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ABSTRACT 

 

LOPES, R. Z. Evaluation of sensory crispness of dry crispy foods by convolutional 

neural networks. 2023. 67 f. Master thesis – Faculdade de Zootecnia e Engenharia de 

Alimentos, Universidade de São Paulo, Pirassununga, 2023. 

 

Convective drying is traditionally used to dehydrate food, reducing volume and water activity 

for easy transportation and storage. During drying, foods undergo volume reduction due to 

moisture loss, resulting in changes in the solid matrix and the formation of a crispy structure 

when crushed or fractured. This study focused on developing methods for quantifying and 

classifying crispy dried foods, such as potato chips, toasts, and fried foods like french fries 

and fried chicken, which were investigated. Compression profiles and sound noise were 

determined using a lever device covered by a noise suppression box. The captured sound was 

transformed into different parameters using Python and Mathematica Wolfram libraries. The 

power spectrum of the sound signal was obtained using the discrete Fourier transform method 

in Wolfram, while Onset Strength and Mel Frequency Cepstral Coefficients (MFCC) were 

obtained using the Librosa library. The sound spectra, Onset Strength, and MFCC were 

processed using neural networks to classify the crispness of fried chicken, potato chips, and 

toasts. The classification models using DFT and MFCC signals achieved an accuracy of over 

95%. This study allowed the description of crispy sounds based on the intensity and duration 

of the signal. A second study utilized Python code and the Librosa library in an attempt to 

generate a dimensionless number, called the Zeta value, for classifying crispness intensity. 

The Zeta value was calculated based on Root Mean Squared Energy values multiplied by 

peak intensities within 1-second intervals. Experimental validation of the Zeta value was 

performed by acquiring crispness noises for toasts and French fries while monitoring 

moisture and storage time. Zeta behavior aligned with the crispness behavior in the tests of 

increasing and decreasing crispness over time. 

 

Keywords: Crispness, Convolutional Neural Network, Librosa, Toast, Food Materials. 

 

  



 

 

RESUMO 

 

LOPES, R. Z. Avaliação da crocância sensorial de alimentos crocantes secos por redes 

neurais convolucionais. 2023. 67 f. Dissertação (Mestrado) – Faculdade de Zootecnia e 

Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 2023. 

 

A secagem convectiva é tradicionalmente utilizada para desidratar alimentos, a fim de reduzir 

o volume e a atividade de água, possibilitando o fácil transporte e armazenamento. Durante 

a secagem, os alimentos sofrem redução de volume de acordo com a perda de umidade, 

resultando em alterações na matriz sólida e formação de estrutura crocante quando 

esmagados ou fraturados. Este trabalho focou-se em desenvolver métodos de quantificação 

e classificação de alimentos secos crocantes, tais como batatas chips, torradas e alimentos 

fritos, como batatas fritas e frango frito. Os perfis de compressão e ruído sonoro foram 

determinados por um dispositivo de alavanca manual coberto por uma caixa de supressão de 

ruído. O som capturado foi transformado em diferentes parâmetros com o auxílio de 

bibliotecas em Python e Mathematica Wolfram. O espectro de potência do sinal sonoro foi 

obtido pelo método de transformada discreta de Fourier em Wolfram, enquanto o Onset 

Strength e os coeficientes cepstrais de frequência Mel (MFCC) foram obtidos por meio da 

biblioteca Librosa. Os espectros sonoros, Onset Strength e MFCC foram processados em 

redes neurais com o objetivo de classificar a crocância do frango frito, das batatas chips e das 

torradas. Os modelos de classificação que utilizaram como entradas os sinais DFT e MFCC 

apresentaram acurácia superior a 95%. Este estudo permitiu descrever o som crocante por 

meio da intensidade e duração do sinal. Um segundo estudo utilizou código Python e a 

biblioteca Librosa na tentativa de gerar um número adimensional para classificar a 

intensidade da crocância, denominado valor Zeta. O valor Zeta foi obtido a partir dos valores 

de Root Mean Squared Energy, multiplicados pelos picos de intensidade em intervalos de 1 

segundo. A validação experimental do valor Zeta foi realizada por meio da aquisição de 

ruídos de crocância para torradas e batatas fritas, monitorando-se a umidade e o tempo de 

estocagem. O comportamento de Zeta alinhou-se com o comportamento da crocância nos 

testes de aumento e diminuição da crocância ao longo do tempo. 

 

Palavras-chave: Crocância, Rede Neural Convolucional, Librosa, Torrada, Materiais 

Alimentícios. 
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General Introduction on Crispness Classification and Quantification, 

Objectives, and Master’s Thesis Structure 
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General Introduction, Objectives, and Thesis Structure 

1 INTRODUCTION 

1.1 CRISPNESS 

The crispness effect, obtained from the formation of a rigid crust on the food, provides 

highly palatable sensory characteristics (LA FUENTE; LOPES, 2018; MONTEIRO; 

CARCIOFI; LAURINDO, 2016). The crispy materials obtained by the drying process have 

similar quality attributes to freeze-dried or fried materials (LA FUENTE; LOPES, 2018). 

However, drying has advantages such as low processing costs compared to freeze-drying, lower 

oil content, and longer shelf-life (MONTEIRO; CARCIOFI; LAURINDO, 2016; BI et al., 

2015).  

There are many methods for achieving the crispy effect in drying trials, such as high-

temperature intermittent drying (HTST). The initial high temperature promotes the formation 

of an initial layer on the surface of the solid; this partially dried layer promotes the "puffing" 

effect (VARNALIS; BRENNAN; MACDOUGALL, 2001). “Puffing" involves the release or 

expansion of vapor or gas within the product, either to create an internal structure or to expand, 

or rupture an existing one (PAYNE; TARABA; SAPUTRA, 1989). It results in crispy products 

with good rehydration capacity and faster drying (HOFSETZ et al., 2007; SACA; LOZANO, 

2007). Figure 1.1 demonstrates the "puffing" effect from banana slices in a drying cycle. 

 

Figure 1.1. Photographs of banana slices submitted to different drying cycles at high 

temperatures, it highlights the increasing crispness. 

 

Source: LA FUENTE (2018). 

 

Drying of materials composed of natural polymers can be achieved by various 

technologies, such as spray drying, freeze drying, fluidized bed, and convective drying. The 

operation parameters, such as vapor pressure, temperature, air velocity, and equilibrium 

moisture, need to be monitored to produce a dry solid with specific mechanical properties and 
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without degradation of active compounds. Dry solids also have easy handling, smaller storage 

volumes, and reduced transportation cost (MUJUMDAR, 2006). 

Convective drying involves the removal of moisture by the simultaneous transfer of heat 

and mass between the moist solid and the drying air. Energy in the form of heat is transferred 

to the moist solid by the hot air stream. Vaporization of the liquid occurs at wet bulb temperature 

at the surface of the moist solid, and heat transfer may be due to convection, conduction, or 

radiation (CASTRO; MAYORGA; MORENO, 2018).  Additionally, during drying, the 

decrease in moisture of the materials can also result in the modification of mechanical properties 

and an increase in the modulus of elasticity. As a result, drying modifies the mechanical strength 

of these materials, which can be evaluated through the variation of three sound parameters: 

energy, intensity, and continuity. 

Crispness obtained by the fragmentation of dry food is a property little studied in food 

engineering (SPENCE, 2016). Machine learning and Deep Learning demonstrate a new horizon 

for food analysis, with few published works in the world and a high potential for impact in the 

area if well-directed. Thus, this research project established methods that made it possible to 

describe changes in the sound properties of food materials. We also evaluated how this behavior 

varies over time and frequency by comparing spectrograms and intensity plots over drying 

times. 

 

1.2 LIBROSA AND NEURAL NETWORKS APPLICATIONS ON CRISPNESS 

EVALUATION 

Artificial Neural Networks are a branch of Deep Learning, whose first mathematical 

model was conceived from observations and hypotheses about the biological behavior of the 

neural system (MCCULLOCH; PITTS, 1943). In the year 1948, the researcher Donald Hebb 

succeeded in finding a method of neuron training based on the neurophysiology of nerve cells 

(MORRIS, 1999). The early models had limitations in classifying databases into more than two 

classes, and the relationship between the data had to be linear, which was impractical for the 

more complex applications (DA SILVA et al., 2017). 

 One of the most complete and universal architectures for application in classification 

and pattern discovery is the Convolutional Neural Network (CNN). It separates, for example, 

an image into several parts, and a neuron is assigned to analyze the information and send it to 

the adjacent layer of neurons that connects all the information from each convolution to reach 

a common output (GU et al., 2018; ZHOU, 2020). For a Neural Network to be trained, the data 

needs to go through a process of acquisition, pre-processing, and feature extraction to direct the 
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learning to what the network designer wants. This is why raw crispness audio is not suitable for 

a CNN. Mel-Frequency Cepstral Coefficients (MFCC) have shown great potential in 

classification by transforming sound into fundamental frequencies known as Formants (JI et 

al., 2021). Formants represent the information needed for a human being to be able to 

distinguish sounds, even if they are as similar as the crispness of a Fried Chicken and a piece 

of toast.  

One practical approach to sound processing is through Librosa, a Python library 

specialized in sound signal and music processing that provides a bunch of features like MFCC 

and Onset Strenght. The former is defined through the frequency domain while the latter is a 

relationship between wave amplitude and time, i.e., it is a versatile and powerful tool (MCFEE 

et al., 2015; RAGURAMAN; R.; VIJAYAN, 2019). The Librosa library can be used to extract 

MFCCs from sound excerpts to input them into CNN for music genre classification (CHENG 

et al., 2021). 

One of the first studies to analyze neural networks in food differentiated the acoustic 

characteristics of 5 types of crispy snacks reaching 89% accuracy in the Neural Network. (LIU; 

TAN, 1999). Crispness is correlated with intonation; the sound is sharp and short similar to a 

fabric ripping. Its quality perception is interrelated with energy and loudness, the sharper and 

more energetic the sound, the greater the consumer acceptance (TUNICK et al., 2013; 

VICKERS, 1984). Other studies in the area use neural networks to estimate the texture of 

various crispy foods using fracture tests and acoustic tests on texturometers. (CHEN; DING, 

2021; KATO et al., 2018, 2019). The data is collected by placing a microphone near the region 

where the food is sheared.  

The Librosa library is an audio analysis and processing package capable of isolating key 

parameters such as Onset Strength, MFCC, and Beat that measure the intensity, frequency, and 

amplitude of the sound noise, which is essential to identify crunchiness patterns in the foods 

that will be studied (LIBROSA, 2021). A person defines a food as crunchy at the moment of its 

first bite, so we will also study if the noise coming from the bite of a crunchy food is present in 

the percussive or harmonic spectrum and what is the intensity of this sound. The graphics 

generated in Librosa are sound spectrograms that transform sound into spectrograms and 

waveplots, which facilitate the identification of patterns. 

Keras is a machine-learning library that will be used to validate the patterns identified 

in Librosa by simulating a human brain that trains by learning what is and is not crunchy 

(CHOLLET, 2017). The number of neurons and layers depends on the complexity of the 

problem, in the simplest case, there is one input, the audio data, and two outputs, crispy and not 
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crispy. In a more complex case, there will be four outputs each with a crispness profile such as 

hard or very crispy, ideal crispness, not very crispy, and not crispy to be compared with a 

crispness sensory analysis test. 

