nd↓ + 1√
N
∑
kα

(Vαc†kαd + H.c.). (2.11)

The first term on the right-hand side of Eq. 2.11 describes the left and right leads (α = L,R)
as a non-interacting, half-filled conduction band with bandwidth 2D and linear dispersion
relation εk. The second and third terms represents the energy εd of the dot level d and the
Coulomb repulsion U resulting whenever it is doubly occupied. The final term couples the
dot to the two leads.

2.4.2 Even-odd transformation and channel concept

The single-impurity Anderson model is simplified by the even-odd transformation c†kL
c†kR

 =
 cos θ − sin θ

sin θ cos θ

 c†ke
c†ko

 , (2.12)

with tan θ = VR/VL. This linear transformation explores the parity symmetry between
the source and drain and works even for VR 6= VL. As a result, the Anderson Hamiltonian
defined on Eq. 2.11 become HSIAM = He

SIAM +Ho
SIAM, with

He
SIAM =

∑
k

εkc
†
kecke + εdd

†d + Und↑nd↓ + Ṽ√
N
∑
k

(
c†ked + H.c.

)
(2.13)

where Ṽ =
√
V2
L + V2

R, and

Ho
SIAM =

∑
k

εkc
†
kocko. (2.14)

The linear transformation shows that the dot level only couples to the conduction band
with even-parity symmetry, while the conduction states with odd-parity symmetry are
decoupled from it.

The even-odd transformation help us to understand the definition of channel used
in Sec. 2.1. Even though the Anderson Hamiltonian be initially defined by two conduction
channels (source and drain), the electron exchange between them generates coherent
transport. As a result, the source and drain act as an effective conduction channel. A
different behavior is expected in the Kondo Hamiltonian because the spin-flip mechanism
never exchange electrons between the channels. Therefore, they act independently because
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there is no coherent transport between them. In addition, note that the two-channel Kondo
Hamiltonian is invariant under even-odd transformation. This transformation is explicitly
shown in Ref.72

2.4.3 Schrieffer-Wolff transformation

The virtual spin-flip scattering processes dominates the physics of the Anderson
model for U + εd � Γ, with εd < 0. For this set of parameters, the dot level is restricted
to the simply occupied configuration and mimics the physics of the Kondo problem at
low temperature. The correspondence between Anderson and Kondo models is explicitly
shown by the Schrieffer-Wolff transformation.89

The Schrieffer-Wolff transformation integrates out the empty and double occupied
configurations of the dot and perturbative includes it in an effective Hamiltonian. As a
result, the Anderson model become

HSW
K =

∑
kσ

εkc
†
kσckσ + JS · s(0) (2.15)

where the first term is a non-interacting, half-filled conduction band with bandwidth
2D plus a spin-flip scattering term. The spin S defines the local moment of the singly
occupied dot level and s is the spin-operator of the conduction electrons. In addition, this
transformation shows that the spin-flip amplitude is given by

J = 2V2U
|εd|(εd + U) . (2.16)

The derivation of Eq. 2.16 neglects εk in comparison with |εd| or U . This result emphasizes
that the spin-spin interaction between the conduction electrons and the continuum is
antiferromagnetic.

2.5 Huge metallic island

In this section, we discuss the transport properties in a spinless SET-like device
capable of host several billions of electrons in its central region. Different from a quantum
dot device, the mean level energy space δs is irrelevant compared with other energy scales.

Panel (a) of Fig. 7 sketches the energy representation of a SET for energy lower
than Ec, i.e. kBT � Ec and eV � Ec. The rectangles are non-interacting, half-filled
conduction band with semi band-width Ec. The green ones represent the left (source) and
right (drain) leads, while the blue ones describes the island as two independent electron
gases. In the device, the island is large enough to suppress coherent transport between
both sides. In addition, a gate potential (Vg) controls the electrostatic energy on the island,
as defined in Eq. 2.10. For Vg such that the induced charging on the island is q = e/2, only
the charging states displayed in Panel (b) of Fig. 7 contributes to the system. The energy
difference between the charging states with N + 1 and N electrons is given by eU .
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Figure 7 – Panel (a): Energy representation of a single electron transistor composed by
a huge metallic island. The rectangles represent a non-interacting, half-filled
conduction band with semi band-width Ec. The green and blue rectangles
represents, respectively, the leads and the island. Panel (b): Electrostatic energy
as a function of q/e. The blue and orange circle indicates the charge energy of
the island with N and N + 1 electrons. eU is the energy difference between the
two charge configurations.
Source: By the author.

The electronic transport through the island follows the Coulomb blockade physics
when only tunneling process are considering. However, as the temperature decreases,
cotunneling process become relevant and the classical description fails. To capture the
charging fluctuation on the island induced by cotunneling, we follow the microscopic
formalism proposed by Matveev.15,66–68

The microscopic properties of the huge SET-like device is described by Hamiltonian

HHuge =
∑
k,α

εkc
†
kαckα +

∑
p,α

εpc
†
pαcpα +

∑
kα,p

(
Jkα,pc

†
kαcpα + H.c.

)
+ Q̂2

2C (2.17)

where c†k/q,α (ck/qα) creates (annihilates) an electron with energy εk/q in the lead/island
with momentum k/q in the α side of the lead/island. α = L,R labels the left and right sides
of the system. The third term of the right-hand side of Eq. 2.17 describes the tunneling
mechanism of an electron from the leads into the island and vice-verse. Finally, the last
term describes the charging energy of the island, with

Q̂ =
∑
p,α

c†pαcpα, (2.18)

with C is the capacitance of the island. The last one is the only mechanism that connects
the two electron gases on the island.

Adjusting the external potential energy Vg, such that
〈
Q̂
〉

= e(N + 1/2), and
restricting kBT and eV to much lower than Ec, the transport properties are governed only
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by the charging states with N and N + 1 electrons. Therefore, projected into the subspace
ΨN+1 and ΨN , the Hamiltonian in Eq 2.17 is rewritten as

H2CK =
∑
k,α

εkc
†
kαckα

 1 0
0 1

+
∑
p,α

εpc
†
pαcpα

 1 0
0 1

+ eU

 1 0
0 0


+
∑
k,p,α

Jkα,pc†kαcpα
 0 0

1 0

+ H.c.


where the 2 × 2 matrices are the projection operators P̂N+1 and P̂N , that act on the
subspace

ψ̂ =
 ΨN+1

ΨN

 . (2.19)

In the Hamiltonian, eU modulate the charging energy difference between the configurations
with N and N + 1 electrons on the island and is controlled by the gate potential Vg, as
indicated in Panel (b) of Fig. 7.

Finally, in order to simplify Eq. 2.19, we label the states in the leads by the index
σ =↑ and the states of the island by σ =↓. In addition, we also label the charging states
as ΨN+1 →⇑ and ΨN+1 →⇓. Therefore, the Hamiltonian is rewritten as

H2CK =
∑
k,α,σ

εkc
†
kασckασ +

∑
k,p,α

(
Jkα,pc

†
kα↑cpα↓S

− + H.c.
)
− eUSz (2.20)

where the matrices in Eq. 2.19 were substituted by the spin operators. The mapping results
in the anisotropic Kondo Hamiltonian. However, as the charge degenerate states of the
island mimic a pseudospin-1/2, we prefer to call it the charge-degenerate two-channel
Kondo (CD-2CK) Hamiltonian. On the spin basis, the cotunneling processes emulates a
spin-flip scattering and the charging energy splitting eU mimics a Zeeman splitting in a
Kondo impurity problem. Table 1 summarizes the rules of the mapping.

Although the CD-2CK Hamiltonian differs from the two-channel Kondo Hamiltonian
in Eq. 2.3, they reproduce the same universal physics. Specifically, the parallel component
of the spin-flip scattering only modifies the Kondo temperature. Another difference from
the Hamiltonian of CD-2CK is the presence of a local magnetic field that breaks the spin
degeneracy of the local moment.
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Table 1 – Rules of the mapping of the Real system into the Kondo Hamiltonian.

Real system Kondo basis

Charging energy (Ec) Bandwidth (Ec)
Tunneling (JL and JR) Exchange coupling (JL and JR)

Gate voltage (eU) Magnetic field (eU)
Leads Spin up electrons

Metallic Island Spin down electrons
Occupation number Local moment

Source: By the author.
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3 NUMERICAL METHODS

Quantum impurity models, as the ones discussed in Chap. 2, are non-trivial many-
body problems that involves an infinite number of degrees of freedom. Usually, these
problems are composed by a quantum impurity with strong Coulomb interaction coupled
to a non-interacting conduction states. The coupling between them results in small energy
excitation that induces infrared divergences in perturbation theory treatments. A well-
known example is the divergence of the perturbative approach applied in the Kondo
problem.

To precisely describes the correlation effects of quantum impurity models and avoid
divergences at low temperature, in this thesis we investigate quantum impurity models in
the framework of Numerical Renormalization group (NRG) and time-dependent Density
Matrix Renormalization group (tDMRG). The first approach is used to calculate the
dynamical and thermodynamical properties of the two-impurity Anderson Hamiltonian in
Chap. 4. Such method is essential to include all correlation effects of bound states in the
continuum. The second one is necessary to investigate the non-equilibrium properties of
the charge-degenerate two channel Kondo model in Chap. 5.

In this chapter, we summarize the main concepts of these numerical methods based
on simple systems. In Sec. 3.1, the NRG approach is discussed in the framework of the
single-impurity Anderson model. Following the main steps presented in this section, the
method can be easily adapted for other cases studied in this thesis. The DMRG and
tDMRG are discussed in Sec. 3.2 in the framework of Matrix product states (MPS) and
Matrix product operators (MPO). That section follows a general explanation of the method
and all mathematical details are illustrated by tensor schemes.

3.1 Numerical Renormalization Group

The Numerical Renormalization Group, or NRG, is a numerical tool that iteratively
solve a many-body Hamiltonian with small computation cost. The NRG is vastly used to
solve quantum impurity problems coupled to a continuous spectrum. This method also
holds accurate results for multi-impurity44,90–93 and multi-channel2,94 Hamiltonians.

The NRG is underpinned by Renormalization Group theory. Shortly, that theory
offers a framework supporting the development of energy-scale transformations. In practice,
such transformations map a HamiltonianH(K) onto another, with the same symmetry. Con-
ceptually, or formally, in special cases, the transformed Hamiltonian can be identified with
the original Hamiltonian with renormalized parameters, that is, K→ K′. For the single-
impurity Anderson model, the interacting parameters are given by K = (εd/D,U/D,Γ/D).
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Mathematically, the transformation is defined by

τ [H(K)] = H(K′). (3.1)

where τ defines the RG transformation. This transformation follows the same principle
of the Poor Man’s scaling approach discussed in Sec. 2.1. In other words, according the
high-energy conduction band states are integrated out via a course-grain transformation
and, the interacting parameters are renormalized while the Hamiltonian keeps its form.
Different from Poor Man’s scaling approach, in the NRG approach such transformation is
carried out nonperturbatively.

The beauty of the RG theory lies in simple physical concepts hidden along the
mathematical machinery given in Eq. 3.1. Specifically, the full physical behavior of a
many-body Hamiltonian can be described in terms of: (i) RG trajectories in the parameter
space K; (ii) fixed points; and (iii) crossover between them. The trajectories through
the phase space are directly obtained from RG transformation in Eq. 3.1. In addition, a
sequence of transformations τ takes the system into or close to a fixed point. Formally,
such special point is reached when τ [H(K∗)] = H(K∗), for K∗ being the parameters in
the phase space. The latter tell us that the system is invariant under RG transformation
in a fixed point.

In the neighborhood of a fixed point, the RG transformation can be linearized.
Such approximation allows us to identify the operators that take the system into or away
from a fixed point. In the theory, these operators are known as relevant, irrelevant or
marginal. As the own name says, a relevant operator increases along the RG transformation
and drives the RG flow away from a fixed point. An irrelevant operator decreases as the
Hamiltonian is renormalized and, hence, does not play any role in the RG flow. Finally, a
marginal operator is invariant under RG transformations. These three kinds of operators
take us to two types of fixed points: (i) stable and (ii) unstable. In the first type, there
are only irrelevant operators nearby, hence, the Hamiltonian remains the same under RG
transformations. In the opposite case, the instability of the fixed point is due to relevant
operators that diverts the RG flow. All these simple concepts allow us to map the phase
space and explain the physical behavior of a complex many-body Hamiltonian, based on
fixed points and the crossover between them.

Based on the previous RG concepts, in the next subsections we introduce the
mathematical formalism of NRG. Basically, this method perform the RG transformation
nonperturbatively. In addition, the concepts of fixed point and RG flow are used to explain
the physical results in Chapters 4 and 5.

3.1.1 Numerical implementation

The numerical implementation of the NRG method is summarized in the following
steps:
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• Firstly, the NRG approach reduces the conduction states to logarithmic intervals
and, for each energy interval, the method associates a discrete set of states. The
logarithmic mesh is essential for the NRG to accesses the excitation spectrum, from
excitations of the order of the semi-bandwidth D to excitations close to zero.

• Next, the Lanczos transformation projects the discretized states on a tridiagonal
basis, suitable to allow diagonalization of the full Hamiltonian, iteratively. On this
basis, the conduction states became a semi-infinite tight-binding chain with hopping
terms that decay exponentially. Besides being essential for iterative diagonalization,
there are two extra motivations for the Lanczos transformation: (i) all the discrete
states coupled to the quantum impurity are precisely included in the iterative
diagonalization procedure and; (ii) it allows definition of an infrared cutoff. The
latter makes the tight-binding chain finite and numerically tractable.

• From the technical point of view, the third step, namely the iterative diagonalization
is the most methodologically complex part of NRG. This procedure is governed by
a simple RG transformation, as the one expressed in Eq. 3.1. To make this step
numerically tractable, an ultraviolet cutoff truncates out the high-energy states.

• At the end of each iteration, the eigenvalues and eigenvectors obtained from NRG
are used to calculate the physical quantities of interest. Specifically, in this section
we discuss the calculation of the magnetic susceptibility and the spectral density.

Before we discuss the technical detail, I would like to compare the NRG approach
with a microscope that measures the electronic excitation in a well-defined energy interval.
Specifically, the microscope is composed by many microscope lenses labeled by the index
N , which varies from 0 to Nmax. The latter defines the maximum number of lenses into
the macroscopic. The energy-magnification ratio between two consecutive lenses is given
by Λ1/2, with Λ being a real number bigger than 1. These lenses give access to excitation
processes of the order of Λ−N/2.

All measurements performed by the NRG-like microscope must start from the 0-th
lens and gradually increase until the microscope reaches the energy scale of interest. This
restriction is imposed because the excitations processes measured by the N -th lens corrects
the low-lying excitations processes measured by the (N + 1)-th lens. In other words, the
microscope measures the same electronic excitations in the N -th and (N + 1)-th lenses,
but in the (N + 1)-th lens the eigenstates are readjusted due to the incorporation of the
high-energy excitation processes into the low-lying excitation processes. Conceptually, this
procedure is identical to the coarse-grain transformation performed in the Poor Man’s
scaling discussed in Sec. 2.1.
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In the next subsection we shortly introduce the technical details of the fourth
previous NRG steps for the single-impurity Anderson model defined in Eq. 2.11. The
following subsections are based on Refs.81,95,96 and.97

3.1.1.1 Logarithmic discretization

The NRG approach starts with the logarithmic discretization of the conduction
band. The two dimensionless parameters Λ > 1 and 0 < z ≤ 1 defines a discrete logarithmic
mesh with energies εz±0 = ±D and εz±j = ±DΛ1−j−z (j = 1, 2, ...). The sign +/− represents
the energies above/below the Fermi level. The parameter z, proposed in Ref.,98 gives access
to energies left out of the logarithmic mesh defined by the parameter Λ. For each interval
Iz±j = [εz±(j+1), ε

z
±j] (j = 0, 1, 2, ...), a single operator a±j =

∫
I±j

ckdεk/γj is defined, with
γj being a normalization factor. Based on that, a complete orthonormal base is defined.
Projecting conduction states in the discrete base

∑
kεkc

†
kck →

∑
m±E±ma

†
±ma±m, (3.2)

where E±m is the discrete kinetic energy given by the alternative discretization procedure
in Ref.99

3.1.1.2 Lanczos transformation

Next, the Lanczos transformation projects the conduction band into a tridiagonal
diagonal Hamiltonian. The transformation reads

∑
m±E±ma

†
±ma±m →

∑∞
n=0tn

(
f †nfn+1 + f †n+1fn

)
, (3.3)

where fn’s (n = 0, 1, ...) form an orthonormal basis that replaces the operators am±’s
(m = 0, 1, ...). The codiagonal coefficients tn ∝ Λ−n/2 and, for z 6= 1, tn must be calculated
numerically. The site f0 is defined by

f0 = 1√
2
∑
k

ck = 1√
2
∑
m

∫
±Im

am, (3.4)

and contains all information of the conduction states directly coupled to the impurity.
Therefore, none information about the coupling between the impurity and the conduction
states is lost along the iterative diagonalization procedure.

