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ABSTRACT

NEVES, G. A. Higher-order QCD in the decay Higgs to two photons. 2021.
98 p. Dissertation (Masters in Science) - Instituto de Física de São Carlos, Universi-
dade de São Paulo, São Carlos, 2021

In the absence of direct observation of Physics Beyond Standard Model at the LHC,
precise tests of the theory require increasing accuracy. The decay width of the Higgs
boson into photons is known, incompletely, at the 5-loop level, i.e. N4LO in the
strong coupling, α4

s, while the exact knowledge of the QCD corrections is up to
N2LO or the 3-loop level. In this work, we calculated, for the first time, the effect
due to higher-order QCD corrections in the decay H → γγ through the so-called
large-β0 limit, in which the corrections from the leading-nf terms are known to all
orders in αs. The analysis of the series’ singularities in Borel space enable us to
study, in a semi-qualitative way, the series behaviour with respect to variations of
the renormalization scale. Furthermore, we calculated the Borel sum due to the
contribution of the leading-nf diagrams, trying to understand the significance of
the diagrams which are sub-leading in nf , and the optimal renormalization energy
scale to compute the QCD corrections of Γ(H → γγ). Finally, we estimated the
magnitude of the next QCD correction as well as the error due to truncation of the
series with the known perturbative corrections in QCD.

Keywords: Higgs boson. Perturbative QCD. Large-β0. High-energy physics.





RESUMO

NEVES, G. A. QCD perturbativa em ordens altas no decaimento Higgs em
dois fótons. 2021. 98 p. Dissertação (Mestrado em Ciências) - Instituto de Física
de São Carlos, Universidade de São Paulo, São Carlos, 2021

Na ausência de observação direta de física além do modelo padrão no LHC, testes
precisos da teoria requerem precisão cada vez maior. A largura de decaimento do
bóson de Higgs em fótons é conhecida, de forma incompleta, até quarta ordem no
acoplamento forte, α4

s, enquanto o conhecimento exato das correções é conhecido até
segunda ordem (N2LO). Neste trabalho, calculamos, pela primeira vez, os efeitos
devidos a correções de QCD de ordens superiores no decaimento H → γγ através do
chamado limite large-β0, no qual as correções advindas dos termos dominantes em
nf são conhecidas em todas as ordens em αs. A análise das singularidades da série
no espaço de Borel nos permite estudar, de forma semi-qualitativa, o comportamento
da série com as variações da escala de energia. Além disso, calculamos a soma de
Borel da série devido à contribuição dos diagramas leading-nf , procurando entender
a significância dos diagramas ignorados, i.e. o quão relevante são os diagramas
sub-dominantes em nf , e a melhor escala de energia para estimar as correções de
QCD do processo Γ(H → γγ). Por fim, estimamos a magnitude da próxima correção
em QCD bem como o erro de truncamento da série com o conhecimento atual das
correções perturbativas.

Palavras-chave: Bóson de Higgs. QCD perturbativa. Large-β0. Física de altas
energias.
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1 INTRODUCTION

The Standard Model (SM) of Particle Physics is one of the greatest achievements in
the history of Physics. It describes three out of the four fundamental forces in nature:
Strong, Electromagnetic and Weak interactions. The only exception is gravity, which does
not have a complete quantum formulation entirely consistent.

Although it is hard to stipulate an initial date, the work of Paul Dirac describing
the interaction between matter and radiation in the late 20s1 initiated the study of
fundamental particle interactions. The construction of the SM went throughout the 20th
century with contributions from several of the greatest physicists of all times: Fermi2,
Feynman, Schwinger and Tomonaga (who developed Quantum Electrodynamics (QED)
to be the most precise theory in physics to date3–5), Yang and Mills (who developed a
gauge theory for non-Abelian groups transformations6), Glashow, Weinberg and Salam
(who combined electromagnetic and weak interactions7–9), Englert, Brout and Higgs (who
developed a mechanism for allowing massive gauge bosons10,11), Fritzsch, Gell-Mann and
Leutwyler (who supported QCD and the existence of quarks which combined themselves
into color singlets to give rise to the plethora of observed particles12,13) among others.

Alongside the theoretical progress, experimental particle physics developed enormously
and the various accelerators built around the world provided experimental evidence that the
theory under construction was sound. Particle after particle, the fundamental constituents
of the SM were discovered enhancing with that the model’s status as a solid theoretical
framework.

However, one of its main ingredients — the Higgs boson — remained unobserved. The
particle which enables all massive content in the theory (and thus its coherence) could not
be observed, in spite of the international community effort — the advent of more energetic
colliders was enabling the search for the Higgs boson at higher energy scales (and with
increasing detection sensibility) to no avail.

This scenario changed in 2012, when the Large Hadron Collider (LHC) announced the
observation of a scalar particle which was identified as the long-sought Higgs boson14,15.
The next logical step, after its announcement, was the measurement of its properties. So
far, the Higgs boson announced agrees with the one predicted theoretically more than half
a century ago14,16.

However, the experimental accuracy is increasing in a rapid pace, and thus precise
theoretical calculations become a must in order to match with results obtained in the
laboratory. In this context, higher-order calculations are mandatory for testing the
correctness and the limits of the (now) well established Standard Model.

To obtain precise theoretical results, Quantum Chromodynamics (QCD) higher-order
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calculations are very important, since strong corrections almost always dominate over the
sub-leading Electroweak (EW) corrections. Unfortunately, QCD is a very involved theory
and its perturbative higher-order calculations are extremely hard to compute. Thus, a
viable alternative is to resort to Effective Field Theories (EFT) which try to incorporate
many of the main theory aspects when applied to some limits; it is important to keep
in mind that these EFTs do not have a global reach: they are intended to explain the
physics in certain energy scales which in turn can augment our physics understanding and,
in some cases, enable us to predict experimental results with accuracy.

One of the possible EFTs covers the scenario in which one of the masses in the problem
is much heavier than the remaining scales. When this is the case, one can expand the
calculation in powers of (1/m2

h)
p, where mh is the heavy scale; this expansion is intended

to simplify the original calculations. Then, the resulting expression is a series in which each
term presents a correction of the order of 1/m2

h; in the limit when we take the heavy-scale
to infinity, only the leading-order term contributes. In this scenario, we say that the heavy
degree of freedom (d.o.f.) was integrated out of the theory. Thus, interactions mediated
by the exchange of heavy particles are interpreted as contact interactions. It is important
to note that, the more the gap between the heavy scale and the remaining ones, the better
the effective theory becomes: lets say that m2

l /m
2
h ' 0.01, with ml a light d.o.f. in the

problem; then, the leading-order (LO) term is already a very good approximation and
further corrections will amount to approximately 1% of the value in the full theory.

Another interesting limit to study higher-order QCD corrections is the so-called large-β0

limit. In this scenario, first one considers the limit in which the number of flavours in the
theory goes to infinity while keeping the product nfαs ∼ O(1) constant. It is argued that
in some cases the real scenario is not very different from the scenario where nf →∞17.
After that, one proceeds to the large-β0 limit, in which β0,f — the contribution to the
first β-function term due to fermions — is substituted by the full first coefficient of β, β0.
This procedure yields good qualitative insights as well as it is a good approximation in
various processes18; Thus, through the large-β0 limit, one can expect to understand the
series behaviour at higher-orders. We note, however, that since this procedure is not an
EFT (there is no matching conditions, for example), there is no guarantee of its success as
well as no mathematical proof of its validity. Its theoretical status as an interesting limit
of QCD is mainly based on the successful applications to several different processes19–23

To study the Higgs-boson properties, an interesting process is the Higgs decay into
two photons, since it is one of the main channels at the LHC. Due to its low-background,
it is an easily detected channel, even though it is not among the leading decay channels.
In this decay, because the final particles are massless and the Higgs boson couples only
to massive particles, the leading-order (LO) process already happens at the 1-loop level,
mediated by fermion triangle-loops; furthermore, the transition amplitude is dominated by
the top-quark loop24, since the top-quark mass is two orders of magnitude larger than the
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second-to-most heavy quark — the bottom-quark — and the Higgs coupling to fermions is
proportional to the fermion mass.

In this work, we study the decay of the Higgs boson into two photons in the heavy
top-quark limit — in our case, the expansion parameter is τt ≡M2

H/4m
2
t ≈ 0.13, where

MH is the Higgs mass while mt is the top mass, our heavy scale. In our analysis, we
calculated the leading-nf terms for the decay to all orders in perturbation theory in QCD,
a result which is not present in the literature to the best of our knowledge. With this
result, we proceeded to the large-β0 limit, where, in our conventions, we substituted
nf → 6πβ0. The analysis of the resulting series and the comparison with the original
QCD series enabled us to try to answer quantitative questions as ‘what is the magnitude
of the next QCD correction’ or ‘what is the error in the perturbative truncation of the
series’, as well as qualitative insights about the series behaviour. Our result suggests that
uncertainties due to the perturbative QCD corrections are sub-leading when compared to
the uncertainties due to parameters used in the calculation of the observables (such as the
strong coupling, αs).

This work is organized as follows: in Sec. 2 we construct the Standard Model with its
basic properties; in Sec. 3 we focus on the strong interaction and its peculiarities, as well
as the limit in which we will perform our calculation. in Sec. 4 we analyze the Higgs sector
in the SM and introduce its main features to enable us to develop our calculation. In
Sec. 5 we introduce in detail the program used for the calculations; in Sec. 6 we present the
results obtained as well as discussions about further calculations from the results. Finally,
we end this work in Sec. 7 with the conclusions.
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2 THE ELECTROWEAK STANDARD MODEL LAGRANGIAN

In this chapter we aim at developing the relevant sectors of the electroweak SM
Lagrangian for this work in a concise and self-consistent way. This chapter is based on
Refs.24,25.

The SM Lagrangian contains all elementary degree of freedom. The fundamental fields
are the three fermion families (shown in Tab. 1), eight gluons, g, which are the gauge bosons
responsible for the strong force, the gauge bosons of the electroweak interaction, W±, Z
and γ, along with a scalar particle, the Higgs boson. The strong and EW interactions
are constructed through the gauge principle applied to the Dirac Lagrangian describing
the free fermions. However, due to different transformation properties between left- and
right-handed fields, these fermion fields are treated as massless. In the context of the SM,
to generate the masses of all massive particles — the gauge bosons W±, Z and all fermions
—, a new scalar particle needs to be introduced, the Higgs boson. Allowing the Higgs boson
to acquire a nonzero vacuum expectation value (vev) through a self-interaction potential,
one is able to spontaneously break the symmetry — which is interpreted as choosing a
specific vacuum state among all possible states — and generate the masses of the W± and
Z, while keeping the photon massless. Through Yukawa couplings with the fermions, the
same scalar field provides mass to these particles and the mass generation in the SM is
completed.

This procedure shows the central role of the Higgs boson in the theory — without it,
it would be impossible to have massive particles in the SM Lagrangian. The Higgs boson
then becomes an active degree of freedom of the SM and generates a new sector with its
own phenomenology. The Higgs sector will be explored in Section 4.

We start this chapter with the gauge principle, introducing the Yang-Mills theory
(non-Abelian, SU(N) symmetry). Then we focus on the more complex structure of the
EW sector, based on the SU(2)L × U(1)Y gauge symmetry. After the introduction of the
gauge fields, we identify the known EW gauge bosons as linear combinations of the original
SU(2)L × U(1)Y gauge fields. Finally, the Higgs boson is introduced with its mechanisms
of mass generation in the theory.

2.1 The gauge principle

The gauge principle is the underlying symmetry principle in the Standard Model; it is
based on the invariance of the theory under local gauge transformations. In the case of the
SM, the underlying symmetry group is SU(3)C × SU(2)L×U(1)Y , where the sub-index C
refers to color, the strong interaction charge, L refers to left-handiness, which is the quality
of the particles described by SU(2) doublets, and Y refers to the hypercharge, the quantum
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Table 1 – Fermions present in the SM divided into families.

Family Leptons Quarks
1st νe, e u, d
2nd νµ, µ c, s
3rd ντ , τ t, d

Source: By the author.

number of the U(1) symmetry group. Therefore, the SU(3)C gauge invariance will give
rise to the strong interactions, while the SU(2)L × U(1)Y gives rise to the Electroweak
interaction.

When we impose the Lagrangian to be invariant under a gauge transformation, we are
forced to introduce new fields in the theory interacting with the original fermion fields
— the so-called gauge boson fields —, and with certain transformation properties. The
reason why we need to introduce a new scalar particle in the theory, the Higgs boson, is
due to the fact that the gauge principle performed on a Dirac Lagrangian only admits the
introduction of massless gauge bosons, i.e., it is a perfect good symmetry for QCD and
QED, where the gluons and photons do not have mass, but does not work for the weak
sector of the SM, where the gauge bosons are massive26; the mass term for these bosons
would spoil the symmetry.

In this section, we will introduce the Yang-Mills theory, which will present qualitative
features which will enable us to understand the more robust EW sector of the SM
Lagrangian.

2.1.1 Yang-Mills theory

The Yang-Mills theory incorporates the gauge principle for non-Abelian SU(N) group
transformations. Since U(1) is a subgroup of SU(N) and is the symmetry involved in
QED, Quantum Electrodynamics is already present in the development we will present
here.

Consider the Lagrangian for a massless Dirac field,

L 0
f = ψ̄iγµ∂µψ. (2.1)

Now, assume a gauge transformation in the field ψ,

ψ → ψ′ = Uψ, U = eiθ
aTa , (2.2)

where the T a’s are the generators of the underlying Lie algebra su(N).I The properties of
IWe represent the group by upper-case letters, while the underlying Lie algebra are represented by
lower-case letters.
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the special unitary group elements are such that

UU † = U †U = 1, det(U) = 1.

The Lagrangian is clearly invariant under global SU(N) transformations, but not under
local ones: if we let θa to be a function of the space-time coordinate, θa(x), then the new
Lagrangian reads

L 0
f → (L 0

f )′ = ψ̄iγµ[iT a(∂µθ
a(x) + ∂µ]ψ. (2.3)

Thus we introduce the covariant derivative, Dµ, as

Dµ = ∂µ + igT aGa
µ. (2.4)

Note that, in this definition, we incorporated N2 − 1 new vector fields Ga
µ in the theory,

since su(N) possess N2 − 1 generators. With this new derivative, the Lagrangian

Lf = ψ̄iγµDµψ (2.5)

transforms as

Lf → (Lf )
′ = ψ̄U †(iγµ[∂µ + igT a(Ga

µ)′])Uψ

= ψ̄U †[iγµ(∂µU)ψ + iγµU∂µψ]− gT aψ̄U †γµ(Ga
µ)′Uψ.

(2.6)

The gauge principle states that the Lagrangian needs to be invariant under local gauge
transformations. Thus, to satisfy this principle we demand that the new degrees of freedom
Ga
µ transform so as to cancel the extra terms,

Ga
µ → (Ga

µ)′ = UGa
µU
† +

i

g

T a

(T bT b)
(∂µU)U †. (2.7)

With these definitions, the new Lagrangian transforms under a local SU(N) group element
as

Lf → (Lf )
′ = ψ̄(iγµDµ)ψ = Lf . (2.8)

Thus, we were able to develop a Lagrangian invariant under local SU(N) transformations.
We begin to analyze the resulting Lagrangian by noticing that there is only one type of
interaction vertex between the fermions and the gauge bosons,

LGff̄ = −gGµψ̄γ
µψ, (2.9)

where we defined Gµ ≡ Ga
µT

a. But, remember, we introduced new spin-1 gauge fields; if
we want these spin-1 gauge fields to be real propagating fields, we must introduce a kinetic
term involving at least first derivatives on Ga

µ. This process is tricky for non-Abelian fields,
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because the Gµ’s do not commute among themselves. To circumvent this, note that, with
our definition of Dµ, we obtain the transformations for the covariant derivative such that
it cancels the transformations of the fermion fields. Explicitly, the net result is

Dµ → D′µ = UDµU
† =⇒ [Dµ, Dµ]→ U [Dµ, Dν ]U

†. (2.10)

With this in mind, we introduce the field strength tensor, Gµν , as

Gµν = − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs[Gµ, Gν ]. (2.11)

From our definition, the contraction of the field strength tensor with itself transforms
under a SU(N) gauge transformation as

GµνG
µν → (Gµν)

′(Gµν)′ = UGµνG
µνU †. (2.12)

This is not yet invariant under SU(N) transformations, but due to the cyclic property of
the trace, we can construct a SU(N) invariant Lagrangian piece for the kinetic term of
the gauge boson field involving derivatives of the fields as

Lb = −1

2
Tr(GµνG

µν). (2.13)

Assuming we work in a basis in which the generators are such that

Tr(T aT b) =
1

2
δab,

the resulting Lagrangian reads

Lb = −1

4
Ga
µνG

µν,a. (2.14)

Adding the fermion Lagrangian with the gauge bosons kinetic term, we obtain the massless
Yang-Mills Lagrangian, L m=0

YM = Lf + Lb,

L m=0
YM = −1

4
Ga
µνG

µν,a + ψ̄iγµDµψ. (2.15)

Note that, due to the non-commutativity of the generators, the kinetic term has a part
that reads

ig[Gµ, Gν ] = igsG
a
µG

b
ν [T

a, T b] = −gfabcGa
µG

b
νT

c.

Therefore, when we contract GµνG
µν , there will appear terms containing products of three

and four gauge fields, i.e., the gauge bosons interact among themselves, in diagrams with
three and four legs, as depicted in Fig. 1. The three-boson interaction has the same
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Figure 1 – Feynman diagrams for the three- and four-glouon-vertex which arise from the
non-commutativity of the SU(3)C symmetry group.