 

1.3 OBJECTIVES  

This work focused on evaluating crispness by its sound only and developing a 

dimensionless number, Zeta, that describes its behavior over time. Crispness is a mixture of 

mechanical and sound characteristics, but customer decision is mostly based on the sound. It is 

a forgotten flavor, which intensifies a product’s quality. Furthermore, this work proposed the 

best Zeta range for French Fry and Bread, which indicates the maximum peak for crispness. 

Finally, this study created a marketable software that calculates Zeta from an audio input. It can 

be updated with new Zeta ranges and be an easy-to-use method for laboratories. 

The specific objectives of this Master’s Thesis were: 

- Organize two small sound databases. One with random ASMR crispy audios from 

YouTube, it featured audios of Toast, Fried Chicken, and Potato Chips. The second 

centered on toast audios from a 300-minute drying process. 

- Identify which sound parameters best represent crispness. 

- Successfully classify the ASMR audios while evaluating which Neural Architecture 

better fit the chosen parameters. 

-  Perform drying experiments to analyze how the sound parameters behave over time. 

- Achieve a dimensionless number, Zeta, which best represents crispness behavior. 

- Test Zeta in a Control Quality Laboratory from a big company, Ingredion. 

- Refine Zeta after evaluating its results. 

- Create an easy-to-use software to calculate Zeta. 

 

1.4 MASTER’S THESIS STRUCTURE 

The dissertation was elaborated in three chapters as follows: 

Chapter 1 presents a general introduction to crispness, analysis of temporal and spectral 

parameters of the crispy sound, and the applied neural networks. The research objectives and 

justification conclude the chapter. 

Chapter 2 presents the studies in the classification of crispy sounds coming from random 

internet videos. The goal of this chapter is to find the parameters that best describe the 

differences in crispness. 
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Chapter 3 presents the studies in crispness quantification. The chapter focused on 

developing a dimensionless number for crispness, which was done by correlating the essence 

of the parameters found in Chapter 3. 

Chapter 4 presents the final remarks. 

 

REFERENCES 

BI, J. et al. Evaluation indicators of explosion puffing Fuji apple chips quality from 

different Chinese origins. LWT - Food Science and Technology, v. 60, n. 2, p. 1129–1135, 

mar. 2015.  

CASTRO, A. M.; MAYORGA, E. Y.; MORENO, F. L. Mathematical modeling of 

convective drying of fruits: A review. Journal of Food Engineering, v. 223, p. 152–167, 

2018.  

CHEN, L.; DING, J. Analysis on Food Crispness Based on Time and Frequency 

Domain Features of Acoustic Signal. Traitement du Signal, v. 38, n. 1, 2021.  

CHENG, Y.-H. et al. Automatic Music Genre Classification Based on CRNN. 

Engineering Letters, v. 21, n. 1, p. 312–316, 2021.  

CHOLLET, F. Deep Learning with Python. Manning Publications, 2017. 

DA SILVA, I. N. et al. Artificial Neural Networks. Cham: Springer International 

Publishing, 2017.  

GU, J. et al. Recent advances in convolutional neural networks. Pattern Recognition, 

v. 77, p. 354–377, 2018.  

HOFSETZ, K. et al. Changes in the physical properties of bananas on applying HTST 

pulse during air-drying. Journal of Food Engineering, v. 83, n. 4, p. 531–540, 2007.  

KATO, S. et al. Snack Food Texture Estimation by Neural Network. 2018 Joint 10th 

International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th 

International Symposium on Advanced Intelligent Systems (ISIS). Anais...IEEE, 2018 

KATO, S. et al. Snack Texture Estimation System Using a Simple Equipment and 

Neural Network Model. Future Internet, v. 11, n. 3, 2019.  

LA FUENTE, C. I. A.; LOPES, C. C. HTST puffing to produce crispy banana - The 

effect of the step-down treatment before air-drying. LWT, v. 92, n. November 2017, p. 324–

329, jun. 2018.  

LIBROSA. Biblioteca do Librosa. 2021 Disponível em: 



20 

 

General Introduction, Objectives, and Thesis Structure 

<https://librosa.org/doc/latest/index.html> Último acesso em: <14/01/2021> 

LIU, X.; TAN, J. ACOUSTIC WAVE ANALYSIS FOR FOOD CRISPNESS 

EVALUATION. Journal of Texture Studies, v. 30, n. 4, 1999.  

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous 

activity. The Bulletin of Mathematical Biophysics, v. 5, n. 4, p. 115–133, dez. 1943.  

MCFEE, B. et al. librosa: Audio and Music Signal Analysis in Python. 2015. 

MONTEIRO, R. L.; CARCIOFI, B. A. M.; LAURINDO, J. B. A microwave multi-flash 

drying process for producing crispy bananas. Journal of Food Engineering, v. 178, p. 1–11, 

jun. 2016.  

MORRIS, R. G. . D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. 

Brain Research Bulletin, v. 50, n. 5–6, p. 437, nov. 1999.  

MUJUMDAR, A. Handbook of Industrial Drying, Third Edition. [s.l.] CRC Press, 

2006.  

PAYNE, F. A.; TARABA, J. L.; SAPUTRA, D. A review of puffing processes for 

expansion of biological products. Journal of Food Engineering, v. 10, n. 3, p. 183–197, jan. 

1989.  

RAGURAMAN, P.; R., M.; VIJAYAN, M. LibROSA Based Assessment Tool for 

Music Information Retrieval Systems. 2019 IEEE Conference on Multimedia Information 

Processing and Retrieval (MIPR). Anais...IEEE, 2019 

SACA, S. A.; LOZANO, J. E. Explosion puffing of bananas. International Journal of 

Food Science & Technology, v. 27, n. 4, p. 419–426, jul. 2007.  

SPENCE, C. Sound: The Forgotten Flavor Sense. [s.l.] Elsevier Ltd, 2016.  

TUNICK, M. H. et al. Critical Evaluation of Crispy and Crunchy Textures: A Review. 

International Journal of Food Properties, v. 16, n. 5, 2013.  

VARNALIS, A. I.; BRENNAN, J. G.; MACDOUGALL, D. B. A proposed mechanism 

of high-temperature puffing of potato. Part I. The influence of blanching and drying 

conditions on the volume of puffed cubes. Journal of Food Engineering, v. 48, n. 4, p. 361–

367, jun. 2001.  

VICKERS, Z. M. CRISPNESS AND CRUNCHINESS - A DIFFERENCE IN PITCH? 

Journal of Texture Studies, v. 15, n. 2, 1984.  

ZHOU, D.-X. Universality of deep convolutional neural networks. Applied and 

Computational Harmonic Analysis, v. 48, n. 2, p. 787–794, mar. 2020.  

 

 



21 

 

 

  

CHAPTER 2  

 

Food Crispness Classification by Deep Neural Networks 



22 

 

Crispness Classification 

2 FOOD CRISPNESS CLASSIFICATION BY DEEP NEURAL NETWORKS 

 

Rafael Z. Lopes, Gustavo C. Dacanal* 

 

Department of Food Engineering, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade 

de São Paulo, FZEA-USP, 13635-900, Pirassununga, SP, Brazil 

* Corresponding author: Gustavo C. Dacanal, E-mail gdacanal@usp.br, Tel/Fax +55 (19) 35654284, 

ORCID 0000-0002-6061-0981 

 

ABSTRACT 

 Crispness is a textural characteristic that influences consumer choices, requiring a 

comprehensive understanding for product customization. Previous studies employing Neural 

Networks focused on acquiring audio through mechanical crushing of crispy samples. This 

research investigates the representation of crispy sound in time intervals and frequency 

domains, identifying key parameters to distinguish different foods. Two machine learning 

architectures, Multi Layer Perceptron (MLP) and residual neural network (ResNet), were used 

to analyze Mel Frequency Cepstral Coefficients (MFCC) and Discrete Fourier Transform 

(DFT) data, respectively. The models achieved over 95% accuracy "in-sample" successfully 

classifying fried chicken, potato chips, and toast using randomly extracted audio from ASMR 

videos. The MLP (MFCC) model demonstrated superior robustness compared to ResNet and 

predicted external inputs, such as freshly toasted bread acquired by a microphone or ASMR 

audio of toast in milk. In contrast, the ResNet model proved to be more responsive to variations 

in DFT spectrum and unable of predicting the similarity of external audio sources, making it 

useful for classifying pre-trained “in-samples”. These findings are useful for classifying 

crispness among individual food sources. Additionally, the study explores the promising 

utilization of ASMR audio from Internet platforms to pre-train Artificial Neural Network 

(ANN) models, expanding the dataset for investigating the texture of crispy foods. 

 

KEYWORDS: Convolutional Neural Networks, Mathematical Modeling, Crispness, 

Fried Chicken, Potato Chips, Toast. 

 

2.1 INTRODUCTION 

The use of Artificial Neural Networks has increased during the last decades 

demonstrating feasible results in several areas from engineering to health, an example is the 
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analysis of babies' cries to identify serious diseases (Ji, Mudiyanselage, Gao, & Pan, 2021). 

Crispness is one of the most relevant characteristics when buying a product, but it is only 

evaluated through mechanical properties such as texture. This is an opportunity to impact the 

food analysis market by uncovering the characteristics of the crispy sound (Buisson & 

Silberzahn, 2010).  

Crispness is a sensory attribute related to food texture and its sound perception is 

extremely important for the purchase decision and quality perception by consumers, since it 

indicates product freshness (Lawless & Heymann, 2010). The sound events of crispy dry food 

occur due to the structure breaking sound and the release of air. When applying force with the 

incisor teeth, energy is retained and dissipated in the form of sound energy during rupture (Dias-

Faceto, Salvador, & Conti-Silva, 2020).  

Studies have been conducted to correlate sound crispness and mechanical crispness by 

evaluating the sound in time domain, acoustic signal amplitude, duration and number of peaks 

(Akimoto, Sakurai, & Blahovec, 2018; Dias-Faceto et al., 2020; Gouyo et al., 2020; O’Shea & 

Gallagher, 2019), but, nowadays, with the use of artificial intelligence it is possible to predict 

the crispness of food more quickly, accurately and advantageously by performing sound 

analysis (Chen & Ding, 2021; Liu, Cai, et al., 2021b).  

Foods that produce sounds when sheared by biting are known as crispy foods, a niche 

product within the Food Engineering spectrum. The sound characteristics mostly come from 

the frying, baking, and roasting process. When their water activity has been decreased, air-filled 

voids appear in their structure. They are responsible for the better propagation of the sound 

when eating. Studies indicate that the difference between the sounds of each crispy food is in 

the intonation, where crispness is categorized as a higher-pitched sound while crunchiness is a 

lower-pitched sound (VICKERS, 1984). If it is possible to identify differences in sound 

empirically, it is also possible for a neural network to classify the crispness. 

Every crispy food has a sound, they may vary depending on the food, chips have smaller 

ranges than toast. Training an artificial neural network to classify crispy foods is the first step. 

Studies in this area approximated the texture function using Force data from texturometers 

(Kato, Ito, Wada, Kagawa, & Yamamoto, 2018; Kato et al., 2019a; Tunick et al., 2013). They 

had challenges regarding the equipment’s noise, a small change in the sound caused deviations 

in the results (Andreani et al., 2020; de Moraes et al., 2022). A proposed solution developed a 

swing arm device capable of capturing a cleaner sound, they approximated the energy using the 

friction force (Akimoto et al., 2018). The approach taken in this work utilized ASMR audios 

processed in python, there are no forces involved, just the sound itself to be evaluated. 
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The Librosa library is an audio analysis package capable of isolating key parameters 

such as Mel Frequency Cepstral Coefficients (MFCCs), which unfold the sound’s identity. 

