
UNIVERSITY OF SÃO PAULO
SCHOOL OF ANIMAL SCIENCE AND FOOD ENGINEERING

CARLOS ALBERTO VALENTIM JUNIOR

Fractional mathematical oncology: cancer-related
dynamics under an interdisciplinary viewpoint

Pirassununga
2023



CARLOS ALBERTO VALENTIM JUNIOR

Fractional mathematical oncology: cancer-related
dynamics under an interdisciplinary viewpoint

Corrected Version

Doctoral thesis presented to the Graduate
Program in Engineering and Science of Ma-
terials at the School of Animal Science and
Food Engineering, University of São Paulo, as
a partial requirement for obtaining the title
of Doctor of Science.

Area of concentration: Development, caracter-
ization and application of materials towards
the agroindustry

Supervisor: Prof. Dr. José Antonio Rabi
Co-supervisor: Prof. Dr. Sergio Adriani David

Pirassununga
2023



Ficha catalográfica elaborada pelo 
Serviço de Biblioteca e Informação, FZEA/USP, 

com os dados fornecidos pelo(a) autor(a)

Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor

V155f
Valentim Jr., Carlos Alberto
   Fractional mathematical oncology: cancer-related
dynamics under an interdisciplinary viewpoint /
Carlos Alberto Valentim Jr. ; orientador José
Antonio Rabi ; coorientador Sergio Adriani David. --
 Pirassununga, 2023.
   136 f.

   Tese (Doutorado - Programa de Pós-Graduação em
Engenharia e Ciência de Materiais) -- Faculdade de
Zootecnia e Engenharia de Alimentos, Universidade
de São Paulo.

   1. Matemática aplicada. 2. Oncologia. 3.
Simulação. 4. Interdisciplinaridade. 5. Cálculo
diferencial e integral. I. Rabi, José Antonio,
orient. II. David, Sergio Adriani, coorient. III.
Título. 



To my parents, for their unwavering love and support, instrumental in making this
achievement possible.

To Natalia, for being my anchor and source of strength throughout all these years.



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my supervisor,
José Rabi, and my cosupervisor, Sergio David, for their invaluable guidance, mentorship,
and support throughout my research. Their ever-present feedback, constructive criticism,
and companionship have helped me shape not only this thesis but also my career and
character.

I would also like to extend my gratitude to my friends, who have provided me with
support, inspiration, enthusiastic discussions, and so many happy times.

I’m honored to acknowledge my peers and professors for all their insightful com-
ments and feedback, which contributed to this work.

I owe a lot to my partner, Natalia Migueletti, whose unwavering love has been my
constant source of strength and inspiration. Her encouragement and support have been
instrumental in keeping me motivated and focused throughout this process. I am truly
grateful for her presence in my life.

Last but not least, I’d like to thank my siblings, Carol and Gabriel Valentim, for
their support and encouragement throughout my studies. I am deeply indebted to my
parents, Carlos and Rosa Valentim, for their sacrifices and guidance in all stages of my
life. Their belief in my abilities have been the driving force behind my story and shaped
who I am.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001.



ABSTRACT

VALENTIM JR., C. A. Fractional mathematical oncology: cancer-related
dynamics under an interdisciplinary viewpoint. 2023. 136p. Doctoral Thesis -
School of Animal Science and Food Engineering, University of São Paulo, Pirassununga,
2023.

Mathematical Oncology, an interdisciplinary field incorporating concepts from biology to
materials science, employs mathematical models to gain a comprehensive understanding
of cancer-related phenomena. Fractional calculus, a branch of mathematical analysis,
offers tools to describe complex phenomena and enables models the potential to provide
better insights into oncological characteristics. This thesis surveys and explores Fractional
Mathematical Oncology, presenting new models and reviewing recent developments. The
thesis demonstrates the advantages of using fractional models in tumor growth prediction,
specifically in ODE-based population models. Analytical solutions for five such models
are derived and compared against extant (still scarce) clinical data, highlighting their
superior performance and potential for further exploration. Additionally, a multistep expo-
nential model with a fractional variable-order is proposed to represent tumor evolution.
Model parameters are fine-tuned based on variable fractional order profiles, and results
demonstrate its superior ability to fit clinical time series data, offering new perspectives
for modeling tumor growth. Moreover, the thesis introduces cellular-automata simulation
strategies in the context of tumor growth and dynamic models. This agent-based compu-
tational model allows for monitoring independent single parameters that vary in time and
space. The model captures both single-cell and cluster-cell behaviors, representing various
complex tumor features through different parameter settings. The proposed stochastic
cellular automaton model effectively simulates different scenarios of tumor growth, serving
as a valuable in silico tool for mathematical oncology research, potentially facilitating
improved diagnosis and personalized treatment options. By integrating fractional calculus,
physics-based models and cellular-automata simulations, the thesis contributes to the
advancement of mathematical oncology, exploring promising avenues for understanding
cancer dynamics, suggesting prospective research and potentially aiding decision-making
in areas of interest in clinical oncology.

Keywords: Mathematical oncology. Fractional calculus. Differential equations. Variable-
order calculus. Cellular automata. Stochastic models.



RESUMO

VALENTIM JR., C. A. Oncologia matemática fracionária: a dinâmica do câncer
sob uma visão interdisciplinar. 2023. 136p. Tese (Doutorado) - Faculdade de
Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 2023.

A Oncologia Matemática, um campo interdisciplinar que incorpora conceitos da biologia à
ciência dos materiais, utiliza modelos matemáticos para obter uma compreensão abran-
gente de fenômenos relacionados ao câncer. O cálculo fracionário, um ramo da análise
matemática, oferece ferramentas para descrever fenômenos complexos e permite que mo-
delos forneçam melhores insights sobre características oncológicas. Esta tese examina e
explora a Oncologia Matemática Fracionária, apresentando novos modelos e revisando os
desenvolvimentos recentes. A tese demonstra as vantagens do uso de modelos fracionários
na previsão do crescimento tumoral, especificamente em modelos populacionais baseados
em EDOs (equações diferenciais ordinárias). Soluções analíticas para cinco desses modelos
são derivadas e comparadas com dados clínicos existentes (ainda escassos), destacando
seu desempenho superior e potencial para exploração adicional. Além disso, é proposto
um modelo exponencial de múltiplos estágios com uma ordem fracionária variável para
representar a evolução de um tumor. Os parâmetros do modelo são ajustados com base em
perfis de ordem fracionária variável, e os resultados demonstram sua habilidade superior em
ajustar dados clínicos de séries temporais, oferecendo novas perspectivas para a modelagem
do crescimento tumoral. Ademais, o estudo introduz estratégias de simulação de autômatos
celulares no contexto de modelos dinâmicos de crescimento tumoral. Esse modelo compu-
tacional baseado em agentes permite monitorar parâmetros individuais independentes que
variam no tempo e no espaço. O modelo captura comportamentos de células individuais e
de grupos de células, representando várias características complexas de tumores por meio
de diferentes configurações de parâmetros. O modelo estocástico proposto de autômato
celular simula de forma eficaz diferentes cenários de crescimento tumoral, servindo como
uma ferramenta valiosa in silico para pesquisa em oncologia matemática, potencialmente
facilitando melhorias no diagnóstico e opções de tratamento personalizadas. Ao integrar
cálculo fracionário, modelos fenomenológicos e simulações de autômatos celulares, esta tese
contribui para o avanço da oncologia matemática, explorando perspectivas promissoras
para compreender a dinâmica do câncer, sugerindo pesquisas prospectivas e potencialmente
auxiliando na tomada de decisão em áreas de interesse da oncologia clínica.

Key-words: Oncologia Matemática. Cálculo fracionário. Equações diferenciais. Cálculo
de ordem váriavel. Autômato celular. Modelos estocásticos.
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1 INTRODUCTION

Cancer embodies a group of diseases that emerge from abnormally mutated cells
and can appear in almost any body organ or tissue. It is the second leading cause of
death worldwide and survival rates are profoundly related to timely access to quality
diagnosis and treatment. It caused almost 10 million deaths only in 2020, indirectly
being responsible for an annual cost reaching trillion dollar figures (WORLD HEALTH
ORGANIZATION, 2021; INTERNATIONAL AGENCY FOR RESEARCH ON CANCER,
2020). Experimental oncology, techniques involving molecular biology and, more recently,
genetics have dominated most research projects on the subject, increasing the knowledge on
malignancies characterization, diagnosis and treatment (GATENBY; MAINI, 2003). In the
last few decades, physics and mathematics have been increasingly applied to cancer-related
problems, thus giving rise to a new research area (BYRNE, 2010; ROCKNE et al., 2019).

Mathematical Oncology broadens the development and application of models
to manifold phenomena including tumor growth dynamics, anticancer therapies and
personalized treatment (JACKSON; KOMAROVA; SWANSON, 2014; D’ONOFRIO;
GANDOLFI, 2014). While this research field has rapidly evolved in the wake of increasing
data availability from the recent expansion of bioinformatics (KHOURY; IOANNIDIS,
2014; MEYER et al., 2014), it still lacks theoretical models to understand, organize and
apply clinical data (GATENBY; MAINI, 2003). As strategic advantage, the often called
in silico models can test and reproduce several scenarios, which could be unfeasible or
even impossible through in vitro experiments. It then becomes a powerful analysis tool
as clinical tests in humans are time and resource consuming. Furthermore, in research
activities ‘know-why’ has been progressively desired over ‘know-how’, contributing to
the development of models that suitably combine data-oriented and phenomenological
approaches (SAGUY, 2016).

Also called physics-based or mechanistic modeling, the phenomenological approach
to oncological processes is a complex and interdisciplinary task, not only because tumors
are multi-faceted organisms, but also due to governing equations being generally formulated
by invoking concepts from different areas. Accordingly, Mathematical Oncology under
phenomenological approaches remains largely an under-explored research niche (ANDER-
SON; QUARANTA, 2008) as a result of complex aspects such as variable compositions,
heterogeneity and moving borders.

In this context, the present doctorate thesis aims at reviewing, proposing, ana-
lyzing and simulating cancer-related models under a holistic interdisciplinary viewpoint.
As Figure 1 illustrates, Mathematical Oncology can benefit from approaches conveying
engineering, physics, biosystems and nanothecnology. For instance, population dynamics
and computational biology can be employed to analyze tumor growth (WODARZ; KO-
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MAROVA, 2014), fluid mechanics and reaction-diffusion phenomena can determine nutrient
availability around cells, material science can characterize external forces and stresses on
tissue surrounding neoplasms (MATOZ-FERNANDEZ et al., 2017), and nanomedicine
can enhance clinical translation of oncology (KASHKOOLI et al., 2021) and minimally
invasive treatment approaches (CAVALCANTE et al., 2018; FLEURY ROSA; ISHIHARA;
GAIDOS ROSERO, 2019).

Figure 1 – Sketch of possible interdisciplinary approaches to Mathematical Oncology and
related keywords.
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The research described in this doctorate aims to explore fundamental concepts and
follow mathematical approaches able to maintain deductive-reducionist model features
without mischaracterizing eventual complexities. One promising alternative is modeling via
fractional calculus – an area of mathematical analysis that employs non-integer order differ-
ential and integral calculus (OLDHAM; SPANIER, 1974; DAVID; LINARES; PALLONE,
2011; TEODORO; OLIVEIRA; CAPELAS DE OLIVEIRA, 2017; LUCHKO; KOCHUBEI,
2019). Fractional models are characterized by the presence of an arbitrary order (i.e. not
necessarily integer) of differentiation (or integration). This feature widely amplifies the
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application scope since it enables the model to present distinct behavior according to such
fractional order, enhancing its ability to deal with properties from different scales regarding
both fractal structure and memory of biological tissue (MAGIN et al., 2008; WEST, 2014;
WEST, 2021; WEST, 2022) For this and other remarkable attributes, fractional models
may be optimal to model biological phenomena (CRAIEM; ARMENTANO, 2007) and
have been successfully applied towards Mathematical Oncology (HASSANI et al., 2021;
SWEILAM et al., 2021; SWEILAM et al., 2020; YILDIZ; ARSHAD; BALEANU, 2018;
IONESCU et al., 2017).

Notwithstanding, computational approaches in the context of Mathematical Oncol-
ogy are also investigated, with the development and testing of an agent-based stochastic
cellular automaton model capable of virtualizing several distinct case scenarios of tumor
dynamics. The utilization of such model is also considered within the application of a
comprehensive hybrid model, which employs the automaton as the central piece of a
framework integrating different approaches – phenomenological, data-based, deterministic,
and stochastic.

Hence, this thesis offers a holistic view to Mathematical Oncology as an inter-
disciplinary theme with a focus on fractional calculus and phenomenological modeling,
symbiotically combining physics, mathematics, biology, and computational science. The
text is organized in distinct major chapters as sketched in Figure 2, and while each
chapter functions as independent papers, they also build upon concepts from previous
ones thus increasing complexity progressively. Chapters 3 to 6 were already fully published
in peer-reviewed journals and reproduce the content of corresponding papers with minor
adaptations (e.g., trimming introductions and texts to mitigate unnecessary repetition and
reading fatigue). All bibliographical entries referenced in each paper/chapter are presented
at the end of the thesis.

Chapter 3 is the bibliographical revision of the thesis and is mostly adapted from
a paper published during the doctorate, which is probably the first review article on
Mathematical Oncology to include non-integer order calculus as a central discussion
point, coining the term "fractional oncology" or "fractional Mathematical Oncology"
(VALENTIM; RABI; DAVID, 2021). Next, Chapter 4 explores analytical solutions for
fractional versions of classical tumor growth models, fitting them with extant clinical data
to assess their predictive capabilities (VALENTIM et al., 2020). Chapter 5 proposes a
novel interpretation for multi-step tumor models by using variable fractional orders as
memory indexes (VALENTIM et al., 2021).

On the other hand, Chapter 6 follows a different approach, leaving deterministic
models for a stochastic model while still retaining phenomenological aspects (VALENTIM;
RABI; DAVID, 2023). An agent-based cellular automaton model is implemented and
discussed under both biological and computational aspects. Case scenarios are analyzed to
assess the capabilities of the model and the implementation code is made available online.
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Finally, Chapter 7 presents a framework of prospective development of a model that not
only combines elements of all aforementioned approaches, but also leverages the recent
turn on methods concerning data science and computational intelligence.

Figure 2 – thesis organization: chapters are classified as deterministic, stochastic or hybrid
approaches.

Source: Own authorship.

In short, while this thesis explores some complex mathematical approaches, it also
vouches for simplicity. For instance, the comprehensive hybrid framework discussed in
the last chapter involves well-defined reductionist concepts that become complex when
incorporated together which is analogous, for instance, to emergent cancer phenomena.
In fact, Byrne (2010) supports that it is the collaboration between theoreticians and
modelers, i.e. the interplay among different areas, that could start improving Mathematical
Oncology towards its effective application to real problems and personalized care. As
different mathematical approaches can reproduce the same experimental results, Byrne
(2010) also claims that it might be suitable to apply Occam’s razor concept in order to
develop an oncology-applied model. In other words, a model should contain sufficient detail
to describe the phenomenon of interest but not excessively to obscure it. Undoubtedly,
this isn’t an easy feat, but we hope that this doctorate research is a step in the right
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direction and that it will hopefully contribute to foster Mathematical Oncology and help
to improve the foundations towards applied translational research.
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2 OBJECTIVES

The main goal of the present doctorate thesis is to explore and analyze cancer-
related phenomena involving tumor growth and its evolving characteristics in a holistic way,
relying mainly on fractional calculus modeling while under an interdisciplinary approach.
The project thus develops and explores phenomenological modeling skills on Mathematical
Oncology. Simulation (virtualization) results are expected to highlight both novelty and
contribution of proposed models, which may potentially contribute as fundamental research
to aid decision making in oncology-related areas.