Source: By the author.

strength as the one between fermions and gauge particles, given by g (and the group’s
structure constant). The four-boson vertex has a coupling constant g2, the square of the
original coupling constant. This is the main difference between Abelian and non-Abelian
gauge theories — the gauge bosons are charged.II As a consequence, since there are more
interactions in the Yang-Mills theory than in Abelian theories, the calculation of higher
order diagrams becomes more and more complicated (and abundant) as we go farther
in perturbation theory. An example of a Yang-Mills theory is QCD, in which the gauge
group is the SU(3)C group.

2.2 The Electroweak sector

We now turn our attention to the construction of the EW sector of the SM Lagrangian.
The EW matter content is composed by SU(2) left-handed doublets and SU(2) right-
handed singletsIII,

L ≡

 ν`

`


L

, Q ≡

 u

d


L

, ν`R, `R, uR, dR. (2.16)

The symmetry group under which we will demand gauge invariance is SU(2)L × U(1)Y ,
where L refers to the left-handiness and Y refers to the hypercharge. The Lagrangian
invariant under a global SU(2)L × U(1)Y gauge transformation is defined as

L 0
EW = L̄iγµ∂µL+ Q̄iγµ∂µQ+ ν̄`Riγµ∂µν`R

+ ¯̀
Riγ

µ∂µ`R + ūRiγ
µ∂µuR + d̄Riγ

µ∂µdR.
(2.17)

IIFor QED, the development is exactly identical as the one presented here. However, the gauge group for
QED is U(1), i.e. it is an Abelian theory. Therefore, if we assume Aµ to be the gauge field introduced,
we note that [Aµ, Aν ] = 0 and thus the gauge fields do not interact among themselves — they do not
possess charge. The rest of the conclusions remain valid for the Abelian case.

IIIFor simplicity, we are just considering a single fermion family. However, the theory developed here can
be straightforwardly generalized to three families.
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Under a SU(2)L × U(1)Y transformation, the lepton fields transform as
L→ L′ = eiYLβULL,

ν`R → ν ′`R = eiYνβν`R,

`R → `′R = eiY`β`R,

(2.18)

with similar transformations for the quark sector. In the above expression, UL = eiT
aθa

is a SU(2)L element, with T a the generators of the Lie algebra su(2). We proceed in a
similar fashion as in the Abelian and Yang-Mills cases, since now we have a direct product
between Abelian and non-Abelian groups, and define the covariant derivativesIV

DµL = (∂µ + ig2T
aW a

µ + ig1YQBµ)L,

Dµν`R = (∂µ + ig1YuBµ)ν`R,

Dµ`R = (∂µ + ig1YdBµ)`R.

(2.19)

Note that the U(1)Y interactions are free parameters for each particle (the hypercharge Y ,
in analogy to the QED charge Q), but the SU(2)L interaction is fixed (i.e. it is global)
because of the commutation relations. The new gauge fields must transform according to
its group properties, Wµ → W ′

µ = ULWµU
†
L + i

g2
(∂µUL)U †L,

Bµ → B′µ = Bµ − 1
g1
∂µβ,

(2.20)

and the field stregth tensors are similar to the ones derived in the previous section,Bµν = ∂µBν − ∂νBµ,

Wµν = ∂µWν − ∂νWµ + ig2[Wµ,Wν ].
(2.21)

With these definitions, the new, redefined Lagrangian for the EW sector readsV

LEW = L̄iγµDµL+ Q̄iγµDµQ+ ν̄`Riγ
µDµν`R

+ ¯̀
Riγ

µDµ`R + ūRiγ
µDµuR + d̄Riγ

µDµdR −
1

4
BµνB

µν − 1

4
W a
µνW

µν,a
(2.22)

IVNote that now the covariant derivative acts differently on left- and right-handed fields
VIn this Lagrangian it is possible to see why a mass term is forbidden (and therefore why we were
not including it in our Lagrangians): The mass term Lm for, lets say, a lepton, would be Lm =
−m(¯̀

R`L + ¯̀
L`R), clearly not invariant under SU(2)L × U(1)Y transformations.
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and is invariant under local SU(2)L × U(1)Y transformations, as demanded. However, we
need to analyze the field structures which appear in the above expression because they
are not yet the observed W±, Z and γ fields. We will start analyzing the field structure
interacting with the field L, and a similar conclusion can be reached by replacing L by Q.
Assuming the generators of su(2) to be T a = τa

2
, with τa the Pauli matrices, we have

DµL = ∂µ1L+ i

 0 g2
2

(W 1
µ − iW 2

µ)
g2
2

(W 1
µ + iW 2

µ) 0

L

+ i

 g2
2
W 3
µ + YLg1Bµ 0

0 −g2
2
W 3
µ + YLg1Bµ

L.

(2.23)

In the above expression, there are (there must be!) two kinds of field interactions, charged
ones and neutral ones. Recognizing the only possibility for charged fields (i.e. with a
hermitian different from itself) to be the combination W 1

µ ± iW 2
µ , we define the fields

W±
µ ≡

W 1
µ ∓ iW 2

µ√
2

. (2.24)

From this, we can already extract the interaction between the charged gauge boson and
the fermions, which we will denote by LWff̄ . From Eqs. (2.22) and (2.23), and including
already the contribution from the Q doublet, one concludes that

LWff̄ = − g2√
2
L̄γµ

 0 W+
µ

W−
µ 0

L− g2√
2
Q̄γµ

 0 W+
µ

W−
µ 0

Q

= − g2

2
√

2
W+
µ (ν̄`γ

µ(1− γ5)`+ ūγµ(1− γ5)d) + h.c.

(2.25)

The remaining, hermitian fields, must be the real ones, representing the Zµ and Aµ
fields. As we did previously with the charged bosons, we assume they are a combination
of the neutral EW gauge bosons and write the mixing as W 3

µ

Bµ

 =

 cos θW sin θW

− sin θW cos θW

 Zµ

Aµ

 . (2.26)

θW is called the Weinberg angle. We proceed by substituting W 3
µ and Bµ in Eq. (2.23),

and for the moment we will represent the eigenvalues of τ 3/2 by T3 and Y is the eigenvalue
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of the U(1)Y matrix. Therefore, the neutral interactions on the SU(2)L doublet L reads

−L̄γµ
 g2

2
W 3
µ + YLg1Bµ 0

0 −g2
2
W 3
µ + YLg1Bµ

L

= −L̄γµAµ(g2 sin θWT3 + g1 cos θWYL)L

− L̄γµZµ(g2 cos θWT3 − g1 sin θWYL)L.

(2.27)

Since we want to reproduce the QED interaction,

Lγff̄ = −eQfAµψ̄γ
µψ,

we fix the Weinberg angle by demanding that

g2 sin θW = g1 cos θ2 = e (2.28)

and define the hypercharge Y — the d.o.f. particular to each particle — in such a way
that

Y = Qf − T3, (2.29)

where Qf is the charge of the particle into analysis. From this definition, we extract the
hypercharge of the possible doublets,

YL = −1

2
, YQ =

1

6
. (2.30)

Since all the particles in the three family generations have the same charge according
to its location in the fermion table, Tab. 1,VI these hypercharge values are true for all
generations.

The only gauge boson that interacts with the right-handed fields is the U(1)Y gauge
boson Bµ. Therefore, the interaction reads

−g1Y Bµν̄`Rγ
µν`R − g1Y BµēRγ

µeR

= −g1Y (− sin θWZµ + cos θWAµ)(ν̄`Rγ
µν`R + ēRγ

µeR)

= −eY Aµ(ν̄`Rγ
µν`R + ēRγ

µeR) + g1Y sin θWZµ(ν̄`Rγ
µν`R + ēRγ

µeR).

(2.31)

Thus, the hypercharges of the right-handed fields are simply their Electromagnetic charges,
VIThe charges in Tab. 1 is organized as follows: the first column, composed by the neutrinos, share the
same charge value; the second column, with the massive leptons, share its charge value etc.
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which we denoted by Q in the development of QED, i.e.YeR = −1, YνR = 0,

YuR = 2/3, YdR = −1/3.
(2.32)

An important consequence of what we just developed is that the right-handed neutrino
has both vanishing charge and hypercharge, i.e., it has no interaction whatsoever in the
theory. This is what is called a sterile neutrino25.

The interaction between the Z-boson and fermions, which we will denote by LZff̄ , can
be written as (here we are just developing the lepton sector; the quark sector is identical)

LZff̄ = −L̄γµ
(
g2
τ 3

2
W 3
µ + g1Y Bµ

)
L+ g1YeēRγ

µBµeR

= −g2 cos θW L̄γ
µ

(
τ 3

2
Zµ −

g1 sin θW
g2 cos θW

Y Zµ

)
L+ g2 cos θWZµēRγ

µ

(
g1 sin θW
g2 cos θW

Y Zµ

)
eR

= −e cos θW
2 sin θW

Zµ
∑
f

ψ̄fγ
µ

(
T f3 (1− γ5)− 2

sin2 θW
cos2 θW

(Qf − T f3 )

)
ψf ,

(2.33)

where we defined T f3 as the eigenvalues of τ3

2
on the SU(2)L doublets and the sum is

understood over the leptons. Simplifying this expression yields

LZff̄ = − e

2 sin θW cos θW
Zµ
∑
f

ψ̄fγ
µT f3

(
1− 4 sin2 θW |Qf |−γ5

)
ψf , (2.34)

where we note that the positive (or null, in the case of the neutrino) charged particles are
always displayed on the upper part of the SU(2) doublets while the negative stands always
on the bottom of the doublet, and compensated this by a factor of 2 and the absolute
value of the charge of the particle. In this last expression, since the development for the
quark sector is identical and so it is for the 3 generations, the sum is over all fermions and
this is the general Lagrangian with the interaction between the Z boson and the fermions.

2.3 Spontaneous symmetry breaking and the Higgs mechanism

In this section, we will analyze the mechanism which allows massive particles in the
theory, the so-called Higgs mechanism. As we saw until here, particles with nonzero mass
are forbidden because mass terms would spoil the gauge symmetry, our cornerstone until
now in the generation of interactions.

The Higgs mechanism consists in the introduction of a scalar particle in the theory
under a potential with more than one minimum smaller than zero. In this potential, the
field acquires a vacuum expectation value (vev), and the fact that there are more than one
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vacuum state implies that, when we choose a particular vacuum to quantize the theory, the
symmetry of the possible states is broken and we have a preferred direction. Expanding
the field around this vacuum (which implies that the new perturbation field has now a
vanishing vev) allows the generation of masses for the gauge bosons. Furthermore, using
the same field, we are able to generate mass for the fermions via Yukawa couplings between
the Higgs field and the fermions fields.

2.3.1 Electroweak Spontaneous Symmetry Breaking

As we developed earlier in this chapter, the EW symmetry group is SU(2)L × U(1)Y .
Since we need to provide mass for three gauge fields, the natural choice is to consider a
complex scalar SU(2) doublet (since it has 4 d.o.f.),

φ =

 φ1

φ2

 . (2.35)

For the generation of boson masses we will only consider the Lagrangian part containing
the gauge bosons kinetic terms plus the scalar Lagrangian part. Thus, our Lagrangian
reads

L = −1

4
W i
µνW

µν,i − 1

4
BµνB

µν + LS, (2.36)

where LS is the Lagrangian of the complex SU(2)L scalar doublet φ,

LS = (Dµφ)†Dµφ− V (φ), (2.37)

with
V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.38)

where µ and λ are free parameters of the theory. This Lagrangian is invariant under
local SU(2)L × U(1)Y transformations — i.e. we introduced a new particle and kept the
underlying symmetry. We begin by noticing that λ must be positive, or otherwise the
potential would not be bounded from below. For µ2 > 0, we have a unique minimum,
φ = 0, and LS describes a scalar particle with mass µ, φ4 self-interactions and coupled to
the gauge fields Wµ and Bµ. However, if µ2 < 0, the vacuum is now degenerated, and we
have a continuum of minima in the potential, given by

0 =
∂V

∂φ†
=⇒ |φ|2= −µ

2

2λ
≡ v2

2
. (2.39)

Thus, the vacuum scalar field can be written, e.g., as φ =

 0
v√
2
eiθ

 — the continuity of

states is encoded in the phase θ. By choosing a particular one — lets say θ = 0 — the
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symmetry of the vacuum is spontaneously broken (we chose a particular direction), and we
have

〈0|φ|0〉 = 〈φ〉0 =

 0
v√
2

 , (2.40)

with v =
(
−µ2
λ

)1/2

. Now, since φ is a SU(2) doublet, the covariant derivative must include
also the SU(2)L gauge fields and thus acts as

Dµφ =

(
∂µ + ig2

τa

2
W a
µ + ig1YφBµ

)
φ. (2.41)

Now, we expand the scalar field around the minimum, i.e. we rewrite φ in terms of four
fields, θ1,2,3(x) and h(x),VII

φ(x) ≡

 1√
2
(θ2(x) + iθ1(x))

1√
2
(v + h(x))− i√

2
θ3(x)

 , (2.42)

which, to first order, can be written as

φ(x) = eiθ
a(x)τa/v

 0
1√
2
(v + h(x))

 . (2.43)

Due to the gauge freedom, we perform a gauge transformation on φ to move it to the
unitary gauge,VIII

φ(x)→ e−iθ
aτa/vφ(x) =

1√
2

 0

v + h(x)

 . (2.44)

Expanding the term (Dµφ)†Dµφ in LS then results in

(Dµφ)†Dµφ =
1

2

(
g2

2

4
|W 1

µ + iW 2
µ |2(v + h(x))2 + (∂µh(x))2 +

1

4
|g2W

3
µ − 2g1YφBµ|2(v + h(x))2

)
=

1

2

(
g2

2

4
|W 1

µ + iW 2
µ |2v2 + (∂µh(x))2 +

1

4
|g2W

3
µ − 2g1YφBµ|2v2

)
+ interactions.

(2.45)

VIINote that the four fields θi and h have vanishing vev.
VIIIThe unitary gauge is defined as the gauge in which only the physical fields appears in the Lagrangian.
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Substituting the gauge fields W i
µ and Bµ by our definitions of the physically observed

bosons W±
µ , Zµ and Aµ, Eqs. (2.24) and (2.26), we have

(Dµφ)†Dµφ =
1

2

(
g2

2

2
|W−

µ |2v2 + (∂µh(x))2 +
1

4
|Zµ(g2 cos θW + 2g1 sin θWYφ)

+ Aµ(g2 sin θW − 2g1 cos θWYφ)|2v2

)
+ interactions.

(2.46)

Since we want the photon to be massless, we demand the free parameter Yφ to be such
that we remove all bilinear terms in Aµ. Explicitly, we demand

0 = g2 sin θW − 2g1 cos θWYφ = e(1− 2Yφ) =⇒ Yφ =
1

2
. (2.47)

Therefore, substituting the hypercharge of the Higgs boson into Eq. (2.46), we have

(Dµφ)†Dµφ =
g2

2

4
|W−

µ |2v2 + (∂µh(x))2 + Z2
µ

(
g2v

2 cos θW

)2

+ interactions. (2.48)

Collecting the bilinears on the EW gauge fields yields the masses of these bosons,

MW ≡
g2v

2
, MZ ≡

g2v

2 cos θW
, MA = 0, (2.49)

i.e., the EW gauge bosons acquired a massive term in the Lagrangian while the photon
remained massless, as demanded.

With this development, we can see that both charged vector bosons have the same
mass MW = g2v/2, while the neutral EW gauge boson has a mass MZ = MW/cos θW .

To conclude our discussion on mass generations, we close this section with the process
that enables massive fermions in the theory.

2.3.2 Fermion masses

For the generation of the fermion masses, we need to consider a SU(2)×U(1) invariant
Lagrangian which will couple left- and right-handed fields in such a way that the symmetry
is still preserved. For this, we consider the Lagrangian with the Yukawa coupling

LYuk = −λeLφeR − λuQφ̃uR − λdQφdR + h.c., (2.50)

where φ̃ = iτ2φ
∗ and we are considering just the first family, for simplicity. Note that

this Lagrangian is a scalar, SU(2)L × U(1)Y invariant one. We would like to mention
that a Yukawa coupling between φ̃ and the neutrino fields would, in principle, be possible.
However, since the right-handed neutrino can not be measured, we could also obtain mass
terms with only right-handed neutrinos, i.e. ∼ mν̄`Rν`R, since this is also SU(2)L×U(1)Y
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invariant, allowing more than one way to generate neutrino masses. Neutrino physics is
the branch of particle physics that exploits the different mechanisms that could generate
neutrino masses and the associated rather rich phenomenology. In the SM, the neutrinos
are considered massless and one assumes that the right-handed neutrino does not exist.

Once again, we expand the scalar field as we did previously, i.e.

φ =
1√
2

 0

v + h

 ,

and compute the resulting terms in the Yukawa Lagrangian,

LYuk =
1√
2

(νe e)L

 0

v + h

 eR +
1√
2

(ū d̄)L

 0

v + h

 dR

+
1√
2

(ū d̄)L

 v + h

0

uR + h.c.

= − 1√
2

(v + h)(λeēLeR + λdd̄LdR + λuūLuR) + h.c..

(2.51)

Thus, comparing the above terms with the mass term for a fermion in the Dirac Lagrangian,

L mass
f = −mf̄LfR + h.c., (2.52)

one can identify the masses of the fermions of the first family as

me ≡
λev√

2
, md ≡

λdv√
2
, mu ≡

λuv√
2
. (2.53)

With this construction we recover the left-right mixing in the mass term while preserving
the SU(2)× U(1) invariance. The process for the remaining families is analogous. It is
interesting to note that, from this development, we can already extract the Higgs coupling
to fermions, gHff , resulting from the coupling of the Higgs field in Eq. (2.51). Since the
coupling has the same structure, we have

LHff̄ = − 1√
2
h(λf f̄LfR) + h.c. (2.54)

and conclude that the vertex of the coupling between the Higgs and the fermions is,
through Feynman rules (i.e. change the sign and add an i for interactions), given by

gHff̄ = i
mf

v
. (2.55)

In words, the Higgs coupling to fermions is proportional to the fermion mass and inversely
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proportional to the Higgs vev. This vertex will be important in this work.
To summarize our results, keeping in mind the definitions of this chapter, we finally

write down the SM Lagrangian is a compact way as

LSM = ψ̄iiγ
µDµψi −

1

4
W i
µνW

µν,i − 1

4
Ga
µνG

µν,a − 1

4
BµνB

µν + |Dµφ|2−V (φ) + LYuk.