Keras is a machine learning library that will be used to validate the patterns identified in Librosa 

by simulating a human brain that trains by learning which crispness is from which food (Chollet, 

2017). A Kaggle challenge inspired the first machine learning architecture. They developed a 

simple fully connected deep neural network to classify eating sounds of 20 different types of 

food. (Ma, Gómez Maureira, & van Rijn, 2020) The best model won using the MFCC as the 

input, which brought a 90% accuracy.  

The Convolutional Neural Network is a more complex architecture, it’s capable of 

handling large amounts of data. Their application is almost universal but more focused on image 

and audio classification (Zhou, 2020). The convolution process is a multiplication operation 

between the terms of two arrays, the original and a kernel filter, resulting in a smaller matrix. 

The two developed models received the Discrete Fourier Transform (DFT) linear data and 

spectrogram images as their input, respectively.  

The application of artificial neural networks (ANNs) in assessing food texture, 

particularly crispness, has been explored in various studies, as shown in Table 2.1. These 

networks, including Back Propagation Neural Networks (BPNN), Feedforward Neural 

Networks (FNN), and Multi-Layer Perceptrons (MLP), have been used to analyze acoustic 

signals generated during mechanical tests on food samples. The frequency range of these signals 

varies, but often falls within 0-20 kHz (Chen & Ding, 2021; Iliassafov & Shimoni, 2007; Kato 

et al., 2018, 2019a, 2019b; LIU & TAN, 1999; Liu, Cai, et al., 2021a; Liu, Wu, et al., 2021; 

Przybył, Duda, Koszela, & Stangierski, 2020; Sanahuja, Fédou, & Briesen, 2018; Srisawas & 

Jindal, 2003; ͆wietlicka, Muszyński, & Marzec, 2015).  

For instance, Chen et al. (2021) used a BPNN model to analyze the crispness of 

vegetables like potatoes and carrots, while Iliassafov et al. (2007) used a similar model to 

predict the sensory crispness of coated turkey breasts. Kato et al. (2018, 2019a, 2019b) 

employed a simple BPNN model to quantify the texture of snacks such as rice crackers and 

potato chips. Liu et al. (1999) used a FNN to evaluate the crispness of Chex Mix products, and 

Przybył et al. (2020) utilized MLP to analyze the quality of dried strawberries. 

 In addition to crispness, these models have been used to assess other food qualities. 

For example, Liu et al. (2021a, 2021b) used a BPNN model for non-destructive evaluation of 

apple firmness. Sanahuja et al. (2018) and Srisawas et al. (2003) used ANNs to classify the 

freshness of puffed snacks and the moisture content of snack foods, respectively. Wietlicka et 

al. (2015) used ANNs to classify extruded bread samples based on acoustic emission signals.  
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Table 2.1: Cited publications, correlating “(crispy or crunch or crispness or crunchiness) and (neural network) 

and (sound or acoustic or audio or signal) and (food)” research from 2003 to 2023. 

Author (year) ANN 

architecture 

Samples Audio source Type of Signal 

(input: output 

neurons) 

Power 

spectrum 

frequency 

range 

CHEN et al. 

(2021) 

BPNN Potato, sweet potato, 

carrot, and turnip 

Experimental 

(Compression in 

mechanical tests) 

Waveform 

index; peak 

PSD amplitude; 

and amplitude 

difference  

(3:1) 

(0-20 kHz) 

not detailed 

ILIASSAFOV 

et al. (2007) 

BPNN Coated turkey breast 

(frying, oven, and 

microwave) 

Experimental 

(Compression by a 

texture analyzer) 

FFT 

(7:3) 

(0-8 kHz) 

KATO et al. 

(2018; 2019a, 

2019b) 

Simple 

neural 

network 

model 

(BPNN) 

Rice crackers; Potato 

chips; 

Wafers; Cookies; 

Biscuits; Corn 

snacks 

Experimental 

(Stacked and 

crushed by the 

equipment, pair of 

pincers or pliers) 

FFT with 

five integration 

parts 

(10:2) 

 

 

(0-2 kHz) 

or 

(0-4 kHz) 

or 

(0-10 kHz) 

LIU et al. 

(1999) 

Feedforward 

neural 

network 

(FNN) 

Corn chex; Wheat 

chex; Round pretzel; 

Rye chip; and Bread 

twist 

Experimental 

(Crushed by a pair 

of pliers) 

STFT or power 

spectrum 

(5:3) 

(0-20 kHz) 

LIU et al. 

(2021a, 2021b) 

BPNN Apple small cuboid Experimental 

(Crushed by a 

steel ball 

knocking) 

FT or HHT 

(24 neurons; 

not detailed) 

(0-10 kHz) 

PRZYBYŁ et 

al. (2020) 

MLP Dried strawberries Experimental 

(Falling into 

water, or crushed 

by a texture 

analyzer) 

Frequency and 

sound intensity  

(2:1) 

(0-16 kHz) 

SANAHUJA 

et al. (2018) 

BFFN Puffed snacks under 

controlled RH  

Experimental 

(Crushed by a 

texture analyzer) 

STFT or CWT 

or HHT 

(Input with 68 

features as 1/3 

octave bands; 

not detailed) 

 

(0-20 kHz) 

SRISAWAS et 

al. (2003) 

BPNN or 

PNN 

Pringles brand 

potato chips; Paprika 

brand extruded 

snacks; Munchy 

brand crackers 

Experimental 

(Cutting with a 

pair of pincers, 

imitate biting with 

incisors) 

FFT  

(102:1 or 

102:4) 

(0-7 kHz) 

ŚWIETLICKA 

et.al. (2015) 

RBF or SOM Extruded flat 

graham; corn; and 

rye breads at 

different water 

activity levels 

Experimental 

(Compression 

plate) 

Acoustic 

emission in 

relation of 

bread type, 

water activity 

value, or both 

(4:3) 

(0-22 kHz) 

not detailed 

LOPES & 

DACANAL 

(2023)  

“This work” 

ResNet or 

MLP 

Fried chicken, Potato 

chips, Toast and 

Toast in milk 

Internet platform 

(ASMR 

mastication 

videos); and 

Experimental 

validation 

DFT or MFCC 

coefficients 

(100:3 or 64:3) 

(0-11 kHz) 
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These studies demonstrate the potential of ANNs in food quality assessment, offering 

valuable insights for the food industry. However, the complexity of these models and the need 

for further optimization highlight the ongoing challenges in this field, which is the contribution 

of this work. 

As presented in Table 2.1, the predominant type of signal employed in artificial neural 

network (ANN) architectures is derived from Fourier transforms, namely FFT (Fast Fourier 

Transform), STFT (Short-Time Fourier Transform), or DFT (Discrete Fourier Transform). 

Furthermore, other signal types such as Hilbert-Huang Transform (HHT), Continuous Wavelet 

Transform (CWT), and waveform signals are also utilized. In this study, we utilize the signal 

MFCC (Mel Frequency Cepstral Coefficients), which has not been explored in the literature for 

crispness analyses. 

This paper aims to investigate the unique characteristics of the crispy sound and its 

differences for each of the three presented foods: Fried Chicken, Potato Chips and Toast. The 

sound influences how many people perceive the desirable characteristics of a food, yet they 

forgot how it can change the flavors and sensations in their consumption (Spence, 2016). 

Understanding their characteristics and differences allows one to optimize their manufacturing 

processes in search of the most appealing sound to the consumer. However, it should first be 

explored whether it is possible to generalize a function that describes the crispness behavior by 

comparing the sounds of different foods in the two proposed neural network models. 

 

2.2 MATERIAL AND METHODS  

2.2.1 Overall scheme for audio acquisition, preprocessing, and spectrum generation 

A total of 584 digital audio files collected from a web platform (YouTube, 2022) were 

the main source of three different classes: Fried Chicken, Potato Chips, and Toast. The selected 

“ASMR” category provided clean videos.  

Audacity® audio editing software was used to trim the audio files to a duration of 1 

second. The resulting audio files were then converted to monophonic audio and their sampling 

rate (SR) was standardized to 22050 Hz. The 584 audio files were exported in the .wav file 

format. 

The use of these 1s-length segments followed the “Fair use on Youtube” Guidelines 

(http://www.support.google.com/youtube/answer/9783148). Furthermore, there was no 

exposure of the recording owners and any unauthorized use of it. 

Wolfram Mathematica and Python were the two main languages used for processing 

and extracting spectrum data from the audio files, as shown in Figure 2.1. Two types of deep 
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neural networks were used as a case study for the classification of the crispness of Fried chicken, 

Potato chips, and Toast: Residual Neural Network, and Multilayer Perceptron Network. The 

details are provided below. 

The inputs for the Residual Neural Network (ResNet) were obtained using Wolfram, 

which evaluated the Discrete Fourier Transform (DFT) as a preprocessing step. An additional 

step was taken to rescale the spectrum from 0 to 1. This resulted in DFT spectrum arrays with 

584x100 terms, which were imported to Python using the ".csv" file format and pandas library. 

In a second study using the ResNet network, audio augmentation filters were applied to enlarge 

the array of DFT spectrum inputs to 5840x100 terms. To input the ResNet, the structured data 

required an additional dimension and reshaping the array. This dimension was then transformed 

into the dimension of the filter. 

The inputs for the Multilayer Perceptron Network (MLP) were obtained using Python 

code with the librosa library. Specifically, librosa.load generated an audio time series, while 

librosa.feature.mfcc was used to evaluate the Mel-frequency cepstral coefficients (MFCCs). 

The resulting MFCC arrays contained 584x64 terms. In the Librosa library v0.9.0, the default 

number of MFCCs is 20. However, in this study, the neural network achieved its best 

performance using 64 MFCCs. 

Furthermore, the librosa.effects.percussive function decomposed the audio signal into 

percussive components, which were necessary for a more comprehensive analysis of the crisp 

sound. 

Through pre-testing and adjusting the input array sizes in the ResNet and MLP neural 

networks, the optimal dimensions were determined to be 100 and 64, respectively. These values 

were selected based on the resulting improvements in model predictions observed during 

testing. The model accuracy is typically used as the primary metric for evaluating the 

performance of the model during training and testing. The goal of evaluating model accuracy 

is to ensure that the model can make accurate predictions on new data. The model loss measures 

the difference between the predicted outputs and the true labels for a set of training examples, 

and it is the quantity that the model is trying to minimize during training. Both model accuracy 

and model loss were utilized to monitor the training and predictive capabilities of the model. 
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Figure 2.1. Audio processing via Python and Wolfram Mathematica. 

 

 

2.2.2 DFT spectrum for ResNet model 

The Mathematica Wolfram code provided performs some operations on original and 

augmented crispy audios and produces a power spectrum plot of the audio. The audio file is 

first mixed into a mono channel and normalized. The AudioPlot function is used to plot the 

audio signal as a function of time. Then, the periodogram is computed with 200 points, and the 

length of the periodogram is used to calculate the frequency range of the spectrogram. The 

frequency range is halved, and the periodogram is converted to decibels. The resulting power 
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spectrum is rescaled to values between 0 and 1, with array size 584x100 or 5840x100, and used 

as input in the ResNet. 

 

2.2.3 Audio data augmentation for ResNet model 

As previously mentioned, audio augmentation was employed as a supplementary study 

of the ResNet. This step increased the size of the original dataset by a factor of 10, resulting in 

an array dimension of 5840x100. Wolfram Mathematica utilized four augmentation methods to 

generate additional audio data for the ResNet: Timeshift, Reverb, UniformDistribution, and 

Noise.  

