• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.75.2017.tde-02102017-144630
Document
Author
Full name
Laise Pellegrini Alencar Chiari
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2017
Supervisor
Committee
Silva, Albérico Borges Ferreira da (President)
Leitão, Andrei
Lima, Emmanuela Ferreira de
Weber, Karen Cacilda
 
Title in Portuguese
Estudos de relações quantitativas estrutura-atividade de antagonistas do receptor sigma-1
Keywords in Portuguese
Dor neuropática
MLP-ANN
pirimidinas
PLS
QSAR
receptor Sigma-1
Abstract in Portuguese
A dor neuropática atinge cerca de 6 a 10% da população global e estima-se o seu aumento nos próximos anos. Essa síndrome não tem cura e afeta consideravelmente a qualidade de vida das pessoas por ela acometidas. Os medicamentos utilizados atualmente para o seu tratamento, como antidepressivos, anticonvulsivantes, opióides, dentre outros, não proporcionam um resultado satisfatório pelo fato de não reduzirem consideravelmente os sintomas e/ou por terem muitos efeitos colaterais. Pesquisas recentes mostram que o receptor sigma-1 pode ser utilizado no tratamento da dor neuropática. Verificou-se na literatura uma nova série de pirimidinas que são capazes de se ligar ao receptor sigma-1, atuando como seus antagonistas, sendo potenciais alvos para a produção de fármacos que podem ser utilizados no tratamento da dor neuropática. Então, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) foram realizados utilizando os métodos de Mínimos Quadrados Parciais (PLS) e Redes Neurais Artificiais (ANN) para prever a atividade biológica dessa série de pirimidinas. Os resultados obtidos se mostraram satisfatórios tanto para o método de PLS (r2 = 0,877, q2 = 0,800 e r2teste = 0,738), quanto para o método de ANN (r2trein = 0,734, r2val = 0,753 e r2teste = 0,676), mostrando que o conjunto de compostos antagonistas do receptor Sigma-1 pode ser descrito tanto de forma linear quanto de forma não-linear.
 
Title in English
Quantitative Structure-Activity Relationship studies of Sigma-1 receptor antagonists
Keywords in English
MLP-ANN
Neuropathic pain
PLS
pyrimidines
QSAR
Sigma-1R
Abstract in English
Neuropathic pain affects about 6 to 10% of the global population and it is estimated to increase in the coming years. This syndrome has no cure and considerably affects the life quality of people affected by it. Medications currently used for its treatment, such as antidepressants, anticonvulsants, opioids, among others, do not provide a satisfactory result because they do not significantly reduce the symptoms and/or have many side effects. Recent research shows that the sigma-1 receptor can be used in the treatment of the neuropathic pain. A new series of pyrimidines have been found in the literature, which are capable of binding to the sigma-1 receptor, acting as its antagonists, and have been synthesized as potential targets that can be used in the treatment of the neuropathic pain. Therefore, Quantitative Structure-Activity Relationships (QSAR) were performed using Partial Least Squares (PLS) and Artificial Neural Networks (ANN) methods to predict the biological activity of this series of pyrimidines. Through the mathematical models obtained by PLS (r2 = 0.877, q2 = 0.800 and r2test = 0.738) and ANN (r2trein = 0.734, r2val = 0.753 and r2test = 0.676) methods, it was showed that they were able to predict the biological activity of the studied pyrimidines.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-10-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.