In the tridiagonal representation, or more simply Wilson’s basis, the single-impurity
Hamiltonian becomes

HN
SIAM = 1

DN

[
N−1∑
n=0

tn(f †nfn+1 + H.c.) + εdd
†d + Und↑nd↓ + Ṽ(f †0d + H.c.)

]
, (3.5)

where the conduction band was substituted by a tight-binding chain with hopping terms
tn. Different from Eq. 3.3, the tight-binding chain now has a finite number of sites. Such
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restriction, known as infrared truncation, is necessary to make the Hamiltonian numerically
tractable. In addition, the maximum iteration is achieved when the Hamiltonian in Eq. 3.5
become invariant under the RG transformation. Finally,

DN = D
(1− Λ−1)

log Λ Λ−(N−1)/2 (3.6)

defines the reduced bandwidth at each iteration.

3.1.1.3 Iterative diagonalization and ultraviolet cut

The iterative diagonalization procedure follows the RG transformation

HN+1
SIAM ≡ τ [HN

SIAM] =
√

ΛHN + tN
DN

(f †N+1fN + H.c.), (3.7)

where HN+1
SIAM is built up based on the information of HN

SIAM. This equation follows the
same principle of the Eq. 3.1.

The iterative procedure starts in the iteration N = −1 with the diagonalization of
the impurity Hamiltonian. As a result, four eigenvalues E−1

m and four eigenvectos |m〉−1 are
easily obtained. At this stage, the matrix element −1〈m|d†|n〉−1 between the eigenvectos
of the Hamiltonian is calculated too. These quantities are necessary to calculate the next
iteration and the spectral density of the quantum impurity.

The next iteration is composed by the following processes: i) the base set composed
by the tensor product of the following four states |0〉 , f †0↑ |0〉 , f

†
0↓ |0〉 and f

†
0↑f
†
0↓ |0〉 and the

|m〉 states is built up; ii) the Hamiltonian is projected on the new states; iii) and it is
diagonalized. After that, iv) all eigenvalues are re-scaled with respect to the ground state
and the matrix elements v) N〈m|d†|n〉N and N〈m|f †N |n〉N are calculated in the iteration
N = 0. The same procedure is repeated until the Hamiltonian become invariant under RG
transformation.

The exponential growth of the matrix dimension is controlled by the dimensionless
parameters EUV . This parameter, known as ultraviolet cutoff, controls the computational
cost and accuracy of the numerical diagonalization. At the end of each iteration, only
eigenvalues and eigenvectors with scaled energy EN

m/DN below EUV are kept and used
into the next iteration.

3.1.2 Symmetries

The numerical cost of the iterative diagonalization is reduced taking into account the
symmetries and conserved quantities of the Hamiltonian. For example, the single-impurity
Anderson Hamiltonian conserves: (i) the total charge

Q = (n̂d − 1) +
∑
n

(n̂fn − 1), (3.8)
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where n̂d and n̂fn are, respectively, number operator of the impurity and the Wilson chain
orbitals; and (ii) the SU(2)spin spin symmetry with total spin operator defined by

~S = 1
2
∑
αα′

d†α~σαα′dα′ +
∑
n

1
2
∑
αα′

f †nα~σαα′fnα′ , (3.9)

where ~σαα′ are the Pauli matrices. In both definitions, the sum over n runs over all sites of
the Wilson chain. As H, Q, ~S2 and Sz form a Complete Set of Commuting Observables
(CSCO), the Hamiltonian is rewriting in sub-blocks defined by the quantum numbers Q
and S. In addition, the Sz component is eliminated by the Wigner-Eckart theorem, in the
absence of a magnetic field.

When the Hamiltonian becomes particle-hole symmetric, i.e., U = −2εd, an addi-
tional conservation law arises: the conservation of isospin.90,91 The isospin operator of a
quantum impurity is defined by

~IImp =
∑
αα′

η†α~σαα′ηα′ , (3.10)

where η† is the Nambu spinor of the impurity defined by

η†α =
 d†↑
−d↓

 . (3.11)

The total isospin operator of the Wilson chain (~IW-chain) conserves the same form
of ~IImp, but, now there is a sum that runs over all the n indexes of the Wilson chain and
the Nambu spinor is substituted by

ξ†nα =
 f †n↑

(−)nfn↓

 . (3.12)

As ~I2
Total and IzTotal commute with H, Q, ~S2 and Sz, where ~ITotal = ~IImp + ~IW-chain, the

isospin becomes a good quantum number whenever there is particle-hole symmetry. Like
Sz, the IzTotal contribution can be eliminated by the Wigner-Eckart theorem. The physical
meaning of this symmetry can be understood looking for the components I+ = d†↑d

†
↓ and

I− = (I+)† of the impurity, defined by I± = Ix ± iIy. When the system is particle-hole
symmetric, the energy necessary to create and destroy two particles are equal.

Other symmetries can be explored for more general Hamiltonian. For example, in
the two-impurity Anderson model discussed in Chapter 4, the parity-symmetry between
quantum impurity orbitals divides the Hamiltonian into two orthogonal subspaces given
by the symmetric and antisymmetric linear combinations between the orbitals. Physically,
the two-impurity orbitals recombine themselves in a bonding and antibonding orbitals.
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3.1.3 Magnetic susceptibility

The magnetic susceptibility of the single-impurity Anderson model follows the
standard definition

kBTχ

(µBg)2 = 1
Z
∑
m

(
exp(−β̄Em) 〈m|S2

z |m〉
)
− 1
Z0

∑
m

(
exp(−β̄E0

m)0 〈m|S2
0z |m〉0

)
(3.13)

where |m〉 is the eigenstate of the truncated Hamiltonian HN
SIAM with eigenvalue Em, while

|m〉0 is the eigenstate with eigenvalue E0
m of a non-interacting electron gas described by the

first term in the right-hand side of Eq. 3.5. Z (Z0) is the partition function of the truncated
(electron gas) Hamiltonian, β̄ = DN/kBT , g is the gyromagnetic ratio and µB is the Bohr
magneton. In the brakets, Sz and S0z are, respectively, the total parallel component of the
spin operator of the single-impurity Anderson model and the non-interacting electron gas.

Numerically, the magnetic susceptibility is given by the average between two NRG
runs for z = 0.5 and z = 1.0. As discussed in Ref.,100 the undesirable non-physical
oscillations introduced by the logarithmic discretization are canceled out because the
parameter z introduces a phase shift in the oscillations. As in the single-impurity Anderson
model the oscillations are phase shifted by a factor π. The averaging over z cancels them
out perfectly out and emulates the continuum limit.

3.1.4 Spectral density calculation

The spectral density calculation is based on the z-interleaved approach proposed
in Ref.98 Mathematically, the spectral density is defined by

ρd(ε) =
∫ 1

0
ρd(ε, z)dz (3.14)

that is the integral of the spectral weight ρd(ε, z) over the interval 0 ≤ z ≤ 1. The
parameter z was introduced by hand in the logarithmic discretization procedure in order to
cover the whole energy interval of the conduction states. The main advantage of this extra
discretization parameter is that it cancels the artifacts of the logarithmic discretization
procedure, as discussed in Subsec. 3.1.3, and corrects the amplitude of the spectral density.

The spectral weight is given by

ρ(ε, z) =


∑

N

∣∣∣〈N| d† |GS〉
∣∣∣2 δ(EN,z − ε) ε > 0∑

N

∣∣∣〈N| d |GS〉
∣∣∣2 δ(EN,z + ε) ε < 0

(3.15)

where |GS〉 and |N〉 are, respectively, the ground state and an excited state obtained via
the NRG approach. This equation tell us that the positive and negative spectral weights
are given by the creation of a particle and a hole into the impurity orbital, respectively.

Two technical details about the spectral density calculation have to be emphasized
in this subsection. The first one is related to the numerical derivative in the denominator
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of Eq. 3.15. In order to decrease the numerical error along the derivative, we run the
NRG two for z and z + ∆z, where ∆z is an infinitesimal number. Along the calculation
performed in Chap. 4, we consider ∆z = 10−5.

The second one is related to the numerical integration in Eq. 3.14. As we are
dealing with discrete values of z, we have integrated out in intervals of 0.1. As the run for
each z is totally independent of the others, all the states in a given sector (Q,S) must be
enumerated order of increasing z. This is a very difficult task because if all symmetries
and conserved quantities are not taken into account in the numerical implementation of
the iterative diagonalization procedure, these states may cross each other as a function of
z. This is not a problem for the single-impurity Anderson model because, as a rule, the
diagonalization is implemented considering all the symmetries of the model. For example,
let us suppose that the NRG was implemented taking into account only the charge and
spin conservation. For the symmetric case, the states in each sector can cross because
in the particle-hole symmetric regime the isospin operator is also conserved. In general,
the crossing of different state is not a huge problem in the single-impurity Anderson
model. However, for more complex system, it plays an important rule along the numerical
integration.

Even though the NRG provide to us precise quantitative results in thermodynamic
equilibrium, the method can not be applied for non-equilibrium problems. There are three
key points that make NRG not work in the non-equilibrium regime: (i) the truncation
procedure throws out important states along the iterative procedure; (ii) the nonphysical
oscillations introduced by the logarithmic procedure does not cancel averaging over many
values of z; and (iii) the Wilson chain is not a thermal reservoir.101 To avoid such problems
in non-equilibrium study, in the next section we discuss the Density Matrix Renormalization
Group that allow us to describe the leads as a tight-binding chain and follows a different
truncation procedure.

3.2 Density Matrix Renormalization Group

Density Matrix Renormalization Group (DMRG) is a powerful variational method
that yields essentially exact results with relatively small computational efforts. Histor-
ically, DMRG has it origin in the context of the failure of real-space Renormalization
group.102 Steven White overcame this problem by building up a one dimensional chain
iteratively.75,103 The method starts with the minimum size of a system and gradually
grows it iteratively. To keep the system numerically tractable, the truncation procedure
is guided by the eigenvalues of the reduced density matrix. In more details, the one
dimensional chain is bipartite in two orthogonal pieces via Schmidt decomposition, and
the smallest eigenvalues of the reduced density matrix are integrated out. Following the
previous scheme, DMRG was able to precisely optimize the computation of the ground



55

state of a many-body Hamiltonian.

The truncation procedure is better understood with reference to the von Neumann
entanglement or entanglement entropy in the framework of Quantum information theory.
The entanglement entropy is defined by

SA|B = −TrρAlog2ρA = −
∑
α

wαlog2wα (3.16)

where ρA is the reduced density matrix of the block A connected with the block B.
Via Eq. 3.16, the entanglement entropy decays logarithmically as a function of wα. As
DMRG truncation procedure traces out the smallest wα, it conserves the maximum A-B
entanglement of the system at each iteration.

The truncation scheme reflects the key difference between NRG and DMRG. While
the first one controls the bonding dimension of the system integrating out the high-energy
state, the second throw away the states with low entanglement between two bipartite
subspaces. This truncation scheme allows DMRG to deal with system in the real-space
representation and systems with mixed energy scales. The latter is found in the Hubbard
Hamiltonian and non-equilibrium problems. Another difference between these two methods
is that DMRG only provides the ground state of the system at zero temperature, while
NRG provides information about the ground state and several low-lying excited states for
the whole range of temperature.

3.2.1 Matrix product states and Matrix product operators

DMRG achieved its hegemony with its new formulation based on matrix product
states (MPS) and matrix product operators (MPO).76 Shortly, MPS and MPO are able
to represent a huge vector and matrix as a product of tensors with smaller dimension.
In addition, the new formulation optimizes the computational calculation and allows the
graphic representation of the system. For example, Fig. 8 shows three different kinds of
tensors that can compose an MPS. The tensor Aσi

ai,ai+1
is represented by a sphere, where

the indexes σi and (ai, ai+1) represent, respectively, the local state space and the dimension
of the tensor. These indexes are described by a solid line in Fig. 8. The left and right
tensors describe the sites in the corner of a chain of MPS. Such representation can be
easily extended to MPO with the addition of an extra index σ′i. In more details, a MPO
is represented by the tensor W σi,σ

′
i

bi,bi+1
in Fig. 9. The indexes (σi, σ′i) and (bi, bi+1) describe,

respectively, the local state space and its respective dimension. The left and right tensors
describe a corner operator. Based on the graphical representation, all the mathematical
complexity can be substituted by friendly figures.

To illustrate the versatility of these tools, we start with a general definition of a
many-body state

|Ψ〉 =
∑

σ1,..,σL

cσ1,..,σL
|σ1, .., σL〉 , (3.17)
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Figure 8 – Sketch of the A−tensors in the edge and middle of an MPS. The vertical solid
lines describe the local degrees of freedom and the horizontal ones defines the
dimension of each tensor.
Source: By the author.

W
σ1,σ

′
1
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1

a1,1

σ1

σ′
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σ′
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σ′
1
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Figure 9 – Sketch of the W−tensors in the edge and middle of a one dimensional chain.
The tensor W describes a local Hamiltonian that act in each bond of the MPS.
The vertical solid lines describe the local degrees of freedom of each site and
the vertical ones define the dimension of each tensor.
Source: By the author.

where cσ1,..,σL
are the coefficients and σ1, .., σL are the quantum numbers that describes the

state. The previous state is rewritten in terms of an MPS via Singular Value Decomposition
(SVD). This linear algebra tool decomposes a matrix M as a product of USV †, where
U and V are two distinct matrix (or two distinct subspaces) with orthogonal columns
and rows, respectively. In addition, S is a diagonal matrix with non-negative eigenvalues
which describes the singular values. Such approach is directly recognized as a Schmidt
decomposition, where U and V describe two independent subspaces and the singular values
are eigenvalues of the reduced density matrix.

Applying SVD in Eq. 3.17, the coefficients cσ1,..,σL
are decomposed as

cσ1,..,σL
=
∑
a1

Uσ1,a1Sa1,a1V
†
a1,(σ2,...,σL) ≡

∑
a1

Uσ1,a1ca1,σ2,..,σL
≡
∑
a1

Aσ1
1,a1ca1,σ2,..,σL

, (3.18)

where it was decomposed in one MPS times a new state. After successive application of
SVD, the state |Ψ〉 is defined by

|Ψ〉 =
∑
σ

Aσ1
1,a1A

σi
a1,a2 ...A

σL
aL−1,1 |σ〉 (3.19)

where Aσi
ai,ai+1

is a tensor that describes the i-th site of a 1D lattice. Such process is
illustrated in Fig. 10.



57

σ1 σ2 σ3 σ4 σ5 σ6

σ1 σ2 σ3 σ4 σ5 σ6

Aσ1
1,a1

Aσ1
a1,a2 Aσ1

a2,a3 Aσ1
a3,a4 Aσ1

a4,a5 Aσ1
a6,1

a1 a2 a3 a4 a5

SVD

Figure 10 – Sketch of an arbitrary quantum state as an MPS. The vertical solid lines and
the spheres represents, respectively, the states and the tensor that represents
a local site of the real system.
Source: By the author.