Timeshift was used to shift a portion of the audio signal along the time axis, allowing 

for the collection of small audio fragments that could be used to generate the DFT spectrum 

and input into the ResNet. Reverb was used to apply reverberation to the sound signal, 

producing echoes and slightly altering the original data. UniformDistribution was used to 

randomly vary the amplitude of the audio signals uniformly. Noise was applied to all datasets 

as a way of introducing random variations to the audio data. 

 

2.2.4 Mel-frequency spectrogram and MFCC coefficients for MLP model 

MFCCs are based on Mel Frequency and Cepstrum. Mel Frequency estimates pitch 

logarithmically, and Cepstrum is a spectrum of a spectrum. Equation 2.1 transforms a time-

domain signal into a log amplitude spectrum using Fourier Transform and the inverse Fourier 

transform, separating the information relative to the Formants. MFCCs use Mel-Scaling and 

Discrete Cosine Transform instead of the inverse Fourier transform.  

𝐶(𝑥(𝑡)) = 𝐹−1[log(𝐹[𝑥(𝑡)])]                           (2.1) 

Where C is the Cesptrum, x(t) is the time-domain function, and F is the Fourier 

transform. 

The Python code used librosa.feature.mfcc to perform the MFCC calculation after 

loading the audio, resulting in an MFCC array. The number of MFCCs was set to 64 instead of 

the default 20 and scaled to fit the neural architecture. The transposed MFCC array and np.mean 

function provided 64 scaled MFCC values for the MLP architecture without averaging. 

The Mel spectrogram, created using the Librosa library, applies the Mel Scale to show 

the correlation between energy, frequency, and time, similar to the MFCC calculation without 

the Discrete Cosine Transform. The librosa.display.specshow function applies the Mel Scale to 

the y-axis, enabling comparison of sound crispness in this study. 
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2.2.5 Beat detection in crispy sounds 

The Beat feature is a useful tool for visualizing the changes in crisp sound amplitude 

over time in the time domain. Its use in conjunction with a filtered Mel Spectrogram can reveal 

the rhythmic structure of the sound, including the onset and offset times of individual bites. The 

librosa.beat.beat_track function in Python employs dynamic programming (ELLIS, 2007) to 

calculate the beat. The code first reads audio files from a directory and calculates their duration 

using the Librosa package. It then generates a summary of the total number of audio files per 

class, a box plot displaying the distribution of audio file durations, and the mean and variance 

of audio file durations. By correlating sound amplitude with time, this method can estimate the 

locations of the beat. For musicians, the beat represents the basic unit of measurement for 

melody and reflects the speed at which the music is played (LEVITIN, 2007). 

 

2.2.6 Residual network architecture (ResNet) 

The residual learning process involves stacking multiple layers into a block and then 

adding the result of the block to its first layer. This approach prevents a decrease in training 

accuracy when constructing complex structures. This procedure is widely used in deep learning 

and is effective in improving model performance (HE et al., 2015). 

The ResNet study was a Python script that uses TensorFlow and Keras libraries to create 

a convolutional neural network (CNN) model for audio classification. The model is based on 

the ResNet architecture, which uses residual blocks to improve training performance. 

The script reads the spectrum data that was previously evaluated by Wolfram. The 

ResNet's data input contained the DFT audio spectrum, with an array dimension of 584x100, 

or 5840x100 if audio augmentation was used. The output data used in ResNet contained binary 

classification for crispy sources: Fried Chicken, Potato Chips, and Toast, with an array 

dimension of 584x3, or 5840x3 if audio augmentation was used. For example, an array line 

indicating Fried Chicken was represented as (1, 0, 0), while Potato Chips as (0, 1, 0), and Toast 

as (0, 0, 1). The audio data was split into training and validation sets and then used as input and 

output for ResNet. 

Figure 2.2 shows the main function that defines the architecture of the ResNet-based 

CNN model, which consists of a series of residual blocks, followed by average pooling and 

dense layers.  

The compile method is utilized to configure the model for training, specifying the Adam 

optimizer and categorical cross-entropy loss function. The chosen hyperparameters were 
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ADAM optimizers with a learning rate of 0.001 and a categorical cross-entropy loss function. 

A batch size of 50 was selected, and dropout was not applied. 

Callbacks were used to monitor the training progress and save the best model. 

Specifically, the EarlyStopping callback is used to stop training when the model is not 

improving, and the ModelCheckPoint callback is used to save the model with the highest 

validation accuracy. 

Finally, the fit method is used to train the model on the training data, using a batch size 

of 32 and a total of 100 epochs. The model is evaluated on the validation set after each epoch, 

and the training progress was displayed.  

 

Figure 2.2. ResNet architecture for an audio DFT spectrum input. 

 

 

The residual blocks 1, 2, 3, 4, and 5 were constructed using a sequence of Conv1D, 

ReLU, and MaxPooling layers. This procedure enabled the creation of layers with reduced 

dimensions, allowing them to be connected to the dense layers and the output array containing 

the binary classification of crispy sounds. 

As an example, Figure 2.3 illustrates the detailed construction of Block 1. The audio 

spectrum input, with 100x1 terms, is passed through a sequence of four layers of Conv1D, along 

with the ReLU activation function and MaxPooling. As a result, the residual block changes the 

original array dimension to 50x16 terms. After filtering over the sequence of residual blocks, 

the original data is progressively reduced until it is connected to dense layers composed of 256, 

128, and 3 neurons. 

The ResNet model was inspired by a study on the classification of damaged structures 

using impact sound (DORAFSHAN; AZARI, 2020). The authors of that study used the Conv1D 
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architecture with an input of an image spectrogram. In the present study, we propose a 

modification by using residual blocks that begin training with an audio DFT spectrum instead 

of an image. This approach has not been previously explored and may offer improved results 

in classification tasks involving audio signals. 

 

Figure 2.3. Detailed architecture of residual Block 1 in the ResNet model. 

 

 

2.2.7 Multilayer perceptron architecture (MLP) 

 A Multilayer Perceptron (MLP) was employed as the second model for the audio 

classification of crispy foods, using Mel-frequency cepstral coefficients (MFCCs) extracted 

from audio signals as input. The MLP is typically composed of an input layer, one or more 

hidden layers, and an output layer. 

Figure 2.4 shows the network architecture comprised of three fully connected (FC) 

layers, with 512 neurons in the first layer, 256 neurons in the second layer, and 3 neurons in the 

last layer. Each layer was followed by batch normalization, LeakyReLU activation, and dropout 

layers with a dropout rate of 20%. The model was trained using the categorical cross-entropy 

loss function and Adam optimizer with a learning rate of 0.001. The MLP input consists of an 

array containing 64 coefficients of MFCCs that were evaluated for each crisp sound. 

The MFCC features were extracted from 584 audio files using the Librosa package and 

saved as scaled NumPy arrays with their corresponding labels. The data was divided into a 

training set consisting of 467 audio files and a validation set of 117 audio files, to ensure an 

appropriate training-validation ratio. The FC audio classification model was defined using the 

Keras package, compiled, and trained using the training data. The model was trained for 50 

epochs, and the model with the lowest validation loss was saved. The training and validation 

loss and accuracy were recorded over the epochs. 
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Figure 2.4. MPL architecture for an audio MFCC coefficients input. 

 

 

2.2.8 Alternatives neural networks 

As a brief report, this study attempted to test alternative models for classifying crispness, 

but none of them provided satisfactory results: LeNet-5 model, and EfficientNetB0 model. 

Therefore, the ResNet model with augmented data and MLP model with MFCCs were 

determined to be the most effective approach for accurately classifying crispness based on 

sound. 

LeNet-5 architecture involved only 2 convolutional neuron and its use to classify up to 

10 patterns. (Lecun, Bottou, Bengio, & Haffner, 1998) The main change from the original 

model is the use of Conv1D instead of the two-dimensional convolution. Some adjustments to 

the number of neurons, kernel size, pool size, and filters were applied to better fit to parameters. 

This model trained with 3 different input dimensions: the onset strength with 50 parameters, 

the DFT with 100 parameters, and the audio itself at a sample rate of 2048 Hz. The input 

parameters came from three different functions: librosa.onset.onset_strength, Mathematica 

DFT function, and librosa.load at a sample rate of 2048 Hz. The input dimension for each case 

is 50x1, 100x1, and 2048x1 as they followed the same reshape method as the input for the 

ResNet. LeNet-5 model has only three Conv1D layers with ReLU, two max pooling layers, and 

then the fully connected network with a 20% Dropout. The output layer stays the same as before 

using the softmax function. 
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EfficientNetB0 is one of the premade models installed in the Keras Library. When it’s 

called in the Collab, it comes as a ready to use model with pretrained weights of Imagenet. This 

model was created to be an upgrade from the GoogleNet architecture in the Imagenet challenge 

(Tan & Le, 2019). This model uses the two-dimensional convolution and performs better at 

classifying images. The input shape has to be fixed at image width, length, and color channels 

of 224, 224, and 3 respectfully. Therefore, the preprocessing steps are different compared to 

the Conv1D. Instead of building an array made of the DFT, we had to generate a DFT 

spectrogram image for each sound to fit the model. The 584 images were divided into 3 different 

folders in the google drive that were called by the 

tf.keras.preprocessing.image_dataset_from_directory. This function transformed the 584 

images into a dataset that needs to be treated. All the values from this dataset ranges between 0 

and 255, therefore all the value needed to be divided by 255 to ensure uniformity of the input.. 

 

2.2.9 ASMR mastication audios of toast in milk 

As part of the cross-validation step for pre-trained ANNs models, ASMR videos were 

used, featuring individuals eating toast that had been soaked in milk. Audio extraction and the 

generation of DFT or MFCC signals were carried out, replicating the inputs used during neural 

network training in section 2.1. The choice of toast immersed in milk aimed to highlight 

similarities between fresh toast and toast soaked in milk, while assessing the performance of 

the MLP (MFCC) and ResNet (DFT) models in classifying toast crispness. 

 

2.2.10 Audio acquisition from mechanical crushing of fresh toast samples 

In the experimental validation, 50 audio samples of fresh toast (dry) acquired during 

compression trials were used. These samples were purchased from a local supermarket and 

bitten by a dental prosthesis. Specifically, the samples were positioned under the pair of 

premolar teeth and subjected to mechanical load within a soundproof box, as illustrated in 

Figure 2.5. The audio was captured using a BM800 microphone model at a sample rate of 44.1 

kHz, utilizing Audacity software. The previously generated ANN models were used to predict 

whether the captured audios were of toast or not. This comparison enabled the selection of a 

preferable model for use with external data source. 
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Figure 2.5. Audio acquisition through the crushing of toast by a dental prosthesis in a 

soundproof box. 

  

2.2.11 Cross-validation of pre-trained ANNs 

Cross-validation of pre-trained ResNet and MLP models was used to test the ANN's 

performance on external inputs and verify the similarity between the predicted results and the 

expected results. This validation set typically consists of data that was not used during the 

training process. By providing these external inputs to the pre-trained ANN and comparing the 

predicted results with the known expected results, the model assessed the similarity of the 

predictions. 

The percentage values representing the crispness predictions made by pre-trained 

Artificial Neural Networks (ANNs) for two different conditions: fresh toast and toast in milk. 

These predictions indicate whether the crispness values estimated by the ANNs (Fried Chicken, 

Potato Chips, and Toast) were similar or not. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Preprocessing analysis 

Deep learning projects often begin with a hypothesis, a challenge, or a curiosity. For 

instance, one may wonder whether every crisp sound is distinct and what implications this 

knowledge may hold for future projects. This study aims to address these questions. 