(2.56)

In the above expression, ψi are the fermion fields, and it represents L,Q, eR etc. The
covariant derivative acts differently on each field. For example, for the quark field Q,
which transforms under the symmetry SU(3)C × SU(2)L × U(1)Y , it reads

DµQ = (∂µ + igsGµ + ig2Wµ + ig1YQBµ)Q, (2.57)

where we introduced the gluon field Gµ and the strong coupling gs (we will explore QCD
in more detail in the next chapter), while e.g. for the eR, which transforms under U(1)Y ,
it acts as

DµeR = (∂µ + ig1Bµ)eR. (2.58)

This compact Lagrangian of Eq. (2.56) encodes all known fundamental interactions
but Gravity, and is one of the biggest successes in modern theoretical physics.

There are two aspects of the SM Lagrangian important for this work that we would
like to stress: (i) the Higgs coupling to fermions is proportional to the fermion masses
(Eq. (2.55)) and (ii) The Higgs does not couple to massless particles. Therefore, in our
analysis of the Higgs decay into massless gauge bosons, the leading order diagram is
already mediated by fermion loops — more precisely, by triangle loops. In view of the
dominance of the top-quark mass over the remaining fermion masses, this quark will play
a major role in the Higgs decay to massless particles.

In the next chapter we will talk about Quantum Chromodynamics and its peculiarities,
introducing some aspects which will be essential to the conclusion of this work.
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3 QCD

Having developed the Yang-Mills theory in the previous section, we now focus in more
detail on the sector of the SM involved in the strong interaction, the QCD Lagrangian.
The QCD Lagrangian is based on SU(3)C gauge invariance and is written

LQCD =
∑
f

q̄f (iγ
µDµ −mf )qf −

1

4
Ga
µνG

µν,a, (3.1)

with the covariant derivative given by

Dµψ = (∂µ + igsT
aGa

µ)q (3.2)

and
Gµν = [Dµ, Dν ]. (3.3)

There are 8 spin-1 gauge bosons of the strong interaction, Ga
µ, a = 1, . . . , 8, called gluons.

The only fermions with colour charge are the quarks; the quark fields are triplets of the
fundamental representation, here denoted by q. The su(3) Generators are such that

[T a, T b] = ifabcT c, (3.4)

where fabc are the structure constants of the su(3) Lie algebra. To understand better the
QCD Lagrangian, it is interesting to write explicitly its terms,

LQCD = −1

4
(∂µGν − ∂νGµ)(∂µGν − ∂νGµ) +

∑
f

q̄f (iγ
µ∂µ −m)qf

− gsGa
µ

∑
f

q̄fγ
µT aqf

− gs
2
fabc(∂µG

a
ν − ∂νGa

µ)Gµ,bGν,c − g2
s

4
fabcfadeGb

µG
c
νG

µ,dGν,e.

(3.5)

The interactions of the theory appear on the second and third lines, while the kinetic terms
are displayed on the first line. As we noted in the development of the Yang-Mill theory,
the gluons interact among themselves in 3- and 4-fields vertices, while the interaction
between quarks and gluons appears in just one type, as in the case of the QED interaction.
The Lagrangian in Eq. (3.5) results in the QCD Feynman rules shown in Figs. 2 and 3 IX.

For explicit calculations performed in the theory, we need to choose a given representa-
IXFor a proper quantization of the QCD theory, one needs to add a new particle in the theory, known
as ghost, represented by the dashed line, which do not appear in final states. The development of the
ghosts for the Feynman rules is out of the scope of this work.
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Figure 2 – Feynman rules for QCD propagators.

Source: Adapted from FEYNMAN...27

tion for the generators of su(3). We will choose the generators such that T a = λa

2
, where

λa are the eight Gell-Mann matrices,

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0

 ,

λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 ,

λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 .

(3.6)

Thus, it is easy to check that
[λa, λb] = 2ifabcλc

and
Tr(λaλb) = 2δab.

Furthermore, we have [
λa

2

λa

2

]
ij

= δijCF , (3.7)
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Figure 3 – Feynman rules for QCD vertices.

Source: Adapted from FEYNMAN...27

where CF =
N2
C−1

2NC
is the Casimir operator in the fundamental representation. For NC = 3,

CF = 4
3
.

We now have all the tools to calculate QCD processes, and we start with QCD
renormalization.

3.1 QCD renormalization

As its name suggests, the strong force has a coupling constant approximately one order
of magnitude larger than the QED counterpart. Therefore, in perturbative calculations,
QCD corrections will often play a leading role and will generally dominate over EW
corrections. In this section we will study renormalization processes in QCD which will lead
to the analysis of its coupling constant evolution, resulting in the celebrated asymptotic
freedom, which, for example, allows perturbative calculations in high energy regimes.
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Figure 4 – First 1PI corrections to the quark propagator. The blob represents the sum of all
possible 1PI diagrams.

Source: By the author.

Figure 5 – Some contributions of 1PI diagrams to Σ.

Source: By the author.

The quark two-point function (or propagator) is written, in momentum space, as

Sij(p) = −i
∫

d4xeip·x〈0|Tqi(x)q̄j(0)e
∫
d4zLI(z)|0〉. (3.8)

In the above expression, LI is the Lagrangian piece with the QCD interactions and i, j
are the colour indices that here we write explicitly. This expression gives the correct full
propagator in QCD. However, when we consider the interactions, we need to proceed the
calculations in perturbation theory — in this case, in the strong interaction —, correcting
the free-quark propagator (i.e. without interactions), S(0)

ij (p),

S
(0)
ij (p) =

/p+m

p2 −m2 + i0
≡ 1

/p−m+ i0
. (3.9)

In order to make progress, it is convenient to introduce the one-particle irreducible
(1PI) diagram concept, defined as any diagram that can not be split in two by removing a
single line28. Therefore, diagrammatically we can represent all corrections to the quark
propagator as shown in Fig. 4. The blob in the figure represents the sum of all 1PI
corrections, with some contributions shown explicitly in Fig. 5. Thus, we can write the
contributions of the diagrams in Fig. 4 as

Sij(p) = δijS
(0)(p) + δijS

(0)(p)Σ(p)S(0)(p) + . . . . (3.10)

We denoted all the 1PI contributions as Σ. Therefore, including more diagrams would
result in a series and in the limit of all 1PI contributions, the resulting quantity is the
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Figure 6 – First QCD correction to the quark propagator.

Source: By the author.

exact propagator,

Sij(p) =
∞∑
n=0

δijS
(0)(p)

(
Σ(p)S(0)(p)

)n
. (3.11)

Summing the series — also known as Dyson resummation — results in the resummed
quark propagator,

Sij(p) =
δij

/p−m− Σ(p) + i0
. (3.12)

It is interesting to note that, compared to the free propagator, the full, resummed
propagator has its pole shifted from m by Σ(p). The solution of this pole,X

[/p−m− Σ(/p)]/p=m = 0 (3.13)

is the physical mass of the quark.
The first correction to the two-point quark function, Σ(1), is shown in Fig. 6. We

note that it is the only first-order correction diagram because, in the QCD interaction
Lagrangian, the quarks only interacts with gluons. Mathematically, the first correction
reads

Σ(1)(p) = −iCFg2
s

∫
d4k

(2π)4

γµ(/p− /k +m)γν

[(p− k)2 −m2]k2

(
gµν − (1− a)

kµkν

k2

)
. (3.14)

Unfortunately, this integral diverges — in fact, it is UV-logarithmic divergent. Thus, we
will proceed with the calculation with the so-called dimensional regularization (dimreg), in
which we generalize the integration from 4 to D dimensions, with D = 4− 2ε. At the end
of the calculation, the correct dimensionality can be restored taking the limit ε→ 0. With
this, we are able to separate the divergent contribution from the finite one, and then we
XWe changed the argument of the Σ function from p to /p by noting that the only dependence is on /p and
p2 = /p/p, which can be summarized as a /p dependence.
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can proceed to renormalize the theory. Going from 4 to D = 4− 2ε dimensions, we writeXI

Σ(1)(p) = −iµ−2εCFg
2
sµ

2ε

∫
dDk

(2π)D
γµ(/p− /k +m)γν

[(p− k)2 −m2]k2

(
gµν − (1− a)

kµkν

k2

)
. (3.15)

For the first correction, the gauge parameter a does not play any role29. Thus, we will
work in the Feynman gauge (a = 1). Therefore, we can write the integral as

Σ(1)(p) = −iµ−2εCFg
2
sµ

2ε

∫
dDk

(2π)D
((2−D)(/p− /k) +Dm)

[(p− k)2 −m2]k2
, (3.16)

where we used the anti-commutation relation {γµ, γν} = 2gµν1 and γµγµ = D. Introducing
the Feynman parameters,

1

AnBm
=

Γ(n+m)

Γ(n)Γ(m)

∫ 1

0

dx
xn−1(1− x)m−1

[Ax+B(1− x)]n+m
, (3.17)

we rewrite the denominator as

1

[(p− k)2 −m2]k2
=

∫ 1

0

dx
1

[(p− k)2x−m2x+ k2 − k2x]2
=

∫ 1

0

dx
1

[(k − px)2 −M2]
,

(3.18)
where in the last equality we completed the square and defined M2 ≡ m2x− p2x(1− x).
Therefore, changing the order of integration in x and k, our original integral becomes

Σ(1)(p) = −iµ−2εCFg
2
sµ

2εD

∫ 1

0

dx
∫

dDk

(2π)D
(2−D)(/p− /k) +Dm

[(k − px)2 −M2]2
. (3.19)

Now, we shift the integration variable k, k → k+ px, in order to simplify the denominator.
Thus, the inner integration becomes∫

dDk

(2π)D
(2−D)(−/p+ /k + /px) +Dm

[k2 −M2]2
=

∫
dDk

(2π)D
(2−D)/p(1− x) +Dm

[k2 −M2]2

+

∫
dDk

(2π)D
(2−D)/k

[k2 −M2]2
.

In the above expression, the last integral on the r.h.s. is odd, and thus it vanishes since
the limits of integration are symmetric around zero. We are left with

Σ(1)(p) = /pΣ
(1)
p (p) +mΣ(1)

m (p), (3.20)

with

Σ(1)
p = −4πiαsCFµ

2ε(2−D)

∫ 1

0

dx(1− x)

∫
dDk

(2π)D
1

[k2 −M2]2
(3.21)

XIThe factors µ are added to the expression so that the dimensionality of the resulting quantities do not
change.
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and

Σ(1)
m = −4πiαsCFµ

2εD

∫ 1

0

dx
∫

dDk

(2π)D
1

[k2 −M2]2
. (3.22)

In the last equation, we defined αs(µ) ≡ g2
sµ
−2ε/4π. αs is what is usually called the QCD

coupling. It is important to notice that the coupling that we just defined is a function of
the energy scale µ. However, since this energy scale appears in the process of regularization,
it can not be a physical quantity and thus observables should not depend on µ.

The inner integral is the simplest one-loop integral — the massive tadpole —, and its
result is well known and present in integral tables30. It readsXII∫

dDk

(2π)D
1

[k2 −M2 + i0]n
=

i(−1)n

(4π)D/2
Γ(n−D/2)

Γ(n)
(M2 − i0)D/2−n. (3.23)

Thus, we can solve the k integration,

Σ(1)
p (p) =

CF
4

αs
π

(
4πµ2

m2

)ε

(2ε− 2)

∫ 1

0

dx(x− 1)

(
x− p2

m2
x(1− x)

)−ε
, (3.24)

Σ(1)
m (p) =

CF
4

αs
π

(
4πµ2

m2

)ε

(4− 2ε)

∫ 1

0

dx

(
x− p2

m2
x(1− x)

)−ε
, (3.25)

where we factorized (m2)−ε outside the integral. For solving the x-integration for Σ
(1)
m (p),

we expand the integrand in ε and concludes that∫ 1

0

dx
(

1− ε ln

(
x− p2

m2
x(1− x)

))
= 1− ε

(
− 2 +

m2 − p2

p2
ln

(
1− p2

m2

))
. (3.26)

Expanding
(

4πµ2

m2

)
in ε and distributing all multiplications, we arrive at the final result,

Σ(1)
m (p) =

CF
4

αs
π

(
4

ε̂
+ 6− 4 ln

(
m2

µ2

)
− 4

(
1− m2

p2

)
ln

(
1− p2

m2

))
+ O(ε). (3.27)

In the above expression, we defined

1

ε̂
≡ 1

ε
− γE + ln(4π). (3.28)

Proceding in an analogous fashion with Σ
(1)
p (p), we arrive at the expression

Σ(1)
p (p) =

CF
4

αs
π

(
− 1

ε̂
− 1 + ln

(
m2

µ2

)
+

(
1− m4

p4

)
ln

(
1− p2

m2

))
+ O(ε). (3.29)

If we try to restore the four dimensions, i.e. take the limit ε → 0, the factor 1
ε
goes to

XIIFor more details about the massive tadpole calculation, cf. e.g. Refs.28,30
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infity. However, in the resulting expression, we were able to separate the divergent part
from the finite one, i.e. we regularized the calculation. Now we need to absorb these
infinities such that observables are always finite. For this, we will renormalize the two
degrees of freedom present in this calculation, q(x) and m. We begin by writing

qi(x) = Z
1/2
2F q

R
i (x), m = Zmm

R, (3.30)

where the quantities on the l.h.s. of the above equations are the bare quantities, i.e.
unrenormalized, present in the original Lagrangian. On the r.h.s. the superscript R refers to
the renormalized, finite quantities. Thus, the infinities are restricted to the renormalization
constants Zi. We would like to point out that we defined the renormalization of the quark
with a power of 1/2 to compensate the fact that the quark fields appears as bilinears in
the Lagrangian.

Rewriting the two-point function with the renormalized quark fields, such that the
resulting quantity is finite, we have

Sij(p) = −i
∫

d4xeip·x〈0|TqRi (x)q̄Rj (0)e
∫
d4zLI(z)|0〉

=
1

Z2F

(
δij

/p− ZmmR − Σ(p) + i0

)
.

(3.31)

Now we assume the renormalization constants can be expanded in perturbation theory,

Zi = 1 + Z
(1)
i

αs
π

+ Z
(2)
i

(
αs
π

)2

+ . . . (3.32)

Thus, at first order in perturbation theory in αs, the inverse of the propagator readsXIII

S−1
ij (p) =

(
1 + Z

(1)
2F as

)(
/p− (1 + Z(1)

m as)m
R − /pΣp(p)− (1 + Z(1)

m as)Σm(p)

)
= /p

(
1 + Z2Fas − Σ(1)

p (p)

)
−mR

(
1 + (Z

(1)
2F + Z(1)

m )as + Σ(1)
m (p)

) (3.33)

In the above equation we defined as ≡ αs
π
. Now, we need to match the renormalization

constants Zi to absorb the infinities from Eqs. (3.27) and (3.29). However, there is more
than one way of renormalizing the theory. The Minimal Subtraction scheme, MS, developed
independently by Gerard ’t Hooft31 and Steven Weinberg8, consists in the sole absorption
of the pole 1

ε
from Σ. In this work we will use the the Modified-Minimal Subtraction

scheme, MS, in which we subtract the quantity 1/ε̂, defined in Eq. (3.28). We would like
to stress that these are not the only ways of renormalizing the theory and that physical
XIIIwe will ignore the δ-function in the numerator because we are just interested in the absorption of the

infinities
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quantities should not depend on such conventions. Therefore, in the MS we have

Z
(1)
2F = −CF

4ε̂
(3.34)

and
Z(1)
m = −3CF

4ε̂
. (3.35)

With these modifications, we finally arrive at finite quantities for the quark propagator at
the first-order QCD correction level.

Since we studied renormalization at the one loop level, we now turn our attention to
the dependence of the strong coupling, αs, on the energy scale µ.

3.2 The running coupling

The regularization process forces the introduction of a new parameter, which in the case
of dimensional regularization is the energy scale µ. However, if we consider an observable
R(q, as,m), it becomes clear that this physical quantity can not depend on whether we used
dimreg or, for renormalization, the MS or MS or any other scheme. Thus, for observable
quantities it is mandatory that the dependence on µ is absent. In mathematical language,
this is translated toXIV

µ2dR(q, αs,m)

dµ2
=

(
µ2 ∂

∂µ2
+ µ2dαs

dµ2

∂

∂αs
+ µ2 dm

dµ2

∂

∂m

)
R(q, αs,m) = 0. (3.36)

Eq. (3.36) is known as the Renormalization Group Equation (RGE). In the parenthesis
of the above equation, it is interesting to note the derivatives of the coupling constant and
of the mass (the QCD parameters) with respect to the energy scale µ. In fact, these are
two important functions, with its own definitions. Therefore, we introduce the β-function,
β(as), defined as

β(as) ≡ µ2 das
dµ2

=
∞∑
n=0

βna
n+2
s , (3.37)

and the mass anomalous dimension, γ, defined as

γ(as) ≡
µ2

m

dm
dµ2

=
∞∑
n=0

γna
n+1
s . (3.38)

We would like to point out that the definitions of the β-function and of the mass anomalous
dimension are not unique, and several different conventions can be found in the literature.
Here we use the conventions of Ref.18.