As specific objectives, the following are considered:

(i) Contribute to the literature with an up-to-date review on fractional calculus applied
to Mathematical Oncology;

(ii) Search and select pertinent models in Mathematical Oncology that apply physics-
based concepts and/or are developed under a interdisciplinary approach, identifying
their contributions according to complexity and approach;

(iii) Assess how fractional calculus can improve these models, adapting them into new
generalized models and assessing their prediction capabilities;

(iv) Contribute with a novel interpretation on multi-step tumor growth using a variable
fractional order as model memory index;

(v) Investigate lattice-based approaches and stochastic models in Mathematical Oncol-
ogy;

(vi) Simulate solutions in order to investigate scenarios, exploring "what if" possibilities
and capabilities of each model;

(vii) Analyze and interpret obtained results under an interdisciplinary viewpoint;

(viii) Analyze potential contributions of obtained results as fundamental research towards
translation into decision-making in oncology-related areas such as understanding of
tumor behavior, early diagnosis techniques, and personalized treatment therapies.
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3 BIBLIOGRAPHICAL REVIEW: FRACTIONAL MATHEMATICAL ONCOLOGY

This chapter adapts the review paper titled "Fractional Mathematical Oncology:
on the potential of non-integer order calculus applied to interdisciplinary models", which
is part of the study conducted over the doctorate and was published in Biosystems journal
(Elsevier) (VALENTIM; RABI; DAVID, 2021). It serves as a bibliographical review to this
thesis since it offers a background on the main aspects underlying the following chapters,
thus providing pertinent grounding theory.

In addition, besides reviewing Mathematical Oncology and surveying some recent
well-succeeded implementations of fractional models, the present chapter prospectively
explores approaches to reductionist models that could help understand and describe
cancer-related phenomena and predictive oncology. In theory, an interdisciplinary approach
symbiotically combining physics, material science, biology and fractional calculus could
offer unpaired developments and distinct views on oncology phenomena.

Overall, this chapter is organized as follows: section 3.1 provides a brief contextual-
ization on Mathematical Oncology; section 3.2 surveys some of the most relevant continuum
cancer-related models; on the other hand, section 3.3 presents cell-based and stochastic
models; fractional calculus main aspects and oncology models are explored in section 3.4;
finally, section 3.5 delves into hybrid approaches, discussing prospect investigations.

3.1 An introduction to Mathematical Oncology

Cancer is the collective name given for a large group of over 100 diseases related to
abnormal cell reproduction (JACKSON; KOMAROVA; SWANSON, 2014). The World
Health Organization (2021) states that cancer is the second major cause of death worldwide,
responsible for about 1 in 6 deaths. It is a disease that generally compromises health care
systems mainly as a result of its lingering effects along with usually severe side-effects
from lasting treatments. Whether combined or separately administered, chemotherapy,
immunotherapy and radiation therapy are usually the most common interventions. Con-
sidering how cancer might develop very differently in each case while dose adaptation or
fractionation are both subject to individual clinical responses, personalized therapy may
require the support from mathematical models to optimize treatment strategies (ENDER-
LING et al., 2019; ROCKNE et al., 2019).

In that context, Mathematical Oncology develops and applies models to cancer-
related phenomena, ranging from tumor dynamics analysis to personalized treatment
(JACKSON; KOMAROVA; SWANSON, 2014; ABERNATHY et al., 2017; CRISTINI;
KOAY; WANG, 2017). It is a research field that has been benefiting from recent in-
crease in data availability as provided by quickly evolving biosensors and bioinformatics
techniques (KHOURY; IOANNIDIS, 2014). Predictive oncology may contribute to person-
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alized treatment procedures by means of numerically virtualized scenarios based on tumor
dynamics and individual gene expression.

As all-inclusive modeling prospectively enhances creating and carrying out inno-
vative cancer treatments, research endeavors have been concerned to apply mathematics
and physics towards cancer onset and early growth as well as tumor and intercellular
interactions (D’ONOFRIO; GANDOLFI, 2014). Mathematical Oncology indeed rises as
a scientific area relying on the notion that ‘(1) mathematics can be applied to improve
biomedical knowledge of the disease and (2) that biology proposes new mathematical
challenges, which generates enhanced mathematical tools’ (CHAUVIERE et al., 2010).
Accordingly, Mathematical Oncology claims for comprehensive theoretical models to
understand, coordinate and employ clinical data in view of aiding decision-making in
oncology (GATENBY; MAINI, 2003).

On that matter and to different extents and perspectives, Mathematical Oncology
can encompass the so-called translational research, which bridges the gap between basic
research and its final application in health systems (BARRETO et al., 2019; DOROSHOW;
KUMMAR, 2014). Also referred to as ‘blackboard-to-bedside’ or ‘bench-to-bedside’ re-
search, in the present case it concerns how mathematical models can go from complex
theoretical frameworks to comprehensive personalized strategies to identify and treat
specific cancers. Applications of interest refer to early diagnosis improvement, such as
decision-making support systems based on prediction algorithms (CHAKRABORTY; DEB-
BOUCHE; ANTONOV, 2020) or molecular testing through real-time tissue acquisition
and analysis (MITRI et al., 2018), and personalized medicine. On the latter, informa-
tion combined from mathematical models and corresponding in silico experiments can
build patient-specific tumor profiles and be implemented into preclinical and clinical use
(HAMIS; POWATHIL; CHAPLAIN, 2019). Overall, Mathematical Oncology can provide
the necessary theory to connect the unique biology of patient’s tumor to tailored treatment
routine or drug dosage, enabling true precision-guided therapy (HORMUTH et al., 2021a;
NENOFF et al., 2020; SARHADDI; YAGHOOBI, 2020).

3.2 Deterministic and continuum models: Tumor growth described by differential
equations

In spite of usually evolving differently, solid cancers have a common inception
on the progenitor mutated cell that originates a primary tumor. Aiming at this mutual
point may help grasp important characteristics of early tumor dynamics. Recently, gene
sequencing and molecular biology have progressively explored paths and signals leading
to cancerous cell arise (GOLUB et al., 1999; EASTON et al., 2015); yet, it is equally
important to understand mechanistic basis of tumor cells dynamics.

Population or ecological models are customary approaches in view of grasping
phenomenological foundations concerning general avascular tumor growth, being usually
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modeled in terms of ordinary differential equations (ODE) (SAVAGEAU, 1980; SACHS;
HLATKY; HAHNFELDT, 2001; SARAPATA; DE PILLIS, 2014). Albeit more elementary
than oncology models containing partial differential equations (PDEs), ODE-based ap-
proaches have advantages motivating their current employment (WODARZ; KOMAROVA,
2014). Their relative simplicity (compared to PDE) enables the derivation of analytical so-
lutions, thus allowing mathematical description of phenomena evolution (SANTOS, 2007).
Moreover, ODE-based models free parameters can be usually fine-tuned against clinical
data in order to describe different tumor phases (BENZEKRY et al., 2014; HARTUNG et
al., 2014), favoring their flexibility and consequent use to support clinical advice.

Being tailored towards specific experimental evidence and biological peculiarities,
many ODE models have been elaborated to virtualize dynamic tumor growth. Most follow
a sigmoidal law relying on two parameters, namely population growth rate and carrying
capacity. Aforesaid definition is imposed so that models can capture the particular stages
a primary tumor sustains in view of available resources such as neoplasm surface area and
tissue heterogeneity (MARUŠIĆ et al., 1994).

Tumor progression often involves different stages such as random mutations, alter-
ations in tissue biomechanics (FRITSCH et al., 2010; RAMIÃO et al., 2016) and epigenetic
spontaneous cell changes (BOVERI, 2014; LOWENGRUB et al., 2010). Those features
should be considered when modeling tumor development since they interfere with growth
behavior, thus enabling a possibly better approach supported by multistage carcinogenesis
(WODARZ; KOMAROVA, 2014). Accordingly, some authors proposed models that inte-
grate and express multifactorial or multistep growth patterns (RODRIGUEZ-BRENES;
KOMAROVA; WODARZ, 2013; TRACQUI, 2009; SPENCER et al., 2004) (e.g. alternated
dormancy periods modeled as stepwise patterns).

Alternatively, there are other ODE-based approaches in Mathematical Oncology
besides ecological models. Kinetic interactions between tumor and immune cells on different
cellular and sub-cellular levels can be modeled by means of ODE system (DOLFIN;
LACHOWICZ; SZYMAŃSKA, 2014). Other models can target the interaction between gene
expression and population dynamics concerning different cell classes (PORTA; ZAPPERI,
2017).

However, Murphy, Jaafari and Dobrovolny (2016) claim that ODE models may be
unable to fully consider the intricate tumor dynamic evolution and need to be carefully
employed. For other authors, these models should necessarily be used to describe only
general trends concerning neoplasm behavior, being inadequate to characterize specific
cases (e.g. in personalized therapy) (WODARZ; KOMAROVA, 2014). Such drawback is
often a result of irregular growth patterns and aforementioned genetic instabilities in these
organisms (LOWENGRUB et al., 2010; FRITSCH et al., 2010; RAMIÃO et al., 2016).

A subsequent climbing step in the complexity ladder takes cancer models into
the significantly more robust PDE domain, describing tumor growth and other related
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phenomena in terms of not only dynamic variations (i.e. time dependence) but also
gradients (i.e. spatial dependence), allowing a far-reaching description of reality. When
employing PDE-based models, well-established conservation laws can be conveniently
applied to incorporate a more mechanistic (i.e. phenomenological) approach to oncology
modeling (WODARZ; KOMAROVA, 2014). For that reason, PDE approach is a more
comprehensive choice when studying tumor growth into surrounding tissue.

Some models describe tumors as a fluid or a fluidized mixture, thus admissible of
being modeled through transport equations. Byrne and Preziosi (2003) proposed an early
two-phase model of an avascular tumor comprising cellular (solid) and interstitial (liquid)
parts. Along with supplementary constitutive laws, mass and momentum equations were
applied to investigate time-spatial dependence of cell proliferation rate on cellular stress.
Through their findings, the authors related the impact of mechanical effects on tumors
equilibrium size, identifying a critical value for proliferation rate influencing on tumors
outcome behavior (either growth or elimination). Fasano et al. (2014) proposed other
models based on conservation laws and considering a heterogeneous system. They also
considered free boundaries, being an important particularity when treating expanding
tumors and complex processes in multi-component neoplastic formation. Other models
employ the transport equation for metastatic processes and beyond (HARTUNG et al.,
2014; XU; VILANOVA; GOMEZ, 2016).

In a surrogate approach, the diffusion equation can be used to study the dynamic
of cell population density across tissues (DEBBOUCHE et al., 2021; POLOVINKINA
et al., 2021). In those studies, one may consider different combinations of population
heterogeneity, possibly including stem and regular tumor cells, dead cells, healthy cells and
even lymphocytes or similar (ADAM; MAGGELAKIS, 1990; PHAM et al., 2012; WONG
et al., 2015). Stability and possible outcomes are frequently focused in those investigations
since they allow the virtualization of general scenarios regarding tumor form such as
dormancy, evanescence, or uncontrolled growth and invasion.

Other models (PORTA; ZAPPERI, 2017) target specific cell behavior such as tumor
angiogenic factors or mitosis rates trying to describe the specific interior cell behaviors
leading to the accumulation of genetic chances and consequently emerging Hanahan and
Weinberg’s (2011) hallmarks of cancer. A vast part of Mathematical Oncology also focuses
on modeling treatment-related phenomena such as drug delivery, tumor-immune dynamics,
optimal chemotherapy and radiotherapy dosage, cycle-specific oncolytic virotherapeutics,
and their impacts on tumor and healthy cells (ELADDADI; KIM; MALLET, 2014). In
those studies, not only PDEs are employed but also ODE systems and control techniques.

As cancer is a systemic disease, some authors argue that it requires an equally
systemic model approach. With the help of PDEs, a commonly adopted approach relies
on modeling tumor micro-environment (i.e., neoplasm surroundings), considering not
only where cancerous cells arise and proliferate but also on how they react under certain
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environmental conditions. In this context, the concept of dynamic capacity of the tissue
bearing the tumor can be better approached by modeling factors such as nutrient avail-
ability (BENZEKRY et al., 2014), invasion tendencies (REJNIAK, 2016), biomechanical
stresses (TALONI et al., 2014; AMBROSI et al., 2017) and anticancer therapies.

Nevertheless, using PDEs is mathematically more difficult and costly than employing
ODEs due to the simultaneous dependence on more than one independent variable and
often intricate boundary and initial conditions. Additionally (and quite paradoxically),
an inherent limitation of models employing solely differential equations turns out to be
exactly their characteristics of being continuous and deterministic. When a model invokes
specific cellular structure and probabilistic nature involving cell proliferation, a different
mathematical approach is required.

3.3 Cell-based and stochastic models: tumor growth governed by discrete models

Anderson, Chaplain and Rejniak (2007) claim that while continuum mathematical
models have been successfully employed to describe several portions of matter, they
are essentially particles, cells, thus discrete. In the wake of the impressive progress of
biochemical and biological concepts on genetics, sub-cellular levels and their intricate
mechanisms, computational-enhanced Mathematical Oncology faces the difficult task of
transforming specific portion-sized data into complex information describing emergent
higher-level multi-scale cellular phenomena. In recent years, many cell-based models have
been proposed to face such challenge (WEERASINGHE et al., 2019).

Cell-based or discrete models are organized frameworks that keep track of fully
independent individual parameters varying in time and space, reflecting the heterogeneity
and complex, emerging, phenomena found in cancer. Computationally, they can rely on
different approaches including Monte-Carlo simulations, energy minimization techniques,
volume conservation laws, motion rules and others (ANDERSON; CHAPLAIN; REJNIAK,
2007).

If these models follow a structural or grid organization, they are mathematically
treated as lattice-based models, which are categorized according to the number of cells that
each lattice site can hold (METZCAR et al., 2019). Lattice-gas cellular automata models
admit more than one cell per site (being suitable for larger systems). On the other hand,
if a single cell allegedly occupies many spots, then it should be modeled as sub-cellular
systems (JAMALI; AZIMI; MOFRAD, 2010). Finally, if each cell can occupy a single
lattice, it can be modeled as a regular cellular automaton (CA) (METZCAR et al., 2019).