The decision to use three distinct types of crispy food was motivated by the hypothesis 

that each food has a unique structure. However, it is not immediately apparent that similar 

processes could result in similar structures. In the case of the Fried Chicken audio samples, they 

were obtained from different countries, each with its unique recipe and ingredients. Despite 

these differences, we treated the Fried Chicken samples as a group to be classified based on 

their audio features. 

  Rhythm is defined as a sequence of equal pulses of energy within a given time range. 

The Beat represents the midpoint of a rhythmic pulse, and in the case of toast, there is only one 

beat. Although we could identify the amplitude peaks in the audio recordings, we found that 

these peaks varied depending on the source video. It was impractical to standardize the biting 

time since the time range of the sound differed between the different types of food. For instance, 

Fried Chicken had an average duration of 1.3 seconds, Potato Chips had 0.7 seconds, and Toast 

had 1.2 seconds. The number of samples and average duration of collected sounds are illustrated 

in Figure 2.6. Since a significant number of audio samples fell outside the one-second standard, 

it became unfeasible to conduct temporal analysis using neural networks. 

 

Figure 2.6. Boxplot plot of the variation in the duration of the crispy noise. 
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The frequency domain provided a more informative visualization of the behavior of the 

audio recordings over time. Although the amplitude was not readily apparent, the mel-

spectrogram revealed potential differences between the audio samples. The brightness of each 

audio behaved differently, suggesting possible variations in how the crispy noise propagates 

over time. Figure 2.7 illustrates the behavior of these noises, and although the differences are 

subtle, they are still detectable. Additionally, the DFT spectrum and MFCC coefficients were 

given as input examples for the ResNet and MPL models. 

The Beat track profiles are utilized to describe the rhythmic pattern of the sounds. In a 

previous study involving horse audios (ALVES et al., 2021), the three primary features chosen 

were the MFCCs, the Beat, and the Tempogram. Horses exhibit a distinctive rhythmic pattern 

in their trot, enabling temporal analysis. The sound produced by the bite generates only one 

energy pulse, with its peak occurring when both teeth touch. Similar hypotheses were employed 

in the analysis of the crispy sounds' audio energy. 

 

Figure 2.7. DFT spectrum, Mel spectrogram, MFCC coefficients, and Beat track from the 

crispy sources: Fried chicken, Potato chips, and Toast. 

 

   

2.3.2 ResNet Model 

The data generated by the discrete Fourier transform (DFT) was utilized as the network 

inputs for the ResNet model. The length of a DFT array was determined through additional 
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experiments by varying the moving average filter as 50, 100, 150, and 200 points. The results 

showed that the highest accuracy was achieved with an input length of 100, which generated an 

array size of 584x100. In the case of augmented data, the array size increased to 5840x100. 

The ResNet achieved an accuracy of 85% when a linear input of 584x100 DFT array 

values was used, as depicted in Figure 2.8. This outcome provides ample evidence to support 

the hypothesis that the crispy sound of each food item differed. The phenomenon of overfitting 

was observed in the result of the DFT network, as evidenced by a validation error spike that 

occurred after a high number of epochs. This phenomenon is common in machine learning and 

occurs when the neural network starts to memorize the training data instead of learning to 

generalize. The overfitting issue persisted regardless of the variation in the number of neurons. 

To address this issue, the solution proved to be counter-intuitive, as the model required an 

increase in the number of inputs rather than a reduction. 

The augmentation technique multiplied the number of inputs by ten times, obtained 

5840 audio inputs, this method solved the tuning problem and boosted the model accuracy to 

an average of 97% after five pieces of training. Figure 2.9 depicts the improved performance 

of the ResNet model when using augmented data, as evidenced by the higher model accuracy 

and lower model loss values. 

 

Figure 2.8. Model accuracy and model loss of the ResNet model for the 584 original data. 
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Figure 2.9. Model accuracy and model loss of the ResNet model for the 5840 augmented 

data. 

 

 

2.3.3 MLP Model 

The convolution holds a relative programming complexity. There was a high processing 

demand by the Google Collaboratory. The challenge was to find a way that had a lower 

requirement and was easy to replicate. The MFCC's model attended to the requirements by 

being a fully connected three-layer network. The simple model reached a peak of 95% accuracy 

for validation, i.e., it performed satisfactorily, shows in Figure 2.10. Figures 2.8, 2.9 and 2.10 

compares the results of the three types of training. All the results arrived at the same end, a high 

hit rate of the model on what each food type was.    

 

Figure 2.10. Model accuracy and model loss of the MLP model for the 584 original data. 

 

The performance of a neural network also depends on the model's loss, that is, the sum 

of all the errors the model had in the evaluation stage. The neural network works to minimize 

this sum of errors, so smaller errors represent better fits. For comparison, the loss of each model 
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shown in figures 2.8, 2.9 and 2.10 were 0.40, 0.09, and 0.21, respectively. Augmentation 

brought this performance improvement by proposing an increase in the number of inputs, so 

the hypothesis is that the other models did not achieve the best performance by not having a 

larger number of input data. 

On the other hand, following the data acquired in a controlled environment, the 

empirical validation evaluated the model’s generalization by using data from a controlled 

environment. The 50 audios had a different origin compared to the ASMR audios, therefore the 

model had to guess correctly this completely different audio batch. The DFT models diverged 

from ideal results, the model without augmentation had a strange behavior. After five training 

sessions, the evaluation score ranged between 42% and 92%, there wasn’t a fixed result for all 

situations. This could be the overfitting problem; the model didn’t identify different patterns 

between the toast and the fried chicken. It was even worse for the augmentation model with 

results lower than 20%.  

By contrast, the MFCCs outperformed them, after training the model five times, it 

achieved 100% accuracy in this empirical validation. Even though, the audios had different 

origins, dividing them into 64 MFCCs proved to be better than analyzing the spectrogram data. 

The MFCCs split the sound into identities that formed it. For instance, the speech sound is 

formed by the glottal pulse bypassing the vocal tract. The program split them into two identities: 

the pulse and the speech timbres. To summarize, any changes in the spectrogram could bring 

divergent results, but variations didn’t affect the MFCCs. 

Following the mentioned observations, the best model for a neural network is one that 

is simpler and demands less manual and computational effort. The MFCC's model meets these 

requirements very well. It can be stated that for the classification of crispy foods, the MFCC's 

model is superior to the others presented. It achieved superior results compared to the 

augmentation model in the empirical validation. 

 

2.3.4 Alternative Neural Networks 

In this study, two existing neural network architectures were adapted and evaluated as 

potential approaches for classifying crispness. The LeNet model was employed, using raw 

audio, DFT, or Onset Strength signals as inputs. Additionally, the EfficientNetB0 architecture 

was utilized, with spectrogram images generated by Librosa serving as input for the CONV2D 

networks (Krizhevsky, Sutskever, & Hinton, 2012). However, both architectures demonstrated 

inadequate in-sample accuracy in classifying crispness within ASMR videos, highlighting the 
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ResNet and MLP models as the desired models for this research. The outcomes of each model 

after 5 training steps are summarized in Table 2.2.    

 

Table 2.2: Comparison of model accuracy among neural network models: ResNet, MLP, 

EfficientNetB0, and LeNet. 

Neural Network model Type of signal Size of input Array Model Accuracy 

ResNet with Augmentation DFT (5840 x 100 x 1) 97% 

MLP MFCC (584 x 64) 95% 

ResNet DFT (584 x 100 x 1) 85% 

EfficientNetB0 Spectrogram images (584 x 224 x 224 x 3) 50% 

LeNet with raw audio Raw audio (2048 Hz) (584 x 2048 x 1) 48% 

LeNet with DFT DFT (584 x 100 x 1) 42% 

LeNet with Onset Strength Onset Strength (584 x 50 x 1) 33% 

 1  

The complexity level of the tested Artificial Neural Networks (ANNs) can be ordered 

from higher to lower as follows: ResNet, EfficientNetB0, LeNet, and MLP. 

This study reveals that some complex ANN models are not the most reliable for 

classifying crispness, depending on the input signal, as demonstrated by the EfficientNetB0 

model (spectrogram image signal). Additionally, other ANNs with simpler architectures (LeNet 

and MLP) are not sufficient for classifying the crispness of DFT spectra. 

Table 2.2 provides evidence that the models that achieved prediction values higher than 

33.3% were able to differentiate the crispness classification between Fried Chicken, Potato 

Chips, and Toast. However, the LeNet model with the Onset Strength signal showed low 

accuracy in predicting crispness classification and produced randomized responses. 

The in-sample accuracy values between 33.3% and 50% obtained by the LeNet model 

(DFT and raw audio signals) and the EfficientNetB0 model (Spectrogram images) allowed 

differentiation of crispness groups, but with low precision and some degree of randomization 

in the results. 

The ResNet model (DFT signal) achieved an in-sample accuracy of 85% and 

successfully differentiated the crispness of foods. The in-sample accuracy increased to 97% 

when training the ResNet model with audio data treated by augmentation filters (Timeshift, 

Reverb, UniformDistribution, and Noise). The use of augmentation expanded the number of 

inputs by a factor of 10, providing greater differentiation capability. 

The MLP model (MFCC) demonstrated a simple ANN architecture and returned high 

in-sample accuracy (95%) without requiring signal augmentation. The MLP (MFCC) model 
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proved to be robust, with accurate training and the use of a simple architecture. 

Both DFT and MFCC signals are visualized in Figure 2.7. The DFT signal represents 

the energy distribution across different frequency bands, providing insights into the spectral 

characteristics of the audio. On the other hand, MFCC analysis evaluates the distribution of 

formants, which are key acoustic features, over a 1-second time interval. 

 

2.3.5 Spectrogram analysis of ASMR mastication audios of fresh toast and toast in 

milk 

The distinction between crispy audios is due to the intrinsic characteristics of each food, 

and thickness and moisture are examples of properties that could affect spectrum signals. 

As observed in the mel spectrograms shown in Figure 2.7, toast has a greater thickness 

when compared to potato chips. As a consequence, the toast exhibits higher audio energy (dB) 

within a one-second duration, which can be explained by the brighter area in the mel 

spectrogram. A similar trend is observed in Figure 2.11 for the spectrograms of fresh toast (dry) 

and toast previously dipped in milk. The audio energy of toast in milk decreases, indicating a 

loss of crispness with increasing moisture. This behavior is well-known in shelf-life studies of 

crispy foods, where toast loses its crispness when stored in a room with higher relative 

humidity. 

When food is fried or dried, water is removed, resulting in a rigid structure filled with 

air. The audio energy generated by mechanical crushing depends on the air for propagation and 

the internal structure, which includes porous holes. When the structure is filled with water or 

liquid, it dampens the sound. A similar effect can be observed with porous materials filled with 

oil or fat, as illustrated by the mel spectrogram of fried chicken shown in Figure 2.7. The fried 

chicken has reduced audio energy compared to potato chips or toast. 
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Figure 2.11. DFT spectrum, Mel spectrogram, MFCC coefficients and Beat track of dry toast, 

and a toast soaked in milk. 

  

2.3.6 Cross-validation of pre-trained ANNs for fresh toast and toast in milk 

The findings from Table 2.3 validate the effectiveness of pre-trained Artificial Neural 

Networks (ANNs) in evaluating the crispness of fresh toast and toast immersed in milk. The 

cross-validation experiments incorporated distinct audio sources, including microphone 

recordings of mechanical crushing experiments (fresh toast) and audio extracted from ASMR 

videos (toast in milk). Additionally, augmentation audio filtering steps were employed with the 

original audio recordings to expand the data for both fresh toast and toast in milk samples. 