The methematical representation of an operator as an MPO is given by

Ô =
∑
σ,σ′

W
σ1,σ′1
1,b1 W

σ2,σ′2
b1,b2 ...W

σL,σ
′
L

bL−1,1 |σ〉 〈σ
′| (3.20)

where W σi,σ
′
i

bi,bi+1
describes the i-th local operator. The main advantage of this approach is the

numerical calculation of local and global physical properties. An example is illustrated in
Fig. 11, where an MPO is being applied to an MPS. The shape of the MPS is maintained,
however, the dimension of the local MPS is (ãi, ãi+1) = (aibi, ai+1bi+1). In addition, the
dimension of the MPS is truncated via Schmidt decomposition.

Different algorithms can be done based on DMRG ideas in the framework of MPS
and MPO, such as the Ground State DMRG (GS-DMRG) and time-dependent DMRG
(tDMRG). These two algorithms are discussed in the next subsections.

3.2.2 Ground state Density Matrix Renormalization group

GS-DMRG is defined via variational approach. First, an attempt for MPS with
finite size and small dimension is defined and, thereafter, it is locally optimized via relation

∂2

∂Aσi∂Aσi+1
(〈Ψ|H |Ψ〉 − λ 〈Ψ |Ψ〉) = 0 (3.21)

where λ is a Lagrangian multiplier that describes the energy of the ground state. The
local optimization on the MPS i and i + 1 is illustrated in Fig. 12. Systematically, the
GS optimization run from the left to right side of the MPS. The same procedure is done
in the opposite direction. The back and forth procedure is called sweeps and, at each
optimization step, a sparse matrix is diagonalized. Usually, ground state optimization
procedure (or sweeps) are repeated until 〈H2〉 − 〈H〉2 be smaller than a certain precision.
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Figure 11 – Sketch of MPO acting on an MPS. Due to the contraction of the indexes σ′i, a
new MPS with same shape and with higher bond dimension is obtained, i.e.,
(ãi, ãi+1) = (aibi, ai+1bi+1).
Source: By the author.

To control the exponential growth of the MPS bond dimension at each local
optimization, the MPS must be truncated. To accomplish that, we employ the Schmidt
decomposition to obtain the reduced density matrix of one side of the MPS connected
to the other. Therefore, the truncation procedure integrates out the eigenvalues of the
reduced density matrix lower than a predefined truncation error.
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Figure 12 – Graphical representation of the MPS optimization via variational approach.
Source: By the author.
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3.2.3 Time-dependent Density Matrix Renormalization group

Based on tDMRG, the optimal ground state MPS can be driven far-from-equilibrium
via real-time evolution. The time-evolution is guided by the operator

e−iHt, (3.22)

that is the time-evolution operator for real time. Due to the locality of the Hamiltonian
operators, the time evolution is performed in the framework of the Suzuki-Trotter (ST)
decomposition. ST decomposition exploits the locality of the Hamiltonian and decompose
it terms that only act in the even and odd bonds of the MPS. Mathematically,

e−iHt ≈ e−ihevenδte−ihoddδt +O(δt2) (3.23)

where O(δt2) is the error obtained by [heven, hodd] 6= 0 and it is known as ST error. The
application of the time evolution operator illustrated in Fig. 13 is divided in two sweeps.
In the first sweep, only heven is applied in the MPS. Subsequently, start from left to right,
another sweep time evolve the odd bonds of the MPS. At first order ST decomposition,
these two sweeps evolve the MPS in one time step. In addition, via Schmidt decomposition,
the bond dimension of the MPS is truncated.

U
σ1,σ

′′
2

σ′
1,σ

′
2

U
σ′′
3 ,σ
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Figure 13 – Suzuki-Trotter decomposition illustration in MPS and MPO language. In the
first order of the decomposition, the time evolution is performed in two sweeps.
First, from left to right, only all odd bonds is time evolved. The time evolution
of even bonds are performed by the sweeps in the opposite direction.
Source: By the author.

ST decomposition is a practical approach, however, at lower order of expansion
it introduces huge error along the time evolution. The error is reduced going to higher
orders of the ST decomposition. In this project, we go up to 4-th order ST decomposition76

defined by
e−iHδt = Û(δt1)Û(δt2)Û(δt3)Û(δt2)Û(δt1) (3.24)



60

where
Û(δti) = e−ihoddδti/2e−ihevenδtie−ihoddδti/2 (3.25)

and
δt1 = δt2 = 1

4− 41/3 δt and δt3 = δt− 2δt1 − 2δt2. (3.26)

At this level, the ST error is of the order O(δt5).
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4 CORRELATION EFFECTS IN THE EMERGENCE OF BOUND STATE IN THE
CONTINUUM

In this chapter, we investigate the correlation effects in the emergence of a bound
state in the continuum (BIC) in the framework of a two quantum dot device coupled to
the edge of a quantum wire. The experimental setup displayed on Panel (a) of Fig. 14 is
well described by the two-impurity Anderson model (TIAM). The spectrum of this model
contains a Friedrich-Wintgen BIC13 in the non-interacting limit. More generally, the model
accounts for the electron-electron interaction between two localized electrons in the dots.
To our knowledge, this is the simplest and most suitable platform to perform studies of
the kind.

We organize this chapter as follows. First, we explicitly define the TIAM Hamilto-
nian and project it onto a bonding and antibonding basis. This representation provides
a clear view of the correlation effects in the emergence of a BIC, as shown in Panel (b)
of Fig. 14. In the non-interacting regime, the antibonding orbital becomes a BIC. As the
Coulomb interaction grows, however, the antibonding orbital gradually couples to the
bonding orbital and, indirectly, to the continuum.

Thereafter, in Sec. 4.2, we define the TIAM Hamiltonian in the Numerical Renor-
malization Group formalist. Specifically, this method is used to calculate the spectral
density and the magnetic susceptibility of the bonding and antibonding orbital. While
the first quantity provides information about the single-particle excitation spectrum of
the two orbitals, the magnetic susceptibility probes the magnetic properties of the system.
The latter is crucial to unveil the existence of a bound spin state in the continuum, which
we prefer to call it by spin-BIC.

In Sec. 4.3, we identify the fixed points and the crossover between them in order to
provide an overview about the physical regimes of the TIAM Hamiltonian. This section
helps us to understand the numerical results in Sec. 4.4, where we show the spectral density
and the magnetic susceptibility of the bonding and antibonding orbital. Both quantities
are analyzed in the weak and strong coupling regime. While the first regime is dominated
by the Coulomb interaction, the coupling energy dominates the second one.

4.1 Two-impurity Anderson Hamiltonian

To recover the Friedrich-Wintgen results in the non-interacting limit,13 we consider
two identical quantum dots equally coupled to the wire. In standard notation, the TIAM
is described by the Hamiltonian

HTIAM =
∑
k

εkc
†
kck + εd

2∑
j=1

d†jdj + U
2∑
j=1

ndj↑ndj↓ + V√
N
∑
kj

(c†kdj + H.c.). (4.1)
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(b)√
2VŨ

QDbQDa

Figure 14 – (a) Schematic representation of two identical quantum dots (gray spheres)
coupled to the edge of a quantum wire (yellow bar). The dashed arrows
represent the coupling between the wire and the dots with hybridization
amplitude V . (b) Bonding (QDb) and antibonding (QDa) orbital presentation
of the same system. The antibonding orbital is decoupled from the quantum
wire, but it interacts with the bonding orbital. The Coulomb interaction Ũ ,
represented by the solid arrow, sets the strength of the interaction.
Source: By the author.

The first term on the right-hand side of Eq. 4.1 is a non-interacting, half-filled conduction
band with bandwidth 2D and linear dispersion εk. The second and third terms represent
the energy εd of the two dot levels dj (j = 1, 2) and the Coulomb repulsion U resulting
whenever one of them is doubly occupied. The final term couples the two dots to the
conduction states. The sum over the spin index was not specified in Eq. 4.1.

4.1.1 Bonding and antibonding representation

Taking advantage of the parity symmetry between the orbitals d1 ↔ d2 exchange,
the TIAM Hamiltonian can be rewritten in terms of the bonding (b) and antibonding (a)
operators

db/a ≡
1√
2

(d1 ± d2), (4.2)

defined by the symmetric and anti-symmetric linear combination of the quantum dots
orbitals d1 and d2. Substitution of db/a for d1 and d2 on the right-hand side of Eq. 4.1
yields a more instructive expression, which we prefer to write in the form

HTIAM = Hb +Ha +Hab, (4.3)

where we have split the Hamiltonian into the three terms on the right-hand side, associated
with the bonding orbital, the antibonding orbital, and the interaction between electrons in
the two orbitals, respectively. Specifically, the first term on the right-hand side of Eq. 4.3
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is a single-impurity Anderson Hamiltonian:

Hb =
∑
k

εkc
†
kck+(εd + U4 )d†bdb + U2 ndb↑ndb↓ +

√
2
N
V
∑
k

(c†kdb + H.c.), (4.4)

while the second term has the structure of the impurity Hamiltonian in the Anderson
model:

Ha = (εd + U4 )d†ada + U2 nda↑nda↓. (4.5)

Finally, the last term on the right-hand side of Eq. 4.3 comprises two cross-orbital
contributions:

Hab = −U−→S b ·
−→
S a + U−→I b ·

−→
I a. (4.6)

The two terms on the right-hand side of Eq. 4.6 define the spin-spin interaction and
isospin-isospin interaction between the bonding and antibonding orbitals, respectively. In
more detail, the last one is defined by

−→
I a ·
−→
I b = 1

2
(
Ib+I

a
− + Ib−I

a
+

)
+ Iaz I

b
z , (4.7)

with

I+
j=b/a = d†j↑d

†
j↓, (4.8)

I−j=b/a = dj↓dj↑ (4.9)

and

Izj=b/a = 1
2
(
d†j↑dj↑ + d†j↓dj↓ − 1

)
. (4.10)

This term characterizes the charge interaction between the orbitals. Specifically, the first
term of the right-hand side of Eq. 4.7 couples an empty and a doubly occupied orbital.
The second one corrects the energies of each orbital and describes the repulsive interaction
between electrons with opposite spins in each orbital.

Panel (b) in Fig. 14 schematically depicts the structure of Eq. 4.3. The left sphere
represents the antibonding orbital and, by extension, the antibonding Hamiltonian Ha. The
sphere in the center represents the bonding orbital, which is coupled (double-headed dashed
arrows) to the segment representing the quantum wire. The pair hence represents the
bonding Hamiltonian Hb. Finally, the double-headed solid arrow represents the spin-spin
and isospin-isospin interactions.

The previous simplifications allow us to verify that the spin of the antibonding
orbital is conserved. Mathematically,[

Hb +Ha +Hab, ~S
2
a

]
= 0, (4.11)
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where −→S a is the spin operator of the antibonding orbital. The spin conservation of the
antibonding orbital divides the eigenstates of the TIAM Hamiltonian into two orthogonal
subspaces given by the quantum numbers sa = 0 and sa = 1/2. As a result of the spin
conservation, the inter-orbital Hamiltonian in Eq. 4.6 acts differently in each subspace.
Since the antibonding orbital is always empty or doubly occupied for sa = 0, only the
isospin-isospin interaction plays an important role. Therefore, the low-lying eigenstates of
the Hamiltonian are

|Isopin〉 = 1√
2

(d†b↑d
†
b↓ ∓ d

†
a↑d
†
a↓) |0〉 , (4.12)

which describes a singlet (−) and a triplet (+) isospin state. Since the isospin interaction
is antiferromagnetic in Hab, the singlet has lower energy. In contrast, only the spin-spin
interaction is non-zero for sa = 1/2. Therefore, the eigenstates of this subspace are a
composition of states defined by

|Spin〉 = 1√
2

(d†b↑d
†
a↓ ∓ d

†
b↓d
†
a↑) |0〉 , (4.13)

which describes a singlet (−) and a triplet (+). As the spin interaction between the orbitals
is ferromagnetic, the triplet has lower energy.

4.2 Two-impurity Anderson Hamiltonian in the framework of the Numerical Renor-
malization group

Following the NRG procedure in Sec. 3.1, the truncated two-impurity Anderson
Hamiltonian is defined by

HN
TIAM = 1

DN

[
N−1∑
n=0

tn(f †nfn+1 + H.c.) + (εd + U4 )d†bdb + U2 ndb↑ndb↓

+ 2V√
N

(f †0db + H.c.) +Ha +Hab

]
, (4.14)

where the conduction band was substituted by a semi-infinity tight-binding chain with N
sites. The first site of the chain is defined by f0 = ∑

k ck/
√

2, the hopping terms tn ∝ Λ−n/2

and DN is the reduced bandwidth defined in Eq. 3.6.

From NRG, the spectral function of the bonding and antibonding orbitals are
obtained by

ρb/a(ε) =
∫ 1

0
ρb/a(ε, z)dz, (4.15)

where ρb/a(ε, z) is defined by

ρb/a(ε, z) =


∑

N

∣∣∣〈N| d†b/a |GS〉
∣∣∣2 δ(EN,z − ε) ε > 0∑

N

∣∣∣〈N| db/a |GS〉
∣∣∣2 δ(EN,z + ε) ε < 0

. (4.16)
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In this equation, |GS〉 and |N〉 are, respectively, the ground state and the single-particle
excited state obtained via NRG. The spectral density calculation follows Sec. 3.1.4.

The bonding and antibonding magnetic susceptibility can be obtained from the
standard definition

kBTχ

(µBg)2 = 1
Z
∑
m

(
exp(−β̄Em) 〈m|S2

z |m〉
)
− 1
Z0

∑
m

(
exp(−β̄E0

m)0 〈m|S2
z |m〉0

)
(4.17)

where |m〉 is the eigenstate of the truncated Hamiltonian HN
TIAM with eigenvalue Em, while

|m〉0 is the eigenstate with eigenvalue E0
m of a non-interacting electron gas described by

the first term in the right-hand side of Eq. 4.14. Z (Z0) is the partition function of the
truncated (electron gas) Hamiltonian, β̄ = DN/kBT , g is the gyromagnetic ratio and µB is
the Bohr magneton. In both brakets, Sz is the total spin operator for each system. Since
the trace of Sz operator is invariant under basis change, the magnetic susceptibility is the
same in the bonding and antibonding or TIAM basis.

4.3 Fixed points

An overview of all physical regime of the truncated Hamiltonian in Eq. 4.14 is
given by its different fixed points and the crossover between them under Renormalization
Group transformation τ 2. This transformation is defined by

HN+1
TIAM ≡ τ [HN

TIAM] = ΛHN
TIAM + tN

DN
(f †N+1fN + H.c.), (4.18)

which takes the Hamiltonian HN
TIAM to HN+1

TIAM. A fixed point results when the truncated
Hamiltonian parameters εd/DN , U/DN e Γ/DN have special values, such as 0 or ±∞. In
these limits, the system become scale invariant under τ 2 transformation.

4.3.1 Free-electron Hamiltonian

A fixed point Hamiltonian obtained under τ 2 transformation can always be written
in terms of non-interacting free-electron Hamiltonian plus a scattering potential. The
single-particle Hamiltonian is defined by

HW,N = 1
DN

(
2Wf †0f0 +

N−1∑
n=0

tn(f †nfn+1 + H.c.)
)

(4.19)

where the first and second terms are, respectively, a scattering potential with amplitude W
and a non-interacting, half-filled conduction band with half-width D. As the Hamiltonian
is quadratic, the eigenvalues and eigenvectors can be easily obtained by standard numerical
diagonalization procedure. For odd N , the eigenvalues have the form

ηj± = ±Λj∓δ/π (j = 0, 1, ..., (N − 1)/2), (4.20)
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where δ is the phase shift induced by the scattering potential W . The connection between
both quantities is

tan δ = −πρW, (4.21)

with ρ being the density of state of the free-electron gas. For each fixed point, the eigenvalues
of the single-particle Hamiltonian can be obtained by adjusting W so that one of the
eigenvalues become identical to the first excited state obtained in the NRG run at a given
iteration.