Virtualization ( numerical simulations) involving cell-based models are often referred
to as in-silico experimentations because of their similarity and logical extension of in-vitro
counterpart (JEANQUARTIER et al., 2016). Concerning regular CA models, relatively
simple implementations can go a long way in providing emergent complex behavior.
Enderling et al. (2009) established a basic set of rules concerning proliferation and migration
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rates for each type of tumor cell (regular or stem) in a CA model and investigated the
virtualization of very different emergent scenarios when changing these rules, including
cell clustering and tumor dormancy. Later, Poleszczuk and Enderling (2014) improved
their model by implementing it with high-performance computational techniques.

3.4 Fractional Mathematical Oncology

3.4.1 Fractional calculus basic theory

Fractional calculus (FC) or calculus of arbitrary order may be considered an natural
extension of traditional integer order calculus since it is a mathematical area of analysis
that investigates and applies concepts of non-integer differential and integral calculus. It
appeared for the first time in correspondences between L’Hospital and Leibniz in the end
of the 17th century (ROSS, 1977). Despite its ancient origin, FC had a slow development
when compared with its integer counterpart. Only over one hundred years after those
letters, there was the first formal definition for a fractional derivative, accomplished by
Laplace and Lacroix (DOMINGUES, 2005).

Later, Riemann’s and Liouville’s definitions became two of the most known and
popular formulations for fractional integrals and derivatives (OLDHAM; SPANIER, 1974).
Nevertheless, the scenario changed when Caputo (1967) suggested a new approach from
Riemann definition by incorporating initial conditions of integer order in the resolution
of fractional differential equations. Such change allowed a greater fidelity to physical
phenomena modeled with fractional calculus, which widely disseminated Caputo’s ap-
proach in applications ranging from physics to life sciences. Many other definitions have
surfaced ever since, with different interpretations and particularities addressed to each
one (SALES TEODORO; TENREIRO MACHADO; CAPELAS DE OLIVEIRA, 2019;
ORTIGUEIRA; MACHADO, 2017). Main publications on the theme have only appeared
in the beginning of the 20th century (MACHADO et al., 2010; MACHADO, 2010), whose
major history and grounding concepts can be found in classical materials from Oldham and
Spanier (1974), Ross (1977) and, more recently, in works by David, Linares and Pallone
(2011), Capelas de Oliveira and Tenreiro Machado (2014), and Luchko and Kochubei
(2019).

Considering that FC is a generalization of integer order calculus, its fundamental
concepts can be introduced by relying on simpler conjectures. Therefore, just as it is
possible to state that real numbers are generalizations of natural and integer numbers,
the same can be applied to some mathematical tools (HERRMANN, 2014). Factorials,
for instance, comprise only natural numbers, thus restricting its application domain. As
factorial generalization, gamma function is introduced for any ℜ(z) > 0 as

Γ(z) =
∫ ∞

0
tz−1e−tdt. (3.1)
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On the same line of thought, exponential Euler function

ez =
∞∑

n=0

zn

n! (3.2)

can also be generalized by replacing its factorial component with a gamma function,
yielding

ez =
∞∑

n=0

zn

Γ(1 + n) (3.3)

and thus introducing the so-called Mittag-Leffler (ML) function for ℜ(α) > 0

Eα(z) =
∞∑

n=0

zn

Γ(1 + nα) , (3.4)

which was extended to admit two parameters for ℜ(α) > 0 by Wiman (1905)

Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β) . (3.5)

ML function is as important for FC as are exponential functions for integer calculus
since it is commonly employed to represent the solution of several fractional mathematical
and physical problems. This is due to the fact that many simple and popular functions are
particular cases of this generalization. Therefore, several researchers have long explored its
uses and particularities (CAMARGO, 2009; VALÉRIO et al., 2013; GORENFLO et al.,
2014).

Considering the basic notation of conventional (i.e. integer order) derivative, one
writes

g(x) = d

dx
f(x). (3.6)

If, for instance, it is assumed f(x) = xk then

d

dx
xk = kxk−1, (3.7)

whose generalization for n ∈ N is

dn

dxn
xk = k!

(k − n)!x
k−n. (3.8)

By considering that order n may be arbitrary to the point of including non-integer
values, one may apply gamma function (as previously introduced) to extend Eq. (3.8) as

dα

dxα
xk = Γ(1 + k)

Γ(1 + k − α)xk−α x ≥ 0, k ̸= −1, −2, −3, . . . , (3.9)

in which x ≥ 0 and k is positive to assure the singularity of fractional derivative definition
in view of the convergence of the integral in Eq. (3.1) for any integer z > 0.

This intuitive approach has been long applied to several types of functions. Before
formally defining fractional derivatives, it is more intuitive to present the definitions
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regarding fractional integrals in line with Herrmann (2014). An integration of a function
is considered as the inverse operation of its differentiation(

d

dx

)
(aI)f = f. (3.10)

In turn, one defines the conventional integrator aI operator in a domain as

aIf =
∫ x

a
f(ξ)dξ. (3.11)

The definition of fractional integrals start with a multiple integral as

aInf =
∫ xn

a

∫ xn−1

a
· · ·

∫ x1

a
f(x0)dx0 . . . dxn−1, (3.12)

which represents the successive anti-differentiation of a continuous function f(x). From
Cauchy’s Integral Theorem and the Fundamental Theorem of Calculus it is possible (FOL-
LAND, 2002) to represent Eq. (3.12) in a more convenient way, thus writing integral
Cauchy formulation:

aInf(x) = 1
(n − 1)!

∫ x

a
(x − ξ)n−1f(ξ)dξ. (3.13)

By employing gamma functions, Eq. (3.13) can be extended for the fractional case
as

RLIα
+f(x) = 1

Γ(α)

∫ x

a
(x − ξ)α−1f(ξ)dξ, (3.14)

RLIα
−f(x) = 1

Γ(α)

∫ b

x
(ξ − x)α−1f(ξ)dξ. (3.15)

In those equations, a and b respectively determine the lower and upper limits of
the integral domain. While Eq. (3.14) is called “left-handed” and valid for x > a since
it collects function values for ξ < x, Eq. (3.15) is called “right-handed” and applies for
x < b, collecting function values where ξ > x. The choice of a and b fundamentally
sets apart two of the most used definitions of fractional calculus, namely Liouville’s
and Riemann’s fractional integrals for a = −∞ and b = +∞, and a = 0 and b = 0,
respectively. Pragmatically, the distinction between those definitions may be observed
from the differentiation of some specific functions that will result in significantly different
solutions, depending on the chosen approach.

From the definition of fractional integrals one can obtain fractional derivatives.
Thus, the fractional derivative operator

dα

dxα
= Dα (3.16)

is used to introduce the concept of operation sequence between integrals and derivatives.
For instance, one can consider the following operation:

Dα = DmDα−m = dm

dxm aIm−α m ∈ N. (3.17)
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Such notation determines that a fractional derivative may be interpreted as a
fractional integral followed by a conventional integral. Therefore, once non-integer integral
is defined, so is the corresponding fractional derivative. Another possibility regards an
inverse sequence of operators as

Dα = Dα−mDm =a Im−α dm

dxm
m ∈ N, (3.18)

leading to an alternative decomposition of the fractional derivative into a conventional
derivative followed by a non-integer order integral. One must note that each decomposition
can lead to a different result.

From these definitions, it is possible to understand the non-locality mechanism in
FC. The conventional derivative is the local operator and the fractional derivative can be
interpreted as the inversion of the fractional integration, i.e. a non-local operation. As a
result, both Liouville and Riemann approaches lead to different definitions of fractional
derivatives depending on the adopted decomposition sequence. Therefore, for 0 < α ≤ 1
one obtains Riemann-Liouville fractional derivatives by employing equations for integral
operators in the sequence given in Eq. (3.17):

RLDα
+f(x) = d

dx
RLI1−α

+ f(x) = d

dx

1
Γ(1 − α)

∫ x

a
(x − ξ)−αf(ξ)dξ, (3.19)

RLDα
−f(x) = d

dx
RLI1−α

− f(x) = d

dx

1
Γ(1 − α)

∫ b

x
(ξ − x)−αf(ξ)dξ. (3.20)

If the operators sequence is inverted, as in Eq. (3.18), one obtains Caputo-Liouville
or Caputo-Riemann derivatives:

RLCDα
+f(x) = RLI1−α

+
d

dx
f(x) = 1

Γ(1 − α)

∫ x

a
(x − ξ)−α df(ξ)

dξ
dξ, (3.21)

RLCDα
−f(x) = RLI1−α

−
d

dx
f(x) = 1

Γ(1 − α)

∫ b

x
(ξ − x)−α df(ξ)

dξ
dξ. (3.22)

The fractional operator can also be written by stating the independent variable as
subscript, i.e. Dα

x . It is worth mentioning that when the independent variable is time t, the
definition given by Eq. (3.21) is also called “causal derivative”. Such name stems from the
integral in the definition considering values smaller than t, i.e., considering what happened
before that instant while defining time flow as causal (ORTIGUEIRA; MACHADO, 2017).
In this case, the non-locality feature is called memory effect, being very important to
model nonlinear phenomena history such as cancer-related phenomena as addressed in
next section.

For the sake of simplicity, the “left-handed” Caputo-Riemann operator can be
written as either Dα

x or Dα
t , depending on the independent variable, and given by the

definition
Dα

x f(x) = 1
Γ(1 − α)

∫ x

0
(x − ξ)−α df(ξ)

dξ
dξ, (3.23)
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which is widely known as Caputo’s derivative (CAPUTO, 1967). Its usefulness to model
physical problems and solve generalized differential equations is recurrent because, if f(x)
is a constant, by applying Riemann’s definition one obtains

RDα
+const = const

Γ(1 − α)x−α, (3.24)

while in case of Caputo’s definition

Dα
+const = 0, (3.25)

which adheres to integer-order models with constant initial or boundary conditions, thus
justifying its widespread use.

For their many remarkable characteristics, fractional models have been increasingly
chosen and successfully applied in many other areas such as signal processing (MILJKOVIĆ
et al., 2017), thermoacoustics (VALENTIM, 2018), economy (DAVID et al., 2016; DAVID
et al., 2021), robotics (LEYDEN; GOODWINE, 2016), food science (DAVID; KATAYAMA,
2013), chemical kinetics (SINGH; KUMAR; BALEANU, 2017), electromagnetism (MES-
CIA; BIA; CARATELLI, 2019), traffic control (KUMAR et al., 2018), among oth-
ers (VALENTIM; RABI; DAVID, 2020; DAVID; RABI, 2020; DAVID et al., 2020;
MAINARDI, 2018; DAVID; VALENTIM, 2015; HERNANDEZ; O’REGAN; BALACHAN-
DRAN, 2010; HASSANI; TENREIRO MACHADO; MEHRABI, 2021).

3.4.2 Cancer-related fractional models

One may refer to Fractional Mathematical Oncology as the intersection between
FC and Mathematical Oncology, wherein there are already many fields of application.
For instance, concerning population or ecological models, the elevation of cancer cells
may be interpreted as a population increase subjected to restrictions concerning substrate
availability and competition (with healthy cells). Some works have applied FC as an
attempt to generalize the main models for tumor growth. Effectively, arbitrary orders in
differential equations might refine cell growth dynamics description, allowing a deeper
understanding of investigated phenomena (VARALTA; GOMES; CAMARGO, 2014).

On that note, Valentim et al. (2020) generalized and analytically solved relevant
ODE models for tumor growth towards fractional order extensions. The solutions were
then fitted to an extent clinical data set of breast cancer evolution in mice. Resulting
best-fitted models perform better as predictors compared to their traditional counterparts,
suggesting that inclusion of fractional models could avoid misdirection when choosing
potential predictors. Moreover Bolton et al. (2015) suggested that fractional models with
a specific arbitrary order (namely 0.68) would better fit to experimental curves obtained
from tumor growth in mice.

Stemming from ODE frameworks, Valentim et al. (2021) proposed fractional
variable-order models to describe multi-stage tumor characteristics. Exploring the memory
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effect in non-integer order models, the authors interpreted the variable order as indicative
of tumor memory. Clinical data were employed to fit and analyze different mathematical
behaviors relating to tumor particularities. Results suggested that variable order α(t)
modeled as a periodic function can better describe tumor evolution regarding the fitted
data, potentially capturing dormancy periods.

Within the viscoelastic scope, Magin (2010) developed a fractional rheological
model that is not limited to particular definitions of Maxwell, Voigt and Kelvin. Thus
the author managed to obtain better results when identifying benign and malign tumors
in elastography data from MRI scans. Magin et al. (2008) also claim that “fractional
operators encode information about molecular interactions regarding the spin of water
that is built in polymer structures and in the extracellular matrix of cells and tissues”,
being able to store extra information on the physical phenomena being modeled when
compared to traditional integer order models.

Another featured application of FC in Mathematical Oncology refers to modeling
the invasion of healthy systems by tumors as well as cancer cells transport throughout the
organism, characterizing metastasis onset. Such processes are often modeled as diffusion
phenomena in which several parameters must be taken into account in order to maintain
the accuracy of the phenomenological description. In a non-integer order model, one can
adjust the arbitrary order so that the system acquires sub-diffusive or super-diffusive
behaviors, visualizing complex aspects that traditional (i.e. integer-order) counterparts
cannot reproduce, as shown in a tumor diffusion model by Iyiola and Zaman (2014).

In continuous transport models, FC also allows to incorporate statistical randomness
by combining a probability distribution function with a dynamic (i.e. time-dependent)
random-walk model. Therefore, it is possible to simultaneously consider stochastic and
deterministic natures when simulating tumor evolution, whose random-related mutations
can suddenly lead to pivoting features favoring growth, movement or invasion of healthy
tissue (IOMIN, 2006).

Regarding treatment therapies, Iomin (2014) investigated the effects of different
mathematical functions to represent chemotherapeutic treatments in scenarios modeled
through fractional kinetics. Namazi, Kulish and Wong (2015) proposed a new prediction
method based on Hurst coefficient and fractional-diffusion equation aiming at modeling
the effect of a specific drug in lung-cancer patients’ DNA. The authors found that the
new model could simulate drug effects with 3.21% mean difference from real sick patients’
DNA. FC has also gained strength in exploring ideal combinations of chemotherapy and
immunotherapy through optimal control to minimize cancerous cells with the lowest
possible impact on healthy cells (YILDIZ; ARSHAD; BALEANU, 2018).

Other studies embrace treatment optimization methods (UCAR; ÖZDEMIR; AL-
TUN, 2019; KHAJANCHI; NIETO, 2019), control in invasion systems (MANIMARAN et
al., 2019; DAI; LIU, 2019), bioengineering (IONESCU et al., 2017), and general tumor
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growth (REN; YU; CHEN, 2018; SOWNDARRAJAN et al., 2019; FARAYOLA et al.,
2020). From aforementioned studies, one can note the contemporary interest of the scientific
community towards mathematical tools that suitably describe oncological models, improve
the understanding of tumor mechanics and evolution, and expand diagnostic options and
treatment routines. In this context, fractional oncology may play a promising and strategic
role to allow more accurate and reliable virtualization devices.

3.5 Fractional hybrid models

Hybrid models are a recent category in which continuum characteristics are incor-
porated into discrete frameworks. Advantages of such approach are very clear for modeling
multi-scale phenomena since the discrete part can focus on cell movements scale while
the continuum methods can model events on larger scales (REJNIAK; ANDERSON,
2011). This capacity to bridge scale gaps while communicating aspects of very different
magnitudes across the model makes hybrid approaches very interesting to describe several
aspects of cancer phenomena (ANDERSON et al., 2007).