For fresh toast samples (trial 1), the MLP model (MFCC) demonstrated exceptional 

accuracy (100%) in predicting the crispness of the toast using microphone acquisition. 

However, the incorporation of audio filter augmentation (trial 4) had an adverse effect on the 

MFCC signal, leading to a substantial loss in accuracy for the MLP model, reducing it to 35%.  

The ResNet (DFT) and ResNet with Augmentation (DFT) models exhibited lower 

prediction rates (trials 2, 3, 5, and 6). This indicates that the DFT signal has limitations in 

recognizing the crispness of fresh toast from external sources. Moreover, utilizing audio 

processed with augmentation filters as input did not improve the prediction performance for 
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fresh toast samples, resulting in an accuracy below 30%. 

When considering ASMR audios of toast in milk, the MLP (MFCC) model once again 

showed excellent performance, reaching 100% accuracy (trial 7). Therefore, the MFCC signal 

did not distinguish between fresh toast and toast in milk samples. Additionally, although the 

MLP model was trained only with dry toast MFCC signals, the accuracy remained high when 

recognizing the crispness of toast dipped in milk. The MLP (MFCC) model also yielded high 

predictions for the audios modified by augmentation filters (trial 10), returning an accuracy of 

91%. The similarity in the MFCC signal between the crispness of mechanically crushed fresh 

toast and ASMR toast in milk can be attributed to the similar acoustic properties produced by 

the crushing process. The resulting sound waves, regardless of the presence of milk, exhibit 

comparable patterns that the MLP (MFCC) model successfully recognizes and classifies. 

For the ASMR toast in milk samples (trials 8, 9, 11, and 12), the ResNet (DFT) model 

and the ResNet with Augmentation (DFT) model showed comparatively higher prediction rates 

than the fresh toast samples. This suggests that the audio source from internet ASMR videos 

provided greater similarity to the pre-training data of the neural networks, including the toast 

in milk samples. The "imprecise" status was used to mark the trials with accuracy between 50% 

and 90%. The prediction results for toast in milk when using the ResNet models (DFT) indicate 

that, although the models were able to make predictions, there is a need for further refinement 

to achieve more accurate results in classifying external sources. Additionally, it can be inferred 

that the DFT spectra are more susceptible to variations when the source of external samples 

changes. This hypothesis directs the application of DFT signals in neural networks that require 

distinguishing more sensitive differences among pre-trained samples, without external inputs. 

The findings demonstrate the effectiveness of pre-trained Artificial Neural Networks 

(ANNs) in evaluating the crispness of toast and toast in milk. While the MFCC signal proved 

to be a more robust method for crispness classification, the ResNet models using DFT spectra 

were found to be more sensitive and less accurate in recognizing external audio sources. 
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Table 2.3: Cross-validation by pre-trained ANNs using external sources of Fresh Toast and 

Toast in Milk. 

Trial Sample Audio source Pre-trained Neural Network 

model (Signal) 

*Prediction **Accuracy 

status 

1 Fresh toast Experimental 

(microphone) 

MLP (MFCC) 100% High 

2 Fresh toast Experimental 

(microphone) 

ResNet (DFT) 16% Low 

3 Fresh toast Experimental 

(microphone) 

ResNet with Augmentation 

(DFT)  

19% Low 

4 Fresh toast Experimental with 

augmentation filter 

MLP (MFCC) 35% Low 

5 Fresh toast Experimental with 

augmentation filter 

ResNet (DFT) 17% Low 

6 Fresh toast Experimental with 

augmentation filter 

ResNet with Augmentation 

(DFT)  

30% Low 

7 Toast in milk ASMR videos (internet) MLP (MFCC) 100% High 

8 Toast in milk ASMR videos (internet) ResNet (DFT) 50% Imprecise 

9 Toast in milk ASMR videos (internet) ResNet with Augmentation 

(DFT)  

60% Imprecise 

10 Toast in milk ASMR videos with 

augmentation filter 

MLP (MFCC) 91% High 

11 Toast in milk ASMR videos with 

augmentation filter 

ResNet (DFT) 55% Imprecise 

12 Toast in milk ASMR videos with 

augmentation filter 

ResNet with Augmentation 

(DFT)  

76% Imprecise 

 1  
*The values correspond to the mean value (n>10), after 5 training sessions. 

** The accuracy status determines if the ANN can accurately predict the crispness of toast using an external 
input. 

 

 

2.4 CONCLUSION 

This study presents new findings and limitations regarding the use of Artificial Neural 

Network (ANN) models for analyzing the crispness achieved from audio signals. The method 

of extracting audio from ASMR videos on internet platforms proves to be a promising approach 

for pre-training ANN models. Despite considerable variations among random ASMR audios 

derived from fried chicken, potato chips, and toast sources, both the ResNet model (DFT) with 

augmented data and the MLP model (MFCC) achieved a high accuracy of over 95% in 

accurately classifying each crispness sound. To develop a robust neural network model, it was 

crucial to acquire audio data from various sources and employ different microphones. The 

resulting model enabled accurate classification of crispy and crunchy foods. The ASMR audio 

sets were utilized for model training and subsequently validated through experimental tests, 

demonstrating their potential for expanding the dataset in neural network modeling. It is 
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important to note that training neural networks to classify the source of crispness must be 

performed individually, with spectrum data loaded for each food type. This work highlights that 

each food type has its own crispness recognition, based on the profiles obtained from Discrete 

Fourier Transform (DFT) and Mel-frequency cepstral coefficients (MFCC). The convolutional 

residual network, referred to as the ResNet model (DFT), exhibited higher accuracy for 

classifying crispness "in-sample," especially when augmentation filters were applied to expand 

the input data. However, the ResNet model demonstrated decreased performance when 

attempting to classify external inputs of fresh toast or toast in milk. In particular, the ResNet 

model rejected external inputs but maintained higher in-sample accuracy. On the other hand, 

the MLP model (MFCC) displayed higher in-sample accuracy and proved to be a more robust 

tool when compared to the ResNet model, providing a high prediction capability for external 

inputs, such as fresh toast acquired by a microphone or toast in milk. This research provides a 

valuable tool for investigating the texture of crispy foods using neural network architectures. It 

combines data acquisition from high-quality ASMR internet audios and audio from 

experimental trials involving crushing, enabling a comprehensive analysis of crispy food 

textures. 
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ABSTRACT 

Quality management laboratories often use mechanical and sensory analysis to evaluate 

crispness. This work proposes an alternative method to represent and analyze crispness using 

the Librosa package. The dimensionless value Zeta is a correlation between the sound’s energy 

and its intensity over time. The Root Mean Squared Energy (RMSE) calculates the overall 

magnitude of the audio's energy by compiling its energy over time into a single value, but 

crispness does not depend only on the energy but on the intensity over time. Therefore, the zeta 

function () consists of a multiplication of the RMSE value by the dimensionless peak value. 

The objective of this work was to create an innovative, fast, and economical method for 

crispness quantification. The drying process on bread samples simulated an increase in 

crispness that was measured and compared. The bread was cut into pieces and dried at 60°C for 

300 min and the sound crispness was measured every 30 min. For the application on crispness 

loss, French fries of two different brands were used and the bite sound was captured at 30, 45, 

and 60 min after frying. It was observed that the more peaks beyond the maximum peak, which 

indicates breaking, the longer the crispness duration. For the toasted breads, the longer the 

drying time the more acute were the sounds from 4000 to 6000 Hz, and there is a direct 

proportionality between the predominant frequency and characteristic sound of the sample. The 

crispness time increased from 0 to 120 minutes, ranging from 0.2 to 1.2 seconds. The maximum 

peak consists of breaking while the other peaks can be considered crispy events. The Zeta value 

for bread had exponential behavior until 90 minutes of drying and after that time the behavior 

is irregular. For bread, this number varied from 0 to 350 while for French fries the variation 

was from 2 to 15. Zeta was capable of following the crispness behavior in both experiments 

pointing out that it is an effective number to quantify crispness. 
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3.1 INTRODUCTION 

Through the years, scientists have changed the way they view crispness, previously it 

was involved only with mechanical attributes, and now it is subdivided between rheological 

characteristics and its resulting cracking sound parameters (VICKERS, 2017). Crispness affects 

the purchase decision and quality perception of the consumers since it indicates product 

freshness (LAWLESS; HEYMANN, 2010). The sound events of crispy dry food occur due to 

the structure-breaking sound and its subtle release of air. When applying force with the incisor 

teeth, energy is retained and dissipated in the form of sound energy during rupture (DIAS-

FACETO; SALVADOR; CONTI-SILVA, 2020).  

Sensory, mechanical, and acoustical methods can be applied and correlated to measure 

the food’s crispness quality. Sensory methods can provide crispness and sound intensity levels, 

and mechanical techniques such as the texturometer analysis provide strength and deformation 

data. Acoustic techniques provide data such as frequency, intensity, and number of sound events 

or peaks and timing of crispness (TUNICK et al., 2013b). Sensory methods are generally 

expensive, subjective, and time-consuming, making them unfeasible for routine testing in 

industries and often the mechanical tests do not correlate with sensory crispness (CHEN; DING, 

2021; GOUYO et al., 2020), and the best correlations were obtained between acoustic and 

mechanical tests (ÇARŞANBA; DUERRSCHMID; SCHLEINING, 2018; PIAZZA; 

GIOVENZANA, 2015). Studies have been conducted to correlate sound crispness and 

mechanical crispness by evaluating the sound in the time domain, acoustic signal amplitude, 

duration, and the number of peaks (AKIMOTO; SAKURAI; BLAHOVEC, 2018; DIAS-

FACETO; SALVADOR; CONTI-SILVA, 2020; GOUYO et al., 2020; O’SHEA; 

GALLAGHER, 2019), but, nowadays, with the use of sound analysis packages it is possible to 

predict food crispness more quickly, accurately and advantageously (CHEN; DING, 2021; LIU 

et al., 2021).  

French fries and toasted bread are foods that are considered crispy. French fries are easy 

to prepare and have an attractive flavor, with a crispy dry crust and internal softness. The 

absorption of oil is desirable, since in the frying process the absorption of oil happens at the 

same time that moisture is lost, thus the formation of the crispy crust and the formation of pores 

that are mainly responsible for the crispness occurs (TUNICK et al., 2013b; VAN KOERTEN 
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et al., 2015). Toasted bread can be considered porous, presenting a mechanical structure that 

generates good acoustic properties for crispness study, that is, when it suffers deformation with 

the incisive teeth it releases a great amount of sound energy, but when it presents a humid 

composition higher than 10% the dry bread practically presents a silent signal (PIAZZA; 

GIGLI; BENEDETTI, 2008). Thus, due to the high crispness, high noise energy release, and 

easy processing steps; French fries and toasted bread became the main leads for developing a 

quantification function using Librosa. 