4.3.2 Fixed points for the two-impurity Anderson Hamiltonian

Table 2 summarizes the fixed points of the two-impurity Anderson model. All
the fixed points were identified taking the asymptotic limit of the physical parameters
Γ and the excitation amplitudes ∆1 = −εd and ∆2 = εd + U . The last two energies
are, respectively, the energy to create a hole and a particle in each quantum dot orbital
measured from the single-occupation configuration. Even though these two excitation
energies were defined in terms of the parameters of the two quantum dots, all fixed points
are explained in the bonding and antibonding basis.

A fixed point can be associated with a single-particle Hamiltonian with an (i) even
and (ii) odd number of sites. To avoid redundancy, the number of sites in a single-particle
Hamiltonian is not specified.

4.3.2.1 Weak coupling fixed points

The weak coupling fixed points are obtained whenever Γ is equal or approximately
zero. Such limits are achieved in the high-temperature regime.

Free orbitals

Suppose that Γ, ∆1 and ∆2 are set equal to zero. The fixed point Hamiltonian
H∗FO,N is composed by a free electron gas plus two resonant states with zero energy. In
this fixed point, each orbital can be empty, singly occupied with spin ↑ or ↓ or doubly
occupied. These four configurations of each orbital generate 16 degenerate states. This
results in a magnetic susceptibility with amplitude 1/4. In addition, this fixed point holds
two BICs, because Γ = 0.

Local moments

Now suppose that Γ = 0, ∆1 = ∆2 = ∞. The fixed point Hamiltonian H∗LM,N is
composed by a free electron gas plus two singly occupied orbital. This configuration is a
consequence of the strong intra-orbital Coulomb interaction and the high charge negativity
of the bonding and antibonding orbitals. These two effects suppress the empty and doubly
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Table 2 – Two-impurity Anderson Hamiltonian fixed points of the τ 2 Renormalization
Group transformation.

Fixed point Hamiltonian Γ ∆1 ∆2
kBTχ
(gµB)2

Free orbitals H∗FO,N 0 0 0 1/4

Valence fluctuations H∗VF,N 0 ∞ 0 1/3

Local moments H∗LM,N 0 ∞ ∆1 1/2

Spin triplet H∗ST,N → 0 ∞ ∆1 2/3

Frozen impurity orbitals H∗FI,N 0 ∞ −∆1 0

Free antibonding orbital H∗FAO,N ∞ 0 0 1/8

Valence-fluctuation antibonding orbital H∗AFV,N ∞ ∞ 0 1/6

Local-moment antibonding orbital H∗ALM,N ∞ ∞ ∆1 1/4

Frozen impurity antibonding orbital H∗AFI,N ∞ ∞ −∆1 0

Source: By the author.

occupied configurations. In addition, due to the strong inter-orbital interaction, the orbitals
recombine in a quadruplet, equivalent to a degenerate spin singlet and a spin triplet state.

Spin triplet

For ∆1 = ∆2 = ∞ and infinitesimal Γ, the fixed point Hamiltonian H∗ST,N is
composed by a free electron gas plus a triplet state formed via ferromagnetic interaction
between bonding and antibonding orbitals. In contrast with the local-moment fixed point,
the hybridization between the bonding orbital and the continuum split up the singlet and
triplet states, taking kBTχ/(gµB)2 → 2/3.

Valence fluctuations

The Valence-fluctuation fixed point, labeled H∗VF,N , characterizes the limit in which
two charge configurations of each orbital are degenerate. For example, setting Γ = 0,
∆1 =∞ and ∆2 = 0, the simple and double occupied configuration become degenerate.
Another configuration is defined by Γ = 0, ∆1 = 0 and ∆2 = ∞, where the empty and
simply occupied configuration are degenerated.
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Frozen impurity orbitals

For Γ = 0, ∆1 =∞ and ∆2 = −∞, H∗FI,N is described by a free-electron Hamilto-
nian plus two frozen orbitals in the doubly occupied configuration. The same fixed point
is described by the set of parameter Γ = 0, ∆1 = −∞ e ∆2 =∞. However, the orbitals
are frozen in the empty configuration.

Strong coupling fixed point

The strong-coupling fixed point is described by Γ → ∞. This limit is reached
in the low-temperature limit, for kBT � Γ, Γ � U and Γ � εd or kBT � kBTK and
U � |εd| � Γ, for εd < 0.

Free antibonding orbital

The Free antibonding orbital fixed point is defined by Γ =∞, ∆1 = 0 e ∆2 = 0. At
this fixed point, the bonding orbital is diluted in the continuum due to the strong coupling
between them. Therefore, H∗FAO,N is described by a free electron gas with the antibonding
orbital decoupled from the continuum, i.e., the antibonding orbital becomes a BIC.

Local-moment antibonding orbital

Γ = ∆1 = ∆2 =∞ defines the local-moment antibonding orbital fixed point, which
can also be called as spin-BIC fixed point. H∗ALM,N describes a free electron gas plus
the decoupled antibonding orbital, or just a spin-BIC. These conclusions are ratified in
Sec. 4.4.

Frozen impurity antibonding orbital

In the frozen-impurity antibonding orbital fixed point only the antibonding orbital
is frozen in an empty or doubly occupied configuration. This fixed point is defined by
Γ = ∞, ∆1 = ∞ e ∆2 = −∞ for the doubly occupied antibonding orbital or Γ = ∞,
∆1 = −∞ and ∆2 = ∞ for the empty antibonding orbital. Even though the bonding
orbital is diluted into the continuum, the antibonding orbital still coupled to the continuum
due to the isospin-isospin interaction defined in Eq. 4.6. Therefore, H∗AFI,N is composed
by a free electron Hamiltonian plus an extra scattering potential induced by the doubly
occupied antibonding orbital.

Valence-fluctuation antibonding orbital

Suppose that Γ =∞, ∆1 =∞ and ∆2 = 0. The resulting Hamiltonian, which is
donated by H∗AVF,N , is a free electron Hamiltonian plus an extra scattering potential. The
particle-hole asymmetry is a result of the degenerescence between the singly and doubly
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occupied configurations of the antibonding orbital. In contrast, for Γ =∞, ∆1 = 0 and
∆2 =∞, the empty and single occupied configuration are degenerate.

4.3.3 Crossover mechanisms and fixed point instability

The truncated Hamiltonian shown in Eq. 4.14 can cross over: (I) from the weak to
strong coupling fixed points; (II) from the free-orbital fixed points to the other four fixed
points shown on Table 2 with Γ = 0; and (III) from the free antibonding-orbital fixed
points to the other three fixed points on Table 2 with Γ =∞.

The first type of crossover is governed by the renormalization of the hybridization
operator of the truncated Hamiltonian. For Γ� |εd| and Γ� U , the hybridization goes
to infinity as soon as kBT � Γ. In this regime, the bonding orbital is hybridized into the
continuum. In the opposite regime, for Γ� |εd| � U and εd < 0, the crossover is driven
by a Kondo-type Hamiltonian that screens the local moment of the bonding orbital, for
kBT . kBTK .

In the weak coupling regime, the truncated Hamiltonian shown in Eq. 4.14 can only
cross over from the free orbitals to the other four fixed points with Γ = 0 shown on Table 2.
This crossover is driven by renormalization of the parameters εd and U of the truncated
Hamiltonian. In the opposite coupling regime, as the bonding orbital was coupled to the
conduction band, the parameters εd and U only modifies the energy configurations of the
antibonding orbital. Therefore, the renormalization of these parameters drives the system
from the free antibonding orbital to the other three fixed points on Table 2 with Γ =∞.

4.4 Numerical results

In this section we analyze the magnetic susceptibility and spectral density of
the bonding and antibonding orbitals calculated in the various NRG runs. As the cross-
orbital Hamiltonian is the only mechanism that couples the antibonding orbital with
the continuum, in this section we fix εd and Γ and vary U from 0 to −2εd. This set of
parameters provides an initial configuration that holds a BIC (U = 0) and includes the
correlation effects for finite U . In addition, we investigate the weak (Γ� |εd|) and strong
(Γ� |εd|) coupling regime, for εd < 0.

Table 3 summarizes the representative cases investigated in this section. We fix the
energy level εd = −2× 10−5D and the amplitude of the coupling energy Γ = 5× 10−7D

and Γ = 5× 10−3D for the weak and strong coupling regime, respectively. The choice of
the small amplitudes of the physical parameters was motivated by the precision of the
numerical calculations of the spectral density. As pointed out in Sec. 3.1, the logarithmic
discretization of the conduction band provides a precise spectrum for ε� D. We should
emphasize that all results presented in this section are general and can be reproduced for
larger parameters if the ratio between εd, U and Γ are kept constant.
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The NRG calculations in this section were carried out with Λ = 5 and the ultraviolet-
cut 30. For the magnetic susceptibility, we have averaged two NRG runs for z = 0.5 e
z = 1.0 in order to minimize the artificial oscillations introduced by the logarithmic
discretization. The continuum limit of the spectral density was achieved by integrating z
from 0 to 1, for ∆z = 0.1.

Table 3 – Representative cases studied in the weak and strong coupling regime for fixed
εd and Γ. Setting εd = −2× 10−5D, Γ = 5× 10−7D and Γ = 5× 10−3D defines,
respectively, the weak (W ) and strong (S) coupling regime.

Γ� |εd| Γ� |εd|

Runs 105 × U/D Runs 105 × U/D

Wa 0.00 Sa 0.00

Wb 2.10 Sb 2.66

Wc 2.20 Sc 2.67

Wd 2.50 Sd 4.00

We 4.00

Source: By the author.

4.4.1 Non-interacting regime: Friedrich-Wintgen bound state in the continuum

In the non-interacting regime, the intra and inter-orbital interaction vanishes in
Eqs. 4.4-4.6 and the bonding and antibonding orbital become resonant states with semi-
width 2Γ and 0, respectively. The spectral density shown in Panels (a) and (b) of Fig. 15
for the set of parameters Wa and Sa confirms this behavior. In both cases, the spectral
function of the bonding orbital is a Lorentzian

ρb(ε) = 1
π

Γ
(ε− εd)2 + Γ2 , (4.22)

with halfwidth 2Γ, while the antibonding orbital is a Dirac delta function ρa = δ(ε− εd).
The delta-function behavior proves that the antibonding orbital is decoupled from the rest
of the system. The decoupling occurs because the cross-orbital Hamiltonian Hab vanishes
for U = 0. This result can be also illustrated taking Ũ = 0 in Panel (b) of Fig. 14. As the
antibonding orbital is in the continuum energy region, we conclude that the antibonding
orbital is a Friedrich-Wintgen BIC.

This is not a surprising result, since in the non-interacting limit the TIAM reduces
to the Friedrich and Wintgen’s model.13 However, it provides an excellent starting point



71

for investigating the correlation effects in the emergence of a BIC, because the cross-orbital
Hamiltonian Hab is the only mechanism that couples the antibonding orbital to the rest of
the system, for U 6= 0.

−3.0 −2.5 −2.0 −1.5 −1.0
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Figure 15 – Panels (a) and (b) displays, respectively, the bonding and antibonding spectral
density for the cases Wa and Sa.
Source: By the author.

4.4.2 Interacting regime

The bonding and antibonding representation provides a clear interpretation of
the correlation effects in the formation of BICs. The intra-orbital interaction on the
right-hand sides of Eqs. 4.4 and 4.5 corrects the energy levels and favor the formation of
local moments in the bonding and antibonding orbitals. The cross-orbital Hamiltonian
is the only mechanism that couples the antibonding to the bonding orbital and hence,
indirectly, to the conduction state. Therefore, as U grows, the inter-orbital Hamiltonian
intensifies the coupling between the antibonding orbital and the continuum.

4.4.2.1 Bonding and antibonding spectral density in the weak coupling regime

In the weak coupling regime, the Coulomb interaction: (I) favors the formation
of local moment in both orbitals; (II) induces the Kondo effect in the bonding orbital;
(III) indirectly connects the antibonding orbital with the continuum; and (IV) results
in threshold behavior in the spectral density of the antibonding orbital. The latter is
discussed in Subsec. 4.4.2.3.

Fig. 16 shows the bonding orbital spectral density for the representative cases
Wb-We. As the bonding orbital is directly connected to the continuum, it follows the same
behavior as the single-impurity Anderson model. As U grows, the resonant state displayed
in Panel (a) of Fig. 15 is spit in two states with energy ∆b1 = −εdb

and ∆b2 = εdb
+ Ub,

where εdb
is the effective energy and Ub is the effective intra-orbital Coulomb interaction

in the bonding orbital. Both parameters can be identified in the plots. ∆b1 and ∆b2 are
the excitation energy of a hole and an particle from the simple occupied configuration in
the bonding orbital. For U 6= 0, the excitation energies become different and appear as
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two Lorentzians. In addition, if Ub is strong enough to inhibit the weight of the doubly
occupied configuration, the Kondo peak pinned at zero energy pops up. Although the
bonding orbital is the source of a rich physics produced by strong correlation effects, it
does provide no information about the BIC physics, because the bonding and antibonding
orbitals have opposite parity symmetry.

Painel (a) in Fig. 16 displays run Wb, which is the only representative case in which
the Kondo peak is absent because the ground state has even-parity symmetry. For this set
of parameters, the bounding orbital is in the valence-fluctuation regime, where the simply
and double occupied configuration are quasi-degenerate, i.e., ∆b2 ≈ 0. As the excitation
energy decreases, the doubly occupied configuration becomes less energetic, as a result
of the renormalization of the bonding orbital energy by the Haldane effect.104 As only
the isospin-isospin iteration between the orbitals is relevant when one of them is doubly
occupied, the ground state becomes a non-magnetic isospin singlet.

The Hubbard peaks in runs Wc, Wd and We are similar to the peak in to run Wb.
As U grows, only ∆b2 increases and takes the second Hubbard peak to higher energies.
However, as the Coulomb interaction lowers the single occupied configuration, a local
moment is formed in the bonding orbital. At low temperature, the conduction states
strongly couple to this local moment in order to cancel it out. This effect originates the
Kondo peak at zero energy. Even though the Kondo peaks in the runs Wc, Wd and We look
like a delta function, they have halfwidth of the same order as the Kondo temperature.
Specifically, the Kondo temperature are, respectively, kBTK/|εd| = 6.3× 10−4, 7.6× 10−7

and 6.9× 10−15 for runs Wc, Wd and We.

Panels (a)-(d) in Fig. 17 display the spectral density of the antibonding orbital for
runs Wb-We. The plots show that the delta-function behavior previously observed in Panel
(a) of Fig.15 in the non-interaction regime is absent, due to the action of the cross-orbital
Hamiltonian Hab. As a result of the broadening of the antibonding spectral density, we
conclude that cross-orbital Hamiltonian Hab destroys the BIC. We must emphasize that
this behavior is expected even for infinitesimal amplitudes of the Coulomb interaction,
because Hab mixes the subspaces with even and odd parity. Such conclusion follows from
the definition of a BIC as a state with zero width.

In addition, the antibonding orbital splits into two resonant states with energy
∆a1 = −εda and ∆a2 = εda + Ua as shown in the four panels of Fig. 17. By definition, εda

is the effective energy and Ua is the effective amplitude of the Coulomb interaction of
the antibonding orbital. These two parameters are obtained numerically and describe the
excitation processes that creates a hole and an electron in the antibonding orbital.

Finally, the antibonding orbital spectral function also displays a singular behavior,
followed by an abrupt drop for |ε| < εT . The threshold energy εT is given by the energy
difference between the ground state and the lowest energy excited state with symmetry
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Figure 16 – Panels (a)-(d) shows the spectral density of the bonding orbital for the
representative cases Wb, Wc, Wd and We.
Source: By the author.

opposite. This behavior, similar to the x-ray singularity problem and emerges due to the
existence between two orthogonal subspaces in the TIAM Hamiltonian. More details about
that in Subsec. 4.4.2.3.

4.4.2.2 Bonding and antibonding spectral density in the strong coupling regime

In the strong coupling regime, the bonding orbital is invariant under the effect
of the intra-orbital Coulomb interaction on the right-hand side of Eq. 4.4. Therefore, it
is always described by a resonant state as the one displayed in the inset of Panel (a) of
Fig. 18 for the run Sb. The spectral densities of the bonding orbital for runs Sc and Sd are
not shown because they are identical to case Sb. In addition, they do not bring any insight
concerning BIC physics.