Accordingly, Anderson, Chaplain and Rejniak (2007) proposed a hybrid model
comprising discrete methods to deal with tumor cells while considering continuous methods
to model micro-environment factors such as host tissue, matrix-degradative enzymes and
oxygens. Their model focused on micro-scale level to simulate tumor at tissue-scale and
could be easily implemented to incorporate other scales (e.g. sub-cellular).

In the following years, many other hybrid models were proposed, each with their own
characteristics and often involving either discrete or continuum tools (CHAMSEDDINE;
REJNIAK, 2019). Zangooei and Habibi (2017) combined CA and machine learning methods
to develop a vascular multi-scale framework capable of predicting cell phenotypes. In-silico
results indicate that their model can represent key cancer features, such as angiogenesis,
while presenting good agreement with biological behavior. Phillips et al. (2020) also
proposed a hybrid model capable of describing the physical interaction between tumor
and surrounding blood vessels, but focused on complementing cells’ discrete behavior with
a mathematical description of vascular endothelial growth factor (VEGF).

Additionally, Norton et al. (2019) reviewed agent-based and hybrid models that
specifically handle the interplay between tumor immune micro-environment and cancer
immune response, thoroughly discussing the importance of modeling tumor heterogeneity.
Alemani et al. (2012) combined CA with lattice Boltzmann method to model multi-scale
tumor dynamics considering nutrient diffusion and immune competition. The authors
replaced PDEs with a statistic and stochastic approach claiming that such system combi-
nation could successfully capture cellular, molecular and continuum complexities.

On that context, coupled differential equations can help purely stochastic models
cover some shortcomings. For instance, integrating a diffusion PDE to a hybrid model
could tackle at least two problems at once. Firstly, if a CA disregards dead cells, it also
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dismisses their remains, which could cause some sort of toxicity in tumor micro-environment.
Secondly, it is known that tumors can react very differently depending on oxygen lack or
abundance. By its nature, some cells can effectively change biomechanical characteristics
in order to migrate from an oxygen-deprived environment. Therefore, a model that does
not take tissue nutrient availability into account can overlook important tumor dynamics
details.

Accordingly, the diffusion equation could be an important tool to model tumor
micro-environment. It could mathematically describe diffusive transport of chemical species
(e.g. oxygen and nutrients simultaneously with cell remains) through the tissue in which
the tumor grows. By following transport laws (e.g. Fick’s law), this part of the model
would be completely deterministic while also depending on outcomes from stochastic CA
(e.g. if a cell replicates, it will increase nutrient consumption in that lattice area, thus
influencing the diffusion equation). On the other hand, at each time step the deterministic
portion of the model would also affect probabilities generated from the CA (e.g. if nutrient
availability is very low, the chance for local apoptosis is higher).

Moreover, the literature generally confirms that diffusion processes are better
modeled with a time-fractional derivative (COSTA; CAPELAS DE OLIVEIRA, 2012; WU
et al., 2015; AGRAWAL, 2002). These fractional models would be capable of presenting
sub-diffusive and super-diffusive phenomena by only varying the arbitrary order of model
time derivative. This feature could provide a much powerful tool to represent how nutrients
are transported through tissue and affect tumor growth, possibly enhancing accuracy of
the hybrid model.

On the other hand, CA models often disregard healthy cells, not establishing any
stress relation between cells and their surrounding extracellular matrix. As an attempt
to improve this characteristic on a hybrid framework, a differential equation to model
viscoelasticity of both tumor and its surrounding tissue may be useful.

Furthermore, external stresses such as pressure and mechanical resistance can
strongly affect tumor progression, malignancy and metastasis possibility (FRITSCH et
al., 2010; RAMIÃO et al., 2016; PORTA; ZAPPERI, 2017). As a result, it becomes very
important to account for these factors by modeling tumor (or its surrounding tissue)
as either soft or viscoelastic material. As discussed in (MAGIN, 2012; MAGIN, 2004;
CATANIA; SORRENTINO; FASANA, 2008), fractional approaches can generally provide
more effective reductionist viscoelastic models, being a viable option to mathematically
describe such phenomena.

On that note, a hybrid model could potentially contain at least two equations
modeling tumor micro-environment, namely one dealing with nutrient diffusivity and
the other tackling tissue stresses. A conceptual scheme of a prospective hybrid model as
previously described is illustrated in Figure 3. Although there are other hybrid CA models
developed in the literature, there are few that profoundly consider such aspects through
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an interdisciplinary view. Moreover, even fewer (if any) rely on improved capabilities of
fractional models to describe natural phenomena in differential equations constituting
the deterministic part of these models. This could be a prospective research field in
Mathematical Oncology that could potentially contribute to areas of interest such as
understanding tumor evolution, early diagnosis techniques and personalized treatment
therapies.

Figure 3 – Conceptual scheme for the hybrid model with fractional differential equations.

Fractional PDEs:
• Nutrient diffusion 
• Extracellular elasticity
• Numerically solved

❖ Continuous
❖ Phenomenological
❖ Deterministic

Determines (temporally and spatially) tumor and microenvironment conditions

(e.g. if there are more nutrients chance of proliferation increases)

Determines how tumor cells effectively will grow

2D CA Model:
• Algorithm running 

simultaneously to the 
PDEs being solved

❖ Discrete 
❖ Phenomenological
❖ Probability-based

Source: Valentim, Rabi and David (2021).

3.6 Concluding remarks

There are tools in Mathematics (still) waiting to establish their way in Theoretical
Biology and such is the case of fractional (i.e. non-integer order) calculus, whose historical
and philosophical aspects have attracted growing interest. As addressed and discussed in
the present review work, the application of fractional calculus indeed arises as powerful
and strategic modeling approach in view of prospective challenges and opportunities in
Mathematical Oncology. Besides well-known advantages of either testing or reproducing
different in silico scenarios (which could be impractical or even impossible via corresponding
in vitro experimentation), Fractional Mathematical Oncology can straightforwardly deal
with heterogeneous scales, memory effects and/or dormancy periods related to tumor onset
and development.
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4 CAN FRACTIONAL CALCULUS HELP IMPROVE TUMOR GROWTH MOD-
ELS?

This chapter reproduces and adapts the paper entitled "Can fractional calculus help
improve tumor growth models?", which is part of the study conducted over the doctorate
and was published in the Journal of Computational and Applied Mathematics (Elsevier)
(VALENTIM et al., 2020).

In the chapter, we explore ODE-based population models as viable tools to inves-
tigate tumor growth and support clinical evidence. By following a fractional approach,
the study derives analytical solutions for five of these models, whose parameters are
best-fitted against extant clinical data. In terms of tumor growth prediction, results
show that fractional models not only have better performance, which is mostly wanted
for decision-making in oncology, but also reveal interesting characteristics to be further
explored.

Accordingly, section 4.1 firstly introduces ODE-based modeling in tumor dyamics
while section 4.2 presents five of the most popular models in the category. Next, they are
analytically solved using fractional power series method and compared to corresponding
classical solutions. Experimental data are used to best-fit (i.e. fine-tune) free model
parameters, including the fractional order α, in section 4.3. Solutions are numerically
implemented and the capability of simulating future tumor behavior is assessed for both
fractional and classical models, with main results being discussed. Finally, main conclusions
are drawn in section 4.4.

4.1 Introduction

Despite being an exceptionally complex group of diseases, all solid cancers have a
common origin on the growth of a primary tumor. Focusing on this mutual point may
contribute to understand important features of early tumor growth. While gene sequencing
and molecular biology have increasingly clarified paths and signals leading to cancerous cell
arise (GOLUB et al., 1999; EASTON et al., 2015), it is equally important to understand
phenomenological principles underlying tumor population cells growth. Approaches based
on ecological models and expressed via ordinary differential equations (ODE) offer the
possibility of broadening concepts and insights as far as general avascular tumor growth is
concerned (SAVAGEAU, 1980; SACHS; HLATKY; HAHNFELDT, 2001; SARAPATA;
DE PILLIS, 2014).

By including specific modifications to account for experimental observations and
biological particularities, several ODE models have been developed to describe dynamic
tumor growth. The majority of them follows a sigmoidal law relying on two parameters,
namely growth rate and carrying capacity of the population. This behavior is justified by
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the different stages that a primary tumor undergoes in view of available resources such as
tumor surface area and medium heterogeneity (MARUŠIĆ et al., 1994).

Although simpler than oncology models including partial differential equations
(PDEs), ODE-based approaches have conveniences that motivate their use until to-
day (WODARZ; KOMAROVA, 2014). Their relative simplicity enables analytical solutions
being deduced, as means to mathematically describe phenomena evolution (SANTOS,
2007). Besides, ODE-based models are flexible, an their free parameters can be fine-tuned
against experimental data so as to describe different tumor phases (BENZEKRY et al.,
2014; HARTUNG et al., 2014), which favors their use to support clinical advice. Never-
theless, there is not a consensus about choosing the most appropriate ODE-based model
for a particular cancer. Unsuitable model choice may yield considerable differences in
oncological predictions (MURPHY; JAAFARI; DOBROVOLNY, 2016), thus claiming for
further research.

Accordingly, ODE models for tumor growth can be extended to better fit experi-
mental data while keeping their deductive-reductionist aspects (i.e. they can be generalized
so that complexity becomes embedded in simplicity). Amid mathematical alternatives,
fractional calculus studies non-integer order differential and integral calculus (OLDHAM;
SPANIER, 1974; HERRMANN, 2014; DAVID; LINARES; PALLONE, 2011; SALES
TEODORO; TENREIRO MACHADO; CAPELAS DE OLIVEIRA, 2019; TARASOV;
TARASOVA, 2019). Fractional models are characterized by the presence of an arbitrary
order of differentiation (or integration), which expands the application scope to deal with
distinct behavior according to such fractional order. This is a key aspect of non-integer
order calculus, which makes it an interesting tool for reductionist approaches, even in
relatively simpler models. Moreover, fractional calculus have inherent attributes that may
improve ODE-based tumor models such as describing complex phenomena as long-term
memory and/or spatial heterogeneity (WEST, 2014).

For their many remarkable characteristics, fractional models have been increasingly
chosen and successfully applied in signal processing (MILJKOVIĆ et al., 2017), thermoa-
coustics (VALENTIM, 2018), economy (DAVID et al., 2016), robotics (LEYDEN; GOOD-
WINE, 2016), viscoelasticity (DAVID; KATAYAMA, 2013), chemical kinetics (SINGH;
KUMAR; BALEANU, 2017), electromagnetism (MESCIA; BIA; CARATELLI, 2019),
agricultural computing (DAVID et al., 2016), traffic control (KUMAR et al., 2018), among
other areas (DAVID; RABI, 2020; DAVID et al., 2020; MAINARDI, 2018; HERNANDEZ;
O’REGAN; BALACHANDRAN, 2010). In fact, what could be coined as "fractional math-
ematical oncology" already exists, with many recent studies deploying non-integer calculus
to deal with cancer-related topics including chemotherapy, radiotherapy and immunother-
apy dynamics (UCAR; ÖZDEMIR; ALTUN, 2019; YILDIZ; ARSHAD; BALEANU, 2018;
FARAYOLA et al., 2020; KHAJANCHI; NIETO, 2019), numerical solution and control for
invasion systems (MANIMARAN et al., 2019; DAI; LIU, 2019), bioengineering (IONESCU
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et al., 2017), and tumor growth (SOWNDARRAJAN et al., 2019; SOLÍS-PÉREZ; GÓMEZ-
AGUILAR; ATANGANA, 2019, 2019; REN; YU; CHEN, 2018; BOLTON et al., 2015). The
increasing number of studies in this area might support fractional calculus as alternative
reductionist phenomenological modeling (approach) to further investigate early avascular
general tumor growth governed by ODEs.

Accordingly, to the best of our knowledge, a comparison of widely used ODE
models for tumor growth and their fractional counterparts remains largely unattempted,
especially if considering as evaluation criteria their prediction performance when fitted with
a relatively long clinical time series. In view of that, the present study aims at assessing
whether fractional models have advantages in relation to integer counterparts claimed as
better alternatives for classical population-based tumor models.

4.2 Methodology

4.2.1 Extant tumor growth models

Tumor growth models governed by ODEs equations usually have the general form

dV (t)
dt

= af(V (t)) − bg(V (t)), (4.1)

where V (t) is tumor volume at a given time t, dV (t)
dt

represents tumor growth rate, a is a
parameter related to how tumor increases its size whereas b is a parameter limiting tumor
size (WODARZ; KOMAROVA, 2014). Functions f(V (t)) and g(V (t)) dictate whether the
model is exponential, logistic or other.

Being the simplest one to analyze tumor growth, the exponential model is charac-
terized by growth rate linearly proportional to tumor size. The governing ODE is obtained
by imposing f(V (t)) = V (t) and g(V (t)) = 0 in Eq. (4.1). Being one of the earliest
tumor models, the exponential model has been explored under the fractional calculus
viewpoint (ATICI et al., 2015; IOMIN, 2006).

Sigmoidal cancer models are characterized by S-shaped growth curves, the most
known being the logistic model or Verhulst equation. The main difference from the
exponential model is that growth is bounded by a maximum (i.e. asymptotic) tumor size.
Biologically speaking, this upper limit might, in principle, resemble real tumor dynamics,
i.e. as tumor size increases so does its difficulty to absorb nutrients and oxygen via diffusion
(by disregarding angiogenesis). The logistic model is obtained by imposing f(V (t)) = V (t)
and g(V (t)) = V (t)2 in Eq. (4.1). Some fractional logistic models have been proposed and
solved for several applications, including tumor growth (ORTIGUEIRA; BENGOCHEA,
2017; TARASOV, 2019; AREA; LOSADA; NIETO, 2016; D’OVIDIO; LORETI, 2018).

Another widely used ODE model for tumor dynamics is Gompertz Law (LAIRD,
1964), stating that growth rate decays exponentially, which biologically resonates very
well with several types of tumor. Accordingly, this model is considered one of the best
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predictors of tumor behavior among ODE-based models, specially for patients under
chemotherapy (NORTON, 1988). It has been explored under several distinct approaches,
including more recently fractional modeling (FRUNZO et al., 2019). Although Gompertz
model has many parameterizations (TJØRVE; TJØRVE, 2017), in the present study
we choose an approach (NORTON, 1988) that imposes f(V (t)) = 0 and g(V (t)) =
bV (t) ln(V (t)/V∞) in Eq. (4.1). This variation of Gompertz equation was chosen because
it has the same number of parameters as in other ODE models (excluding the exponential
variation).

The next model herein considered is the one proposed by Von Bertalanffy (VON
BERTALANFFY, 1960), which accounts for allometric principles regarding tumor shape
development (namely a sphere in the present study). According to this model, both tumor
growth and degradation are proportional to a power of tumor size, which resonates very
well with the idea that cells in different tumor layers have distinct access to nutrients,
thus rendering distinct behavior. Bertalanffy model is obtained from the general form,
Eq. (4.1), by setting f(V (t)) = V (t)2/3 and g(V (t)) = V (t).