Librosa is a Python library that can be used to quickly and easily transform raw audio 

into the parameters needed to classify and quantify crispness (CHENG et al., 2021; 

RAGURAMAN; R.; VIJAYAN, 2019). Some works focused on using Neural Networks to 

classify food products and food fraud using spectrograms, Fast Fourier Transform, Onset 

Strength, and Mel Frequency Cepstral Coefficients (HUANG et al., 2022; IYMEN et al., 2020; 

PIAZZA; GIOVENZANA, 2015). However, to make crispness a quantification method easily 

repeatable by any quality management laboratory, it’s needed to transform the right parameters 

into a final value that can be compared. This work focused on the sound’s energy representation 

and how its intensity unfolds over time. Root Mean Squared Energy computes the overall 

magnitude of an audio’s energy, it compiles its loudness in one value (DWIVEDI; GANGULY; 

HARAGOPAL, 2023). The crispness representation does not depend only on the loudness, but 

how loudness unfolds through time. The second parameter used was the number of peaks of the 

onset strength. Each peak is considered a crispy event. In this work’s experiments, more peaks 

were correlated to higher crispness and less humidity. The sum of all crispy events with their 

loudness results in the final quantified crispness, Zeta.  

Zeta enabled a comparison between the increasing and decreasing of crispness over the 

processes. While the French Fry experience focused on the delivery and its decreasing crispness 

over time. The toasted bread experiment was centered on increasing crispness over the drying 

process time. This work created a crispness quantification method that optimizes quality 

management in a faster and more affordable way using Zeta as the main lead to evaluate 

crispness. 

 

3.2 MATERIAL AND METHODS 

3.2.1 Material 

The organic materials used in the experiments are listed below: 

• Pullman Crustless Bread, white bread without its crust. The crust was previously 
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sliced by the Pullman industries. All bread samples came from the same 

industrial batch. 

• Sadia and McCain French Fries, a Belgian style. They were irregularly sliced, 

pre-fried potatoes previously stored in a freezer. 

 

3.2.2 Bread sampling 

This experiment consists of three replicates using crustless white bread bought in a 

nearby supermarket. The brand has a decisive factor in this analysis, we want to evaluate the 

process standardization comparing Zeta over the drying time. The brand chosen came from the 

Bimbo group (Pullman, Brazil). It came in a squared shape which enabled it to be sliced into 

four equal-sized pieces. The equipment used in the laboratory tests is a convective oven which 

is located in the Laboratory of Fluid Dynamics and Characterization of Particulate Systems 

(LAFLUSP), in the Food Engineering Department of FZEA/USP. The equipment is installed 

on a bench and it’s capable of holding all 80 samples used. Figure 3.1 shows the sample’s 

disposition in the drying machine. 

 

Figure 3.1: Crustless Bread disposition in the convective oven. 

 

 

The drying experiment consists of a 300-minute batch with eight samples removed from 

the equipment every 30 minutes. The convective oven’s temperature was 60ºC for the batch 
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(MARCONI TE_037/3, Piracicaba, Brazil), and the bread was disposed into groups of four. 

They were weighed on an analytical balance. After the convective drying step, the equilibrium 

moisture (𝑈𝑏.𝑢.), on wet basis, was determined by convective drying at 101 °C for 24 hours (Eq. 

3.1). From this value, it was possible to determine the dry basis moisture (𝑈𝑏.𝑠.) of the samples, 

by Eq. 3.2. The dimensionless dry basis moisture will be obtained by the Eq. 3.3 

𝑈𝑏.𝑢. =
𝑚water

𝑚𝑠𝑎𝑚𝑝𝑙𝑒
         (3.1) 

𝑈𝑏.𝑠. =
𝑈𝑏.𝑢.

1−𝑈𝑏.𝑢.
          (3.2) 

𝑋𝑏𝑠(𝑡) =
𝑈𝑏.𝑠.(𝑡)−𝑈𝑒𝑞

𝑈𝑖−𝑈𝑒𝑞
        (3.3) 

 

3.2.3 French fry sampling 

 Ingredion Mogi Guaçu hosted the French Fry Analysis. The experiment simulates the 

delivery of French fries and evaluates the loss of crispness over time. Inside Ingredion's 

headquarters, the company's Culinology room and Sensory Analysis room simulated the 

restaurant and the customer's home. The former centered on the preparation of the samples. The 

French fries were purchased at a nearby market, one from the Sadia brand and one from the 

McCain brand. The delivery times chosen were zero, 30, 45, and 60 minutes. This reproduces 

the client receiving the French Fries at their best quality to a sixty-minute wait product. In 

addition, the sample rate of potatoes that passed the "Crock Tester" was five potatoes at each 

time. 

 The preparation began by preheating the vegetable oil from the Soya brand in an 

electric fryer (Hopkins Electric Deep Fryer with Dual Tank, 3000W, 12 Liters, Stainless Steel, 

110 Volts) to 180°C with the aid of a Digital Cooking Thermometer (Facibom). For 5 minutes, 

20 potatoes went through the frying process and then separated into groups of five potato sticks 

each placed in an expanded polystyrene container. The four packages were placed inside an 

Ifood delivery package made of cardboard. 

 At each of the preset times, the packages were opened and the potatoes were 

compressed by the dental prosthesis to acquire their crispness. The captured sound followed the 

same standards of sound treatment and evaluation as the dried bread in Audacity and Python. 
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3.2.4 Artificial mastication apparatus and acquisition of the crispy noise 

The "Crock Tester", the device used in the experiment to capture the sound, consists of 

a wooden lever that pushes a dental arch simulating the sound of a person biting the toast. Figure 

3.2 shows the equipment within the noise suppression box. 

The crisp sound was captured by a FIFINE K651 microphone in a mechanical 

compression test. As the samples were sheared to capture the sound, it’s not possible to return 

them to the oven again.  

 

Figure 3.2: Crock Tester made of a wooden swing arm, a dental prosthesis, and a noise 

suppression box. 

 

 

3.2.5 Acquisition of crispy noise from random audios 

The crispy audios were acquired from ASMR videos on YouTube from content creators 

of Japan, Brazil, the United States, Germany, and South Korea. The chosen food were Toast, 

Fried Chicken, and Potato Chips. The software Shotcut transforms them into 1-second-long 

audio by cutting the moment people bitted for the first time. These audios formed a small 

database of 600 audios divided equally among each food type, which is stored in Google Drive.  
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3.2.6 Audio analysis in Librosa and evaluation of Zeta values 

The audio obtained in the Crock Tester was cut into one-second tracks in the Audacity 

program, and due to the sensitivity of the microphone, Audacity’s noise reduction was applied 

to the samples. Some samples have less than 1 second, hence they were padded with silence as 

a way to standardize all the audios. After that, in the Python environment, the short-time Fourier 

Transform was applied to evaluate the sound’s energy profile. The first analysis consists of 

evaluating the following parameters in a 3D normalized spectrogram: time, frequency, and 

normalized energy. Equations 3.4 and 3.5 define how the normalized energy was defined. 

 

𝐸 = 𝑙𝑜𝑔10(𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚)     (3.4) 

𝐸𝑛 = (𝐸 − 𝐸𝑚𝑖𝑛)/(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)    (3.5) 

 

The flowchart in Figure 3.3 summarizes the audio processing steps in Librosa. The 

RMSE measures the audio’s average energy. The result often ranges between 0.01 and 0.001 

for a non-crispy food product, that’s we decided to multiply the final value by one hundred. 

 

Figure 3.3: Audio processing flowchart in Librosa. 

 

Similar to the RMSE, the Peak value is obtained by calculating first the onset strength 

using the librosa.onset.onset_strength. These sound impacts are then normalized after the 
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librosa.util.peak_pick function to create the sound events. The pick peak function has five 

parameters we need to specify for it to work. The pre_max and post_max determine the number 

of samples to consider before and after a max peak, which in this case is the food product 

rupture. Pre_avg and post_avg consider an average number of samples before and after a peak; 

if they are the same, there will be an equal number of peaks before and after the max peak. 

Usually, crispness consists of the starting “crack” followed by the rupture and its reverberation. 

Finally, the delta compares the minimum relative height of each peak to its neighbors. In this 

work, these specifications were all set to one in the function, final values may differ with 

different entries for this function. 

As crispness is correlated to sound, it can be separated into sound events, each one with 

its intensity but retaining its nature; we decided to call them crispy events. Each peak correlates 

to the strength of the crispy event, the more picks the longer the duration. Likewise, the bigger 

the picks, the more intense the crispy events are. Through this analogy, the dimensionless Peak 

number was obtained by the sum of each normalized peak times the number of the crispy events. 

Zeta links the dimensionless energy and loudness to the crispy events. As such, Zeta 

evaluates the principal characteristics of sound: energy, loudness, and tempo. Equation 3.6 

describes how this value is acquired. 

𝑍𝑒𝑡𝑎 = 𝑃𝑒𝑎𝑘 ∗ 𝑅𝑀𝑆𝐸         (3.6) 

The Mel Frequency Cepstral Coefficients is the alternative method. As explored in 

Chapter 2, the coefficients classified crispness by identifying patterns in the 64 Formants. This 

qualitative method applies a mean to their absolute values and gathers them in a graph. The 

main purpose is to identify patterns in the graph. These patterns could be additional evidence 

of a change in the crispness essence. For instance, if the MFCC mean values change drastically, 

it’s possible that the difference in pitch of the sound can be perceived by human hearing. 

 All data from the three experiments were then gathered and a mean value for the energy, 

MFCC, Peak intensity, and Zeta were acquired and demonstrated in an Excel graph. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Dried bread: spectral and temporal analysis 

As bread goes through the drying process, a hard crust forms. The structure is also 

known to give the characteristic sound when fractured; empirically consumers tend to identify 

what is crisp from the sound so that in the first bite they can already identify if a food emitted 

a low-intensity sound, is "wilted", or if it is crispy. Studies point out that the cheek acts as a 

high-frequency filter, making the intonation change (VICKERS, 1984). However, the 
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equipment used does not present any kind of filter around the dental prosthesis, which 

emphasizes that only one medium of propagation was simulated in this study, the airborne 

medium (VICKERS, 1991). 

As the drying time increases, higher frequencies are identified. While at time zero, the 

predominant frequency range is between 2000 to 4000 Hz with the appearance of frequencies 

less than 500 Hz. As the drying time passes, the range changes to between 4000 and 6000 Hz, 

whereas frequencies less than 500 Hz have very little energy identified. This is practical proof 

that one of the differences is the sound loudness, the more predominant the identified frequency, 

the more characteristic is the sound.  Frequencies lower than 500 Hz are considered bass and 

they have more relevance from the beginning to the middle of the drying process. On the other 

hand, due to the appearance of higher frequency ranges, above 4000 thousand, is when the 

sound became louder and more characteristic. The samples between 30 and 90 minutes 

indicated a sound similar to a “clench” when going through the crock tester, which reinforces 

what was indicated in Figure 3.4 as being a lower-pitched sound. Figure 3.4 consists of the data 

from the first experiment only. 

The key factor of this analysis appeared when comparing how the crispy time differs 

from time to time. They tend to range from 0.2 to 1.2 seconds. The greater the drying time the 

longer the resulting sound up until a limit. After 120 minutes, the time range didn’t go higher 

than 1.2 seconds, but the energy increased irregularly. 

Figure 3.5 demonstrates the parameters in a 2D perspective. It’s divided between the 

wave plot, the spectrogram, and the onset peaks. The first one shows the difference in the 

amplitude of the audio, it starts with values lesser than 0.1 and goes up to 1.0. The sound (a) 

came from raw bread. It serves as a standard for a zero-crispness bread with almost no 

amplitude, nor energy, and just one peak. The last one indicates the moment when the food 

products rupture into two pieces, this situation repeats with each analyzed sound. The highest 

peak counts as the true peak, therefore it guides how the other peaks will be chosen. Onset 

strength measures the suddenness of impact.   
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Figure 3.4: 3D spectrograms of toasted bread in (a) 0 minutes, (b) 30 minutes, (c) 60 minutes, 

(d) 90 minutes, and (e) 120 minutes. 