Even though the inter-orbital Coulomb interaction defined in Eq. 4.3 be much
smaller than Γ, this Hamiltonian mixes the antibonding orbital with the continuum. Panels
(a)-(c) in Fig. 18 shows the broadening in the antibonding spectral density originated
by the inter-orbital Coulomb interaction. Another characteristic of this limit is that the
excitation energies of the antibonding orbital are only due to Ha in Eq. 4.5. Therefore,
the numerical data confirms that ∆1a = −(εd + U/4) e ∆2a = εd + 3U/4, as set by the
singly occupied configuration.

Finally, a threshold behavior, similar to the one discussed in Subsec. 4.4.2.2, is
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Figure 17 – Antibonding orbital spectral density in the weak coupling regime. Panels
(a)-(d) shows the antibonding spectral function for the representative cases
Wb, Wc, Wd e We. Solid orange lines describes the power law behavior ρa(ε→
εT ) = A/(|ε| − εT )αN for a set of parameters summarized in Table 4.
Source: By the author.

observed in the antibonding spectral function for energy lower than εT = ∆2a . More details
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are given in the next subsection.
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Figure 18 – Panels (a)-(c) display the spectral density of the antibonding orbital in the
log-log scale for the cases Sb, Sc e Sd. The solid orange lines reproduces the
singular described by ρa(ε → εT ) = A/(|ε| − εT ) for a set of parameters
summarized in Table 5. The inset in the upper-left side of Panel (a) shows the
bonding (orange circles) and antibonding (blue diamonds) spectral density in
the linear-linear scale.
Source: By the author.

4.4.2.3 X-ray singularity: Nozières-De Dominicis and Doniach-Sunjic power laws

In the previous subsections, the singular behavior, followed by an abrupt decay
resulted from the division of the eigenstates of the TIAM Hamiltonian in sub-spaces
with even and odd parities. This division is related to the spin conservation ~S2

a of the
antibonding orbital and, consequently, the parity symmetry. The connection between these
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two sub-spaces is given by ρa(ε), in which 〈N| d†a |GS〉 connects the ground state with the
low-lying excited states with opposite symmetry.

For example, let us take the non-interacting regime. As the antibonding orbital
is doubly occupied, the ground state has even parity. Therefore, the matrix element
〈N| d†a |GS〉 connects the ground state with the first excited state with an extra particle in
the antibonding orbital. Because the antibonding orbital is a BIC, there is only one nonzero
matrix element, at energy ε = εd. This example can be extended to the interacting regime.
As U grows, the cross-orbital Hamiltonian Hab mix both subspace and, consequently, new
finite matrix elements pop up in ρa(ε). The threshold behavior happens when the excitation
energy ε is not high enough to excite an electron or a hole in the antibonding orbital. As all
excited states with odd parity symmetry vanish for |ε| < εT , the spectral function abruptly
drops to zero. This mechanism creates a gap in the antibonding orbital spectral density. We
can conclude that in the limit ε→ 0, there is only a single component of the antibonding
orbital in ground state. By contrast, ρb(ε) is continuous at |ε| = εT because 〈N| d†b |GS〉
connects states with same symmetry, and the bonding orbital is directly connected to the
continuum.

For |ε| > εT , the antibonding orbital spectral density mimics the singularities
observed in the photoemission and photoabsorption x-ray problems. The singular behavior
can be reproduced by the equation

ρa(ε) =

A/(ε− εT )α |ε| > εT

0 |ε| < εT
(4.23)

where A and α are non-universal parameters obtained from the fit of the antibonding
orbital spectral density in Figs. 17 and 18.

In the weak coupling regime, the singular behavior is associated with Nozières-De
Dominicis expression, where the critical exponent is given by

α ≡ αN = 2β(1− β) (4.24)

for β ≡ (δ̄−δ)/π. δ and δ̄ are, respectively, the phase shifts of a single particle Hamiltonian,
as the one shown in Eq. 4.19, that reproduces the excited states |N〉 and the ground state
|GS〉. Nozières-De Dominicis power law tells that αN can vary from 0 to 1 for positive β
due to the strong interaction between the antibonding orbital and the continuum. The
numerical data in Table 4 agrees with that theory.

Even though the singular behavior follows the same form shown in Eq. 4.23 in the
strong coupling regime, the critical exponent is given by Doniach-Sunjic power law, where

α ≡ αD = 1− 2β2 (4.25)

and β ≡ (δ̄−δ)/π. In the Doniach-Sunjic formulation, the x-ray singularity is a consequence
of a state decoupled from the continuum. In this formulation, β ≈ 0 and αD = 1. As
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Table 4 – Set of parameters used in Eq. 4.23 to fit the spectral density of the antibonding
orbital in the weak coupling regime.

Negative energy Positive energy

Runs A αN A αN εT

Wa − − − − −

Wb 1.5× 10−5 0.725 6.0× 10−3 0.263 3.5× 10−8

Wc 6.8× 10−5 0.475 1.7× 10−2 0.180 4.0× 10−8

Wd 3.4× 10−4 0.275 7.4× 10−3 0.090 4.0× 10−8

We 1.3× 10−3 0.075 1.3× 10−3 0.075 3.5× 10−8

Source: By the author.

summarized in the Table 5, the antibonding orbital spectral density in Eq. 18 agrees with
Doniach-Sunjic formulation and emphasizes that the antibonding orbital is weakly coupled
to the continuum in the strong coupling regime.

Table 5 – Set of parameters used in Eq. 4.23 to fit the spectral density of the antibonding
orbital in the strong coupling regime.

Negative energy Positive energy

Runs A α A α εT

Sa − − − − −

Sb 1.3× 10−8 1.000 − − 1.25× 10−8

Sc − − 6.5× 10−9 1.000 2.5× 10−8

Sd 1.8× 10−8 1.000 1.8× 10−8 1.000 1.0× 10−5

Source: By the author.

The threshold behavior discussed in this subsection show us that the ground state is
composed by an isolated component of the antibonding orbital for ε→ 0. This conclusion
forces us to investigate the ground state properties of the TIAM Hamiltonian at zero
temperature via magnetic susceptibility, because the spectral density does not provide the
necessary information. To anticipate the discussion in the next section, we figure out that
the ground state can be simply or double occupied in casesWa-We and Sa-Sd. In the doubly
occupied configuration, the ground state has even parity and the antibonding orbital is
strongly coupled to the continuum only by the isospin-isospin interaction. However, in
the simply occupied configuration, the ground state is composed by the singly occupied
antibonding orbital that only connects to the continuum via spin-spin interaction. As the
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latter one is ferromagnetic, the simple occupied configuration of the antibonding orbital
decouples from the continuum at kBT → 0. In this limit, the antibonding orbital become
a bound spin state in the continuum (spin-BIC).

4.4.3 Magnetic properties

As the spectral density is unable to track the properties of antibonding orbital at
zero energy, in this subsection we investigate the ground state properties of the TIAM
Hamiltonian via magnetic susceptibility. Although it does not separately provide the
information about each orbital, we are able to map the contribution of each orbital in
the magnetic susceptibility via eigenstate analyses. In addition, this quantity unveils a
quantum phase transition as a function of the Coulomb interaction and the emergence of
a bound spin-state in the continuum whenever the antibonding orbital is simply occupied.

4.4.3.1 Quantum phase transition

Panels (a) and (b) of Fig. 19 display the magnetic susceptibility as a function of the
Coulomb interaction in the limit kBT → 0. The abrupt jump from 0 to 1/4 characterizes a
boundary QPT between a non-magnetic and magnetic phase. See Refs.105 and55 for more
information about boundary QPT.

In the weak coupling regime, the QPT was previously studied in Refs.54,90 and
.44 To our knowledge, it was only previously associated to the emergence of a BIC in
Ref.44 These works studied the two-impurity Kondo and Anderson Hamiltonian in their
ordinary basis. Because of that, the QPT was associated with the ferromagnetic and
antiferromagnetic interaction between both impurities that can be direct or intermediate
by the conduction electrons. The last one is known as Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction and it is associated to quantum impurities problems far apart from
each other. Whenever both impurities are attached at the same spot, as shown in Fig. 14,
the RKKY interaction tends to be ferromagnetic. This conclusion is always valid for the
two-impurity Kondo Hamiltonian, which that always displays particle-hole symmetry. In
the two-impurity Anderson model, that symmetry is achieved only for U 6= −2εd. Outside
this condition, the particle-hole symmetry is absent and the RKKY interaction can induce
a ferro or antiferromagnetic coupling between the orbitals according the amplitude of the
particle-hole asymmetry. This mechanism was discussed shown in Ref.90

In the bonding and antibonding basis, the boundary QPT is driven by the com-
petition between a spin triplet and isospin singlet state defined in Eqs. 4.12 and 4.13.
The isospin singlet is predominant whenever the antibonding orbital is empty or doubly
occupied. As the local moment in the antibonding orbital is zero, the spin-spin interaction
is inhibited. The non-magnetic phase is predominant until U < Uc, where Uc is the criti-
cal amplitude of the Coulomb interaction. For U > Uc, the antibonding orbital became
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Figure 19 – Magnetic susceptibility as a function of the Coulomb interaction (U) for
kBT → 0 in the (a) weak and (b) strong coupling regime.
Source: By the author.

simply occupied and the opposite behavior is observed. The isospin-isospin interaction
is suppressed and the ferromagnetic interaction between the bonding and antibonding
orbitals favor the formation of a spin triplet state. The magnetic phase survives even after
the bonding orbital is strongly coupled to the continuum due to the presence of a residual
spin-1/2.

In the weak coupling regime, the quantum phase transition is associated with
instability of the valence fluctuations fixed point. According to the amplitude of ∆1 = −εd
and ∆2 = εd + U , the RG flow can crossover to Frozen impurity orbitals fixed point if the
double occupied configuration is energetically favorable (∆2 < 0). In addition, it can also
flow into the frozen-impurity antibonding-orbital fixed point if the bonding orbital is simple
occupied and the antibonding orbital be double occupied. In contrast, if the singly occupied
configuration becomes energetically favorable, the system flow through the local-moment
and spin-triplet fixed points until it reaches the stable local-moment antibonding-orbital
fixed point. The last crossover is assisted by the Kondo effect, which cancels out the
magnetic moment of the bonding orbital. Therefore, the residual magnetization is given
by the singly occupied configuration of the antibonding orbital.

In the strong coupling regime, the instability of the system is defined by valence-
fluctuation antibonding-orbital fixed point because the bonding orbital is diluted in the
continuum for kBT � Γ. For U < Uc, the system flows to the frozen impurity antibonding
orbital fixed-point because the double occupied configuration of the antibonding orbital has
the lowest energy. This configuration characterizes the non-magnetic phase. In the opposite
case, for U < Uc, the TIAM Hamiltonian flows to the local-moment antibonding-orbital
fixed point with residual magnetization defined by the antibonding orbital with spin-1/2.

The residual magnetization present in the local-moment antibonding orbital fixed
point, is a direct consequence of the formation of an unexpected bound spin state in
the continuum (spin-BIC). In the same way that the magnetic moment of the bonding
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orbital is strongly coupled to the continuum via anti-ferromagnetic interaction, the indirect
connection between the antibonding orbital and the continuum is ferromagnetic. Decreasing
the temperature, the ferromagnetic coupling goes to zero. This results in a spin state that
is decoupled from bonding orbital and the continuum.

The ferromagnetic coupling between the antibonding orbital and the continuum is
confirmed via RG analyses of the local-moment antibonding orbital fixed point. Panel (a)
and (b) in Fig. 20 shows the second low-lying state of the Sectors Q = 1 and S = 1 (blue
squares) and Q = 1 and S = 0 (brown circles) for the cases We and Sd. As the cases Wc,
Wd and Sc display the same behavior, we do not show them here.

In this fixed point, the antibonding orbital can be included into the system per-
turbatively. As only the bonding orbital is connected to the continuum, for Γ→∞, it is
diluted into the continuum. For even N , the ground state in this fixed point is a half-filled
Fermi sea with an odd number of electrons plus the antibonding orbital simply occupied.
As in the magnetic phase the antibonding orbital only couples via spin-spin interaction
to the continuum, the states in the sectors Q = 1 and S = 1 and Q = 1 and S = 0 are
tensor products of the antibonding orbital and the continuum. Perturbatively including
the ferromagnetic interaction, the energies of these states are given by

ETiplet = η∗ − 3
2J (N) (4.26)

and

ESinglet = η∗ + 1
2J (N), (4.27)

with

J (N) = −2D
(N −NK) log Λ . (4.28)

In this equation η∗ is a fixed point eigenvalue, D is the half-band width of the conduction
band, Λ is the logarithmic discretization parameter, N is the iteration number and NK is
the iteration number that mimics the Kondo temperature of the system. The latter one
can be obtained fitting the two states displayed in Panel (a) and (b) of Fig. 20. The fitting
was performed using η∗ = 0.8907 and NK equal to 55 and −965 in the panels (a) and (b),
respectively. The good agreement between the NRG data and the pertubative approach is
a consequence of the ferromagnetic interaction that vanishes as N grows. This is the main
mechanism that originates the spin-BIC in the two-impurity Anderson Hamiltonian.

As the antibonding orbital is weakly affected by the cross-orbital Hamiltonian Hab

in the strong coupling regime, Uc is easily calculated comparing the energy of the simple
and doubly occupied configuration of the antibonding orbital. Taking into account only
Ha, the simple occupied configuration has energy εd + U/4 and the double one 2εd + U .
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Figure 20 – Low-lying energy levels of HN as a function of even N for the cases (a) We

and (b) Sd. In both panels, the blue squares and brown circles are the second
excited state of the Sector Q = 1 and S = 1 and of the Sector Q = 1 and
S = 0, respectively. The solid curves were obtained with the fitting function
defined on Eqs. 4.26 and 4.27.
Source: By the author.

Equating both energies,

Uc = −4
3εd. (4.29)

For the parameters used in the panel (b) of Fig. 19, Uc ≈ 2.6667× 10−5D.

4.4.3.2 Magnetic susceptibility in the weak coupling regime

Fig. 21 displays the magnetic susceptibility as a function of the temperature for five
representatives cases specified in the Table 3. In the weak coupling regime, the magnetic
susceptibility can be explained in the approximation Γ→ 0 for T � TK . In this framework,
the magnetic susceptibility is given by

kBTχ

(gµB)2 = 2×
(

1/2
2 + eεd/kBT + e−(εd+U)/kBT

)
, (4.30)

where −εd and εd + U are the energies for creation of a hole and a particle in each orbital,
respectively. Both energies are defined from the simple occupied configuration. The factor
2 in front of the equation reflects the identity of both orbitals and the parameter 1/2 is
the mean value of the spin operator S2

z in each orbital.

In the high-temperature regime, the magnetic susceptibility is invariant in the
cases Wa-We because the thermal excitation are much higher than the other characteristic
energies. Therefore, the four orbital configurations contribute to magnetic susceptibility,
resulting in an amplitude 1/4. This behavior is characteristic of the free orbital fixed
points.

In the run Wa, the magnetic susceptibility as a function of temperature is given by
kBTχ

(gµB)2 = 2×
(

1/2
2 + eεd/kBT + e−εd/kBT

)
. (4.31)
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Figure 21 – Magnetic susceptibility as a function of the temperature in the weak coupling
regime. The curves display the cases Wa-We. The solid blue and orange curves
superposed to Wa and Wb were obtained via Eqs. 4.31 and 4.32, respectively.
The green and red solid curves, superposed to Wc and Wd, are the universal
magnetic susceptibility of the over-screened Kondo effect with spin-1 obtained
via Bethe Anzats. The numerical data is specified in the Appendix A.
Source: By the author.

This equation describes the blue solid line superposed to the blue square in Fig. 21. For
kBT > εd, the ratio εd/kBT → 0 and the exponential in the denominator of Eq. 4.31 are
close to 1. In the opposite limit, the excitation processes higher than εd are energetically
suppressed. Specially, in the non-interacting regime the creation and annihilation of a
particle and a hole into the orbitals are simultaneously inhibited. Therefore, as the doubly
occupied configuration has the lowest energy, the magnetic susceptibility drops to zero.
The variation from 1/4 to 0 characterizes the crossover between the free orbitals to
frozen-impurity orbitals fixed points.