The β-function tells us how the coupling varies with the energy scale µ, while the
mass anomalous dimension yields the variation of the mass with µ. As this work is being
XIVAs we saw in the last section, µ enter in results always squared, µ2.
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written, both are known up to 5-loop accuracy32,33. To first order in perturbation theory,
Eq. (3.37) readsXV

µ2dαs
dµ2

= β0α
2
s. (3.39)

This equation is easily solved by separation of variables, i.e.∫ as(µ)

as(µ0)

dαs
α2
s

= β0

∫ µ

µ0

dµ′2

µ′2
=⇒ αs(µ) =

αs(µ0)

1− 2β0αs(µ0) ln
(
µ
µ0

) . (3.40)

In the resulting expression for αs(µ), µ0 is some arbitrary reference scale. From Eq. (3.40),
there is a very important consequence: as we increase the energy µ, αs(µ) becomes smaller,
going to zero in the limit µ→∞. This is what is called asymptotic freedom — in the limit
of small distances (i.e. high energy), the quarks are free particles in the strong interaction
context. Another interesting aspect is that when

µ→ Λ ≡ µ0e
1

2β0αs(µ0) , (3.41)

the QCD coupling diverges. Thus, opposed to the high-energy limit where quarks are
considered free regarding the strong interaction, when the energy scale is low, i.e. µ ∼ Λ,
the strong interactions dominates over all other interactions.

We can also write αs(µ) in terms of the QCD scale Λ. From Eq. (3.41), we have that

1 = 2β0αs(µ0) ln

(
Λ

µ0

)
.

and, therefore, Eq. (3.40) can be rewritten as

αs(µ) =
1

2β0 ln
(

Λ
µ

) . (3.42)

The Λ scale possesses an interesting property. Note that

dΛ

dµ0

= e
1

2β0αs(µ0)

(
1− µ0

2β0α2
s(µ0)

dαs(µ0)

dµ0

)
= 0. (3.43)

Therefore, Λ does not depend on the arbitrary reference scale µ0: it is an intrinsic scale
from the theory. However, it should be noted that Λ is renormalization-scheme dependent
— for example, in the MS scheme, Λ ≈ 200MeV. Λ can be interpreted as an indication of
the energy scale where perturbation theory is not useful anymore, and we should resort to
non-perturbative calculations, e.g. lattice QCD.

In Fig. 7 we can see various extractions of the strong coupling αs in different experiments
XVThe first five coefficients of the β-function are displayed in App. 7
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Figure 7 – αs measurements in various experiments varying with the energy scale compared with
the theoretical prediction of tha αs evolution. NNLO+res represents the NNLO
matched to a resummed calculation.

Source: Adapted from ZYLA et al.26

and in different energy scales compared with the theoretical prediction of the αs evolution,
displayed in the continuous line. The world average for the αs at the M2

Z scale is
αs(M

2
Z) = 0.1179 ± 0.001026. It is possible to see that the extractions, regardless of

the process analyzed, match the theoretical evolution with the energy scale µ to a high
accuracy, thus reinforcing the validity of QCD perturbative calculations. It should be
noted that the values of the extractions displayed in Fig. 7 in each process are the mean
of various independent extractions by different authors.

3.3 Large-nf and large-β0 limits

Our strategy to estimate QCD higher-order terms in the decay of the Higgs boson
into photons relies on the so-called large-β0 limit. This limit can reproduce the full-QCD
amplitude with accuracy in several processes and in almost every process it is very useful
for obtaining qualitative and semi-quantitative information about the series behaviour in
large orders21–23; therefore, it is an interesting framework to try to estimate QCD results in
higher-order calculations which are extremely complicated to be performed in the complete
theory: for example, the time span between the 4-loop calculation of the QCD β-function34

and the 5-loop calculation32 was 19 years.
To proceed to the large-β0 limit, first we need to calculate the leading-nf terms of
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Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf
terms. Each bubble loop counts as nfαs.

Source: By the author.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H → gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.

Source: By the author.

the process at hand, i.e. the terms in which nf appears with the highest power;XVI

the argument to justify the solely calculation of the leading-nf terms is that, in the
full result, nfαs ∼ O(1), and therefore the leading-nf term in the sense of this power
counting dominates over the remaining terms. Thus, calculating only the leading-nf terms
corresponds to an effective theory in which we take the limit where the number of flavours
in the theory goes to infinity, nf →∞, while keeping the product nfαs ∼ O(1) constant;
accordingly, in this power-counting scheme, αs ∼ 1/nf .

For the decay H → γγ, the leading-nf terms can be obtained from corrections to the
gluon propagator, that appears in the NLO diagrams, due to light-quark bubble loops,
shown in Fig. 8 — the successive additions of these loop corrections contribute with nfαs
terms in perturbation theory. (We note that when there are external gluon legs — for
example, in the decay H → gg —, there are other types of diagrams which contribute to
the leading-nf terms; as an example, at the NNLO level of H → gg, light-fermion box
diagrams also contribute to the leading-nf term, as shown in the diagram of Fig. 9.)

Thus, the introduction of these loop corrections (Fig. 8) to the gluon propagator in
the process H → γγ at NLO generates the leading-nf terms. However, for working in this
limit and proceed to the large-β0 limit, it is useful to work in the so-called Borel space.
We will now briefly introduce the concept of divergent series and the Borel transform, and
after that we return to the discussion of the large-β0 limit which will be instrumental in
the introduction of the key concept of renormalons.
XVInf denotes the number of active flavours in the theory; it is important to not mistake this by the

large-Nc limit: Nc is the number of colours of the QCD gauge group SU(Nc).
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3.3.1 Divergent series and the Borel transform

The discussion presented in the section is based mainly in Ref.18.
Let us assume we have an observable R which admits a power expansion in the strong

coupling αs,
R ∼

∑
n

rnα
n
s . (3.44)

It has been known for a long time, through an argument by Dyson in 1952, that these
series expansions in QED are divergent even after charge and mass renormalization35. For
quantum field theories such as QED and QCD, it is assumed that the series expansion for
observables are asymptotic — when we truncate the series at a certain order, it agrees
to a great accuracy with experiments and therefore it seems to be approaching the true
result. By asymptotic we mean that there exist numbers KN such that

|R(αs)−
N∑
n=0

rnα
n
s |< KN+1α

N+1
s (3.45)

for all αs in a region C of the complex αs-plane and the truncation error at order N
is uniformly bounded to be of order αN+1

s . In other words, at intermediate orders the
series approaches the exact result for the observables; after an optimum order in the series
expansion — generally when the difference between following terms is minimum —, the
terms start to diverge from the exact result.

Now we arrive at the question about the series summation. For factorially divergent
series,XVII the best method to arrive at a definitionXVIII of a sum is through the Borel
summation. First, we need to introduce the Borel transform, which heuristically speaking
tames the divergent behaviour of the series by dividing each term of the series by n!.
Formally, the definition of the Borel transform of an asymptotic divergent series R, B[R],
reads

R ∼
∞∑
n=0

rnα
n+1
s =⇒ B[R](t) =

∞∑
n=0

rn
tn

n!
. (3.46)

Notice that this transformation results in a one-to-one correspondence between the Borel
series and the original series, i.e., if we have the expansion in t we also have the coefficients
of the expansion in the original parameter, in our case αs.

Then, if the resulting series is sufficiently well behaved in the positive real axis, we
can sum the series, in the Borel sense, through the Borel integral R̃, which is basically a
Laplace transform,

R̃ =

∫ ∞
0

dte−t/αsB[R](t). (3.47)

XVIIWhen we substitute the original gluon propagator by the resummed gluon propagator (Fig. 8), at
two-loops, the resulting expression will be factorially divergent terms for the series in low- and
high-energy limits, as we will see below.

XVIIIIt is not trivial to define the sum of a divergent series. For more about this, cf.18.



48

Notice that, if there are singularities along the positive real axis, the contour must be
distorted — such as the displacement of t, t → t± iδ. This leads to ambiguities in the
Borel sum which are related to exponentially small terms that need to be added to the
original series. These exponential terms are non-perturbative, i.e. it indicates the existence
of non-perturbative contributions.

To better explain this, we will present an example: Consider that, for a given observable
R, the coefficients of the series expansion Eq. (3.44) read

rn = KanΓ(n+ 1 + b), (3.48)

which is the typical behaviour of series in Quantum Field Theories. We will consider
a > 0.XIX For simplicity, we will also consider b > 0. The Borel transform of the series,
using the formula

1

(1− x)s
=
∞∑
k=0

(
s+ k − 1

k

)
xk, (3.49)

is
B[R](t) =

KΓ(1 + b)

(1− at)(1+b)
. (3.50)

Thus, we see that the Borel integral is not well defined because the resulting Borel transform
has a pole in 1/a of degree 1 + b. Using the formula for residues of higher-order poles,

Res(B[R](t), 1) =
1

b!
lim
z→1

db

dzb
((z − 1)b+1f(z)), (3.51)

where we substituted z ≡ at, it is easy to conclude that

Im(R̃(α)) = ∓πK
a
e−1/(aαs)(aαs)

−b. (3.52)

In the above expression, the signs represent the contour on the upper and lower complex
plane, respectively. We can check that, since we are dealing with small terms (aαs), the
resulting expression is exponentially small and non-perturbative, since a series expansion
of e−1/(aαs) is impracticable.

Thus, this non-perturbative behaviour is related to the running coupling, shown in
Fig. 7. While at short-distances the perturbative approach is correct, at large-distances
it does not work — αs is not a small perturbative parameter anymore. It is possible to
separate the short- and long-distance parts, where the short-distance is characterized by
a large scale Q, while the large-distance is characterized by a small scale Λ, with Λ ∼ 1

GeV. However, the Operator Product Expansion (OPE), which factorizes the short- and
XIXThis will become clearer soon: as we will see, non-sign-alternating series are related to infrared,

non-perturbative divergences.
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long-distances behaviours, is exact up to power corrections18,

R(Q,Λ) = C(Q, µ)⊗ 〈O〉(µ,Λ) + power corrections
(

Λ

Q

)p
. (3.53)

The relation between both expressions comes from the logarithmic expression for αs —
substituting Eq. (3.42), where we used the scale µ0 ≡ Q, in Eq. (3.52) yields

Im(R̃(αs)) = ∓πK
a
e−

2β0
a

ln(Λ/Q)(−2aβ0 ln(Λ/Q))−b

= ∓πK
a

(
Λ

Q

)−2β0/a

(−2aβ0 ln(Λ/Q))−b.

(3.54)

In the above expression we note that the ambiguity possess a behaviour analogous to the
power corrections in Eq. (3.53). Thus the terms present in the OPE can, in principle,
cancel the ambiguity present in R̃. In fact this cancellation should occur, since observables
can not have ambiguities, although in practice this remains a conjecture.

Therefore, this example shows that the ambiguity in the Borel integral is related to
exponentially small terms due to IR divergences; the inclusion of OPE power corrections
which needs to be inserted due to the non-perturbative character of QCD at low-energies
then should cancel the ambiguity and result in a unambiguous observable.

Borel transform of the resummed gluon propagator

Since the leading-nf terms inH → γγ are due to the corrections to the gluon propagator
shown in Fig. 8 (which we usually call resummed gluon propagator) at the NLO level, it is
useful to introduce the resummed gluon propagator in Borel space.

Consider the gluon propagator, Gµν , with the corrections given by light quarks bubbles,

Gµν =
−i
k2

(
gµν −

kµkν
k2

)
1

1 + Π0(k2)
+ (−i)ξ kµkν

k4
. (3.55)

The term 1 + Π0(k2) in the denominator of the above expression encodes the effect of the
corrections due to quark loops. Each renormalized fermion loop is given by

− β0,fαs[ ln(−k2/µ2) + C], (3.56)

where
β0,f =

nf
6π

(3.57)

is the fermionic contribution to the first term of the QCD β-function. The constant C
depends on the renormalization scheme. For the MS scheme, C = −5/3; in the MS scheme,
C = −5/3 + γE − ln 4π.
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Using the definition in Eq. (3.46), the resummed gluon propagator in Borel space
reads18

B[αsGµν ](u) =
(−i)
k2

(
gµν −

kµkν
k2

)(
− µ2

k2
e−C

)u
+ (−i)ξ kµkν

k4
, (3.58)

where
u = −β0,f t. (3.59)

Notice that, in the definition of the transformation (Eq. (3.58)), we multiplied the gluon
propagator by αs; thus, the lowest order term in the u expansion corresponds already
to the first QCD correction. Furthermore, in Eq. (3.58), besides the factor (−µ2e−C)u,
the first term of the propagator is basically the original gluon propagator in Landau
gauge, with a modification in the power of the denominator momentum, k2 → (k2)1+u.
Substituting this propagator in the first QCD correction due to a gluon exchange yields
the leading-nf terms, i.e., the large-nf limit.

3.4 Large-β0 limit

After calculating the leading-nf terms for the process at hand, we finally are ready
to proceed to the so-called large-β0 limit, which consists in modifying the term nf in the
resulting expression by

nf → 6πβ0, (3.60)

where β0 is the first coefficient of the full β-function. Note that this seems to contradict
our definition of β0,f , Eq. (3.57), since now we are substituting β0,f by β0. This procedure
is known as naive non-abelianizationXX — by substituting the fermionic contribution of
the first term of the β-function by the full first term of the β-function, we are in some
sense including a set of non-Abelian diagrams of QCD in our result. Therefore, the naive
non-abelianization incorporates the non-Abelian character of QCD into our calculation,
in particular asymptotic freedom, which is behind the behaviour shown in Fig. 7. The
substitution of Eq. (3.60) is crucial given the fact that β0,f and β0 have opposite signs,
which leads to fundamental differences between non-Abelian and Abelian field theories36

and has an important consequence in the sign alternation of the series coefficients, as we
will see in the next section.

3.5 Renormalons

The divergent behaviour of the series in αs leads to singularities on the real axis in
Borel space. Thus, the study of these singularities is of big importance, because they
contain information about the behaviour of the original series at short- and long-distances.

XXBoth naive non-abelianization and the large-β0 limit refers to the same procedure. We cited the former
to show the idea behind this procedure.
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Figure 10 – Diagrams of the gluons corrections for the computation of the Adler function. Note
that each bubble diagram in the gluon propagator leads to a leading-nf term in the
series expansion.

Source: Adapted from SHIFMAN.36

Renormalon is the name given to the singularities that may appear in the u-variable
real axis in calculations in Borel space, due to the low- and high-energy behaviour of
the original series. The renormalon closest to the origin is called the leading renormalon.
Consider, for example, the Borel transform of a function with two poles, x = x1 and
x = x2, with |x1|> |x2|. Generically, the contributions of these poles to the series can be
written

B[R](u) =
A

(u− x1)γ
+

B

(u− x2)γ
. (3.61)

Expanding the above expression, we have

B[R](u) =
∞∑
n=0

(γ + n− 1)! (−1)γ

(γ − 1)!n!

(
A

(x1)γ+n
+

B

(x2)γ+n

)
un

 (3.62)

which, in view of the correspondence with the original series, can be written

R(αs) =
∞∑
n=0

(γ + n− 1)! (−1)γ(−β0,f )
n

(γ − 1)!

(
A

(x1)γ+n
+

B

(x2)γ+n

)
αns

 (3.63)

In the above expression, one can see the factorial divergent behaviour of the original series.
Furthermore, the closest the pole is to the origin, the more dominant it is: it sets the pace
of the divergence in the denominator, since 1/x1 < 1/x2.

Additionally, the location of the dominant renormalon is an indicator of the series sign
alternation. The positive singularities are called infrared (IR) renormalons, because they
originate from IR regions in the higher-order diagrams, while the negative singularities are
called ultraviolet (UV) renormalons, since they originate from UV regions in the bubble
corrections. If the leading renormalon is an IR one, the series coefficients have a fixed
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sign; otherwise, the series coefficients have alternating sign — this can be checked in
the development of Eq. (3.63). The leading renormalon tell us what kind of divergence
dominates in large-β0 calculations.

To better explain why we call these singularities IR and UV renormalons, we will
present a canonical example, based on Ref.36. Consider the correlation function depicted
in Fig. 10, Πµν , where the external legs (i.e. the dashed lines) are from massless quarks:

Πµν(q) = i

∫
d4xe−iq·x〈T{jµ(x)jν(0)}〉 =

(
qµqν − q2gµν

)
Π(Q2), (3.64)

where jµ = ψ̄γµψ and Q2 = −q2. The number of flavours is nf . (This correlation function
is related to vacuum polarization contributions to the photon propagator, for example.) It
is clear that Q2 sets the scale of the problem, since it is the only available scalar scale. We
will work with the (reduced) Adler function, DA, defined as

DA(Q2) = −4π2Q2dΠ(Q2)

dQ2
(3.65)

and is normalized to 1 at LO.
Now, we consider the collection of all possible bubble corrections in Fig. 10. There

is a decoupling between the loops internal to the gluon propagator and the outer loop;
therefore, when we consider all corrections, the net result is a two-loop diagram with a
modified gluon propagator (as depicted in Fig. 8). The exact result for the above expression
can be found in Ref.37. However, for our purposes, the simplified expression

DA = (const)×Q2

∫
dk2 k2αs(k

2)

(k2 +Q2)3
, (3.66)

where (const) is a numerical constant which will not be important for our analysis, coincides
with the exact result in the limits k2 � Q2 and k2 � Q2 (up to some details which do not
influence our study). In this simplified expression, the integration on the original two-loop
integral over one loop-momentum and over the angular dependence of the remaining
loop-momentum, which we denoted k, were already performed.