Guiot-West model is also considered, which envisages an universal growth law
as proposed by Guiot (GUIOT et al., 2003) while following complexity and scaling
considerations from West (WEST; BROWN; ENQUIST, 2001). It mathematically resembles
Bertalanffy model with a different power of tumor size. Having its roots in the fractal-like
structure of energy distribution, 3/4 power is a recurring value in models of complex
natural phenomena. From the general form, Eq. (4.1), Guiot-West model is obtained when
f(V (t)) = V (t)3/4 and g(V (t)) = V (t).

Except for the exponential model, aforesaid ODE models have mutual similarities
since they all follow sigmoidal laws with a growth rate parameter (either a or b) and a
limiting parameter (V∞). However, as previously stated, they also have distinct character-
istics that emulate specific tumor growth nature, thus justifying the assessment of their
predicting performance against experimental data. For convenience, the corresponding
ODEs for each of those models are summarized in Table 1.

Table 1 – ODE-based tumor growth models considered in this study.

Model Differential equation Max. Size Growth condition

Exponential dV (t)
dt

= aV (t) ∞ a > 0
Logistic dV (t)

dt
= aV (t)

(
1 − V (t)

V∞

)
V∞ = a/b a > 0

Gompertz dV (t)
dt

= bV (t) ln
(

V∞
V (t)

)
V∞ = ln−1(a/b) b > 0

Bertalanffy dV (t)
dt

= aV (t)2/3 − bV (t) V∞ = (a/b)3 a > b

Guiot-West dV (t)
dt

= aV (t)3/4 − bV (t) V∞ = (a/b)4 a > b

Source: Valentim et al. (2020).
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4.2.2 Fractional analytical solutions

The governing differential equations presented in subsection 4.2.1 are analytically
solved by the fractional power series method (TRUJILLO; RIBERO; BONILLA, 1999)
whose application to exponentially-based ODEs is opportune. Such methodology has been
applied (KILBAS; SRIVASTAVA; TRUJILLO, 2006) to similar ODEs, demonstrating
good suitability in this context.

4.2.3 Fractional derivative operator to power series

In line with Eq. (3.23), Caputo’s definition is used for a series representation as

f(x) =
∞∑

n=0
Cnxn

applied to a power series concerning tumor volume V (t). Aiming at fractionally modeling
time-dependent tumor growth, x = tα is then set for t ≥ 0 with 0 < x < R and
0 < tα < Rα, where R is the radius of convergence of the series for which such operations
hold (TRUJILLO; RIBERO; BONILLA, 1999), yielding

Dα
t V (t) =

∞∑
n=0

CnDα
t (tnα), with V (t) =

∞∑
n=0

Cntnα. (4.2)

Bearing in mind that the fractional derivative of a power is given by Eq. (3.8) and
according to Eq. (3.9), the fractional derivative of V (t) can be extended to a power series
such that Eq. (4.2) becomes

Dα
t V (t) =

∞∑
n=1

Cn
Γ(nα + 1)

Γ[(n − 1)α + 1]t
(n−1)α (4.3)

for n > 0 and Dα
t V (t) = 0 in case of n = 0.

Accordingly, Eq. (4.3) establishes the fractional derivative of time-dependent tumor
volume V (t) as represented by a fractional power series, Eq. (4.2). In what follows, a
generalized (i.e. fractional) solution is proposed for each ODE-based tumor growth model
considered in Table 1.

4.2.4 Fractional exponential model

The generalized representation of the exponential model is given by

Dα
t V (t) − aV (t) = 0. (4.4)

Since the expression for Dα
t V (t) is established, one can insert Eqs. (4.2) and (4.3) into

Eq. (4.4)
∞∑

n=1
Cn

Γ(nα + 1)
Γ[(n − 1)α + 1]t

(n−1)α − a
∞∑

n=0
Cntnα = 0.
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After index adjustment and some manipulation, one obtains the recurring equation
for a non-trivial solution

Cn+1 = aCnΓ(nα + 1)
Γ[(n + 1)α + 1] . (4.5)

The first series coefficient C0 is recovered by imposing the initial condition. There-
fore, considering Eq. (4.2) for t = 0 and initial tumor volume V0, one obtains C0 = V0. By
applying such recurrence relations to Eq. (4.2), the solution for Eq. (4.4) then becomes

V (t) = V0 + aV0t
α + a2V0

Γ(2α + 1)t2α + a3V0

Γ(3α + 1)t3α + · · · = V0

∞∑
n=0

antnα

Γ(nα + 1) . (4.6)

It is possible to represent such solution in a more elegant form using Mittag-Leffler
function in Eq. (3.4), which yields

V (t) = V0Eα(atα). (4.7)

It is worth remarking that the solution given by Eq. (4.6), or equivalently Eq. (4.7),
is a generalization of the integer order model. In other words, when α = 1 aforesaid
equations recover the classical representations related to the integer order model, namely

V (t) = V0

∞∑
n=0

antn

n! = V0e
at. (4.8)

4.2.5 Fractional logistic model

In order to solve the fractional version of the logistic model, the variable change
V (t) = 1/u(t) is proposed. Thereby, the governing ODE of such model is rewritten as

du(t)
dt

+ au(t) = a

V∞
,

whose derivative change to a fractional operator yields the generalized form

Dα
t u(t) + au(t) = a

V∞
, (4.9)

with u(t) being a fractional power series analogous to Eq. (4.2).
Bearing in mind the fractional power series representations for Dα

t u(t) and u(t), as
respectively given by Eqs. (4.3) and (4.2), Eq. (4.9) then becomes

∞∑
n=1

Cn
Γ(nα + 1)

Γ[(n − 1)α + 1]t
(n−1)α + a

∞∑
n=0

Cntnα = a

V∞
.

In order to obtain the recurrence relations to coefficients Cn, the previous equation
is rewritten as[

C1Γ(α + 1)
Γ(1) + aC0

]
t0 +

∞∑
n=1

[
Cn+1

Γ[(n + 1)α + 1]
Γ(nα + 1) + aCn

]
tnα = a

V∞
t0 +

∞∑
n=0

0tnα. (4.10)
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By retrieving C0 from the initial condition u0 = 1/V0, the recurrence relation for
the first coefficient is

C1 = − a

Γ(α + 1)

(
C0 − 1

V∞

)
, (4.11)

whereas for remaining coefficients

Cn+1 = − aCnΓ(nα + 1)
Γ[(n + 1)α + 1] . (4.12)

By applying such recurrence relations, one obtains a solution for Eq. (4.9) given by

u(t) = 1
V0

+
(

1
V0

− 1
V∞

) (
−atα + a2

Γ(2α+1)t
2α + . . .

)
= 1

V0
+
(

1
V0

− 1
V∞

)∑∞
n=1

(−a)ntnα

Γ(nα+1) .

(4.13)
A solution for the fractional logistic model is obtained by retrieving the original

variable V (t) = 1/u(t)

V (t) = V∞
V∞
V0

+
(

V∞
V0

− 1
)∑∞

n=1
(−a)ntnα

Γ(nα+1)

= V∞

1 +
(

V∞
V0

− 1
)

Eα (−atα)
. (4.14)

As in fractional solutions subsequently presented in this work, the second expression
refers to the related Mittag-Leffler representation. Analogous to the fractional exponential
solution, the classical representations are recovered when α = 1 is imposed in Eq. (4.14)

V (t) = V∞
V∞
V0

+
(

V∞
V0

− 1
)∑∞

n=1
(−a)ntn

n!

= V∞

1 + (V∞/V0 − 1)e−at
. (4.15)

4.2.6 Fractional Gompertz model

In order to solve the fractional version of Gompertz model, the variable change
V (t) = V∞e−u(t) is proposed. Thereby, the governing ODE is rewritten as

du(t)
dt

= −bu(t),

so that changing the derivative for a fractional operator renders the generalized form

Dα
t u(t) + bu(t) = 0, (4.16)

with u(t) being again a fractional power series analogous to Eq. (4.2).
Since Eq. (4.16) is very similar to Eq. (4.4), the solution procedure is analogous to

the one concerning the exponential model. Therefore, for the sake of brevity, the solution
for Eq. (4.16) is straightforwardly given by

u(t) = ln
(

V∞

V0

) [
1 + −btα + b2

Γ(2α + 1)t2α + . . .

]
= ln

(
V∞

V0

) ∞∑
n=0

(−b)ntnα

Γ(nα + 1) . (4.17)
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Changing back to variable V (t) = V∞e−u one obtains

V (t) = V0 exp
[
ln
(

V∞
V0

) [
1 −∑∞

n=0
(−b)ntnα

Γ(nα+1)

]]
= V0 exp

[
ln
(

V∞
V0

)
[1 − Eα(−btα)]

]
.

(4.18)
Once more, classical representations are recovered by imposing α = 1 in Eq. (4.18)

V (t) = V0 exp
[
ln
(

V∞

V0

) [
1 −

∞∑
n=0

(−b)ntn

n!

]]
= V0 exp

[
ln
(

V∞

V0

)(
1 − e−bt

)]
. (4.19)

4.2.7 Fractional Bertalanffy model

In order to solve the fractional version of Bertalanffy model, the variable change
V (t) = u(t)3 is proposed. Thereby, the governing ODE is rewritten as

du(t)
dt

+ b

3u(t) = a

3 ,

where changing the derivative to a fractional operator yields the generalized form

Dα
t u(t) + b

3u(t) = a

3 , (4.20)

with u(t) being a fractional power series analogous to Eq. (4.2).
As Eq. (4.20) is very similar to Eq. (4.9), the recurrence relations are given by

C1 = − b

3
1

Γ(α + 1)

(
C0 − a

b

)
, (4.21)

where C0 is the initial condition u0 = V 3
0 , and

Cn+1 = − b

3
CnΓ(nα + 1)

Γ[(n + 1)α + 1] . (4.22)

From those recurrence relations, one finally obtains a solution for Eq. (4.20)

u(t) = V
1/3

0 +
(
V

1/3
0 − a

b

) [
− b

3tα +
(

b
3

)2
t2α

Γ(2α+1) + . . .
]

= V
1/3

0 +
(
V

1/3
0 − a

b

)∑∞
n=1

[(
− b

3

)n
tnα

Γ(nα+1)

]
.

(4.23)
By changing back to V (t) = u(t)3 one obtains

V (t) =
[
V

1/3
0 +

(
V

1/3
0 − a

b

) ∞∑
n=1

[(
− b

3

)n
tnα

Γ(nα + 1)

]]3

,

which has a/b = V 1/3
∞ to avoid division by zero while maintaining parameter homogeneity

with previous models. One thus obtains a generalized solution to Bertalanffy model

V (t) =
[
V

1/3
0 +

(
V

1/3
0 − V 1/3

∞

)∑∞
n=1

[(
− b

3

)n
tnα

Γ(nα+1)

]]3
=
[
V 1/3

∞ +
(
V

1/3
0 − V 1/3

∞

)
Eα

(
− b

3tα
)]3

.

(4.24)
As expected, by imposing α = 1 Eq. (4.24) recovers classical representations

V (t) =
[
V

1/3
0 +

(
V

1/3
0 − V 1/3

∞

) ∞∑
n=1

[(
− b

3

)n
tn

n!

]]3

=
[
V 1/3

∞ +
(
V

1/3
0 − V 1/3

∞

)
e− b

3 t
]3

.

(4.25)
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4.2.8 Fractional Guiot-West model

The final model considered is the generalized version of Guiot-West model, in which
the variable change V (t) = u(t)4 is proposed. Thereby, one can rewrite the governing ODE
as

du(t)
dt

+ b

4u(t) = a

4 ,

whose derivative change to a fractional operator yields the generalized form

Dα
t u(t) + b

4u(t) = a

4 . (4.26)

The analytical steps to solve Eq. (4.26) are very similar to those solving Eq. (4.20).
Accordingly, the solution for Eq. (4.26) is given by

u(t) = V
1/4

0 +
(
V

1/4
0 − a

b

) [
− b

3tα +
(

b
3

)2
t2α

Γ(2α+1) + . . .
]

= V
1/4

0 +
(
V

1/4
0 − V 1/4

∞

)∑∞
n=1

[(
− b

4

)n
tnα

Γ(nα+1)

]
.

(4.27)
By changing back to V (t) = u(t)4 one finds a generalized solution for Guiot-West

model as

V (t) =
[
V

1/4
0 +

(
V

1/4
0 − V 1/4

∞

)∑∞
n=1

[(
− b

4

)n
tnα

Γ(nα+1)

]]4
=
[

a
b

+
(
V

1/4
0 − V 1/4

∞

)
Eα

(
− b

4tα
)]4

.

(4.28)
By imposing α = 1, Eq. (4.28) also recovers classical representations

V (t) =
[
V

1/4
0 +

(
V

1/4
0 − V 1/4

∞

) ∞∑
n=1

[(
− b

4

)n
tn

n!

]]4

=
[
V 1/4

∞ +
(
V

1/4
0 − V 1/4

∞

)
e− b

4 t
]4

.

(4.29)
In order to summarize the solutions derived in this section, Table 2 presents

the fractional analytical solutions for each model along with their classical integer order
counterparts. The proof of convergence is demonstrated by finding the radius of convergence
R for each power series (as presented in appendix 4.5.1).

Additionally, it is important to state that in cases where variables are changed,
the fractional equation solved for each model are Eqs. (4.13), (4.17), (4.23), and (4.27).
Therefore, as presented in Table 2, the fractional solutions herein obtained refer to
modified fractional versions of Logistic, Gompertz, Bertalanffy and Guiot-West models.
While appendix 4.5.2 brings further comments on this issue, throughout the text those
modified models will be referred to simply as ‘models’ for the sake of conciseness.

4.2.9 Numerical methods and clinical data

Experimental data to fine-tune the model parameters were extracted from Worschech
et al. (2009), hereby listed in Table 3 and represented in Figure 4. These data refer to
human breast cancer of cell line GI-101A reproduced by xenografts (i.e. inserted and
grown in live animals, nude mice in this case) and comprise a time series of the 14 points,
each representing tumor volume (in mm3) at a specific time (in days). The time series
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Table 2 – Representation of classical and fractional solutions for extant tumor growth
ODE models for 0 < α ≤ 1.

Model Classical solution Modified- Var. change Fractional solution
V (t) = Fractional model V (t) = V (t) =

Exp. V0e
a Dα

t V (t) = aV (t) − V0Eα(atα)
Log. V∞

1+(V∞/V0−1)e−at Dα
t u(t) + au(t) = a

V∞
1

u(t)
V∞

1+(V∞/V0−1)Eα(−atα)

Gom. V0 exp
[
ln
(

V∞
V0

) (
1 − e−bt

)]
Dα

t u(t) + bu(t) = 0 V∞e−u(t) V0 exp
[
ln
(

V∞
V0

)
[1 − Eα(−btα)]

]
Ber.