Run Wb shows the first effects of Coulomb interaction in the orbitals. As the
temperature decreases, the empty configurations of both orbitals are frozen out. This
process enhances the magnetic susceptibility from 1/4 to 1/3. This variation characterizes
the crossover between the free-orbital and valence-fluctuation fixed points. Mathematically,
this enhancement occurs because εd/kBT →∞ and, consequently, eεd/kBT → 0 in Eq. 4.30.

Eq. 4.30 fails to describe case Wb for kbT < 10−6D. The disagreement between
them is a consequence of the partial emergence of a Kondo effect. In the valence fluctuation
regime, the single and doubly occupied configurations are almost degenerate. As the
temperature decreases, the energy separation between them is resolved and the lowest
energy configuration becomes predominant. In Wb, two distinct behaviors are observed in
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each orbital. The bonding orbital becomes singly occupied, due to the coupling with the
continuum, while the antibonding orbital is still double occupied. Due to the formation
of a local moment in the bonding orbital, a partial Kondo effect emerges. Taking into
account such scenario, the NRG data has been be fitted with

kBTχ

(gµB)2 = const×
(

1/2
2 + e−(εd+U)/kBT

)
×
(
kBTχuni(T/TK)

(gµB)2

)
, (4.32)

where χuni(T/TK) is the universal magnetic susceptibility for the under-screened spin-1
Kondo effect. The numerical data for χuni is reproduced in Appendix A. The parameter
used in this fitting are kBTK = 7× 10−9D, εd + U = 3.1× 10−8D and const = 10.4. The
superposition of these two effects characterizes the crossover from, the valence-fluctuation
to frozen-impurity antibonding orbital fixed points.

In run Wc, the initial growth of the magnetic susceptibility at high temperature
is a consequence of the suppression of the empty configuration of both orbitals. The
plateau with amplitude 0.42 results from the combination of both orbitals in the following
configurations: i) a triplet spin state; ii) a single isospin state and; iii) a doublet state,
defined by the bonding orbital double occupied and the single occupied antibonding orbital.
Finally, as the temperature decreases, the Kondo effect emerges to screen half of the local
moment of the triplet state formed by the antiferromagnetic interaction between them.
The Kondo effect takes the magnetic susceptibility to 1/4, which is the signature of a
spin-BIC.

Runs Wd and We are similar. Because of that, they are explained together. The
initial increases of the magnetic susceptibility is a direct consequence of the Coulomb
interaction. As the temperature decreases, the empty and doubly occupied configuration
are energetically penalized, simultaneously. For these set of parameters, both configurations
have approximately the same energy. Thus, the magnetic susceptibility increases from 1/4
to 1/2, which characterizes a crossover from the free orbital to the local-moment fixed
points. As the temperature decreases, the ferromagnetic interaction described by the first
term of the right-hand side of Eq. 4.6 locks the orbitals in a triplet state. This behavior
increases the magnetic susceptibility from 1/2 to approximately 2/3. The amplitude is not
exactly 2/3 (characteristic of a spin triplet) because the Kondo effects emerges before the
magnetic susceptibility reaches its maximum. As a result of the emergence of the Kondo
effect, the system crosses over from the spin-triplet to the local-moment antibonding
orbital fixed point, in which the magnetic susceptibility is equal to 1/4. The solid curve in
the Wd case is the universal magnetic susceptibility for the under-screened spin-1 Kondo
effect.
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4.4.3.3 Magnetic susceptibility in the strong coupling regime

In the strong coupling regime, the bonding orbital is hybridized with the continuum
for kBT < Γ, which takes the magnetic susceptibility from 1/4 to 1/8, as shown in Fig. 22.
This variation describes the crossover from the free-orbital to the free antibonding-orbital
fixed point. Therefore, at low temperatures (kBT < Γ), the magnetic properties of the
system only receive contribution from the antibonding orbital.
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Figure 22 – Magnetic susceptibility as a function of the temperature in the strong coupling
regime for the representative cases Sa-Sd. The solid lines were obtained by
Eq. 4.33 for the set of parameters indicated in the right inset. The central
inset sketches the four configurations of the antibonding orbital.
Source: By the author.

The central inset in Fig. 22 sketches the four configurations of the antibonding
orbital and its respective excitation energies ∆̄1a and ∆̄2a . Taking into account these four
degrees of freedom, the runs Sa-Sd can be precisely described by the simple equation

kBTχ

(gµB)2 =
(

1/2
2 + e∆̄1a/kBT + e∆̄2a/kBT

)
, (4.33)

which is the magnetic susceptibility for Γ→ 0. As shown by the solid curves in Fig. 22,
Eq. 4.33 accurately reproduces the NRG data for the fit parameters in the right inset.
These parameters can also be estimated from analysis of Hb. Therefore, ∆̄1a ≈ εd + U/4
and ∆̄2a ≈ εd + 3U/4.

Run Sa shows the magnetic susceptibility in the non-interacting case. The abrupt
drop from 1/8 to 0 is associated to the simultaneous inhibition of the thermal excitation
processes with energy ∆̄1a and ∆̄2a . The drop characterizes the crossover from the free
antibonding-orbital to the frozen-impurity antibonding orbital fixed point.
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The valence-fluctuation regime is observed in runs Sb and Sc for kBT around 10−6 in
Fig. 22. For this range of temperature, only the simple and double occupied configurations
contribute to the magnetic susceptibility because they are almost degenerate. This unstable
configuration is resolved as the temperature decreases. Specifically, if the lowest energy
configuration of the antibonding orbital is given by the doubly occupied configuration
(run Sb), the mangnetic susceptibility drops to zero. However, if it is simply occupied (run
Sc), a magnetic phase emerges in the system, with the magnetic susceptibility 1/4.

Run Sd shows the case in which the empty and doubly occupied configuration are
inhibited simultaneously. Therefore, the system flows from free antibonding orbital to the
local-moment antibonding-orbital fixed point, where the residual magnetization is due to
the spin-BIC.
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AFI,N
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Figure 23 – Renormalization flow diagram for Γ = ∞ and ∆1 = −εd and ∆2 = εd + U .
The inset displays the fixed point Hamiltonian defined in Table 2.
Source: By the author.

.

Finally, all physical properties of the strong coupling regime for kBT � Γ can be
summarized in Fig. 23. As previously discussed, in this limit the bonding orbital is diluted
in the continuum, i.e., the system flows to the free antibonding orbital fixed point. As this is
an unstable fixed point, depending on whether ∆1 = −εd or ∆2 = εd +U are renormalized,
the truncated Hamiltonian can flow to the following fixed points: i) Frozen impurity
antibonding orbital (green triangles); ii) Local-moment antibonding orbital (red diamond)
and; iii) Valence-fluctuation antibonding orbital (blue squares). The non-magnetic and
magnetic phase are described by the first two stable fixed points, respectively. Finally, the
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latter describes the instability of the system induced by the antibonding-orbital degeneracy.

4.4.4 Hamiltonian asymmetry

The parity symmetry can be broken by three distinct mechanisms: i) detuning the
energy level of the dots via gate potential; ii) changing the hybridization amplitude between
each dot and the wire; and iii) by asymmetry in the intra-dot Coulomb interaction. On
the bonding and antibonding basis, each source of asymmetry modifies the Hamiltonians
in Eqs. 4.4-4.6 and introduces new terms that directly couple the antibonding orbital with
the continuum.

To contemplate two non-identical quantum dots, the second term of the right-hand-
side of Eq. 4.1 must be generalized by εd → εdj

, with j = 1, 2. Following the standard
bonding and antibonding transformation, the energy levels of each orbital in Eqs. 4.4
and 4.5 are generalized by εd = (εd1 + εd2)/2. In addition, a direct coupling between the
orbitals is obtained via the Hamiltonian mapping. Mathematically,

Hasy-orbital = 1
2(εd1 − εd2)(d†bda + d†adb), (4.34)

where the coupling amplitude between the orbitals is given by the energy difference of the
quantum dots energy level. Therefore, for εd1 = εd2 , the direct coupling goes to zero and
the energy levels of each orbital is retrieved.

The coupling asymmetry is induced by the generalization of the last term of the
right-hand-side of Eq. 4.1. If the two quantum dots hybridize with the edge of the wire
with different amplitudes, V must be substituted by V → V1 and V2. In the bonding
and antibonding representation, the hybridization amplitude in Eq. 4.4 is redefined by
V → (V1 + V2)/

√
2 and an extra coupling between the antibonding orbital and the

continuum have to be included into the total Hamiltonian. This new term is expressed by

Hasy-coupling = 1√
2N

(V1 − V2)
∑
k

(c†kda + H.c.), (4.35)

where the coupling amplitude is defined by the difference between the coupling of each dot
to the wire. In the non-interacting regime, the definition of the bonding and antibonding
orbitals can be generalized in order to cancel the coupling in Eq. 4.35. The general definition
of the bonding and antibonding orbital is given by

d1 ≡ (sin θdb + cos θda) (4.36)

and

d2 ≡ (cos θdb − sin θda), (4.37)

where tan θ = V1/V2. Based on this definition, the antibonding orbital will always be
decoupled from the continuum. The previous transformation can be also applied in the
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interacting regime. Here, however, it fails, because with θ 6= π/4 Eqs. 4.36 and 4.37 add a
term to the right-hand side of the Eq. 4.6 that effectively couples da to the conduction
band.

Finally, intra-dot Coulomb interaction asymmetry generalizes the third term of the
right-hand-side of Eq. 4.1, substituting Uj, with j = 1, 2. For this generalization modifies
the three components of the Hamiltonian in the bonding and antibonding representation,
i.e., U = (U1 + U2)/2, and results in the new Hamiltonian

Hasy-Coulomb = 1
4(U1 − U2)(d†a↑db↑ + d†b↑da↑)(d

†
b↓db↓ + d†a↓da↓)

+ 1
4(U1 − U2)(d†a↓db↓ + d†b↓da↓)(d

†
b↑db↑ + d†a↑da↑), (4.38)

modulated by the energy between the intra-dot interaction. The new Hamiltonian directly
connects both orbitals whenever one of them is simply occupied.

The previous three sources of asymmetry couples the antibonding orbital to the
continuum. In other words, they mix the BIC and spin-BIC with the continuum. For the
BIC, these three asymmetries act in the same way as the Coulomb interaction does for the
symmetric case. As the asymmetry increases, it gradually strengthens the coupling between
the antibonding orbital and the continuum. This behavior is verified by calculations of
the antibonding orbital spectral density. The same behavior is observed for the spin-BIC.
Specifically, it can be observed by analyzing the threshold behavior of the antibonding
orbital spectral density. As the asymmetry amplitude grows, the threshold behavior is
washed out, due to the mixing between the subspace with even and odd parity symmetry.
This indicates that the ground state does not have anymore an isolated contribution from
the antibonding orbital.

From experimental point of view, two of the three sources of asymmetries can be
avoided by fine tuning the experimental parameters. The energy level of the quantum
dot orbitals can be fine tuned by application of gate potential. In the same way, the
hybridization asymmetry can be controlled by quantum point contacts or electrostatic
gates. The asymmetry induced by the intra-dot Coulomb interaction is the most challenge
variable to be experimentally controlled. To our knowledge, there is no mechanism to tune
this physical parameter, since it is related to the size and geometry of the dots. To achieve
the ideal limit, where both have the same intra-dot Coulomb interaction, the two quantum
dots must be identical.
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5 NON-LINEAR TRANSPORT FOR CHARGE-DEGENERATE TWO CHANNEL
KONDO MODEL

In this chapter, we theoretically investigate the non-equilibrium transport properties
of the charge-degenerate two channel Kondo (CD-2CK) model. This project was motivated
by the recent experiment by Z. Iftikhar at. al.1 The experimental setup emulates a
single electron transistor composed by a huge metallic island. In the low-energy regime,
this SET-like device reproduces Kondo physics, because two charging states emulate a
pseudospin-1/2 and the charge fluctuations in the island mimic a spin-flip mechanism. The
system is driven out of equilibrium by the sudden application of a bias voltage between the
leads. Via time-dependent Density Matrix Renormalization Group (tDMRG), we follow
the time evolution for times long enough to reproduce the transient regime, although
insufficient to reach the steady state.

Even though this project is not yet concluded, important partial results have
been obtained: (i) universal behavior of the differential conductance as a function of
the bias voltage; (ii) crossover between a Fermi liquid and non-Fermi liquid phase; and
(iii) time-dependent differential conductance characteristics explained by the energy-time
uncertainty principle, in the transient regime.

We organize this chapter as follows. In Sec. 5.1, we discuss the general aspects
of experiment by Z. Iftikhar at. al.1 and the main mechanisms that induce the charge-
degenerate two channel Kondo effect. The Hamiltonian used to describe the low-energy
physics of the experiment is presented in Sec. 5.2. In that section we also discuss the
different characteristic energies of the system and the quantum criticality of the model.
Thereafter, we project the CD-2CK Hamiltonian on the real space representation and
define the time-dependent calculation of the current, and of the differential conductance,
in Sec. 5.3.

In Secs. 5.4 and 5.5, we present the quench protocol adopted in this project and
discuss the interpretation of the transient regime on the basis of the energy-time uncertainty
principle. In the latter section, we also compare the maximum time reached in the time-
dependent experimental measurement with our tDMRG results. Finally, in Sec. 5.6, we
show the time-dependent differential conductance as a function of the bias voltage in the
symmetric and asymmetric regimes. The latter is defined by the charge-energy asymmetry
of the metallic island, which is equivalent to the Zeeman splitting on the Kondo basis.

5.1 Experiment

In Ref.,1 the authors investigate the equilibrium transport properties of a hybrid
metal-semiconductor single-electron transistor. The experimental device is composed by
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a metallic island, connected to three electrodes through quantum point contacts (QPC).
Two electrodes are strongly connected to the island, acting as a source and drain. The
third one is weakly connected and it is used to probe the in situ conductance of the other
two QPCs. The charging energy on the island is controlled via a lateral gate potential. In
addition, a perpendicular magnetic field spin polarizes the system and drives it into an
integer quantum Hall regime. Due to the size of the island, there is no coherent transport
between the spin-polarized edge channels in the opposite side of the island.

Fig. 24 sketches the experimental device implemented by Z. Iftikhar at. al.1 The
two golden semi-ellipses describe the leads, while the semi-circle in the middle depicts part
of the huge metallic island. The red solid arrows are spin-polarized edge channels induced
by the perpendicular magnetic field.

At low energy, i.e. kBT and eV � Ec (Ec is the charging energy on the island),
the transport properties of the experimental device are governed by two charge states
|N + 1〉 and |N〉. As discussed in Sec. 2.3, the Coulomb blockade allows electron flow
through the island only if the temperature or the bias voltage is larger than the energy
difference between the two charge states or, at zero temperature and bias, when these
states are degenerate. In the latter, the electron tunneling changes the occupation of the
island without energy cost. To inhibit this process, the conduction channels screen the
charge degenerate states of the island. If both channels compete on equal foot to screen
the charge states, partial screening is achieved. However, if coupling are different, the
conduction channel with larger coupling amplitude totally screens the charge states. This
phenomenon is known as the charge-degenerate two channel Kondo effect and takes place
at temperature lower than T2CK .

The partial screening generates an entangled phase between the leads, which
enhances the electronic flow through the island. This phase is known as the two channel
Kondo phase. If one of the channels fully screens the charge states, the current flow is
blocked due to the formation of a singlet state between the charge degrees of freedom of
the island and the conduction channel with larger coupling amplitude. This behavior is
characteristic of the single-channel Kondo phase. The current flow is also blocked if the
charging energy separability is high enough to destroy the Kondo effect.

The two channel Kondo physics is observed in a huge spinless metallic island
because the charge states define a pseudospin-1/2 and the charge fluctuation in the island
emulates a spin-flip mechanism. The energy difference between the two charge states
is fully equivalent to the Zeeman splitting of a magnetic Kondo impurity. The explicit
mapping between the real system and the Kondo basis was done in Sec. 2.5.