Now, we will analyze both the IR and UV regime (compared to the scale Q2) of the
Adler function. In the IR regime, where k2 � Q2, the Adler function expansion, up to a
constant, reads36

DA ∼
αQs
Q4

∞∑
n=0

(
− β0,fα

Q
s

)n ∫
dk2k2

[
ln

(
Q2

k2

)]2

, (3.67)

where we defined αQs ≡ αs(Q
2). The logarithm comes from the αs running, as e.g. in
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Eq. (3.42). Now, if we perform the change of variables

y = 2 ln

(
Q2

k2

)
,

we end up with the resulting expression

DA(Q2) ∼ −α
Q
s

2

∞∑
n=0

(
− β0,fα

Q
s

2

)n ∫
dy e−yyn. (3.68)

The integral in the above expression is simply Γ(n+ 1),∫
dy e−yyn ≡ Γ(n+ 1) = n! . (3.69)

Therefore, for k2 in the IR region, we have

DA(Q2) ∼ −α
Q
s

2

∞∑
n=0

(
− β0,fα

Q
s

2

)n
n! , k2 � Q2. (3.70)

As we noted before, the IR regime results in a factorially divergent series. Thus, when we
perform the Borel transform of this expression, the division by n! leads to a geometric
progression formula, which introduces a singularity when summed, i.e.,

B[DA(Q2)](t) ∼
∞∑
n=0

(
− β0,f t

2

)n
=
∞∑
n=0

(
u

2

)n
, (3.71)

which can be summed to
B[DA(Q2)](t) ∼ 1

1− u
2

. (3.72)

where we substituted u = −β0,f t in the last equality sign of Eq. (3.71). Thus, we conclude
that the contribution of the IR region in Eq. (3.66) leads to positive singularities in the
real axis. Note also that, in Eq. (3.71), the series in u have a fixed sign. This can be
seem in the original series in αs, Eq. (3.71) — although this seems to be a alternating sign
series, when we perform the large-β0 limit, i.e. change β0,f by β0, due to the fact that β0,f

and β0 have different signs (β0,f is positive while β0 is negative), the original series have
fixed sign in the large-β0 limit.

On the other hand, in the UV regime, where k2 � Q2, the Adler function, up to a
constant, reads36

DA(Q2) ∼ Q2αQs

∞∑
n=0

(
β0,fα

Q
s

)n ∫
dk2 1

k2

[
ln

(
k2

Q2

)]n
. (3.73)
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Performing the change of variable y = ln

(
k2

Q2

)
, we have the following expression:

DA(Q2) ∼ αQs

∞∑
n=0

(
β0,fα

Q
s

)n ∫
dy e−yyn = αQs

∞∑
n=0

(
β0,fα

Q
s

)n
n! . (3.74)

As we noted earlier, once again, the high-energy limit leads to a factorially divergent
behaviour of the series expansion. Therefore, the Borel transform of this expression would
lead to

B[DA(Q2)](t) ∼
∞∑
n=0

(
β0,f t

)n
=
∞∑
n=0

(−u)n =
1

1 + u
. (3.75)

Here there are two things to note: first, the singularity in this regime has an opposite sign
compared to the IR singularity — the UV singularities are on the negative real axis. Once
again we see that, in the original series expansion, Eq. (3.73), performing the large-β0

limit yields an alternating sign series. Second, the IR pole is located at u = 2, while the
UV pole is located at u = −1, i.e., the UV renormalon is closest to the origin than the IR
one. In our example, we see that, for (very) high-orders, the UV divergences dominates
over the IR ones. Therefore, in higher-orders we have alternating sign.

In full QCD, the singularities are no longer poles. In fact, using renormalization group
methods, it is possible to show a correspondence between the large-β0 poles in u and branch
cuts in full QCD at the same location, i.e. the renormalons in the naive non-Abelianization
are translated to branch cuts in QCD.

Having studied the construction of the Standard Model and investigated the basic
properties of QCD at high orders — which will be important for our perturbative calcula-
tions —, we conclude the SM theoretical framework with the Higgs sector, where we will
introduce the basics about the Higgs particle to proceed with our main calculation.
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4 THE HIGGS SECTOR

The Brout-Englert-Higgs boson, or simply Higgs boson, was the name given to the
scalar particle proposed in 196410,11 in order to enable massive terms for the Electroweak
gauge bosons in the SM Lagrangian while keeping the underlying symmetry intact.

Discovered in 2012 by the independent LHC collaborations ATLAS and CMS with an
averaged massMH = 125.09±0.24 GeV14,15, it was the missing piece in the SM Lagrangian.
After its discovery, in the intermediate mass range between the EW bosons and the top
quark masses, the calculation of precise perturbative corrections became necessary in order
to match the increasing experimental accuracy and test the SM validity or its domain of
validity.

An important Higgs observable to check whether there are deviations from the SM
are the so-called signal strengths, the ratio between the cross section of production and
decay of the Higgs measured (by the LHC) and the theoretical predictions obtained within
Standard Model. Mathematically, for a given decay channel X, it is defined as

µX =
σ(pp→ H → X)exp

σ(pp→ H → X)SM
. (4.1)

This is an interesting quantity because if the Higgs behaves as the SM one, µX should be
compatible with one for all decay channels X, while deviations from this value indicate
the possibility of physics Beyond the Standard Model (BSM).

The combined measurements of the CMS and ATLAS Run-1 results in an averaged
signal strength are given by14

µ̄Run1 = 1.09± 0.11, (4.2)

in agreement with the SM. For the Run-II, the global signal strength result is16

µ̄Run2 = 1.06± 0.07, (4.3)

once again showing no significant deviations from the SM, but presenting already an
important error reduction, stressing the role of precise calculations. Other properties, such
as parity measurements, reinforce the agreement with the SM proposed particle38 — the
measured boson presents properties compatible with a scalar particle, not a pseudo-scalar
one. Therefore, so far the Higgs boson announced in 2012, which awarded the 2013 Nobel
prize in physics to Higgs and Englert39,40, seems to possess the properties predicted more
than 50 years before its discovery.
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Figure 11 – Left: branching ratios for a Higgs boson with SM properties in the mass range
120− 130 GeV. Right: cross-section for the Higgs production in a proton collider as
a function of the c.m. energy.

Source: Adapted from DJOUADI.42

4.1 The Higgs boson at the LHC

The LHC is a hadron collider located in Geneva near the border between France and
Switzerland. Currently, it is the largest and most powerful particle accelerator in the
world41. Its debut year was 2008, with the Run-1 starting in 2009. After the first run,
with a center of mass (c.m.) energy of

√
s = 7 and 8 TeV, in 2013 the Long Shutdown 1

(LS1) was implemented to perform upgrades in the accelerator (improve c.m. energy and
luminosity). The Run-2 started in 2015 with a c.m. energy of

√
s = 13 TeV (although

the original plan was to reach 14 TeV). At the time of writing, LHC is under its Long
Shutdown 2 (LS2) for further improvements in the luminosity of the hadron collider.

The Higgs boson production at the LHC, both in the Run-I c.m. energy
√
s = 7 and

√
s = 8 GeV and at the current c.m energy

√
s = 13 TeV, occurs mainly through gluon

fusion, whose leading order diagram is shown in Fig. 12. On the right-hand panel of
Fig. 11 we can see that it is approximately 10 times larger than the second-to-dominant
production mode at LHC, quark fusion, as can be seen comparing the red and blue lines.

The main decay channel for a Higgs boson with mass MH = 125.10 GeV26 is into a bb̄
pair, followed by the decay into a pair of charged electroweak bosons, W+W− (one of them
off-mass shell). The left-hand panel of Fig. 11 shows the decay widths of the Higgs boson
at the LHC. As one can see, the Higgs decay into photons, with which we are concerned
in this work, is not among the dominant decays. However, it was the first channel where
the Higgs particle was detected.14,15 This is so because this channel is a clean one, i.e.
it has not a strong background noise. On the other hand, the dominant decay channel,
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Figure 12 – LO diagram of the gluon fusion, the main Higgs production at the LHC.

Source: By the author.

into a bb̄ pair, has a significant background contamination — because it involves jets and
hadronization, the creation of hadrons — and is thus of much more complex detection in
the environment of a hadronic collider. For this reason, the decay H → bb̄ was observed
(with 5σ confidence level) only in 2018 with the combination of the data from Run 1 and
Run 243.

4.2 The Leading Order decay into photons

As we saw in Ch. 2, the Higgs coupling to fermions, gHff̄ , is given by

gHff̄ = i
mf

v
, (4.4)

i.e., it is proportional to the fermion mass, mf , and inversely proportional to the Higgs
v.e.v., v. Furthermore, the Higgs boson does not interact with massless SM constituents.
Thus, the LO Higgs decay into photons must be mediated by loops of massive particles —
more precisely, by triangle loops of massive fermions and of massive charged gauge bosons,
as shown in Fig. 13. The decay width of the process H → γγ can be written as

Γ(H → γγ) =
M3

H

64π
| AW (τW ) +

∑
f

Af (τf ) |2, (4.5)

where the first amplitude, AW , is due to the purely bosonic diagram, with the LO shown
on the left-hand panel of Fig. 13, while Af is due to the decay mediated by fermion loops,
with the LO shown on the right-hand panel of Fig. 13 — both these amplitudes are series
expansions in the theory couplings. In the above expression, τf =

M2
H

4m2
f
and τW =

M2
H

4M2
W
.

Numerically, the relevant τ -values for our work read τt ≈ 0.13 and τW ≈ 0.6.
We are interested in the top contribution — more specifically in the limit where

mt → ∞ because the first correction in the expansion τt is of approximately 10%, i.e.,
the infinitely heavy top quark is a good approximation. Thus, we will now calculate the
leading order expression for the Higgs decay into photons in detail in this heavy-quark
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Figure 13 – The two types of Feynman diagrams present in the LO decay of the Higgs boson into
photons. The left diagram represents the purely bosonic amplitude, AW , while the
right diagram represents the amplitude due to and fermion-loop induced decay.

Source: Adapted from DJOUADI.42

Figure 14 – Feynman diagrams for the LO decay of the Higgs boson into a pair of photons.

Source: By the author.

limit to start our quantitative analysis; then, we will proceed in later chapters to the QCD
corrections.

Since the final state particles are identical, we have two diagrams for the LO process
H(q1 + q2)→ γ(q1) + γ(q2), shown in Fig. 14. Note that the interchange of the final-state
photons is equivalent to changing the direction of top momentum in the loop while keeping
the loop-momentum flow unchanged. Using the Feynman rules, the transition amplitude
is given by

iM = e2Q2
tNc

(
mf

v

)
εµλ1(q1)ενλ2(q2)

×
(∫

dDk

(2π)D
Tr[(/k + /q2 +mt)γν(/k +mt)γµ(/k − /q1 +mt)]

[(k + q2)2 −m2
t ][k

2 −m2
t ][(k − q1)2 −m2

t ]

+

∫
dDk

(2π)D
Tr[( /q1 − /k +mt)γµ(−/k +mt)γν(−/k − /q2 +mt)]

[(k + q2)2 −m2
t ][k

2 −m2
t ][(k − q1)2 −m2

t ]

)
,

(4.6)

where e is the positron electromagnetic charge (so that Qe = −1), Qt is the top-quark
charge and Nc is the number of colours of the QCD gauge group SU(Nc). λ1,2 are the two
possible photon polarizations and a minus sign was included in view of the fermion loop.
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Solving the trace we have

iM = e2Q2
tNc

8m2
t

v
εµλ1(q1)ενλ2(q2)

×
∫

dDk

(2π)D
gµν(m

2
t − k2 − q1 · q2) + 4kµkν + q1νq2µ

[(k + q2)2 −m2
t ][k

2 −m2
t ][(k − q1)2 −m2

t ]
,

(4.7)

where we used the Ward’s identity28, q1 · εA
λ1

(q1) = q2 · εA
λ2

(q2) = 0. Now we use the
Feynman parameters, the fact that the final state photons are on-shell — i.e. q2

1 = q2
2 = 0

— and exchange the order of integration such that

iM = e2Q2
tNc

8m2
f

v
εµλ1(q1)ενλ2(q2)

×
∫ 1

0

dx

∫ 1−x

0

dy

∫
dDk

(2π)D
gµν(m

2
t − k2 − q1 · q2) + 4kµkν + q1νq2µ

[(k − yq1 + xq2)2 + 2xyq1 · q2 −m2
t ]

3
.

(4.8)

As is always the case for 1-loop diagrams where we introduce Feynman parameters, we
shift the integration momentum, k → k + yq1 − xq2. We note that linear terms in the
numerator vanish because the integrand in these cases is odd. The tensor integral can be
reduced to scalar ones through Passarino-Veltman reduction44 (or simply tensor reduction).
In our case we need to write ∫

dDk

(2π)D
kµkν

[k2 −M ]3
= gµνC2. (4.9)

Note that, on the r.h.s. of the above expression, gµν is the only rank-two tensorial structure
available in the kernel of the integration, that is, it is the only d.o.f. allowed since there
are no q’s in the integrand. Now, contracting both sides with gµν yields

C2 =
1

D

∫
dDk

(2π)D
k2

[k2 −M ]3
. (4.10)

Substituting the rank-two tensorial factor (Eq. 4.9), we end up with the scalar integral

iM = e2Q2
tNc

8m2
t

v
εµλ1(q1)ενλ2(q2)

2×
∫ 1

0

dx

∫ 1−x

0

dy

×
∫

dDk

(2π)D
gµν(m

2
t + k2( 4

D
− 1)− q1 · q2(2xy − 1)) + q1νq2µ(1− 4xy)

[k2 + 2xyq1 · q2 −m2
t ]

3
.

(4.11)

The resulting inner integrals are rather simple and tabulated, e.g. in Ref.30. The results
needed are ∫

dDk

(2π)D
1

(k2 − A)λ
=
iπD/2

(2π)D
(−1)λ

Γ(λ−D/2)

Γ(λ)Aλ−D/2
(4.12)
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and ∫
dDk

(2π)D
k2

(k2 − A)λ
=
iπD/2

(2π)D
(−1)λ

Γ(λ−D/2)

Γ(λ)Aλ−1−D/2
(−D/2)

λ− 1−D/2
. (4.13)

Thus, the transition amplitude is left as a two-dimensional integral on the Feynman
parameters x and y,

iM = −ie
2Q2

tNc

(4π)2−ε

8m2
f

v
Γ(1 + ε)εµλ1(q1)ενλ2(q2)

2×
∫ 1

0

dx

∫ 1−x

0

dy
gµνq1 · q2(4xy − 1) + q1νq2µ(1− 4xy)

(m2
t − 2q1 · q2xy)1+ε

,

(4.14)

where we replaced D = 4− 2ε. Using the kinematic identity q1 · q2 =
m2
H

2
and substituting

e2 → 4πα
(
µ2eγE

4π

)ε
, where α is the fine structure constant, whose value is45 α(Q2 = 0) =

1/137.035999084(21), we have the expression

iM = −iα
π

2m2
t

v
(µ2eγE)εΓ(1 + ε)εµλ1(q1)ενλ2(q2)

×
∫ 1

0

dx

∫ 1−x

0

dy
(gµν

m2
H

2
− q1,νq2,µ)(4xy − 1)

(m2
t −m2

Hxy)1+ε
+ O(ε).

(4.15)

Now, notice that the quantity τt ≡
M2
H

4m2
t
can be introduced in the denominator of the

integral, and we can write

∫ 1

0

dx

∫ 1−x

0

dy
(gµν

m2
H

2
− q1,νq2,µ)(4xy − 1)

(m2
t −m2

Hxy)1+ε

=
(gµν

m2
H

2
− q1,νq2,µ)(

m2
t

)1+ε

∫ 1

0

dx

∫ 1−x

0

dy
4xy − 1

(1− 4xyτt)1+ε
.

(4.16)

Thus, expanding the expression in the infinitesimal parameter ε ∼ 0 yields

iM = −i2α
πv

I(τt)ε
µ
λ1

(q1)ενλ2(q2)

(
gµν

m2
H

2
− q1,νq2,µ

)
+ O(ε), (4.17)

where we defined I(τt) as the integral

I(τt) =

∫ 1

0

dx

∫ 1−x

0

dy
4xy − 1

1− 4xyτt

=

∫ 1

0

dx

∫ 1−x

0

dy (4xy − 1)

(
1 + 4xyτt + 16x2y2τ 2

t + O(τ 3
t )

)
= −1

3
− 7

90
τt −

2

63
τ 2
t + O(τ 3

t ),

(4.18)

where we expanded in τt in the second equality sign. Solving the leading term (i.e. τ 0
t )
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explicitly and ignoring the τt corrections, we arrive at the final result,

iM = Nc
2iαQ2

t

3πv
εµλ1(q1)ενλ2(q2)

(
gµν

m2
H

2
− q1,νq2,µ

)
+ O(ε, τt). (4.19)

Now, we will analyze the tensorial structure left in the expression. Since we are
interested in the amplitude squared, and we need to average over the final-state photon
polarizations, we haveXXI

1

4

∑
λ1,λ2

εµλ1(q1)ελλ1(q1)ενλ2(q2)ερλ2(q2)

(
gµν

m2
H

2
− q1,νq2,µ

)(
gλρ

m2
H

2
− q1,ρq2,λ

)
=

1

4
gµλgνρ

(
gµν

m2
H

2
− q1,νq2,µ

)(
gλρ

m2
H

2
− q1,ρq2,λ

)
=
M4

H

8
.