[
V 1/3

∞ +
(
V

1/3
0 − V 1/3

∞

)
e− b

3 t
]3

Dα
t u(t) + b

3u(t) = a
3 u(t)3

[
V 1/3

∞ +
(
V

1/3
0 − V 1/3

∞

)
Eα

(
− b

3tα
)]3

G.W.
[
V 1/4

∞ +
(
V

1/4
0 − V 1/4

∞

)
e− b

4 t
]4

Dα
t u(t) + b

4u(t) = a
4 u(t)4

[
V 1/4

∞ +
(
V

1/4
0 − V 1/4

∞

)
Eα

(
− b

4tα
)]4

Source: Valentim et al. (2020).

statistically represents eight different patients, where it is assumed that the precision
is identical for all points, with no uncertainty differences between experimental points
affecting the curve fitting in any tests.

Furthermore, points were extracted using online tool WebPlotDigitizer and, as
this is a manual procedure, it might involve some degree of inaccuracy. Consequently,
while resulting error values and best-fitted parameters should not be identical to those
in (MURPHY; JAAFARI; DOBROVOLNY, 2016), one can reproduce them by using the
values in Table 3.

Table 3 – Clinical time series.

Time (days) 0.00 9.02 20.00 32.07 43.04 54.01 65.15
Volume (mm3) 225.5 303.0 575.6 651.4 681.6 927.8 1211.8
Time (days) 76.04 82.04 87.10 93.00 97.99 106.96 114.03

Volume (mm3) 1458.0 1897.3 2166.2 2557.0 2707.7 2916.8 3480.2
Source: Data extracted from Worschech et al. (2009).

The best-fitted model parameters were obtained using Mathematica and FindMini-
mum/NMinimize functions. A global-search algorithm was employed to minimize the sum
of squared residuals (SSR) for different parameter combinations, which is here calculated
as

SSR =
n∑

j=1
(V̂j − Vj)2, (4.30)

where V̂j are the experimental data, n = 14 stands for the total number of points, and Vj

are the corresponding analytical approximations.
In each routine instance, 100 random start values were generated as constrained by

the specific profile and model restrictions. Moreover, an internal “interior-point” method
was executed in parallel to compare each model configuration against the available ex-
perimental data. Therefore, the local minima were identified and ranked in order to find
the global minimum for each model configuration. Constraints were chosen to guarantee
stability and closeness to real characteristics being simulated. Accordingly, growth rate
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Figure 4 – Plot of clinical time series: evolution of tumor volume.
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Source: Data extracted and plotted from Worschech et al. (2009).

parameters (a or b) were forced to be positive while maximum tumor size V∞ was limited
to values between 1000 and 1 × 107 mm3. This upper bound was chosen based on (KHA-
JOTIA et al., 2014), which reported the extraction of an unusually large breast tumor of
approximately 105, 000 mm3 from a middle-aged patient. Fractional order evaluation was
bounded as 0 < α ≤ 1.

Either when the algorithm failed to find the global minimal SSR for a given profile
or when the results were not accurate enough, the algorithm was re-calculated by changing
the search range of each parameter. Processing was repeated until the minimum SSR for
each model was found. After finding the parameter combinations yielding the lowest SSR,
additional evaluation indexes were used to better assess the fitting of these parameters,
namely the root mean squared deviation

RMSD =
√√√√ 1

n

n∑
j=1

(
V̂j − Vj

)2
(4.31)

and the coefficient of determination

R2 = 1 −
∑n

j=1(V̂j − Vj)2∑n
j=1(V̂j − V̄ )2

, (4.32)

where V̄ is the mean of the experimental values. Finally, the symmetric mean absolute
percentage error was evaluated as

SMAPE = 100%
n

∑
j=1

|Vj − V̂j|
(|V̂j| + |Vj|)/2

. (4.33)

Simulation results and best-fitted fractional ODE models are discussed in section 4.3.
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4.3 Results and discussion

The first half of the experimental time series in Table 3 was used to best fit
model parameters whereas the remaining points were used for prediction. Best-fitted
model parameters are presented in Table 4 with 8-digit and 6-digit precision respectively
used for model parameters and quality indicators. The first SSR column presents the
error indicator referring to the first seven data values, i.e. the quality indicator used as
minimizing objective function related to the best-fitted parameters. Along with other
quality indicators, the second SSR column is calculated using best-fitted parameters while
considering the entire time series. Therefore, these are the values to be analyzed when
assessing which model can better predict tumor growth.

Results show that the fractional version of each model achieves better indicators
in comparison to integer order counterparts. Although this outcome may be justified
by the fact that all fractional models have an extra parameter, it is worth analyzing
the arbitrary order power of each model. The exponential models were the best-fitted
ones to experimental data whereas the integer order logistic model was by far the worst
predictor. Results follow, at least proportionally, those obtained in (MURPHY; JAAFARI;
DOBROVOLNY, 2016) for integer order models. Discrepancies might be attributed to
possible disparity when extracting plot data as well as parameterization choice, e.g. we
used two parameters in all models while Murphy, Jaafari and Dobrovolny (2016) opted for
3-parameter Gompertz version.

When choosing which model to adopt for tumor growth prediction, one should
elect the model based on the lowest SSR for the first seven clinical values. As discussed
by Murphy, Jaafari and Dobrovolny (2016), even best-fitted ODE models should be chosen
very carefully and results in Table 4 suggest this is especially true if only integer order
models are considered. In this case, one would choose Bertalanffy model even though it is
not the best predictor. On the other hand, this misdirection does not occur if non-integer
order models are considered, as one would choose the fractional exponential model, which
has the best predicting performance (i.e. the lowest error indicators).

If one also considers fractional models instead of only their classical versions, the
indicator for how close the best model replicates experimental data would rise from 67.5%
to 88.8% - a very significant improvement. This reveals a major convenience of using
fractional models as they keep a higher degree of information regarding the fitted time
series, decreasing misfitting while still maintaining a relatively simple and reductionist form.
Such advantage is mainly attributed to the memory effect, an inherent characteristic linked
to the definition of fractional operators that allows models to consider not only elements
at the evaluation instant but also those occurring before. This feature naturally favors
fractional models to describe biological phenomena, as these generally involve complex
and emergent behavior, with tumor growth being no exception.

SMAPE indexes provide immediate understanding of how significant error measures
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Table 4 – Best-fitting results and quality indicators concerning prediction capabilities.
Optimal parameters Fitting (first 7 values) Evaluation indicators (all 14 values)

Model α a or b V∞ SSR SSR RMSD SMAPE R2

Exp. 1 0.026262978 − 56015.1 1.90101 × 106 ±98.4837 10.91% 0.871367
0.54461097 0.10866092 − 24538.9 1.65259 × 106 ±91.8235 13.46% 0.888177

Log. 1 0.037933924 1904.4308 38749.45 7.46890 × 106 ±195.209 25.19% 0.494611
0.8260742 0.060601055 9.9999611 × 106 29423.4 4.60664 × 106 ±153.308 20.15% 0.688288

Gom. 1 0.013990651 3515.5192 33701.4 5.48662 × 106 ±167.311 21.69% 0.628744
0.7420777 0.007056656 9.9999993 × 106 27105.3 3.37355 × 106 ±131.194 17.64% 0.771726

Ber. 1 0.01846817 7432.4834 32042.9 4.79927 × 106 ±156.480 20.39% 0.675254
0.83361501 0.001867692 9.7941268 × 106 28525.2 4.23496 × 106 ±146.993 19.47% 0.713438

G.-W. 1 0.032431579 5650.8422 32450.8 4.96891 × 106 ±159.221 20.71% 0.663775
0.80309314 0.004994717 9.9999988 × 106 28061.7 3.97308 × 106 ±142.376 18.93% 0.731159

Source: Valentim et al. (2020).

are relative to volume magnitude at each comparison. In models, relative errors range from
10.91% (exponential model) to 25.19% (logistic model). For all models but the exponential
one, fractional models perform better than their integer order counterparts. This exception
is probably due to the fact that the integer order exponential model predicts very well
experimental points 9, 10 and 11 (compare Figure 5b and Figure 6b) while predicting very
poorly points 13 and 14. As SMAPE indexes measure relative errors, they naturally tend
to underweight errors in later tumor progression (as absolute values increase).

Regarding overall goodness of fit, the performance of each model can be depicted
with the help of evaluation indicators in Table 4, particularly SMAPE and R2 coefficient,
which are relative indexes. Regardless of either fractional or integer order, exponential
models seem to fare better (with lower SMAPE and R2 closer to 1) while logistic models
are the worst predictors for the fitted time series. Indexes ranges also indicate that the
goodness of fit varies considerably among models. It is important to remind, though, that
any fit is subject to uncertainties in experimental data, which is more complicated when
data refer to living subjects since there are intrinsic ethical complexities in clinical trials
that may impact data quality.

Nevertheless, even non-integer order models do not properly simulate values in the
far future as suggested in Figure 5 and Figure 6, which compare experimental data respec-
tively with best-fitted integer and fractional predictions. Yet, while aforesaid discrepancies
claim for further studies using other data, (even slightly) better predictors may improve
clinical assessment (e.g. by preventing overestimation or underestimation of chemotherapy
dosage).

Overall, numerical results suggest that fractional models may play an important
role in tumor prediction. The arbitrary order α has a very stark influence on each model
analyzed in this study, being able to significantly alter the predicted volume growth
dynamics. This feature is evidenced in Figure 7 to Figure 11 showing volume and volume
change rate as plotted for different arbitrary orders about the best-fitted value for each
model. In each figure, the surface on the left shows how tumor volume is dynamically
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Figure 5 – Tumor growth: clinical data and numerical predictions from best-fitted
fractional models.
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Source: Valentim et al. (2020).

Figure 6 – Tumor growth: clinical data and numerical predictions from best-fitted integer
order models.

(a) Data fitting
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Source: Valentim et al. (2020).

modeled for different α indicating that larger or advanced-stage tumors might be better
modeled with higher α values. Correspondingly, the contour plot on the right shows how
more aggressive tumors (i.e. with higher volume change rate) might be better modeled
with higher α as well. These figures reinforce the notion that more powerful (and useful)
tumor growth models could be overruled if only integer order models are considered to
support clinical advice.
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Figure 7 – Tumor growth: simulations using best-fitted exponential model for different
values of α and t.

(a) Tumor volume (mm3) (b) Tumor volume variation (mm3/day)

20 40 60 80 100 120

0.50

0.52

0.54

0.56

0.58

0.60

t (days)

α

30

45

60

75

90

105

120

135

150

165

Source: Valentim et al. (2020).

Figure 8 – Tumor growth: simulations using best-fitted logistic model for different values
of α and t.

(a) Tumor volume (mm3)
(b) Tumor volume variation (mm3/day)
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Source: Valentim et al. (2020).

Figure 9 – Tumor growth: simulations using best-fitted Gompertz model for different
values of α and t.
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Figure 10 – Tumor growth: simulations using best-fitted Bertalanffy model for different
values of α and t.
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Figure 11 – Tumor growth: simulations using best-fitted Guiot-West model for different
values of α and t.
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4.4 Conclusions

In this chapter we derived generalized (fractional) solutions for five different ODE-
based tumor growth models, using a straightforward analytical method of resolution and
presenting intermediary steps to make the study more self-contained. We best-fitted those
models against extant experimental data and assessed their performance and advantages
in terms of predicting tumor growth - especially in comparison to their integer order
counterparts. As stated in (MURPHY; JAAFARI; DOBROVOLNY, 2016), the choice of
tumor growth model can lead to very different prediction outcomes, and the effect of choice
should be considered very carefully. Our goal in this chapter was to investigate if fractional
calculus could extend the number of adequate candidates, thus potentially improving
decision making regarding the choice of an appropriate model for tumor prediction.

According to the obtained results for the particular experimental data used, one
will have a lower chance of making a poor choice if he also considers the evaluation errors of
non-integer order models, thus suggesting an improvement on the decision-making process.
Additionally, results also reinforce the notion that fractional calculus should be a timely
part of dynamic modeling regardless of the area of application.

We believe that fractional calculus have features and nuances that could be further
explored in relation to tumor growth assessment. For instance, fractional models’ better
prediction performance may be related to the memory effect, inherent to the definition
of the non-integer order derivative. Since tumors are constituted of cells accumulating
several mutations and changes along their evolution, it is possible that fractional models
are capable of taking these non-local (past) events into account. Another interesting trend
is that higher fractional orders seem to better model larger, quickly growing, tumors.
Therefore, aforesaid models should be considered to support clinical advice.

While those preliminary results and possible features are quite encouraging, further
studies should be carried out, particularly regarding the versatility of arbitrary order α as
well as testing these models against other experimental data sets.

4.5 APPENDIX: ODE solutions convergence tests and verification

4.5.1 Convergence tests

Considering that the fractional power series of the solutions for each model are
convergent for a determined radius R, the proof of convergence will be demonstrated by
finding such radius for each case.

The adopted procedure will consider the Cauchy-Hadamad Teorem, in which one
applies the root test knowing that

1
R

= lim
n→∞

(|Cn|1/n), (4.34)
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where lim is the superior limit and Cn are the constant coefficients of a fractional power
series in the form V (t) = ∑∞

n=0 Cntnα.

4.5.1.1 Fractional exponential model

Considering the solution given by Eq. (4.6) in the power series form, we have

Cn = an

Γ(nα + 1) ,

which by plugging in Eq. (4.34) yields

1
R

= lim
n→∞

∣∣∣∣∣ an

Γ(nα + 1)

∣∣∣∣∣
1/n
 ,

and after some manipulations
1
R

= a lim
n→∞

(
1

|Γ(nα + 1)|1/n

)
= a lim

n→∞
|Γ(nα + 1)|−1/n.

Now, for finding such limit, we write
1
R

= a lim
n→∞

exp(log(|Γ(nα + 1)|−1/n)) = a exp
(

− lim
n→∞

log(Γ(nα + 1))
n

)
.

By evaluating the limit with the L’Hôspital rule, one finds
1
R

= a exp
(

− lim
n→∞

d(log(Γ(nα + 1)))/dn

dn/dn

)
= a exp

(
− lim

n→∞

Γ′(nα + 1)
Γ(nα + 1)

)
,

where Γ′ is the derivative of the gamma function in respect of n, with such derivative
being calculated by using the polygamma function Ψ0 (HERRMANN, 2014). Therefore

1
R

= a exp
(

− lim
n→∞

αΨ0(nα + 1)
)

= a exp(−∞) = 0

and the radius of convergence is R = ∞, that is, the solution given by Eq. (4.6) converges
on the entire plan.

4.5.1.2 Other models

One can notice that all the fractional power series present in the solutions for the
other models studied in section 4.2 have the form

Cn = (C)n

Γ(nα + 1) ,

where C = −a, C = −b, C = (−b/3), and C = (−b/4) for Eqs. (4.13), (4.17), (4.23),
and (4.27) respectively.

Plugging Cn for each of these cases in Eq. (4.34) and following a procedure analogous
to the one described in 4.5.1.1 (omitted here for the sake of brevity), one can find for all
cases that

1
R

= 0 → R = ∞.

Therefore, the solutions given by Eqs. (4.13), (4.17), (4.23), and (4.27) also
converge on the entire plan.
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4.5.2 On the modified fractional models

In order to find solutions for the fractional Logistic, Gompertz, Bertalanffy, and
Guiot-West models subsection 4.2.5 to subsection 4.2.8), an exploratory approach has
been attempted by relying on change of variables as a mean to solve simpler equations
before changing back to the original ones.