 

(a)                                                                    (b) 

 

                                    (c)                                                                 (d) 

 (e) 
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Figure 3.5: Comparison of the waveplot, mel spectrogram, and onset peaks of the bread 

samples in (a) 0 minutes, (b) 30 minutes, (c) 60 minutes, (d) 90 minutes, and (e) 120 minutes. 

 

(a)                                                                    (b) 

 

                                    (c)                                                                 (d) 

 (e) 

The main impact is the rupture where the “crack” is noticed, but what are the other 

peaks? They are the crispy events; they show how crispness resonates through time. These 
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events may happen before or after the rupture. Its number increases with the drying process up 

to a limit of eight in one second. 

The peaks vary with the audio’s time; it was expected that a 300 minutes bread would 

have the longest crispness time. However, there may be cases where fully dried bread has a 

crispness time of 0.5 instead of 1 or higher. This affects directly the final value and it isn’t 

controllable. Customer perception is positively influenced by higher crispness lengths. 

(FILLION; KILCAST, 2002; MALLIKARJUNAN, 2004; VICKERS, 1984, 1985) This time 

could be standardized by using an intelligent piston that adapts the force input each time. This 

work used a manual approach to simulate a person biting the toast. He doesn’t know how much 

force it takes to rupture the product, therefore there are weak and strong inputs mixed into the 

results.  

As such, the mean value of these numbers is the resulting perceived crispness. A strong 

input on dried bread may produce 0.5 or lesser seconds, while a weak input may result in one-

second length crispness. As all the samples are standardized to 1 second long, they were padded 

with silence until it reaches 1 second. This silence didn’t change the nature of the audio, but it 

decreases the number of peaks, and increase the mean energy compared to a sample without 

the silence. 

 

3.3.2 Dried bread: Zeta compared to the mass fraction of water in the drying process 

Figure 3.6 compares how the Zeta behaves through the drying process compared to the 

decreasing mass fraction of water. These graphs consist of the mean values of the three 

conducted drying experiments. The graphs were divided into two phases to better compare both 

situations. Figure 3.6 (b) has two lines that are designed mainly for helping visual interpretation. 

The first phase consists of an exponential behavior for both (a) and (b). The first 90 minutes is 

where most of the water content is evaporated, since the structure becomes more rigid, the more 

energy you need to crack the material increase at the same rate.  
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Figure 3.6: Zeta compared to the Xbs in two phases: exponential (a) and constant (b) 

  

 

 

After this time, the behavior became irregular, yet it continues to increase at a slower 

pace. Although the change in the water content is negligible, the sound became more and more 

energetic. Zeta varies on the number of crispness events and its energy. In this case, the number 

of events stayed almost the same, it only raised by one in 240 and 300 minutes. The average 

energy increased significantly, therefore part of the drying energy stayed within the structure 

enhancing the crispness. This increase is not high enough to justify an increase in the drying 

time to get better crispness values. The irregular increase in Phase 2 could be related to 

differences between each industrial batch. However, a more specific approach should be taken 
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to validate this possibility. 

The MFCC values demonstrate a more qualitative approach to crispness because they 

point to drastic changes in the Formants. As the MFCCs came from Librosa, higher values 

indicate a lesser sound intensity, and the reverse is also true. In Figure 3.7, the MFCC mean 

values behaved differently depending on the experiment’s time. In Phase 1, it decreased which 

is explained by the drying process changing the nature of the sound. In the next Phase, it 

stagnated in a specific range. This range could be the ideal range where the crispness variation 

becomes imperceptible by human ears. In the end, there was an irregularity in the values, it’s 

possible that the essence changed again, because when touching the samples they had a 

sensation of easily crumbling when applying any force. 

 

Figure 3.7: Mean MFCC behavior over time in the dry bread experiment. 

 

 

3.3.3 French fry: delivery simulation and Zeta behavior 

This experiment simulates the delivery of French fries made by a restaurant. This brings 

a correlation between what your customer expects, a crispy potato, and how intense the sound 

is when he starts eating it. After capturing more than 100 biting sounds, the ideal Zeta for the 

French Fry consists of 10 or above. It’s the most visible difference compared to the Toast. It’s 

expected to be lower, because of its internal softness. Its thin crust defines the sound’s quality. 

The toast has a thicker crust, therefore more energy and loudness.   

The biting test was made using the all Molars. Capturing the sound using the central 
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incisors only resulted in bad-quality audio with a duration lesser than 0.2 seconds, it’s 

impossible to compare qualities within this shorter and weaker sound. Using the molars 

permitted a smoother sound that better resembles the sensation of eating French fries.  

Coating the French fry brought a significant enhancement compared to the toast without 

the coating. Figure 3.8 elucidates the difference between them. This study doesn’t focus on a 

deep analysis of coating. Most of the analyses done to assess crispness in Ingredion’s 

Laboratory were sensorial analyses which brought more qualitative than quantitative results. 

Zeta is a quantitative approach that affects the decision-making for the best coating. The lesser 

the decrease over time on Zeta the better the coating. This can be a changemaker when choosing 

which coating will go to the sensory analysis.  

 

Figure 3.8: Zeta behavior over time in the French Fry delivery simulation. 

 

 

Some of the French fries had “imperfections”: a small curvature that resembles the mark 

of a grid. This happens when you apply the coating and let it be absorbed in a grid for a long 

time. Although, this small curvature made the sound more energetic increasing the Zeta. This 

could be a desirable quality instead of an imperfection because the curve is a more rigid 

structure that intensifies crispness. More investigation on this matter needs to be done in future 

works to validate this hypothesis 

 

3.3.4 French fry: intensity peaks and spectral analysis 

Figure 3.9 extends the comprehension of how Zeta behaved in the experiment. It started 
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c) d) 

a) b) 

with a lot of energy as shown by the lighter area in (a) and the high number of crispy events. 

Both values decreased as time passed, but the change in the energy was more evident as the 

purple zones dominated the spectrogram. Unlike the dried bread, the potato achieved a higher 

pitched sound bypassing the 10 thousand Hz. This factor influences the perceived crispness by 

the customer, that’s why they evaluate this food product as crispy. (CHANG; VICKERS; 

TONG, 2018) 

 

Figure 3.9: Comparison of the waveplot, mel spectrogram, and onset peaks of the French Fry 

samples in (a) 0 minutes, (b) 30 minutes, (c) 45 minutes, and (d) 60 minutes. 

  

  

 

One question to assess is why are these spectrograms so similar, but the Zeta is 

significantly lower. It’s because of the amplitude, the highest achieved value is 0.2. It directly 

affects the energy and this is shown in the wave plot comparison above. When you compare the 

size of the wave plots of the dried toast and the French fry, the toast one reaches bigger 



68 

 

Crispness Quantification 

amplitude values due to all the factors already discussed. That’s why the Zeta is different even 

though the figures are similar. But they share a similarity, when amplitude gets lower than 0.05, 

there’s no good quality crispness. In brief words, this work suggests that a good quality 

crispness for the French Fry is correlated with the quality of the energy above the 8 thousand 

Hz mark and a Zeta superior to 10. 

Unlike Figure 3.7, the Mean MFCC in Figure 3.10 didn’t have significant variations in 

the mean value. It demonstrates the sound nature of the crispness maintained over the 

experiment. However, the Sadia samples appeared to have higher values than the McCain 

samples. As higher values point to smaller crispness intensity, this is one more piece of evidence 

that demonstrates the impact of coating in French Fries. 

Figure 3.10: Mean MFCC behavior over time in the French Fry experiment. 

 

 

 

3.3.5 Evaluation of Zeta in random audios 

In Chapter 2, it was possible to classify the crispness of different food materials in 

random Youtube videos by using neural networks. Table 3.1 elucidate Zeta behavior by 

calculating a mean and a standard deviation of 200 audio data from different food products. A 

simple variation such as a different microphone from the one used in this work creates a 

significant deviation from the numbers shown in Phase 2 of Figure 3.6 (b). Yet, the same 

problem appeared when analyzing the sound’s energy: a slight change in how the sound is 
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captured causes a significant deviation when comparing the function results (DE MORAES et 

al., 2022). 

 

Table 3.1: Zeta means and standard deviations of ASMR audios from YouTube of Potato 

Chips, Fried Chicken, and Toast. Each one has 200 audios. 
 

Potato Chips Fried Chicken Toast 

Mean 135.8 76.7 64.7 

Standard Deviation 93.2 81.4 58.8 

 

Controlling the external environment is the key to achieving a more stable analysis. This 

work suggests an external forcer/piston that applies energy to crack the food products without 

making any noise. Additionally, crispness most of the time tends to have up to 1 second long, 

therefore it’s relevant to assume this duration on the librosa.load function, even though it’s 

lesser than 1 second. Applying silence to these audios doesn’t have a significant impact on Zeta. 

 

 

3.4 CONCLUSION 

Zeta behaved similarly to crispness in the experiments. In the drying process, Zeta 

increased over time as the water mass fraction decreased in comparison. In the simulated 

delivery of French Fries, Zeta decreased over time as the potatoes lose their crispness. These 

results indicated that Zeta behaved accordingly to how crispness would behave in those 

situations. This approach is less complex than building a Neural Network to quantify crispness. 

Yet, it needs more experimental results to conclude that Zeta is a valid dimensionless number 

that explains the sound part of the crispness. 

The Zeta values on Toasted Bread and French Fry has a disparity of over 20 times 

between them. This indicates that each crispy food would have its own best crispness range. 

Toasted Bread’s best range in the experiments reached over 200, yet French Fry only achieved 

next to ten. This work opens paths to new studies to find the best crispness range for each crispy 

food. This work is the start of a new way to evaluate crispness by sound efficiently. It reached 

its main objective when the method was tested in a quality management laboratory in Ingredion 

Mogi Guaçu. It was an easy method for them to evaluate crispness and have data to compare 

with the sensory analysis. 
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4 General Conclusion and Final Remarks 

Crispness behavior was analyzed through two practical methods. The neural network 

method pointed out that crispness is different depending on the food type. The product’s 

structure impacts the sound’s loudness and intensity. The energy spectrogram varied depending 

on the product thickness, water mass fraction, and how the crispy crust formed. Toast is thicker 

than a Potato Chip, Fried Chicken has a higher water mass fraction than toast. The resulting 

sound profile could be successfully classified by MFCC’s and FFT models. MFCC’s could 

even be used to identify variations in the crispness patterns. It was able to identify all the 50 

Toast samples collected in a controlled environment, even if the microphone used was different 

from the ASMR videos. 

The quantification method demonstrated that it’s possible to reach a dimensionless 

number that behaves accordingly to expectations. However, it needs a controlled environment 

to be viable. The variables such as the microphone and the force input to bite the crispy food 

interfere substantially with the final value. Different microphones impacted the FFT 

classification method while the crispness time range dictated in the number of onset peaks. 

These variables resulted in the irregularities in Phase 2 in Figure 3.6. 

The MFCC as a qualitative method to perceive the sound’s essence and verify changes in 

its nature proved to be a good tool for evaluating crispness. As MFCC’s doesn’t vary with the 

crispness length, 0.2 and 1-second-long crispness could be evaluated as having the same nature. 

This work is the first step in the creation of a Software capable of evaluating crispness 

behavior precisely. Although it has some irregularities, the methods can be refined and polished 

until perfection with new approaches. This Master’s thesis successfully opened new research 

perspectives to the crispness that can be further explored in the next years. 

 