(4.20)

Therefore, we can write

|M |2=
M4

H

8

∣∣∣∣2αQ2
tNc

3πv

∣∣∣∣2 + O(ε, τt). (4.21)

Now we use the phase space expression for two-body decays26,

dΓ =
1

32π2
|M |2 |p1|

M2
H

dΩ, (4.22)

where p1 is the 3-momentum of one of the final particles in the center of mass frame and
dΩ is the element of solid angle. Notice that the transition amplitude has no angular
dependence and thus the integral in Ω is easily summed to 4π. Casting the final decay
width expression in the desired form,

Γ(H → γγ) =
M3

H

64π
|AW (τW ) + At(τt)|2, (4.23)

we conclude, from our development, that the LO term for the top contribution to the
decay is given by

At =
2αQ2

tNc

3πv
, (4.24)

in agreement with Ref.46. For completeness, the amplitude due to the purely bosonic
diagrams, AW , which will not be calculated in this work, is given by24

AW (τW ) =
α

2πv
A1(τW ), (4.25)

XXIA factor of 1/2 is included as a normalization factor for the 2 polarizations, while
∑
λ ε

µ
λε
ν
λ = gµν .
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where the function A1(τW ) is defined as

A1(τW ) = −[2τ 2
W + 3τW + 3(2τW − 1)f(τW )]τ−2

W (4.26)

with
f(τW ) = arcsin2 (

√
τW ). (4.27)

As a side comment, although necessary because of some recent discussions, we explain
the use of dimensional regularization in this calculation. It was argued recently, in Ref47,
that since the LO decay is already at the one-loop level and in view of the impossibility
of addition of counterterms to absorb divergences, the result must be finite, and the
calculation in dimreg is not necessary and leads to the wrong result. However, it turns out
that, although the final result is indeed finite, the introduction of dimensional regularization
is necessary because the calculation presents UV divergences separately which only cancel
after their sum48. A simple example present in Ref.48 shows this feature in a neat way.
Consider the integral

F =

∫ 1

0

dx xε(1− x)ε
(
x+

1

x
− 1

1− x

)
(4.28)

with ε > 0. This integral yields a finite result,

F =
Γ(1 + ε)Γ(2 + ε)

Γ(3 + 2ε)
=

1

2
+ O(ε). (4.29)

However, the integral ∫ 1

0

dx

(
x+

1

x
− 1

1− x

)
(4.30)

is ill-defined — the integral does not converge (the divergences do not cancel). Therefore,
we can not exclude the regulators xε(1 − x)ε before the integration, i.e., we need to
introduce dimensional regularization in order to have a well-defined integrand where the
divergences cancel and the final result converges. Thus, we proceeded with the calculation
in conventional dimreg which yielded the correct result in literature.

Returning to our calculation, we would like to note that this framework expanding in
powers of M2

H/4m
2
t constitute an Effective Field Theory. In this effective theory, when

we consider only the first term in the expansion (i.e. mt → ∞), the net effect is the
transformation of the internal structure of the loop into a local interaction of the Higgs
with photons, Fig. 15. Therefore, in this framework, we can write a Lagrangian interaction
piece between the Higgs boson and photons,

Leff = −1

4
HCHγγFµνF

µν , (4.31)
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Figure 15 – Effective coupling of the Higgs boson with photons in the EFT with an infinitely
heavy top quark. In this EFT, the internal structure (i.e. the triangle loop and its
corrections) is ignored and only its net effect is considered.

Source: By the author.

We can write, for later convenience, the effective coupling CHγγ as

CHγγ =
2αQ2

tNc

3πv

∞∑
n=0

C
(n)
Hγγ

(
αs
π

)n
(4.32)

With this interaction Lagrangian, the Feynman rules for the diagram in the right-hand
panel of Fig. 15 reads

iM = 〈γµ(q1)γν(q2)|T{i
∫
d4xLeff}|H(q1 + q2)〉

= iCHγγε
µ
λ1

(q1)ενλ2(q2)

(
gµν

m2
H

2
− q1,νq2,µ

)
.

(4.33)

Considering the LO results, with only n = 0 in the summation, we recover the result of
Eq. (4.19) with C(0)

Hγγ = 1. We note that the addition of QCD corrections are encoded in
the coefficients C(n)

Hγγ, with n > 0, and in view of the factor outside the summation, these
corrections are compared to unity. Thus, both approaches are equivalent (the one in full
QCD expanding in powers of the inverse of the top quark mass and the EFT), i.e. we are
constructing an EFT where we integrate out of the theory the top quark; in other words,
the top quark is not a d.o.f. anymore in the EFT we just developed.

Having exhausted the LO scenario, we focus on the QCD corrections. The first QCD
correction is related to the exchange of a virtual gluon between the virtual quarks in the
triangle loop. Since the EW bosons do not interact strongly, they will not participate in
the purely QCD corrections. Thus, only At will enter in our perturbative calculations.

These corrections involve several diagrams, and thus its calculation is lengthy and
complex (for example, the NLO correction is already a 2-loop calculation) and is better
performed with the help of computer programs. In the next chapter we will introduce the
programs used in our calculations of the QCD corrections for the decay of the Higgs into
photons.





65

5 INTRODUCTION TO MATAD

In the introductory chapters of this work we laid the theoretical basis for the calculation
of the decay H → γγ. However, as we noted in the end of last chapter, the calculation
at higher orders is lengthy and involves several diagrams. For the calculations presented
in this work, the diagrams were generated using the program QGRAF49; the calculation
of those diagrams were performed by the program MATAD50. MATAD is a program package
for the computation of MAssive TADpoles written in FORM51 by Matthias Steinhauser.
It is aimed at the calculation of one-, two- and three-loop diagrams. By definition, “a
tadpole is a part of a diagram which can be disconnected from all external legs if you cut
just one line."52 In our context, the tadpole structure is obtained when we expand the
resulting loop-integrals in powers of q2

i /m
2
t ; with this expansion, the resulting integrals are

topologically similar to tadpoles integrals — this is the procedure used by MATAD: after
the program applies the projector, there is the expansion in inverse powers of the heavy
parameter and then the mapping between with 1-, 2- or 3-loop tadpole integrals.

In this chapter we will introduce MATAD in a detailed manner using, as an example, the
calculation of the Higgs decay into photons at the LO level, which was already investigated
in detail in Sec. 4 and, therefore, can be compared and better understood.

The codes used in this work are available at the link https://github.com/g-neves/

hgg-large-beta0. The folder c_hgamgamlo/hgamgamlo contains the problem H → γγ

at LO, while the folder c_hgagalargeb0/hgagalargeb0 contains the calculation of the
leading-nf terms of the same decay at the NLO level. The auxiliary file gnlargeB0tad2l
is on the main folder. In the remainder of this chapter we discuss the technical details of
our implementation of this calculation.XXII

5.1 Introdution to MATAD

The /matad folder possesses the /calc file, which basically contains the whole program,
and the startform file, which calls FORM to execute the program. The /calc folder is
divided into several folders — /common, /formswap, /generic, /matad and /problems —
which stores the program’s built-in procedures, files and the problems to be calculated. The
problem folder (where we specify the problem at hand) possesses the following files:XXIII

• declare.#problem

• MISC (optional)

• #diagrams.dia
XXIIThis pedagogical section can be skipped and represents no loss for the remaining of the text.
XXIIIWe use the symbol # to refer to a generic name, which is an input by the user.

https://github.com/g-neves/hgg-large-beta0
https://github.com/g-neves/hgg-large-beta0
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• GLOBAL

• #com.frm

The declare.#problem file defines the variables used in the problem (functions,
symbols etc) other than the built-in variables; it is important to be consistent with the
problem’s folder name and the declare file: both need to possess the same name.

The MISC file is optional; it is the file with the command lines to run the program
to solve the problem at hand. The example problem files built-in the program contain
examples of the content of the MISC file with command lines for the calculation of single
diagrams and the sum of all diagrams after the QCD structure is computed.

The file #diagrams.dia is reserved for the implementation of the Feynman diagrams.
It should be noted that the file name is free, but one needs to be consistent when calling
the program with the command line present on the MISC file.

The GLOBAL file executes user specified actions during the stages of calculation, which
are divided into TREAT folders in FORM. As an example, it is in this file where the user
needs to implement the projector for the amplitude so that the program deals only with
scalar quantities.

After the calculation of the diagrams separately, the calculation of the colour factors
and the sum of all diagrams, the file #com.frm is called in order to perform the last
simplifications to present the final result.

Although there are some good references in the internet (cf. e.g. Ref.53), MATAD can
be difficult to grasp. Therefore, we will explain in detail the LO calculation of the decay
H → γγ for pedagogical purposes.

The detailed explanation of the implementation of this calculation in MATAD is meant
to serve as additional documentation about the program. Basic knowledge of FORM is
assumed.

5.2 H→γγ at LO on MATAD

To explain in detail the workings of the program, we will calculate the transition
amplitude for the decay of the Higgs boson into a pair of photons with the help of MATAD.
Since we already calculated this decay in detail in Sec. 4, Eq. (4.19), we can see how the
program works.

In the decay H(q1 + q2) → γ(µ, q1) + γ(ν, q2), the most general structure for the
transition amplitude, which we denote by M µν , is

M µν = q1 · q2g
µνA+ qν1q

µ
2B + qµ1 q

ν
2C, (5.1)

with A,B and C scalar quantities. It can be shown, due to Ward’s Identity28, that A = −B.
For real transversal massless particles (which is the case of the photon), the structure C
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Figure 16 – d1l1 diagram present in the dia file.

Source: By the author.

does not contribute. Contracting Eq. (5.1) with the three Lorentz structures present in it
and solving the resulting equations for A,B and C yields the projectors P µν

i , with i the
projected structure,

P µν
A = 1

(D−2)(q1·q2)2
(q1 · q2g

µν − qµ1 qν2 − qν1q
µ
2 ),

P µν
B = 1

(D−2)(q1·q2)2
(−q1 · q2g

µν + (D − 1)qµ1 q
ν
2 + qν1q

µ
2 ),

P µν
C = 1

(D−2)(q1·q2)2
(−q1 · q2g

µν + qµ1 q
ν
2 − (D − 1)qν1q

µ
2 ),

(5.2)

where D is the dimensionality of the space-time in which we are working.
We will start this section explaining the d1l.dia file, which stands for diagrams at

1-loop.

5.2.1 d1l.dia

We will explain in detail the construction of the first diagram, shown in Fig. 16, which
we call d1l1. The diagrams will be expanded in powers of qi/mt by MATAD, where qi stands
for the external momenta. This is exactly the same procedure we performed in Eq. (4.18).
For example, (q1 + q2)2/m2

t = M2
H/2m

2
t = 2τt. Since we are interested in the leading term

in the τt series, we will only collect the first term in this expansion.
We start by noticing that the 1-loop diagrams color structures are trivial — therefore,

the color diagrams are simply composed by delta functions. MATAD uses standard FORM

notation, which will not be explained in detail, but can be found on the good tutorial
material in the link https://www.nikhef.nl/~form/maindir/courses/courses.html.
We note that the j# indices denote internal fermion lines (external lines are denoted by
the index i#), and we just need to be consistent with the proper indices. For the d1l1

diagram, the color structure reads

https://www.nikhef.nl/~form/maindir/courses/courses.html
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*--#[ fqcd1l1 :

1

*d_(j1,j6)

*d_(j6,j5)

*d_(j5,j4)

*d_(j4,j3)

*d_(j3,j2)

*d_(j2,j1)

;

*--#] fqcd1l1 :

The Lorentz structure (i.e., the diagram without the colour structure) is written in the
d1l1 folder,

*--#[ d1l1 :

(-1)

*FT1(

L,16,+p11,pM1,M1,pM1,exp,-q1,pQ1,16,L

)

*FT1(mu1)

*FT1(

L,19,+p11,pM1,M1,pM1,19,L

)

*FT1(mu2)

*FT1(

L,13,+p11,pM1,M1,pM1,exp,+q2,pQ2,13,L

)

;

#define INT1 "tad1l"

#define MASS1 "M1"

#define DALA1 "0"

*--#] d1l1 :

In the code above, FT1 is the built-in function which represents the spinor lines. For
example, FT1( L,16,+p11,pM1,M1,pM1,exp,-q1,pQ1,16,L) ≡ (mt − ( /p1 − /q1))

−1. The
#define INT1 "tad1l" refers to which topology we are dealing with. In this case, we
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are dealing with 1-loop tadpoles,XXIV and thus this is the command to call to solve the
resulting integrals.

#define MASS1 "M1" refers to the heavy scale of our problem, which we denoted as
M1 — M1 is the top mass.

#define DALA1 "0" sets no external momenta factorization.
To finish this file, we end up with the folder for the expansion:

*--#[ expd1l1 :

multiply, eM1^1*pM1^4;

#call denoexp{M1}

#include matad.info # time

*--#] expd1l1 :.

First, we multiply the whole diagram by eM1 since it is a 1-loop diagram and eM1 ≡
(

µ2

M12

)ε
— in MATAD one needs to introduce some factors by hand, and this is the first case; the
multiplication by pM1 is to include more terms in the heavy-scale expansion, since pM1 is
a power-counting variable for M1. The second line calls the procedure that expands the
expression in inverse powers of the heavy scale; the last line just displays some information
about the calculation.

5.2.2 MISC

The MISC file contains only two command lines. The first command line,

../startform3 -S form.set -d CLASS=c\_hgamgamlo -d PROBLEM=hgamgamlo -d

LOOPS=1 -d DIAFILE=d1l.dia -d RESDIR=results -d DIAGRAM=d1l1 generic/maindia.frm

calls individual diagrams. It is important to note that this command line must be called in
the calc folder. The CLASS and PROBLEM attributes refer to the first two problem folders.
The LOOPS variable is set to 1, because we are at LO; DIAFILE needs to be set to the .dia
file in the inner problem’s folder. RESDIR sets the directory where the results will be saved;
the variable DIAGRAM is the one where you set the individual diagrams. In our case (2
diagrams), we will have to run this whole command line two times, changing this variable to
DIAGRAM=d1l2 in the second time to calculate the remaining diagram. The last command
sets the form file for the proper calculation of the diagrams (generic/maindia.frm is a
built-in file).

The second line of the MISC file is
XXIVSince we are expanding in powers of the external momenta over mt, the resulting diagrams are

tadpoles.
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../startform3 -S form.set -d CLASS=c\_hgamgamlo -d PROBLEM=hgamgamlo -d

LOOPS=1 -d DIAFILE=d1l.dia -d RESDIR=results -d START=1

-d END=2 generic/comdia.frm

It is very similar to the first line and calculates the color structure and sum the results.
Since we have only 2 diagrams in this decay, the START variable is set to 1 and the END

variable set to 2. generic/comdia.frm is the built-in FORM file that executes these actions.

5.2.3 GLOBAL file

The first folder,

*--#[ GLOBAL :

#define LOWLIMM1 "-2"

#define GAUGE "0"

#define NUMEXTMOM "2"

*--#] GLOBAL :

sets the order of expansion of Q1/M1 (We would set LOWLIMM1 to -6 if we did not multiply
the whole expression by pM1ˆ4 in the dia file with the same result). GAUGE defines the
gauge in which we are working (in our case, the sum of all diagrams is gauge invariant,
which can be verified modifying the GAUGE parameter in this code to an arbitrary gauge
"Xi"); NUMEXTMOM is set to 2 since we have two external momenta, p1 and p2, for the two
external photons.

In folder TREAT1,

*--#[ TREAT1 :

multiply, ( deno(2,-2)*(q1.q2)^-2) )*( [A] * ( d_(mu1, mu2)*(q1.q2)

- q1(mu2)*q2(mu1) - q1(mu1)*q2(mu2) ) + [B] * ( -(q1.q2)*d_(mu1,mu2)

+ q1(mu2)*q2(mu1) + (3 - 2*ep)*q1(mu1)*q2(mu2) ) );

.sort

*--#] TREAT1 :

we multiply the amplitude by its structure projectors, Eq. (5.2). In MATAD, deno(a,b)
≡ 1/(a+ bε). Thus, we already substituted D = 4− 2ε in our projector and ignored the C
structure, which does not appear.

In the TREAT4 folder we just set some kinematical identities. Note that the external
momenta are in uppercase because in this step the Wick rotation was already implemented.
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5.2.4 com.frm file

To finish this documentation section, we describe the com.frm file, which we renamed
as comhgamgamlo.frm. At line 2 there is the command line to call this file. In this file,
first we defined the used variables. After this, we loaded the result from the second MISC

line command and defined a local variable (res1l) to store the results:

load results/hgamgamlo1l1to2.res;

l res1l = hgamgamlo1l1to2;

.sort

To finish the calculation, we set some useful kinematical identities, corrected a minus
signXXV and multiplied correction factors which MATAD does not account for: for example,
factors of 4π, particle couplings etc. To finish, we separate the final expression in useful
brackets and print the result. In our case, the final result for the LO decay, which we
called res1l, reads

res1l =

+ eM1*[b]*[al/pi]*nc*vev^-1 * (

+ 2/3

)

+ eM1*[a]*[al/pi]*nc*vev^-1 * (

- 2/3

)

+ ep^2*eM1*[b]*[al/pi]*nc*vev^-1 * (

+ 1/3*z2

)

+ ep^2*eM1*[a]*[al/pi]*nc*vev^-1 * (

- 1/3*z2

);

in our notation, [al/pi] ≡ α/π. [a], [b] are the projector structures and z2 represents
ζ2. Setting ε = 0 yields the correct final result.

These procedures are the usual step-by-step for MATAD calculations; each problem —
and its particular structures — needs to be analyzed individually, for example, for the
XXVThis minus sign issue is always present in MATAD and needs to be corrected by hand.
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proper implementation of the projector or the tensor reduction. Furthermore, one needs to
be alert for the necessity of the inclusion of counter-terms on the final expression. However,
the main workings of MATAD were shown in this pedagogical example.

In the next chapter, we will analyze the results for the leading-nf terms of the QCD
corrections in the decay H → γγ as well as the modifications to MATAD needed to obtain
these results.
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6 RESULTS

In this section we will present our results; we will start by introducing the modifications
performed to MATAD in order to include the Borel variable u in our calculations.