In Ref.,1 Z. Iftikhar at. al. verified that the charge degrees of freedom of the island
reproduces the two channel Kondo physics. Specifically, they were able to: (i) reproduce
the universal behavior of the zero-bias conductance as a function of the temperature; (ii)
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Figure 24 – Sketch of the experimental setup in Ref.1 The two golden semi-ellipses describe
the leads, while the semi-circle in the middle depicts part of the huge metallic
island. To eliminate the spin degrees of freedom, a strong perpendicular
magnetic field (B) takes the system into an integer quantum Hall regime.
Here, the red solid arrows represent its edge channels. At low energy, only the
|N + 1〉 and |N〉 charge states influence the transport, which states mimics
the pseudospin-1/2 represented by the black arrows.
Source: By the author.

verify the quantum criticality of the two channel Kondo effect and the crossover from the
two channel to a single-channel Kondo phase. Based on the latter one, they presented
a renormalization-group flow diagram that prescribes the crossover between these two
phases.

5.2 Charge-degenerate two-channel Kondo model

The electronic properties of the experimental setup sketched in Fig. 24 is given by

HReal =
∑
k,α

εkc
†
kαckα +

∑
p,α

εpc
†
pαcpα +

∑
kα,p

(
Jkα,pc

†
kαcpα + H.c.

)
+ Q̂2

2C . (5.1)

where first term describes the left and right spinless leads (α = L,R) as non-interacting, half-
filled conduction bands with bandwidth 2Ec and linear dispersion relation εk. The island
is defined by two non-interacting, spinless, half-filled conduction bands with bandwidth
2Ec and linear dispersion relation εp. Coherent transport between them is suppressed, due
to the size of the island. The third term couples the α-side of the island with to α-lead.
The final term describes the electron-electron interaction in the island, with

Q̂ =
∑
p,α

c†pαcpα, (5.2)

and C is the capacitance of the island. The system is driven out of equilibrium by an
external bias voltage eV applied to each lead. Specifically,

Hbias = eV

2

(∑
k

c†kLckL −
∑
k

c†kRckR

)
, (5.3)
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where eV defines the amplitude of the bias voltage.

Following the mapping discussed in Sec. 2.5, the Hamiltonian in Eq. 5.1 becomes

H2CK =
∑
k,α,σ

εkc
†
kασckασ +

∑
k,p,α

(
Jkα,pc

†
kα↑cpα↓S

− + H.c.
)
− VgSz, (5.4)

which is the anisotropic Kondo Hamiltonian, or the charge-degenerate two channel Kondo
(CD-2CK) Hamiltonian, as we prefer to call it. The first term describes two spin-full leads
(α = L,R) as non-interacting, half-filled conduction bands with bandwidth 2Ec and linear
dispersion relation εk. The second term describes the perpendicular component of the
spin-spin interaction between the magnetic moment and the conduction electrons, while
the final one defines a Zeeman splitting associated with the magnetic moment. Specifically,
Vg emulates the quantity eU in the last term of the right-hand side in Eq. 2.20.

Repeating the mapping in Sec. 2.5 for the Hamiltonian in Eq. 5.3, the external
bias becomes

Hbias = eV

2

(∑
k

c†kL,↑ckL,↑ −
∑
k

c†kR,↑ckR,↑

)
. (5.5)

In the spin basis, the bias voltage acts as a pseudo-magnetic field that only shifts the
energy levels of the leads with spin-up orientation. This term is suddenly introduced in the
Hamiltonian at zero time. More details about the quench protocol discussed in Sec. 5.4.

The rules of the mapping used in this section are summarized in Table 6. We
reproduce Table 1 in this chapter to help the reader.

Table 6 – Rules of the mapping of the Real system into the Kondo Hamiltonian.

Real basis Kondo basis

Charging energy (Ec) Half bandwidth

Hybridization amplitude (JL and JR) Exchange coupling

Gate voltage (Vg) Magnetic field on the local moment

Bias voltage (eV ) Magnetic field in the spin up electrons

Leads Spin up electrons

Island Spin down electrons

Occupation number Local moment

Source: By the author.
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5.2.1 Characteristic energies

Fig. 25 summarizes the characteristic energies of the CD-2CK Hamiltonian. The
charging energy Ec is originated by the electron-electron interaction and defines the half-
bandwidth in the spin basis. The coupling amplitudes JL and JR modulate the coupling
between the island and the leads.

T2CK is the two-channel Kondo temperature, estimated as

T2CK ≈ D(ρJ)exp(−π/4ρJ), (5.6)

where ρ is the density of state of the leads and J = JL = JR. This equation was obtained
via perturbation theory by Matveev and is only valid for J � Ec.15 This energy scale
defines the half-width of the two-channel Kondo peak. The Kondo effect vanishes if the
bias voltage or some asymmetry (∆J = JL− JR or Vg different from zero) induces another
characteristic energy larger than kbT2CK .

0 δs kBT
∗ kBT2CK J Ec

Figure 25 – Characteristic energies of the charge-degenerate two channel Kondo Hamil-
tonian. From left to right, δs is the mean level energy spacing originated
by the finite size of the leads and island, T ∗ is the crossover temperature
induced by some asymmetry, T2CK is the two Channel Kondo temperature,
JL/R is the coupling energy between the leads and the island, and Ec is the
half-bandwidth or charging energy.
Source: By the author.

T ∗ characterizes the crossover from non-Fermi liquid (two channel Kondo limit) to
Fermi liquid fixed point (single Channel Kondo effect or non-Kondo phase). The crossover
temperature is defined by

T ∗ = c1 (∆J)2 T2CK + c2 (Vg)2 /T2CK (5.7)

and is one of the two possible asymmetries in the system.106 In the equation, ∆J = JL−JR,
c1 and c2 are constants to be determined numerically. This definition is only valid for small
values of ∆J and Vg.

Fig. 26 sketches the phase diagram of the charge-degenerate two-channel Kondo
model. The dashed dark-orange line represents the crossover temperature that separates
the Fermi liquid (blue region) from the non-Fermi liquid phase (white region). The vertical
axis defines the excitation energies induced by temperature and bias voltage. The horizontal
axis defines the coupling asymmetry (∆J = JL − JR) and gate potential Vg. For finite
temperature and bias voltage, the quantum critical point that defines the non-Fermi
liquid phase broadens and allows the two-channel Kondo phase to be accessed even in
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Figure 26 – Sketch of the phase diagram for the charge-denegerate two channel Kondo
model. The crossover temperature T ∗ is defined by Eq. 5.6 and illustrated by
the dark orange dashed line. The blue and white region define, respectively, a
Fermi liquid and non-Fermi liquid phase.
Source: By the author.

the presence of asymmetry. In Sec. 5.6, we investigate how the system crossover from a
non-Fermi liquid to Fermi-liquid phase at finite bias voltage.

The mean level spacing in the leads and island (δs) is the lowest energy scale. It
must be much lower than all other characteristic energy for the Kondo effect to emerge. In
the tight-binding approximation, the mean level energy spacing in the island and leads is
approximately given by δs ≈ 2Ec/N , where N is the number of sites.

In equilibrium, the characteristic energies illustrated in Fig. 25 are accessed as a
function of the temperature. Specifically, at finite temperature the particles are excited with
energy proportional to kBT , where kB is the Boltzmann constant. Varying the temperature,
different energy scales are assessed and a crossover is observed when the temperature
crosses T2CK or T ∗.

At zero temperature, different characteristic energies are accessed when the system
is driven out of equilibrium. This can be done in various ways. However, in this thesis we
suddenly apply a bias voltage between the leads. As time evolves, different characteristic
energies are accesses along the transient regime. The energy resolution along this process
is determined by the energy-time uncertainty principle. As the time evolution reaches the
steady state, only excitations of the order of eV still relevant. Specifically, the steady state
is reached when all observables become time invariant.

5.3 Real-space Hamiltonian and observables

As discussed in Sec. 3.2, the tDMRG can be implemented in the framework of
Matrix product states (MPS) and Matrix product operators (MPO). In this representation,
the CD-2CK Hamiltonian can be described in the momentum representation, as the one
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adopted in the NRG approach, or on a real-space basis. Even though the momentum
representation proposed in the context of NRG gives access to excitation process with
ε→ 0, it also adds nonphysical oscillations in the time-evolution of the observable that
cannot be easily canceled out by integrating over z, as in equilibrium problems. To avoid
such nonphysical oscillation, in this project we work in the real-space representation,
in which the leads are described by a non-interacting tight-binding chain. The main
disadvantage is the emergence of a fictitious energy scale δs (mean energy level space).
This quantity is inversely proportional to the size of the tight-binding chain. In order to
overcome this problem, we choose the coupling constant so that δs � T2CK.

On the real space basis, the Hamiltonian CD-2CK Hamiltonian in Eq. 2.20 is
rewritten as

H2CK =−
∑
i<0,σ

ti
(
c+
i−1,σci,σ + h.c.

)
−
∑
i>0,σ

ti
(
c+
i,σci+1,σ + h.c.

)
− VgSz0

− JL
(
c+
−1,↑c−1,↓S

−
0 + h.c.

)
− JR

(
c+

1,↑c1,↓S
−
0 + h.c.

)
. (5.8)

Specifically, this Hamiltonian is a one dimensional tight-binding chain with 2N + 1 sites,
where N is the number of sites in each lead. The left (right) lead is described by the
sequence of sites −N ≤ i < 0 (0 > i ≥ N), as indicated by the first (second) term in
Eq. 5.8. At the center of the chain is a spin-1/2 site with two spin configurations separated
by the energy −Vg. Both leads are connected via spin-flip scattering with amplitude JL
and JR. As defined by the fourth and five terms in the Hamiltonian. Finally, the bias
voltage Hamiltonian become

Hbias =eV2 (
∑
i<0

c+
i,↑ci,↑ −

∑
i>0

c+
i,↑ci,↑), (5.9)

where the first (second) term shifts the conduction band with spin-up orientation in the
left (right) lead. On the spin basis, this term induces a spin current between the leads.

In a single-electron transistor, the current is defined by the time-dependent variation
of the difference between electronic occupation in the left and right leads. For the CD-2CK
Hamiltonian, the current induced by Eq. 5.9 is measured by the expectation value of the
operator

I = −e2
∂

∂t

∑
k

(
c†kL↑ckL↑ − c

†
kR↑ckR↑

)
. (5.10)

Calculating the time-derivative and projecting the result in the real-space representation,
the current operator becomes

I =e

2
i

~
[(
JLc

†
−1↑c−1↓ − JRc†1↑c1↓

)
S− −

(
JLc

†
−1↓c−1↑ − JRc†1↓c1↑

)
S+
]
. (5.11)

This operator measures the charge variation that goes in and out at each side of the central
region. The time-dependent current is calculated by measuring the expectation value of
this operator for each time step along the time evolution.
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The differential conductance is directly obtained from the calculation of the expec-
tation value of the current operator. By definition,

G(eV ) = ∂I

∂eV
(5.12)

where I is the current operator defined in the Eq. 5.11. In order to yield accurate numerical
derivatives, the conductance is calculated by

G(eV ) = I(eV + ∆eV )− I(eV )
∆eV (5.13)

with ∆eV/Ec = 0.001. Note that each point of the differential conductance involves two
runs of tDMRG.

The expectation values of the current I(eV ) is determined by averaging the time-
dependent expectation value of the current in a specified interval. In this chapter, the time
interval is labeled tM . The averaging smooths the current oscillations over two current
measurements and improves the quality of the numerical derivative.

5.4 Quench protocol

The quantum quench is a non-equilibrium process that time-evolves the ground state
of a system under the influence of the initial Hamiltonian plus an external perturbation. In
nanostructures, such as a single-electron transistor, the system is driven out of equilibrium
by the sudden introduction of an external potential difference across the leads. This
perturbation creates an electrical field and, consequently, electronic transport through the
nanostructure.

Fig. 27 sketches the quench protocol for the CD-2CK model. For t < 0, H2CK is in
equilibrium and the ground state can be calculated by GS-DMRG. At t = 0, a sudden
potential is applied between the leads, as illustrated by the upper right scheme in Fig. 27.
For t ≥ 0, tDMRG follows the time evolution of the ground state of the system based on
the Hamiltonian H2CK +Hbias.

We should emphasize that the quench protocol is a generic procedure and it can
be done following any strategy. For example, the CD-2CK model could be prepared as a
two biased leads decoupled from the central region and then, to drive the system out of
equilibrium, the coupling would be turned on. The latter quench protocol and the one
sketched in Fig. 27 may reach the same steady-state at t → ∞. However, the transient
regime cases will be different in the two protocols. For the CD-2CK model, the steady
state regime can be defined by t much bigger than the inverse of all characteristic energies
discussed in Subsec. 5.2.1. Outside this condition, the system is found in the transient
regime.

In the protocol where the central region is connected to the leads, the system starts
out in the two-channel Kondo phase and the electronic transport induced by the quench
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Figure 27 – Sketch of the quench protocol of the charge-degenerate two channel Kondo
effect. For t < 0, the ground state is described by H2CK, as represented by
the left scheme. For time t ≥ 0, the time evolution is driven by the perturbed
Hamiltonian H2CK +Hbias via tDMRG. The right scheme illustrates the biased
leads.
Source: By the author.

is assisted by the Kondo effect. In the second one, as the leads are decoupled from the
continuum, the Kondo effect is absent. Therefore, as the coupling is turned on, two effects
is observed simultaneously (i) the formation of the Kondo cloud, which takes a times
proportional to 1/T2CK, plus (ii) electronic transport thought the central region. As the
two process are co-dependent, the transient regime is definitely different.

5.5 Transient regime and time measurement resolution

The energy resolution of the time-dependent measurement is given by the uncer-
tainty principle

∆E∆t ≥ 1
2 , (5.14)

for ~ = 1. In our theoretical model, ∆t defines the time interval of the current measurement
and ∆E the energy resolution of the excitation processes assessed in the time interval
∆t. As time evolves, the energy resolution of the time-dependent measurement increases
in such a way that it is able to capture lower energy excitation processes. Precisely, the
energy-time uncertainty principle show us that the energy resolution of the time-dependent
measurement is given by ∆E ∝ 1/∆t. The numerical data shown in Sec. 5.6 ratifies this
interpretation.

As an example, let us consider the configuration sketched in the right scheme of
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Fig. 27 and, for simplicity, we assume that the leads are equally coupled to the central
region. As the system is initially in the Kondo phase, four characteristic energies have an
effect on the time-dependent measurement: i) the applied bias voltage (eV ); ii) the gate
potential Vg; iii) the Kondo (T2CK); and iv) the crossover T ∗ temperature. Assuming that
eV > Vg > T2CK > T ∗, the time-dependent measurement gradually solves the effects of
each characteristic energy for a specific range of time. If t < 1/eV , the physical properties
of the system are identical to the ones obtained at zero-bias regime because the time-
dependent measurement does not have resolution to resolve the extra energy due to the
applied bias and the other characteristic energies. For 1/eV > t > 1/Vg, the energy
resolution of the measurement only captures the effects of the bias voltage. The same
explanation can be extended to the other time intervals.

Experimental measurements are also restricted to the energy-time uncertainty
principle. The maximum time reached in an experiment is given by the temperature of
the system. As the system is immersed in a thermal reservoir with temperature kBT ,
as soon as the measure time is long enough to be inversely proportional to 1/kBT , the
energy uncertainty is resolved and the reservoir includes or takes out energy of the system
to keep it in thermal equilibrium. As the conductance measurement in the SET studied
by Z. Iftikhar in Ref.1 was performed at T = 11.5 mK and T = 22 mK, the maximum
times reached for these two temperatures are 33.2 ns and 17.3 ns, respectively. These two
maximum times were estimated by Eq. 5.14.