Although such approach is frequently employed in traditional (i.e. integer order)
with almost no caveats, not all typical rules may be directly invoked and used in fractional
calculus (HERRMANN, 2014). For instance, there are several definitions of fractional
derivative, each possibly yielding different results when applied to the same function.
In this thesis, Caputo’s definition (CAPUTO, 1967; SALES TEODORO; TENREIRO
MACHADO; CAPELAS DE OLIVEIRA, 2019) has been used due to its recognized
suitability in dealing with initial conditions when describing natural phenomena.

By changing variables, the actual fractional equation to be solved was altered, as
indicated in Table 2. Nevertheless, although the fractional solutions obtained are strictly
for modified fractional versions of their respective classical models, they are still valid and
present common features of such models (e.g. sigmoidal behavior). They can also recover
the known traditional solution for the integer order ODE when α = 1 as seen in Figure 12,
which compares classical solutions for integer order ODEs with integer-order power series
solutions as well as fractional solutions obtained for each model in the chapter.

As suggested by curve overlapping in each figure, all these equations are actually
equivalent solutions when α = 1. As these simulations were carried for illustrative purposes,
parameters were set as a, b = 0.0246, V∞ = 4800, and V0 = 225.535 in all simulations. For
every solution depicted here, equations are the same as obtained throughout the chapter,
conveniently summarized in Table 5.

Table 5 – Summary of solutions compared in Figure 12.

Model Classical Solution Power series solution Fractional solution (α = 1)
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Source: Valentim et al. (2020).
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Figure 12 – Comparison between classical, power series, and fractional solutions of ODE
models with α = 1.
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5 ON MULTISTEP TUMOR GROWTH MODELS OF VARIABLE FRACTIONAL
ORDER

This chapter reproduces and adapts the paper entitled "On multistep tumor growth
models of fractional variable-order", which is part of the study conducted over the doctorate
and was published in the journal Biosystems (Elsevier) (VALENTIM et al., 2021).

In the chapter, we propose a multistep exponential model with a variable fractional
order representing the evolution history of a tumor. Model parameters are tuned according
to variable fractional order profiles while assessing their capability of fitting a clinical
time series. The results point to the superiority of the proposed model in describing the
experimental data, thus providing new perspectives for modeling tumor growth.

Accordingly, section 5.1 introduces the subject while section 5.2 presents the
model and variable-order considered in this study, while discussing their physical meaning.
Additionally, the differences between variable growth rate and variable fractional order are
also explored along with the numerical methodology. Section 5.3 analyzes the obtained
solutions and the numerical results. Moreover, the section also explores the best-fitted
variable-order model parameters against a clinical time series. Finally, section 5.4 draws
the main conclusions.

5.1 Introduction

Strategies based on ecological models are often considered in order to understand
phenomenological principles underlying general avascular tumor growth and are commonly
expressed in terms of ordinary differential equations (ODE) (SARAPATA; DE PILLIS,
2014). These descriptions usually address simple characteristics, making ODE models flex-
ible since they allow a parameter fine-tuning and can be analytically solved (BENZEKRY
et al., 2014; HARTUNG et al., 2014; MARUŠIĆ et al., 1994), which favors their use for
supporting clinical advice.

Nevertheless, while traditional ODE models provide an approximate idea of how
tumors grow, experience shows that they are often unable to consider the full complexity of
the dynamical evolution (MURPHY; JAAFARI; DOBROVOLNY, 2016). Some researchers
also point that such laws should only be used to describe general tumor behavior, being
unsuitable to characterize specific cases (WODARZ; KOMAROVA, 2014). One typical
reason for this problem is the irregular growth patterns of these organisms. In fact, it is
known that tumors go through many changes whilst advancing towards malignancy, accu-
mulating different physical characteristics and admitting severe genetic (LOWENGRUB et
al., 2010) and biomechanical modifications (FRITSCH et al., 2010; RAMIÃO et al., 2016).

A possible improved approach that avails these characteristics comes from multistep
patterned growth models, resorting to multistage carcinogenesis concepts (WODARZ;
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KOMAROVA, 2014). According to this notion, natural random mutations and epige-
netic spontaneous changes in cancer cells should be considered when modeling tumor
development (BOVERI, 2014), since they interfere with growth behavior. Indeed, some
authors proposed models that incorporate and exhibit multifactorial or multistep growth
patterns (RODRIGUEZ-BRENES; KOMAROVA; WODARZ, 2013; TRACQUI, 2009;
SPENCER et al., 2004) (e.g., stepwise tumor growth to describe alternated dormancy
periods).

Recent advances suggest that ODE models for tumor growth can be improved
by adopting the tools of fractional calculus, a branch of mathematical analysis address-
ing non-integer order differentiation. Fractional calculus expands standard ODE to deal
with complex behavior. This pivotal characteristic allows fractional models to describe
phenomena such as long-term memory, non-locality and spatial heterogeneity (WEST,
2014), encouraging their application in several different areas. In fact, fractional math-
ematical oncology increasingly figures as a potential successful alternative approach for
cancer-related topics such as treatment optimization (UCAR; ÖZDEMIR; ALTUN, 2019;
YILDIZ; ARSHAD; BALEANU, 2018; FARAYOLA et al., 2020; KHAJANCHI; NIETO,
2019) and control in invasion systems (MANIMARAN et al., 2019; DAI; LIU, 2019;
SOWNDARRAJAN et al., 2019).

5.2 Methodology

By generalizing both integration and differentiation to a variable-order (SAMKO;
ROSS, 1993; ALMEIDA; TAVARES; TORRES, 2018), fractional models may rely on a
governing fractional ODE where order α is time-dependent. To assess whether this feature
can be explored in mathematical oncology, a variable-order fractional exponential model
is here proposed with α(t) contributing to the description of a multistep tumor growth
model. The variable-order acts as an index of memory (DU; WANG; HU, 2013), either
considering or disregarding characteristics aggregated during tumor evolution. To the best
of our knowledge, this concept was not yet employed to tumor growth and, therefore, it
can be explored to describe tumor dynamics in relation to clinical data, thus potentially
advancing decision-making schemes in oncology.

5.2.1 Variable order as an index of tumor memory

Figure 13 schematically illustrates a tumor evolution, accumulating genetic and
biomechanical alterations towards malignancy. As a living organism, its composition and
overall behavior change dramatically during its successive stages (PORTA; ZAPPERI,
2017). In material science, viscoelasticity memory has been successfully characterized
by fractional derivatives, which also extended to biological modeling of tissues (MAGIN,
2010). More recently, the concept of memory index has been considered (DU; WANG; HU,
2013) in terms of memory phenomena possibly involving a short and a long stage. The
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latter would be governed by a fractional derivative with order α indicating the level of
memory retention: the higher the index, the slower the memory loss.

Figure 13 – Path to malignancy and tumor heterogeneity stages.
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Fractional derivatives capture possible scale deformations, diffusive phenomena, or
they even take into account probabilistic effects (MACHADO, 2003; PODLUBNY, 2001).
These concepts were also extended to the idea of memory and non-locality that occur in
fractional models (HERRMANN, 2014; DU; WANG; HU, 2013). The dismissal of such
aspect could be one major fact undermining the performance of current ODE models.
Nonetheless, fractional models can still be incomplete inasmuch as a static (i.e. permanent)
arbitrary order can potentially make them overlook tumor heterogeneity in time during its
multiple stages. Accordingly, models are hereafter envisaged with a fractional variable-order
potentially capturing specific time-dependent tumor features and stages.

5.2.2 The variable-order exponential model

Among extant tumor growth ODE models, the exponential model is probably the
simplest one (WODARZ; KOMAROVA, 2014). In this model, if V (t) is tumor volume
at time t, then its growth rate is assumed as D1

t V (t) = λV (t), where D1
t is the classic

first-order time-derivative and λ > 0 is a proportionality parameter. For a fractional
derivative operator Dα

t , one can generalize this model as

M1 : Dα
t V (t) = λV (t) (5.1)

for 0 < α ≤ 1 and t > 0. M1 is a fractional model with a well-defined analytical
solution (HERRMANN, 2014; GORENFLO et al., 2014) given by

V (t) = V0Eα(λtα), (5.2)

where V0 is initial volume and Eα is Mittag-Leffler function presented in Eq. (3.4). In
order to deal with a multistep tumor growth model, the arbitrary order α may allegedly
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equally vary with time such as

M2 : D
α(t)
t V (t) = λV (t), (5.3)

where α(t) is a time profile.
Due to its suitability in tackling initial-value problems with respect to natural

phenomena, Caputo definition of fractional derivative is selected. Particularly, the operator
is defined by a type III variable-order left-hand Caputo derivative (ALMEIDA; TAVARES;
TORRES, 2018)

D
α(t)
t V (t) = C

0 D
α(t)
t V (t) = 1

Γ(1 − α(t))

∫ t

0
(t − τ)−α(t) d

dτ
V (τ)dτ, (5.4)

where τ is an auxiliary variable and Γ is the gamma function. The fractional differentiation
of power functions

D
α(t)
t tγ = Γ(γ + 1)

Γ(γ − α(t) + 1)tγ−α(t) (5.5)

can be applied when α is constant and also holds when α(t) is a time-dependent vari-
able (VALÉRIO; COSTA, 2011). Hence, this section aims at applying constant-order
fractional methods to solve Eq. (5.3), such as the power series method used in subsec-
tion 4.2.4.

Accordingly, if α(t) is assumed to vary slowly with respect to the sampling period
while time is sub-divided in separate windows, then the solutions for Dα

t V (t) = λV (t) hold
approximately and a variable-order model can be written as

V (t) ∼= V0Eα(t)(λtα(t)), (5.6)

with 0 < α(t) ≤ 1, 0 < t ≤ T , and the variable-order Mittag-Leffler function is given by

Eα(t)(λtα(t)) =
∞∑

n=0
λn tnα(t)

Γ(nα(t) + 1) , (5.7)

where Eα(t) = Eα(t),1 from the definition by Ortigueira, Valério and Machado (2019).
Despite all simulations for M2 have been carried using Eq. (5.6), hereafter referred to as
approximate analytical solution, a comparison with a numerical solution has been explored
in appendix 5.5.1 for validation purposes.

For this model, α(t) allegedly describes some of specific time-dependent tumor
features, even though such mathematical description is a priori unknown. Therefore, as an
exploratory approach, α(t) is tentatively approximated by profiles with polynomials based
on a Taylor series, namely α(t) = α0 (equivalent to a fractional constant-order model),
α(t) = α0 + α1t, α(t) = α0 + α1t + α2t

2 and α(t) = α0 + α1t + α2t
2 + α3t

3 (i.e., zeroth,
first, second and third order polynomials). Parameters α0, α1, α2 and α3 are obtained
by means of a numerical routine (described in subsection 5.2.4) fitting aforementioned
profiles to experimental data. After analyzing the behavior of the fitted polynomials while
gaining insight into which mathematical functions better describe α(t), a new profile is
proposed. The best-fitted α(t) profiles are analyzed in section 5.3 in terms of describing
tumor growth behavior.
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5.2.3 Fractional order profiles and variable growth rate

When coming across the present work, one may naturally inquire: why adopting a
variable-order approach? Why employing fractional calculus, a more sophisticated tool,
if one could simply use a variable growth rate λ(t) in an exponential model to describe
tumor evolution?

The concept of fractional order profile is used here under a perspective different
from a simple growth rate parameter. It is true that, pragmatically, the value of α will
ultimately dictate the growth rate, but the biophysical meaning of α is actually much
deeper. While a parameter λ(t) would only set a proportionality between tumor growth
rate and its volume V (t) at a given time t, the variable-order α(t) takes not only into
account the tumor evolution but also to what extent it should be considered during the
distinct growth stages. These ideas will be further explored in the analysis of the fitting
results, in section 5.3.

It is also important to highlight that parameters λ(t) and α(t) are mathematically
distinct, i.e., they play very different roles in the governing ODE. As a result, a traditional
(integer order) exponential model with distinct growth rates performs differently from the
one adopting a fractional exponential model with distinct order values.

As an illustration of this distinct behavior, Fig. 14, compares the exponential model
M1 of Eq. (5.2) with ±10% perturbations in the parameters λ and α. In Fig. 14(a), a
classical exponential model (i.e., with α = 1) is simulated with λ changing about a reference
λm. The relative differences between altered and unaltered parameters are calculated as

Relative difference(%) = |V0Eα(λmtα) − V0Eα(λtα)|
V0Eα(λmtα) × 100%

and rise up to 35% due to just a 10% increase in λm (i.e., λ = 1.1λm).
In Fig. 14(b), the same type of test is applied for the fractional order αm while

maintaining λ unaltered. The relative difference between the curves, herein calculated as

Relative difference(%) = |V0Eαm(λtα) − V0Eα(λtα)|
V0Eαm(λtα) × 100%

can be considerable (surpassing 150% between αm and 1.1αm), implying that variations in
each parameter have different influence on the tumor growth curves. These comparisons
indicate that a variable order model can achieve very different results (which is potentially
interesting) from those exhibited by exponential models using a variable growth rate.

5.2.4 Numerical methods and clinical data

The clinical data used to best-fit the variable order models in subsection 5.2.2 are
the same described in subsection 4.2.9. The algorithm routine used to fit the variable order
model is schematized in Figure 15. The numerical method is practically equal to the one
used before, with only a few modifications concerning the different parameters to be fitted.
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Figure 14 – Comparing tumor growth described with M1 and Eq. (5.2) with ±10%
variation in the values λ (left) and α (right).

(a) α = 1 and λm = 0.02465

λ = 0.9 λm

λ = λm

λ = 1.1 λm

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

(b) αm = 0.61315 and λ = 0.09081

α = 0.9 αm

α = αm

α = 1.1 αm

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

t (days)

R
el
at
iv
e
d
if
fe
re
n
ce

(%
)

0 20 40 60 80 100 120

0

50

100

150

t (days)

R
el
at
iv
e
d
if
fe
re
n
ce

(%
)

Source: Valentim et al. (2021).

Constraints were chosen to guarantee numerical stability and closeness to char-
acteristics being simulated. Accordingly, growth rate λ was forced to be positive and
variable-order α(t) ranged between 0 and 1 regardless of the profile being used. As ad-
justable parameters distinctly influence α(t), aforesaid conditions impact differently on
these model parameters, which must thus be specifically constrained to each profile.

The same evaluation indexes described in subsection 4.2.9 were applied, with the
exception of SMAPE. The fitting evaluation herein conducted employed the 14 extant
points from the experimental time series in Table 3 to find the parameters yielding the
minimum SSR possible. The best-fitted variable-order models for each profile, which can
be used to analyze tumor behavior, are presented in section 5.3. A visual description of
the optimization in the algorithm employed in this section is included in appendix 5.5.2.

5.3 Results and discussion

This section explores the results from applying the algorithm described in subsec-
tion 5.2.4 to the extant n = 14 points of clinical data listed in Table 3. Firstly (before
dealing with variable-order model M2), integer and fractional constant-order exponential
models M1 were best-fitted using Eq. (5.2). Evaluation indicators for optimal config-
urations are shown in Table 6 and they can be used as benchmark performances that



63

Figure 15 – Algorithm to obtain the best-fitted model parameters.
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variable-order models should excel to be useful.