6.1 H→γγ in the large-β0 limit

To begin our calculation of the leading-nf terms of the decay H → γγ, we need to
generate the NLO diagrams. The diagrams were generated by the program QGRAF, resulting
in 12 diagrams for the NLO decay. Basically, there are two kinds of diagrams: the ones in
which there is an exchange of gluons between different quark propagators and the ones of
the self-energy type. Adding to these the same diagrams with the reverse order for the
top momentum, we arrive at the twelve diagrams. The main sample of these diagrams is
shown in Fig. 17.

The next step consists in the substitution of the original gluon propagators in Fig. 17
by the transformed resummed gluon propagator, Eq. (3.58); this substitution is depicted
in Fig. 18, where the dashed lines represent the resummed gluon propagator. The result
of the sum of all diagrams with this modification can be expanded in a series in the Borel
variable u which, in view of the correspondence between the original and the transformed
series, yields the leading-nf terms to all orders of the original series.

This calculation requires modifications to the MATAD code, in order to deal with the
inclusion of the Borel variable u present in the resummed gluon propagator. We describe
these modifications in detail in the next section.

6.1.1 Modifications to MATAD

The MATAD program is aimed at calculating processes in QCD. Therefore, since we intro-
duced a new variable u for working in Borel space, we need to proceed with modifications
to the original MATAD package.

There are two main modifications we perform. The first one is related to the modification
to the gluon propagator, Eq. (3.58); this modification is essentially the generalization of
the power of k2 in the denominator of the gluon propagator to any real value, and not
just integers as MATAD expects. The second one is to the resulting integrals performed by
the program which are not ready to include the modified gluon propagator and the Borel
variable u.
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Figure 17 – Feynman diagrams for the decay of the Higgs boson into a pair of photons at the
NLO level. There are 12 diagrams for this calculation; each diagram in the figure
results in two diagrams by interchanging the virtual fermion momentum while
keeping the loop-momentum unchanged, as we did for the LO calculation in Ch.4.
This change correspond to the interchanging of the identical final state photons.

Source: By the author.

Modification to the gluon propagator

The first modification is to the gluon propagator to account for Eq. (3.58). This modi-
fication is performed in the file GLOBAL. We arranged the diagrams in the #problem.dia
file so that the gluon propagators always carried momentum p3, without any external
momenta. With this, the modification is rather simple, and we only need to multiply the
original propagator by the new function Denu, which accounts for the factors of u in the
modified propagator, which in standard FORM notation amounts to

id Dg(?x) = Dg(?x)*Denu(u);

In the folder TREAT4 we perform, manually, a Passarino-Veltman reduction44. Basically,
MATAD does not deal with numerators with the dot product qi · pj, where qi denotes an
external momentum while pj denotes an internal momentum — the numerators can not
mix external and internal momenta dot products. The totensor command separates
these dot products and leaves, for the moment, just the internal Lorentz structure. In
our example, qi · pj → qi,µp

j,µ. Then we perform the Passarino-Veltman reduction for the
internal vectors pµj and applied the resulting reduction to the external momentum qµi which
are left behind.
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Figure 18 – Sample of diagrams for the calculation of the leading-nf terms for the decay
H → γγ. The dashed line represents the resummed gluon propagator, Fig. 8.

Source: By the author.

6.1.2 tad2l modification

To calculate the resulting integrals, we need to change the file matad/inc/tad2l, which
deals with 2-loop tadpoles. Our modified file is called gnlargeB0tad2l. It starts writing
the dot products of the loop variables in terms of its propagators, e.g.

p2
i = S(pi)

−1 −m2
i ,

where S(pi) is the propagator of the virtual particle with (internal-only) 4-momentum pi.
In the program’s language and using standard FORM commands, it reads

id p2.p2 = s2m^-1 - M^2;

id p2.p3 = (s1m^-1 - s2m^-1 - p3.p3)/2;

.sort

We would like to note that the mass appears with a negative sign because at this stage of the
calculation, in MATAD, the Wick rotation was already performed. The p1 loop-momentum
need not be dealt with since we defined p1 = p2 − p3.XXVI

The convolution of all possible functions of u is the next modification, to unify the u
variable into single functions,

repeat;

XXVIThe direction of momentum flow for 2-loop diagrams is specified in the program’s documentation.
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id, once Denu2(u1?)*Denu2(u2?) = Denu2(u1 + u2);

id, once gnpref(u1?)*gnpref(u2?) = gnpref(u1 + u2);

endrepeat;

We describe this modification for completeness since, for the problem at hand, this modifi-
cation is not important since there are single gluon propagators in the NLO calculation
and thus only one u variable for each diagram. For processes such as H → gg this is not
the case as more than one gluon propagator appears, and thus this modification becomes
essential.

The next step is to unify the scalar integrals into a single function with the relevant
coefficients for the tabulated integrals30,

id s1m^a1?*s2m^a2?/p3.p3^a3? = f(a1,a2,a3);

After this, we simply exclude the scaleless integrals which integrate to zero in dimensional
regularization,

id f(a1?,a2?neg0_,a3?) = 0;

id f(a1?neg0_,a2?,a3?) = 0;

.sort

Finally we perform the scalar loop integrals, which are the master integrals for our
problem and from Ref.30 read∫ ∫

dDkdD`

(−k2 +m2)a1(−`2 +m2)a2 [−(k + `)2]a3

= (iπD/2)2 Γ(a1 + a3 + ε− 2)Γ(a2 + a3 + ε− 2)Γ(2− ε− a3)

Γ(a1)Γ(a2)Γ(2− ε)

× Γ(a1 + a2 + a3 + 2ε− 4)

Γ(a1 + a2 + 2a3 + 2ε− 4)
(m−2)a1+a2+a3+2ε−4.

(6.1)

The u variable is attached to the massless propagator, i.e., in our case it appears together
with the a3 variable. We implement this with the following id statement:

id f(a1?,a2?,a3?)*Denu(u?) = eMu(u) * M^(2*(4 - a1-a2-a3))

* Gam(a1+a3-2,1,u)*Gam(a2+a3-2,1,u)*Gam(2-a3,-1,-u)

* iGam(a1,0,0)*iGam(a2,0,0)*iGam(2,-1,0)

* Gam(a1+a2+a3-4,2,u)*iGam(a1+a2+2*a3-4,2,2*u);

.sort

On the r.h.s. of the equality sign, eMu is a function containing the factor (−µ2e−C/k2)u in
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the modified gluon propagator in Eq. (3.58), that is

eMu(u) ≡
(
− µ2

k2
e−C

)u
.

The functions Gam and iGam (iGam ≡ 1/Gam) are modified Γ-functions to deal with the u
dependence. Basically the first entry of the Gam (and iGam) is reserved for integer values,
the second to the coefficients in front of the variable ε and the last entry to the coefficients
in front of the variable u. As an example, the function 1/Γ(1+3ε+2u) reads iGam(1,3,2).

After the modifications are implemented, we follow the usual procedure and calculate
the twelve diagrams, the colour structure, sum the result and correct the factors which
are not included by MATAD. With these modifications, the final result should contain three
functions: eMu, Gam and iGam. It is then a matter of simplification of the resulting
Γ-functions, which we implement using a series of FORM substitutions, to arrive at the
final result in a readable form. It should be noted that, in our calculation, we are only
considering terms in the limit mt →∞, i.e. we are not considering mass corrections.

With the modifications explained, we are ready to present our higher order results for
the decay H → γγ in the large-nf limit and in the large-β0 limit.

We will write the decay width for H → γγ as

Γ(H → γγ) =
M2

H

64π
| AW (τW ) + At(τt) |2 (6.2)

with

At = Ât

( ∞∑
n=0

A
(n)
t

(
αs
π

)n)
, (6.3)

where Ât = Nc
2Q2

tα

3πv
is the LO top contribution to the amplitude — thus, A(0)

t = 1XXVII at
LO in τt. For completeness, the first τt = M2

H/4m
2
t corrections to A

(0)
t can be extracted

from Eq. (4.18) and read

A
(0)
t = 1 +

7

30
τt +

2

21
τ 2
t +

26

525
τ 3
t +

512

17325
τ 4
t +

1216

63063
τ 5
t + O(τ 6

t ). (6.4)

Our amplitude for the top contribution to the decay of the Higgs into photons in the
large-β0 limit will be denoted by

At,large-β0 ≡ Ât

∞∑
n=1

A
(n)
t ans , (6.5)

with as ≡ αs/π. With the procedure outlined above, we obtain the following result (in
XXVIINote the close connection of this notation with the effective coupling from the last section, CHγγ .
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Figure 19 – Renormalons present in the Borel transform of the large-β0 result. The UV
renormalons (except at u = −1) are double poles, while the IR renormalons are
simple poles.

Source: By the author.

closed form) for the Borel transform, B[At,large-β0 ], which is the main result of this work:

B[At,large-β0 ] =

(
Q2
tα

v

)(
C2
A − 1

4π2

)e5u/3( µ
2

m2
t
)u(u2 − 1)Γ(1− u)Γ(1 + u)3

(1 + 2u)Γ(1 + 2u)
. (6.6)

Fig. 19 shows the position of the renormalons present in Eq. (6.6). Except for the pole at
u = −1, the UV renormalons are double poles. On the other hand, all IR are simple poles.
Furthermore, the pole closest to the origin, which should dominate the behaviour of the
series at higher orders, is the one at u = −1. It should be noted that there is no renormalon
at u = 1. This is not a coincidence and is related to the fact that, when performing the
OPE, the lowest dimension operator for the non-perturbative contribution has dimension 4
— it is not possible to write a gauge-invariant dimension-2 operator. As can be seem when
we developed Eq. (3.67) through Eq. (3.72), the dimension-4 operator yields a renormalon
at u = 2. Generalizing this argument, a dimension-2p operator generates a renormalon
at u = p; thus, dimension-2 operators are related to renormalons at u = 1. Therefore, it
could not exist any renormalon at u = 1 since we can not write a dimension-2 operator in
the OPE.XXVIII

The residue of the first pole on the negative real axis reads

Res(B,−1) = −
(
Q2
tα

v

)
C2
A − 1

π2

e−5/3m2
t

µ2
, (6.7)

while the residue of the first pole on the positive axis is

Res(B, 2) =

(
Q2
tα

v

)
(C2

A − 1)

20π2

e10/3µ4

m4
t

. (6.8)

XXVIIIRemember that the IR renormalons are related to non-perturbative effects.
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(a) Series approach to the Borel sum at different
energy scales

(b) Divergent behaviour of the series

Figure 20 – Series according to order in perturbation theory

Source: By the author.

Table 2 – Contribution of the renormalons on the first coefficients of the QCD expansion of the
top loop amplitude for the decay H → γγ. We are analyzing the amplitudes at the
scale µ = mt = 172.76 GeV.

Pole A
(1)
t A

(2)
t A

(3)
t A

(4)
t A

(5)
t A

(6)
t A

(7)
t A

(8)
t

u = −2 -29% -86% -20% -23% -10% -8% -4% -2%
u = −1 76% 226% 72% 125% 84% 106% 94% 101%
u = 2 280% -420% 66% -58% 20% -12% 5% -3%
u = 3 -848% 848% -89% 52% -12% 5% -1% 1%

Source: By the author.

From the results of Eq. (6.7) and (6.8), we can see that the dependence on the scale µ varies
according to whether you are considering UV or IR renormalons. For UV renormalons,
there is an inverse dependence with µ2 while the IR renormalons are proportional to powers
of µ2. This behaviour can be seen in Fig. 20, where for small values of µ the series sign
alternation — which is a manifestation of UV renormalons — is enhanced, while for higher
values of µ this alternation ceases, as can be seen in Fig. 21. For scales µ & 200 GeV, the
series has a fixed sign behaviour, approaching the Borel sum from above.

Figs. 20 and 21 also show the renormalization scale in which the large-β0 limit can be
better examined — at µ ∼ 200 GeV, the series approach to the Borel sum is very good
already at the first 3 orders. Therefore, for the analysis of the series in large-β0, this scale
range must yield good quantitative results.

The contribution of the poles to the first coefficients at µ = mt can be read off from
Tab. 2. One can see that the the UV renormalon closest to the origin (u = −1) dominates
in higher-order corrections, as we had anticipated in Sec. 3. At lower-orders, this does not
happen as the IR renormalons also contribute considerably to the coefficients.

We can expand in full analytical form the result of Eq. (6.6) in u and, through the
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Figure 21 – Cessation of the sign alternation with increasing renormalization scale µ.

Source: By the author.

correspondence between the original series and the Borel transform, Eq. (3.46), obtain the
leading-nf terms for the QCD corrections at each order in perturbation theory exactly. At
the three-loop order our result reads

A
(2)
t,nf

= −CFTFnf
(

1

12
− `µ

4

)
, (6.9)

where `µ ≡ ln
(
µ2

m2
t

)
, in agreement with Refs.46,54. Our results for C(3)

t and C
(4)
t are,

respectively,

A
(3)

t,n2
f

= −CFT 2
Fn

2
f

(
19

108
− `µ

18
+
`2
µ

12

)
(6.10)

and

A
(4)

t,n3
f

= −CFT 3
Fn

3
f

(
487

972
− ζ3

3
− 19

108
`µ +

`2
µ

36
−
`3
µ

36

)
, (6.11)

where ζi is the Riemann Zeta Function evaluated at i. Once again both results are in
agreement with Ref.46.

A new result of this work is the leading nf -terms to all orders in perturbation theory,
i.e. A(n)

t,nn−1
f

for any n. As an example, the N5LO coefficient, A(5)

t,n4
f
, reads

A
(5)

t,n4
f

= −CFT 4
Fn

4
f

(
9613

8748
− π4

135
− 4ζ3

27
+ `µ

(
4ζ3

9
− 487

729

)
+

19

162
`2
µ −

`3
µ

81
+

`4
µ

108

)
, (6.12)
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while the N6LO coefficient, A(6)

t,n5
f
is

A
(6)

t,n5
f

= −CFT 5
Fn

5
f

[
307765

78732
− π4

243
− 190

243
ζ3 −

20

9
ζ5 + `µ

(
− 48065

26244
+
π4

81
+

20

81
ζ3

)
+ `2

µ

(
2435

4374
− 10

27
ζ3

)
− 95

1458
`3
µ +

5

972
`4
µ −

1

324
`5
µ

]
.

(6.13)

The higher-order coefficients can be easily generated from Eq. (6.6) by substituting u by
−β0,f t and performing the correspondence between the original series and the series in
Borel space, Eq. (3.46).

It is also interesting to analyze the series approach to the ’real’ value by computing the
Borel integral of the analytical result, Ãt,mt→∞, as well as the series coefficients. For our
calculation, we will use mt = 172.76 GeV. Since the ambiguity arising from the IR poles is
extremely small compared to the real part of Ãt,mt→∞ (it is 12 orders of magnitude smaller
than the real part), we will not consider it in our calculations. This small value for the
ambiguity is a manifestation of the sub-leading character of non-perturbative effects — we
are considering a scale where αs is clearly perturbative, and thus the non-perturbative
effects are negligible compared to uncertainties due to αs, scale variation or the series
truncation. Our result for the Borel sum of Eq. (6.6) reads

Ãt,mt→∞ = −0.0341724Ât, (6.14)

In Fig. 20a we displayed the series behaviour for various energy scales according to the
order in perturbation theory. It is possible to notice that the series approach to the Borel
sum is fast — there is good ‘convergence’XXIX around N5LO —, and the approach to the
Borel sum is faster when one increases µ. Fig. 20b was included to show the divergent
behaviour of the series: for energies µ ∼MH/2, the series starts to diverge around O(α15

s )

— this is essentially the behaviour of an asymptotic series: they first approach the true
result of the series and then diverge, in this case with alternating sign since the renormalon
located at u = −1 is the leading renormalon. Fig. 22 shows the decay width of the Higgs
decay into photons in the large-β0 limit varying the coupling renormalization scale µ for a
fixed top mass mt = 172.76 GeV. One can notice that it is related to Fig. 20 — at N4LO
the series approach to the Borel sum is very good. At N5LO, the approach to the value of
the Borel sum is present in practically all energy range 50 < µ < 350 GeV., i.e. at N5LO,
in large-β0, the perturbative expansion gives an excellent and stable approximation to the
true value of the observable.

Before comparing the results in QCD and large-β0, there is an important comment
XXIXWe are using the word convergence here to express the approach of the asymptotic series to the

result of the Borel sum. It can be noted in Fig. 20b that the series diverge and, therefore, could not
converge in the strict sense of the word.
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Figure 22 – Γ(H → γγ) for a fixed mt = 172.76 GeV.

Source: By the author.

Figure 23 – Some examples of singlet diagrams: the final state photons are not coupled to the
fermions which are coupled to the Higgs boson. In this work, we do not consider
those diagrams in our calculations because they are sub-leading in 1/nf .

Source: By the author.

about the energy scale µ and the types of diagrams involved in this decay. There are
two types of diagrams involved in QCD higer-order corrections of H → γγ, singlet and
non-singlet diagrams. Non-singlet diagrams are the ones in which the final state photons
couple to the same fermions coupled to the Higgs-boson while singlet diagrams are defined
as the ones in which the final state photons do not couple to the same fermions coupled to
the Higgs-boson. Some examples of singlet diagrams are displayed in Fig. 23. Furthermore,
observables should, in principle, not depend on µ; however, since we are truncating the
series, there is a residual dependence. Thus, the contribution of the singlet and non-singlet
diagrams to the decay width varies with µ. This dependence needs to be adjusted in
order for us to obtain good quantitative results in large-β0, since in this work we are not
calculating singlet diagrams. For our results, it is interesting to compare the results in
energy scales where the singlet contributions do not dominate over the non-singlet ones.
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In Ref.46, it is shown that with the scale choice µ = mt(mt), at the 3-loop level the
singlet diagrams are approximately of the same magnitude as the non-singlet diagrams,
while at µ = mH the singlet contribution is approximately three times larger than the
non-singlet contribution. It is argued that one might expect the same to happen at 4- and
5-loop orders. Thus, if the large-β0 limit represents well quantitatively the non-singlet
diagrams in full QCD, at higher values of µ, the difference between the result in QCD and
in large-β0 should decrease.