In order to compare the maximum time of our theoretical model with the experiment,
we apply the energy-time uncertainty principal for δs, that is the smallest energy scale of
our system. Specifically,

∆t ≥ 1/2δs ∼= Ec/N, (5.15)

with δs ≈ N/2Ec. This approximation is done considering the leads as a non-interacting
tight-binding chain with N sites and semi-bandwidth Ec. As in the experiment Ec ≈
kB × 290 mK and N = 249 in our theoretical model, the maximum time reached by our
model is ∆t ≥ 1.64 ns. Therefore, we conclude that the maximum time in our theoretical
calculation is between 10 to 20 times smaller than maximum experimental time.

5.6 Numerical results

The non-equilibrium results of this section were obtained by a theoretical setup
composed by 498 spin-full sites plus an extra spin-1/2. Each lead is composed by 249
sites in order to satisfy the condition δs � T2CK for all cases investigated in this section.
Following the quench protocol sketched in Fig. 27, the results were achieved in two steps:
first, the optimum ground state is obtained via GS-DMRG; and, second, ii) the ground
state is evolves in time via tDMRG under a finite bias voltage. The optimum ground state
was obtained requiting the truncation error to be equal to 10−5 and

∣∣∣〈H2〉 − 〈H 〉2
∣∣∣ ≤ 10−8.
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The time evolution was performed in the framework of 4-th Suzuki-Trotter decomposition
with time step δt = 0.125 and truncation error 10−4. The maximum time obtained in
our time evolution is approximately 249× Ec. For longer times, the sign of the current is
inverted due to the finite boundary conditions, i.e., tmas ≈ Ec/δs.

Two cases are discussed in this section: i) the symmetric coupling regime (JL =
JR = J and Vg = 0); and ii) the asymmetric regime for finite gate voltage (JL = JR = J

and Vg 6= 0).

5.6.1 Symmetric coupling regime

In the symmetric-coupling regime, the system is initially prepared in the two
channel Kondo phase and it is driven out-of-equilibrium by the sudden introduction of a
bias voltage. In this setup, the bias voltage shifts the energy of the Fermi level of the two
leads. Consequently, it divides the Kondo peak in two new resonances. The splitting of
the Kondo peak generates two different transport regimes in the system. For eV � T2CK,
the current increases linearly as a function of the bias voltage. For eV � T2CK, non-linear
contributions arises such as eV 2. In addition, as eV increases, the Kondo effect is gradually
destroyed.
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Figure 28 – Current as a function of time in the symmetric coupling regime for J/Ec = 0.4,
Vg = 0 and eV/Ec = 0.07. The dashed horizontal line indicates a period of
the current oscillation induced by the sudden application of the bias voltage.
Source: By the author.

In the symmetric coupling regime, we calculate the differential conductance for
J/Ec = 0.3, 0.35 and 0.4. In these cases, the 2CK temperature is given by T2CK/Ec = 0.009,
0.025 and 0.061, where the T2CK were calculated as the half-height of the T -matrix
computed by NRG. We recall that the expression of the Kondo temperature in Eq. 5.6
fails for large J .

Fig. 28 displays the current as a function of time for finite bias voltage (eV/Ec =
0.07) in the symmetric coupling regime (J/Ec = 0.4). Right after the quench (t/Ec � 1),
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the current abruptly increases to approximately eV and oscillates with period 2πEc/eV .
As we are investigating the symmetric coupling regime, the time-dependent current must
not deviate from the expected amplitude eV , even in the non-linear regime. The dropping
of the current around tEc ≈ 500 is a consequence of the finite size of the lattice. Specifically,
it means that the current flows from the center to the edge of the tight-binding chain
and is then reflected back by the finite boundary conditions. When the electron current
reaches the site where the current is being measured, the sign of the current is inverted.
The inversion time is approximately 1/δs.
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Figure 29 – Panel (a): Conductance as function of the bias voltage for J/Ec = 0.3, 0.35
and 0.4. Panel (b): Rescaled conductance as a function of the bias voltage.
The dashed red line emphasizes the non-linear behavior of the conductance.
In both panels, each data point was calculated by averaging the current in
the time interval 20 ≤ t/Ec ≤ 50.
Source: By the author.

Panel (a) of Fig. 29 shows the conductance as a function of the bias voltage for
J/Ec = 0.3, 0.35 and 0.4. In the plot, each point corresponds to the average of the current
in the time interval 20 ≤ t/Ec ≤ 50. From Eq. 5.14, the lowest energy accessed in the
time-dependent measurement is 0.01Ec, which is lower than (J/Ec = 0.35 and 0.4) or
approximately equal to (J/Ec = 0.30) the Kondo temperature for the three cases displayed
in the Panel. For eV/Ec < 0.01, the system is found in the linear regime with characteristic
conductance amplitude G(eV ) = 0.5. In the opposite regime, for eV/Ec > 0.01, the
conductance is non longer linear. In this regime, the conductance varies with eV 2. The
differential conductance behavior does not change if the current is measured for longer
times, i.e., t/Ec > 50.

Panel (b) of Fig. 29 plots the difference between G(eV ) displayed in the panel (a)
and G(0), that is the conductance for eV/Ec = 0.001. Rescaling this quantity by

√
T2CK/Ec,

the conductance displays universal behavior as a function of the bias voltage. In addition,
we verify that G(eV )− G(0) increases with eV 2, which is therefore the first correction to
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the linear behavior of the current. This is expected, because the current must be an odd
function of eV .

5.6.2 Finite gate voltage regime

Fig. 27 sketches the effective system in the presence of a finite gate voltage (Vg).
As discussed in Secs. 5.1 and 5.2, the gate potential Vg splits the charging energy states
of the island. In the Kondo basis, this is fully equivalent to the Zeeman splitting. As Vg
grows, two effects are expected: i) the Kondo peak broads for T ∗ � T2CK, and vanishes
for Vg ≈ T2CK ; and ii) for T ∗ � T2CK, the Kondo effect is destroyed and the electronic
transport though the island is suppressed.

Different from Subsec. 5.6.1, the applied bias enhances electronic transport through
the island when it has the same amplitude as the gate voltage. When the Fermi levels of
both leads resonate with Vg, the electronic transport through the island increases again.
This explanation is valid for T ∗ ≤ T2CK.

For finite Vg, the transient regime becomes more complex. In this case, three
characteristic energies directly play an important role in time-dependent measurements: i)
the gate potential Vg; ii) the crossover temperature T ∗; and iii) the two channel Kondo
temperature T2CK. For example, Fig. 31 displays the current as a function of time for
J/Ec = 0.4, eV/Ec = 0.01 and Vg/Ec = 0.02. In the short time regime, defined by the
highlighted blue area describing t� Ec/eV , the current divided by the bias voltage has
amplitude around 0.5, which characterizes the linear regime for Vg = 0. This regime is
attained because the energy-time uncertainty principle allows us to capture only high-
energy excitations. Therefore, the energy resolution of the time-dependent measurement
is unable to capture the level splitting induced by Vg. The time-dependent measurement
starts to capture effect of the gate potential for t = Ec/eV , as displayed by the orange
highlighted area defined in the time tM2 . Finally, for t� Ec/eV , as shown by the green
highlighted area, the time is long enough to resolve the energy separation introduced by
Vg.

The color plot on Panel (b) in Fig. 31 displays an overview of the energy resolution
of the time-dependent measurement of the conductance as a function of time and gate
potential for J/Ec = 0.4 and eV/Ec = 0.01. In this plot, tM is the average between
ti < tM/Ec < ti + 5, where ti is the initial time. In the short time regime, the system
is found in the linear regime and, as longer times are reached, lower-energy excitation
processes are assessed. The blue dashed line delimits the energy resolution in the time-
dependent measurement. Note that only the large values of gate potential are quickly
energetically solved by the time-dependent measurement.

Panel (a) in Fig. 31 shows three horizontal cuts in the color plots. As previously
explained, for tM = 0.2/eV , the system is found in the 2CK phase. In this short time
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Figure 30 – Current as a function of time for J/Ec = 0.4, eV/Ec = 0.01 and Vg/Ec = 0.02.
The three color regions defined by tM1 , tM2 and tM3 emphasizes the limits
t� Ec/eV , t = Ec/eV and t� Ec/eV , respectively.
Source: By the author.
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Figure 31 – Panel (a): Conductance as a function of the gate potential Vg for J/Ec = 0.4
and eV/Ec = 0.01. tM defines the time range where the current was average.
Panel (b): Colorplot of the Conductance as a function of gate potential (Vg)
and time tM . The blue dashed line delimits the energy resolution of the current
measurement.
Source: By the author.

regime, the energy resolution only takes into account high-energy excitation processes.
In the intermediate regime defined by tM = 1.0/eV , the energy resolution of the time-
dependent measurement is only able to detect the effects of Vg for Vg/eV ≥ 1. Therefore,
the conductance keeps constant for Vg/eV < 1 while its quickly decreases in the opposite
regime. Finally, for tM = 2.0/eV , the time is long enough to energetically resolve all values
of Vg. The green curve shows the enhancement of the conductance when the eV and Vg
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has the same amplitude.
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Figure 32 – Panel (a): Conductance as a function of bias voltage for J/Ec = 0.4 and
Vg/Ec = 0.05 for three different time limits. The three curves were obtained
by TM � 1/Vg, TM = 1/Vg and TM � 1/Vg. Panel (b): Conductance as a
function of the bias voltage. The plot compares the green case in Panel (a)
with the Emery-Kivelson solution from Ref.2 The crossover temperature for
the green curve is T ∗/Ec = 0.021.
Source: By the author.

The energy resolution of the time-dependent measurement also influences the
conductance as a function of the bias voltage J/Ec = 0.4 and Vg/Ec = 0.05. As displayed
in Panel (a) of Fig. 32, in the short time regime tM = 0.3/Vg the energy resolution is
not small enough to respond to the action of the gate potential and the bias voltage eV .
However, as longer times are accessed, the conductance drops to zero at low bias voltage
and forms a resonant peak round Vg/Ec. The resonant peak emerges due to the action of
the bias voltage that is aligned the Fermi level of both leads. Finally, Panel (b) in Fig. 32
compares the green curve of the Panel (a) with the Emery-Kivelson solution from Ref.2

Shortly, the Emery-Kivelson solution maps the asymmetric two channel Kondo model
upon a non-interacting system for a specific set of parameters. This solution is similar to
the one proposed to Toulouse in the context of single-channel Kondo problem. Therefore,
the solution is only valid only for T � T2CK and eV � T2CK and, because of that, cannot
capture the Kondo peak splitting. Surprisingly, our results coincides with Emery-Kivelson
solution up to eV/T ∗ ≈ 1.
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6 CONCLUSION

In the first part of the thesis, we have studied correlation effects in the emergence
of a bound state in the continuum in a two identical quantum dot device coupled to a
quantum wire. This experimental device is precisely modeled by the two-impurity Anderson
Hamiltonian. Taking advantage of the quantum dot symmetry, we have projected the
two-impurity Anderson model upon the bonding and antibonding representation given by
the symmetric and antisymmetric linear combinations between the quantum dots. This
representation has shown that the antibonding orbital is a Friedrich-Wintgen BIC in the
non-interacting regime, but is effectively coupled to the continuum via isospin-isospin and
spin-spin interactions with the bonding orbital for U > 0.

To ratify the physical interpretation of the two-impurity Anderson Hamiltonian,
we have calculated the spectral density and the magnetic susceptibility of the bonding and
antibonding orbital via the Numerical Renormalization group approach. As the Coulomb
interaction grows, we have shown that the spectral density of the antibonding orbital
changes as a result of the indirect coupling of this orbital with the continuum. The coupling
is assisted by the electron-electron interaction between the bonding and antibonding orbital.
The antibonding orbital displayed threshold behavior in the weak and strong coupling
regime that follows, respectively, the Nozières-De Dominicis and Doniach-Sunjic power
laws. The threshold behavior indicates that the ground state of the system is composed
by an isolated component of the antibonding orbital.

To examine the ground state properties of the system, we have studied the magnetic
susceptibility of the two orbitals as a function of the temperature. At zero temperature,
the magnetic susceptibility has unveiled a boundary quantum phase transition between a
non-magnetic and magnetic phase. The phase transition is due to the competition between
two ground states defined composed by a (i) singlet isospin state and (ii) a triplet spin state
between the orbitals. The sudden change in the ground state is due to the conservation of
the spin of the antibonding orbital.

In the non-magnetic phase the antibonding orbital has zero spin. Therefore, only
the isospin-isospin interaction between the bonding and antibonding interaction acts on
this subspace and the ground state is a isospin singlet. The magnetic phase arises when the
ground state has the antibonding orbital with spin-1/2. As a result, only the ferromagnetic
spin interaction acts in this subspace and the ground state is given by a triplet spin
state. At zero temperature, a fixed point analysis has shown that the spin component of
the antibonding orbital in the triplet spin state effectively coupled with the conduction
band via a ferromagnetic interaction. As the ferromagnetic coupling goes to zero at zero
temperature, the spin component of the antibonding orbital decouples from the continuum
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and creates a spin-BIC at zero temperature.

These results shed light on the understanding of correlation effects in the emergence
of BICs and unveil the emergence of a spin-BIC induced by strong correlation effects.
Furthermore, they have shown another perspective in explaining the quantum phase
transition present in two-impurity Anderson model. Finally, this project has allowed us to
improve the spectral density calculation via z-interleaved approach.

In the second part of this thesis, we have investigated the non-equilibrium transport
properties of the charge-degenerate two channel Kondo model. We have driven the system
out of equilibrium due to a sudden applied bias voltage. Based on time-dependent Density
Matrix Renormalization group, we have followed the time evolution long enough to describe
the transient regime, although not long enough to reach the steady state. Even though we
have not concluded this project yet, we have been able to capture: (i) the universal behavior
of the charge-degenerate two-channel Kondo effect as a function of the bias voltage; (ii)
the crossover between a Fermi liquid and non-Fermi liquid phase; (iii) the understanding
of the time-dependent differential conductance via the energy-time uncertainty principle.

To conclude the second project, we will calculate and analyze the time-dependent
differential conductance for finite bias voltage and asymmetry. Specifically, we intend to
observe the universal crossover between a Fermi liquid and non-Fermi liquid phase due to
the coupling asymmetry (∆J) and finite gate potential (Vg). In addition, we intend to use
other time-dependent methods, such as time-dependent NRG, to describe the electronic
properties in the steady state regime.
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APPENDIX A – UNIVERSAL MAGNETIC SUSCEPTIBILITY

This appendix shows the numerical data for the universal magnetic susceptibility
for the spin-1 and one channel Kondo effect, used in Chapter 4.



118

Table 7 – Values of the universal magnetic susceptibility of the spin-1 and one channel
Kondo effect versus T/TK .

lnT/TK T/TK S = 1
-6.6 0.0013 213.02547
-6.3 0.0018 158.47150
-6.0 0.0024 117.95038
-5.7 0.0033 87.84407
-5.1 0.0045 65.46840
-4.8 0.0082 36.45573
-4.5 0.0111 27.24411
-4.2 0.0149 20.38286
-3.9 0.0202 15.26821
-3.6 0.0273 11.45817
-3.3 0.0368 8.60222
-3.0 0.0497 6.47145
-2.7 0.0672 4.87638
-2.4 0.0907 3.68064
-2.1 0.1224 2.78280
-1.8 0.1652 2.10739
-1.5 0.2231 1.59830
-1.2 0.3011 1.21377
-0.9 0.4065 0.92269
-0.6 0.5488 0.70189
-0.3 0.7408 0.53409
0.0 1.0000 0.40637
0.3 1.3498 0.30906
0.6 1.8221 0.23488
0.9 2.4596 0.17833
1.2 3.3201 0.13523
1.5 4.4816 0.10242
1.8 6.0496 0.07746
2.1 8.1661 0.05850
2.4 11.0231 0.04412
2.7 14.8797 0.03323
3.0 20.0855 0.02500
3.3 27.1126 0.01878
3.6 36.5982 0.01409
3.9 49.4024 0.01056
4.2 66.6863 0.00791
4.5 90.0171 0.00592
4.8 121.5104 0.00442
5.1 164.0219 0.00330
5.4 221.4064 0.00246
5.7 298.8674 0.00184
6.0 403.4287 0.00137
6.3 544.5719 0.00102
6.6 735.0951 0.00070

Source: Adapted from TSVELICK, A. et al.107
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