Thus, we will compare our results at the scale µ = mt(mt) with Eq. (18) of Ref.46. Our
result, after the naive non-abelianization, reads (as ≡ αs/π)

At,large-β0 =
2Q2

tNcα

3πv
(1− as + 0.583a2

s − 6.465a3
s + 25.443a4

s − 201.823a5
s + O(a6

s)).

(6.15)

In our conventions, from Eq. (18) of Ref.46, we find for the result in QCD in the large-mt

limit

At =
2Q2

tNcα

3πv

(
1− as − a2

s(1.292 + (0.889− 1.440i)si)

+ a3
s(5.937 + (0.992 + c3)si)− a4

s(23.220 + c4) + O(a5
s)

)
.

(6.16)

c3 and c4 are constants which have yet to be calculated. One can notice in the above
expression that the singlet contribution (which is indicated by the sub-index ‘si’) to the
3-loop result has an imaginary part, which can be traced through Eq. (22) of Ref.46 to
arise from a logarithm with negative argument. Another way of visualizing the appearance
of the imaginary part is that some diagrams in Fig. 23 can be cut into allowed processes
(i.e. the propagators can be on-shell), such as H → gg, for example; this is not the case for
the top triangle-loop, since MH < 2mt. Thus, through the Optical Theorem, the singlet
diagrams necessarily have an imaginary part. The imaginary part is yet unknown for order
α3
s and higher.
Although the magnitude of the non-singlet coefficients in large-β0 at N3LO and N4LO

are remarkably close to the exact result in QCD, there is a difference in sign.
In Figs. 24 and 25 we incorporated the amplitudes in both QCD and large-β0 into the

decay width, Eq. (6.2). In these plots, we are introducing the contribution of AW into
Γ(H → γγ) and ignoring singlet contributions. For the running mass of the top-quark in
the large-β0 limit we used the expression relating γm and the β-function of Ref.17,

γm = − β

3β0

N(−β, 0)

B(2 + β, 2 + β)Γ(3 + β)Γ(1− β)
, (6.17)
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Figure 24 – Γ(H → γγ) in QCD without singlet and mass corrections.

Source: By the author.

(a) Γ(H → γγ) in the large-β0 limit. (b) Γ(H → γγ) in the large-β0 limit at higher-orders.

Figure 25 – Γ(H → γγ) in large-β0 at first orders and higher-orders without singlet and mass
corrections.

Source: By the author.

where
N(−ε, u) = −CF (3− 2ε)(u− ε). (6.18)

β is the β-function in the large-β0 limit, given by β = −β0αs according to the definitions
of Ref.17. B(x, y) is the (mathematical) Beta function, defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (6.19)

Comparing the results for Γ(H → γγ) in QCD, Fig. 24, and in large-β0, Fig. 25, we can
see that there is an instability of the large-β0 result with the energy scale µ for higher-orders.
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This instability is expected and due to the fact that we are considering the γm-function
only up to 1/β0; however, when calculating the running mass, the exponentiation of the
γm-function generates terms of higher orders in 1/β0 which are not compensated in the
coefficients which we calculated strictly in the large-β0 limit.

One can notice, from Figs. 24 and 25a, that

(Γ(H → γγ)QCD, large-mt − Γ(H → γγ)large-β0,large-mt) ∼ 0.01keV, (6.20)

i.e. they are remarkably close. However, these calculations do not take into account
mass corrections in τt as well as singlet contributions; in the following, we will include
them. For the numerical evaluation, our input parameters were α = 1/137.035999074,
αs(MZ) = 0.1179 (which was evolved to the Higgs-boson mass scale µ = MH = 125.10

GeV, αs(MH) = 0.1130) and MW = 80.379 GeV. The τt corrections, up to τ 5
t at LO and

NLO, were obtained in Ref.55 and the known singlet contributions in Ref.46. Our result
with the mass and singlet corrections in QCD reads

Γ(H → γγ) =[9.1201-loop + 0.1562-loop + 0.0083-loop

− 0.0024-loop + 0.00045-loop] keV = 9.2824 keV
(6.21)

Our result in large-β0, with singlets and mass corrections, reads

Γ(H → γγ)large-β0 =[9.1191-loop + 0.1552-loop − 0.0043-loop

+ 0.0024-loop − 0.00045-loop

+ 0.00016-loop] keV = 9.2717 keV.

(6.22)

The difference between the known corrections in full QCD and the large-β0 limit corrections
is approximately 0.1%. We note that, although the order of the corrections agree, there is
a difference in sign starting at the 3-loop level, which was already noted when comparing
the series. We will also compare our results in a similar fashion as in Eqs. (6.21) and
(6.22) at the renormalization scale µ = 200 GeV, which was argued to be approximately
the best scale for the analysis of the series approach to the true value of the observable.
At µ = 200 GeV, we have in QCD, with all available corrections,

Γ(H → γγ) =[9.1051-loop + 0.1442-loop + 0.0173-loop

− 0.0014-loop + 0.00025-loop] keV = 9.2652 keV
(6.23)
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Figure 26 – Comparison of the decay width at N4LO in QCD and large-β0 along with the
relative difference between both scenarios.

Source: By the author.

In large-β0, with all available corrections, our result at µ = 200 GeV reads

Γ(H → γγ)large-β0 =[9.1061-loop + 0.1452-loop + 0.0063-loop

+ 0.0014-loop − 0.00035-loop

+ 0.00046-loop] keV = 9.2581 keV.

(6.24)

At this renormalization scale, the difference between QCD and large-β0 amounts to 0.08%.
However, the 3-loop correction in QCD doubles compared to the result at µ = MH ; this
suggests an interference between singlet and non-singlet diagrams at µ = 200 GeV. Fig. 26
shows the decay width with all known QCD corrections at N4LO and in the large-β0 limit
at N4LO, N5LO and N6LO. The first interesting thing to note is that, starting at N4LO,
the behaviour of Γ(H → γγ) stabilizes with each increasing order in perturbation theory
— a fact that is reinforced in Fig. 25b — at µ = MH , the series already almost match.
This is very different from the behaviours of Fig. 25a, where there is a very different curve
shape from order to order. Furthermore, the behaviour of the curves in QCD and large-β0

are quite similar, with the difference between both results shrinking as the energy scale
becomes larger, as can be seen in the inner plot of Fig. 26 and the results at µ = MH

and µ = 200 GeV. This is in agreement with the argument in Ref.46: for higher values
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of µ, the importance of singlet diagrams decreases while the non-singlet ones increases,
and thus the diagrams which were not included in our calculations become less important
— the large-β0 limit seems to be a good approach to study this process in higher-orders.
However, it should be noted that the instability of the higher-order results with respect to
µ in the large-β0 limit can also contribute to this reduction in the difference between this
limit and the QCD results.

In view of the above results, we argue that this behaviour will continue to N5LO and
beyond in QCD and that, although both scenarios diverge quantitatively, there is an
agreement qualitatively. Therefore, one might expect that the QCD corrections might
stabilize with each increasing order in perturbation theory starting at N4LO and that the
magnitude of the QCD corrections must match the ones in the large-β0 limit.

The large-β0 6- and 7-loop corrections, at µ = MH , are 0.1 eV and −0.03 eV, respectively.
Once again, in view of the correspondence in the magnitude of the corrections in both QCD
and large-β0, we can expect a similar behaviour for higher-orders. Since the order-by-order
corrections when comparing QCD and large-β0 results are astoundingly close at µ = MH ,
we will proceed with our predictions in this renormalization scale.XXX Thus, we expect

| Γ(H → γγ)QCD, 6-loop − Γ(H → γγ)QCD, 5-loop |= 2× 10−4keV, (6.25)

where we multiplied the large-β0 result by 2 to be conservative. Therefore, the perturbative
error when truncating the series at N4LO in QCD is of the order of 0.2 eV, i.e. 0.002%.

From the qualitative side, we expect that the series has good stability with respect
to the order in perturbation theory starting at the N4LO — starting at the 5-loop level
this differences shrinks considerably in the large-β0 scenario. Although the N4LO curves
in QCD and in the large-β0 limit possess different characteristics, the agreement in the
magnitude of the corrections for each order in perturbation theory suggests that this will
also hold in QCD — the next corrections will not differ considerably from the N4LO curve.

To compare our result of Eq. (6.25) with other sources of uncertainties, we compute
Γ(H → γγ) using the uncertainty of the strong running coupling, αs(M2

Z) = 0.1179 ±
0.001026. When using the lower uncertainty to calculate the decay width, we find that
the 2-loop contribution is 0.154 (againts 0.156), i.e. the difference between the 2-loop
contribution using αs(M2

Z) = 0.1179 and αs(M
2
Z) = 0.1169 is of the order of 2 eV —

10 times larger than our prediction for the 6-loop correction in QCD. Another source
of uncertainty is the top-mass; as we discussed previously, mt in the argument of the
logarithm `µ makes the decay width highly sensitive to variations in this mass parameter
(note, for example, the instability of the result in large-β0 at higher-orders). Therefore,
XXXThe computation of the QCD result at µ = 200 GeV showed an interference between the singlet and

non-singlet diagrams which increased the 3-loop correction by one magnitude order; surprisingly, at
µ = MH the results order by order were much more compatible and thus we believe it is sensible to
analyze and estimate results at µ = MH .
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the uncertainty related to the top mass should surpass the uncertainty due to the 6-loop
correction.

Thus, as of today, the limiting factors to the precise calculation of Γ(H → γγ) are
not related to the QCD higher-order calculations but to other sources of uncertainty in
parameters used for the computation of the observable, as for example in the running
coupling αs

With the results and arguments presented, we can draw some conclusions:

• It seems advantageous to perform the calculations in larger scales, µ > MH ; in this
energy range, the ‘convergence’ in large-β0 is enhanced and the singlet contributions
decrease — this is very important since the singlet diagrams are hard to compute
and are known completely only up to α2

s.

• At higher-orders µ ∼ 200 GeV, the non-singlet diagrams should dominate over the
singlet ones. Furthermore our result shows that it is reasonable to expect the QCD
corrections to be of the same magnitude as the ones in large-β0. This would generate
a 6-loop correction, in QCD and at µ = MH , of 0.2 eV (or 0.002%).

• The perturbative error, when compared to other sources of uncertainty, is sub-
leading by one order of magnitude. Thus, at time of writing, it is more important to
invest in the reduction of the uncertainties of αs and mt than to calculate unknown
perturbative corrections to H → γγ.
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7 CONCLUSIONS

In this work, we studied the Higgs boson decay into two photons in higher-orders in
QCD within the large-β0 limit. We started presenting the basic theoretical framework for
understanding the construction of the SM and to settle the foundations for our calculations.
We presented, in detail, the LO decay in the mt →∞ effective theory, in which we expand
the original calculation in powers of τt ≡ M2

H/4m
2
t . We proceeded introducing MATAD,

the program we used for the calculation in the large-β0 limit. Our result for the Borel
transform of the top contribution to the amplitude At,large-β0 , B[At,large-β0 ], in closed form,
reads

B[At,large-β0 ] =

(
Q2
tα

v

)(
C2
A − 1

4π2

)e5u/3( µ
2

m2
t
)u(u2 − 1)Γ(1− u)Γ(1 + u)3

(1 + 2u)Γ(1 + 2u)
. (7.1)

With this procedure, we were able to reproduce the known leading-nf terms up to N4LO
and to obtain the leading-nf terms to all orders in perturbation theory. A new result of
this work is the N5LO leading-nf term, which is the first previously unknown leading-nf
contribution,

A
(5)

t,n4
f

= −CFT 4
Fn

4
f

(
9613

8748
− π4

135
− 4ζ3

27
+ `µ

(
4ζ3

9
− 487

729

)
+

19

162
`2
µ −

`3
µ

81
+

`4
µ

108

)
. (7.2)

Our analysis of the series approach to the Borel sum of H → γγ at higher-orders
showed that the renormalization scale µ ∼ 200 GeV seemed to be a good choice to study
the problem through the large-β0 limit because it approaches the value of the Borel integral
faster.

When comparing our result for At in large-β0 with the QCD result without any singlet
or mass corrections, at µ = mt(mt), we noted that, although the magnitude of our
corrections are remarkably close to the exact result, there is an inversion in the sign of the
perturbative corrections; this comparison serves as a qualitative analysis of the large-β0

limit at higher-orders for the process into question. Thus, at energies µ ∼ 200 GeV, the
full non-singlet (order-by-order) amplitudes in QCD do not differ considerably, in absolute
value, from the large-β0 limit and the higher-order corrections can be estimated with this
procedure.

As the next step, we incorporated the amplitude due to the W± loop, AW , and
calculated Γ(H → γγ) in the large-β0 limit. When plotting the result, we noted an
unstable behaviour with respect to the renormalization scale µ of the series at higher-
orders, a fact that can be related to the incorporation of higher orders powers of 1/β0

when calculating the running mass in the large-β0 limit. Thus, this behaviour is expected
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in large-β0 results.
Nevertheless, we proceeded with the inclusions of the available known corrections —

singlet diagrams at the three-loop level and τt corrections at LO and NLO up tp τ 5
t . Our

results showed that the difference Γ(H → γγ)QCD − Γ(H → γγ)large−β0 shrinks as the
energy goes higher. This behaviour is due to the decrease in the contribution of the singlet
diagrams; however, the instability of the large-β0 limit with respect to µ also contributes
to this reduction.

For a numerical evaluation, we compared the results in full QCD and large-β0 in both
µ = MH and µ = 200 GeV. The difference between both scenarios were of the order of
0.1%, i.e. the large-β0 approach seems to be a good method to analyze the Higgs decay
into photons at higher-orders. An interesting conclusion of this comparison is that, when
comparing the order by order perturbative corrections, the analysis in large-β0 at µ = MH

presents results almost identical to the QCD known corrections in magnitude. Thus, we
argued that, for quantitative predictions — and following the same renormalization scale
as in Ref.46 —, it is better to use µ = MH .

With this quantitative information, we argued that, since the magnitude of the large-β0

corrections do match the magnitude of the non-singlet QCD contributions astoundingly
well to all known orders in perturbation theory, this behaviour must continue to higher
(yet unknown) orders. Thus, we were able to estimate the next QCD correction (the 6-loop
correction) to be of the order of 0.2 eV. Therefore, the truncation error with the current
knowledge of the QCD corrections amounts to 0.002% of the observable Γ(H → γγ). In
QCD, the decay width including the singlet corrections at the 3-loop level and the mass
corrections up to τ 5

t at LO and NLO, reads

Γ(H → γγ) =[9.1201-loop + 0.1562-loop + 0.0083-loop

− 0.0024-loop + 0.00045-loop

± 0.00026-loop] keV = (9.2824± 0.0002) keV,

(7.3)

where in the last contribution we give our estimate of the perturbative uncertainty from
the truncation of the series. However, the uncertainties due to the running coupling αs
amounts to 2 eV, one order of magnitude larger than the QCD corrections. Therefore, we
argue that, for the computation of Γ(H → γγ), to the date of this work, it is better to
decrease the uncertainty in the parameters used in the calculation — such as αs and mt —
than to calculate higher-order terms in perturbation theory.
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Appendix A Notation and conventions

In this work, we use natural units,

c = h̄ = 1. (Appendix A.1)

We refer to Lorentz indices as Greek letters (µ, ν = 0, 1, 2, 3); for other indices, we use
Roman letters (i, j etc). Furthermore, we assume Einstein’s summation, in which when
two indices appears repeated in an expression, their sum is implied.

We use the metric
gµν = (1,−1,−1,−1). (Appendix A.2)

The derivative ∂µ is defined as
∂µ = (∂t,∇). (Appendix A.3)

The Pauli matrices read

σ1 =

 0 1

1 0

 , σ2 =

 0 −i
i 0

 , σ3 =

 1 0

0 −1

 . (Appendix A.4)

We will use the Bjorken and Drell convention56 for the γ matrices,

γ0 =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 , (Appendix A.5)

where 1 (0) represents the identity (null) 2 × 2 matrix and σi are the Pauli matrices.
Furthermore, we define γ5 as

γ5 ≡ iγ0γ1γ2γ3 =

 0 1

1 0

 . (Appendix A.6)

The δ-function in D dimensions reads

δ(D)(x− y) =

∫
dDp

(2π)D
eip·(x−y). (Appendix A.7)
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Appendix B β-function coefficients

In the following, the colour factors for SU(N) with generators under the standard
normalization and fermions transforming according to the fundamental representation are

TF =
1

2
, CA = N, CF =

NA

2N
=
N2 − 1

2N
,

dabcdA dabcdA

NA

=
N2(N2 + 36)

24
,

dabcdF dabcdA

NA

=
N(N2 + 6)

48
,

dabcdF dabcdF

NA

=
N4 − 6N2 + 18

96N2
.

(Appendix B.1)

With these results, the first five coefficients of the β-function, in our definition, read32

β0 = β0,NA + β0,f = − 1

4π

(
11

3
CA −

4

3
TFnf

)
, (Appendix B.2)

β1 = − 1

(4π)2

(
34

3
C2
A −

20

3
CATFnf − 4CFTFnf

)
, (Appendix B.3)

β2 = − 1

(4π)3

(
2857

54
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A −

1415
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C2
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9
CFCATFnf + 2C2

FTFnf

+
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9
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2
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2
f +
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27
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2
Fn

2
f

)
,

(Appendix B.4)

β3 = − 1

(4π)4

(
C4
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[
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)
(Appendix B.5)
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and

β4 = − 1
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