Table 6 – Results and evaluation indicators concerning classical and fractional exponential
models, given by Eq. (5.2), best-fitted against clinical data.

Best-fitted parameters Evaluation indicators
Model α λ SSR RMSD R2

Classical 1 0.024648 4.391 × 105 ±177.1 0.9703
Fractional 0.61315 0.090810 2.029 × 105 ±120.4 0.9863

Source: Valentim et al. (2021).

Best-fitted profiles for variable-order exponential model M2 given by Eq. (5.6)
are listed in Table 7. Being a fractional constant-order parameter, the zeroth order α(t)
naturally yields the same results as those from the fractional model reported in Table 6.
Referring to growth rate, in those fittings parameter λ is kept at λ = 0.090810, which is the
value obtained when fitting the fractional constant-order model M1 (as shown in Table 6).
Variable-order models perform better than either integer or constant fractional order
formulations with SSR error decreasing inversely with the order of polynomial profile α(t).
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Such trend indicates that α(t) may be successfully described by a high-order polynomial
or eventually by a specific function (e.g. trigonometric).

Table 7 – Results and quality indicators concerning the variable-order exponential models
given by Eq. (5.6) best-fitted against all points from available clinical data.

Best-fitted parameters (λ = 0.090810) Evaluation indicators
α(t) profile α0 α1 α2 α3 SSR RMSD R2

Zeroth order 0.61315 - - - 2.029 × 105 ±120.4 0.9863
First order 0.61832 −5.0525 × 10−5 - - 2.001 × 105 ±119.5 0.9865

Second order 0.50484 2.4386 × 10−3 −1.3280 × 10−5 - 1.365 × 105 ±98.76 0.9908
Third order 0.63924 −2.6285 × 10−3 4.7636 × 10−5 −2.3570 × 10−7 1.257 × 105 ±94.76 0.9915

Source: Valentim et al. (2021).

As an illustration of how SSR index behaves for the variable-order model M2,
Figure 16 presents the error curves around the best-fit model parameters with α(t)
approximated by a third order polynomial. In those figures, the red dot indicates the
lowest SSR and, accordingly, the best-fitted parameters for each profile. In these plots,
only two calibrating parameters are varied at each time while remaining parameters are
kept constant for visualization purposes.

Behavior of α(t) on best-fitted variable-order is better captured when the corre-
sponding models M2 are plotted against the fitted clinical data, as shown in Figure 17.
Table 7 shows that SSR indicator is considerably smaller when α(t) is approximated by
second and third order polynomials. In fact, as the order of the polynomial approximating
α(t) increases, its behavior suggests that it may be satisfactorily modeled by some type
of periodic function (i.e. profile). While higher order polynomials might still be adopted
(probably yielding sequentially better results as the polynomial order increases), fitting
of these long expressions requires much more computational effort. Instead, a periodic
profile is proposed as α(t) = α0 + α1 sin(α2t + α3), which may potentially capture the
variable-order capable of better describing the tumor growth given by the fitted clinical
data.

Two different propositions were envisioned for the periodic profile, whose fitting
results are presented in Table 8. The first one considers only α0, α1, α2 and α3 as adjustable
parameters, maintaining λ = 0.090809 constant, as in profiles approximated by polynomials.
The second proposition considers λ as an additional adjustable parameter. Both periodic
time profiles α(t) outperform the previous ones, achieving less than half of SSR error.
Figure 18 presents the best-fitted periodic variable-order models M2 against tumor clinical
data. Figure 19 shows SSR error curves for optimal parameters.

If α(t) is interpreted as memory index, then it may partially translate the so-called
hallmarks of cancer (HANAHAN; WEINBERG, 2011) (which are capabilities acquired in
most types of human tumor cells, heavily impacting cancer formation) into mechanistic
characteristics a mathematical model can grasp. In other words, variation of α(t) may be
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Figure 16 – SSR log-scaled plots: lowest error regions around the best-fitted parameters
(indicated by the red dot) for variable-order α(t) approximated by a third order

polynomial.
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related to activation or even development of specific hallmarks during tumor evolution.
When α ≈ 1 tumors have full memory and follow an exponential increase “programmed”
in their original cells (activating hallmarks related to the evasion of growth suppressors
and sustainability of proliferative signaling). On the other hand, when α is lower, tumors
evolve at a slower growth rate, potentially due to challenges from the micro-environment
(e.g. shortage of nutrients, extracellular matrix resistance). In this case, they “forget”(or
inactivate) part of their original programming, developing traits suitable to their current
evolution stage (hallmarks related to angiogenesis and invasion).
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Figure 17 – Tumor growth: comparison between clinical data (dots) and best-fitted
variable-order models (solid line) given by Eq. (5.6) with α(t) approximated by

polynomials.

(a) α(t) as a zeroth order polynomial.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

(b) α(t) as a first order polynomial.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

(c) α(t) as a second order polynomial.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

(d) α(t) as a third order polynomial.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

Source: Valentim et al. (2021).

Figure 18 – Tumor growth: comparison between clinical data (dots) and the best-fitted
variable-order model (solid line) given by Eq. (5.6) with α(t) approximated by the

periodic profile α(t) = α0 + α1 sin(α2t + α3).

(a) Fixed λ.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

(b) Adjustable λ.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

t (days)

V
(m
m
3
)

Source: Valentim et al. (2021).

The variable-order α(t) is better approximated by a periodic profile. In this case,
when fitted clinical time series begins, one might argue that tumors no longer have a sharp
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Table 8 – Results and quality indicators concerning the variable-order exponential models
given by Eq. (5.6) with periodic profiles best-fitted against available clinical data.

Best-fitted parameters Evaluation indicators
α(t) profile λ α0 α1 α2 α3 SSR RMSD R2

Periodic (fixed λ) 0.090808 0.61476 7.0478 × 10−3 0.18681 3.3215 7.169 × 104 ±71.56 0.9951
Periodic (adjusted λ) 0.057568 0.74934 −9.5074 × 10−3 0.17506 1.3265 4.567 × 104 ±57.11 0.9969

Source: Valentim et al. (2021).

memory of perfect exponential growth but a partial index given by α0. Therefore, such non-
integer order does not provide a pure exponential growth, but a slower one. Furthermore,
tumor memories are not immutable and their variation potentially characterizes dormancy
periods and/or which programmed cancer hallmark prevails at a different evolution stage.
This is modeled as an oscillatory behavior for α(t) that alternates between faster and
slower growth rates.

Future investigation might relate variable-order profiles to the type of tumor being
modeled. In view of their particular properties, different cancers are prone to be modeled
by distinct profiles. As results in this work suggest, periodic profiles (of variable non-integer
order) seem to better model breast cancer while linear, parabolic, and other functions
may be suitable to other tumors. This issue might be prospectively explored by relying on
different clinical data sets.

5.4 Conclusions

This chapter proposed variable-order α(t) profiles in the model description of
multistep tumor dynamics. Time-dependent α(t) may be interpreted as a variable memory
index, exercising a different behavior compared to traditional growth parameters in
exponential models.

The variable-order α(t) profiles herein investigated performed very well when
describing multi-step tumor growth (i.e. best-fitted scenarios). When employing a variable-
order approximated by a periodic function, the model seamlessly followed almost all clinical
data points, offering interesting interpretations relating memory index and multistage
characteristics acquisition.

The literature seemingly lacks studies on modeling multistep tumor growth under
a variable-order fractional approach. This study presents encouraging and opening results
for further discussion. Power and flexibility of variable orders may favor the adoption
of fractional ordinary differential equations for describing tumor growth, potentially
contributing to decision making in clinical applications.

Further exploration of this work is thus required upon more available datasets.
In future studies, the periodic variable-order herein examined should be compared with
different clinical data. Possible relations between variable-order profiles and specific types of
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Figure 19 – SSR log-scaled plots: lowest error regions around the best-fitted parameters
(indicated by the red dot) for variable-order α(t) approximated by

α(t) = α0 + α1 sin(α2t + α3) and an adjustable λ.
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cancer should be investigated. Other fractional ODE models (e.g., logistic and Gompertz)
could also be analyzed under the optics of variable-order profiles. Furthermore, the
possibility for new profiles is vast, including combinations of those herein studied and
others.

5.5 APPENDIX: Variable-order models verification

5.5.1 Numerical comparison

The validity of the approximate analytical solution given by Eq. (5.6) was verified
against a numerical solution for 0 < α(t) ≤ 1 and 0 < t ≤ T , with T = 120 days. It should
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be highlighted that such limit does not imply that solutions are necessarily invalid for
t > T , but care must be exercised when using α(t) for an overly long t (e.g., linear and
parabolic profiles can make Eq. (5.6) invalid if α1 < 0 or α2 < 0 and t is large enough to
α(t) reach zero).

For the numerical solution, a modified version of the Adams-type predictor-corrector
scheme proposed by Diethelm et al. (DIETHELM; FORD; FREED, 2002; DIETHELM et
al., 2005) was implemented (so to accept variable orders) and the approximate analytical
solutions given by Eq. (5.6) were compared for each best-fitted α(t) profile. The modified
algorithm solved the fractional ODE given by Eq. (5.3) for N sub-divided time periods.
Each period considered a constant αtn given by the profile α(t) for the instant tn at the
beginning of each time step. If we consider the fractional ODE as

Dα
t V (t) = λV (t) = f(t, V (t)), (5.8)

for each sub-divided time period N with constant αtn , the predictor is defined as

V P
h (tn+1) = V0 + 1

Γ(αtn)

n∑
j=0

hαtn

αtn

((n + 1 − j)αtn − (n − j)αtn )f(tj, Vh(tj)), (5.9)

where h = T/N is the sampling time period, or time step, and the corrector is defined as

Vh(tn+1) = V0 + hαtn

Γ(αtn + 2)f(tn+1, V P
h (tn+1)) + hαtn

Γ(αtn + 2)

n∑
j=0

aj,n+1f(tj, Vh(tj)), (5.10)

and

aj,n+1 = nαtn +1 − (n − αtn)(n + 1)αtn + (n − j + 2)αtn +1 + (n − j)αtn +1 − 2(n − j + 1)αtn +1.

In order to assess how the approximate analytical solutions progress in comparison
to numerical counterparts, Eq. (5.6) was simulated with some of the best-fitted α(t)
profiles adopted in the thesis along with corresponding numerical solutions using N = 100
time steps. The simulated profiles were polynomials of first (α(t) = α0 + α1t), second
(α(t) = α0 + α1t + α2t

2) and third order (α(t) = α0 + α1t + α2t
2 + α3t

3) and a periodic
profile (α(t) = α0 + α1sin(α2t + α3)).

The results indicated an agreement between approximate analytical and numerical
solutions, as presented in Figure 20, where the left side shows tumor evolution and the
right side presents the relative error between them, given in percentage form and calculated
as

Relative error(%) = Analytical solution − Numeric solution
Analytic solution × 100%.

Even with a small number of time steps, the maximum relative error obtained in all
cases was only 0.4%. Such result not only corroborates the notion that the variable-order
model given by Eq. (5.6) is valid for the studied profiles, but also suggests that it may be
extended for other α(t) profiles.
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5.5.2 SSR index trajectory for a given start value

In the numerical routine presented in subsection 5.2.4, one finds the best-fitted model
parameters based on the minimal SSR values yielded. For each starting value, an iterative
process tries to numerically approach the local minimum and identify corresponding free
parameters.

As an illustration of this process Figure 21, represents the trajectory of minimal
SSR indexes for some variable-order profiles. In these plots, the blue point represents the
start value, the yellow points refer to iterative steps (i.e. intermediate values), and the
red point is the lowest SSR error (i.e. it refers to best-fitted parameters). One must note
that these trajectories are sui generis, presented here to illustrate part of the algorithm in
Figure 15. For that reason, they were generated after the fitting process, with convenient
start values.
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Figure 20 – Comparison and relative error between approximate analytical (Eq. (5.6))
and numerical solutions for best-fitted variable-order α(t) approximated by first (a),

second (b), third (c) order polynomials, and a periodic profile (d).
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Source: Valentim et al. (2021).
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Figure 21 – Illustration of the log-scaled SSR trajectory during the optimization routine.
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(c) α(t) as a periodic profile.
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6 CELLULAR-AUTOMATON MODEL FOR TUMOR GROWTH DYNAMICS:
VIRTUALIZATION OF DIFFERENT SCENARIOS

This chapter reproduces and adapts the paper entitled "Cellular-automaton model
for tumor growth dynamics: virtualization of different scenarios", which is part of the study
conducted over the doctorate and was published in the journal Computers in Biology and
Medicine (Elsevier) (VALENTIM; RABI; DAVID, 2023). Until this point in the thesis,
investigation has only addressed dynamic (i.e. time dependent) population models, with
no consideration of spatial variability.

In this context, cell-based models allow monitoring independent single parameters,
which might vary in both time and space. By relying on extant tumor growth models in
the literature, this chapter introduces cellular-automata simulation strategies that admit
heterogeneous cell population while capturing both single-cell and cluster-cell behaviors.
In this agent-based computational model, tumor cells are limited to follow four possible
courses of action, namely: proliferation, migration, apoptosis or quiescence.

Despite the apparent simplicity of those actions, the model can represent different
complex tumor features depending on parameter settings. This study virtualizes five dif-
ferent scenarios, showcasing model capabilities of representing tumor dynamics including
alternate dormancy periods, cell death instability and cluster formation. Implementa-
tion techniques are also explored together with prospective model expansion towards
deterministic features.

The proposed stochastic cellular automaton model is able to effectively simulate
different scenarios regarding tumor growth effectively, figuring as an interesting tool
for in silico modeling, with promising capabilities of expansion to support research in
mathematical oncology, thus improving diagnosis tools and/or personalized treatment.

In this context, section 6.1 introduces the study while the chosen methodology
is divided into three parts: section 6.2.1 presents the mathematical background and
definitions, 6.2.2 describes biological constructs and model assumptions, and section 6.2.3
reports programming aspects and computational implementation. Next, the virtualization
of several case scenarios is conducted and discussed in 6.3. In 6.4, we explore potential
shortcomings of this cellular automaton and how it is being developed as a grounding
framework for a later-to-be-implemented hybrid model. In 6.5 we state final remarks.

6.1 Introduction

In the last decades, mathematical concepts have been increasingly applied to onco-
logical phenomena not only to better understand the progression of related diseases but
also to develop new methods of diagnosis and treatment, contributing to the emergence of
a new research area (ROCKNE; SCOTT, 2019; HAMIS; POWATHIL; CHAPLAIN, 2019;
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BYRNE, 2010). Mathematical oncology comprehends the development and application of
models to phenomena ranging from neoplastic growth to personalized treatment (JACK-
SON; KOMAROVA; SWANSON, 2014). As a strategic advantage, mathematical models
can test and reproduce several scenarios either unfeasible or impossible through either in
vivo or in vitro experiments, which turns it into an important analysis tool as clinical tests
in lab animals or humans are time and resource consuming (KASHKOOLI et al., 2021).

Mathematical models in oncology may be categorized into two large groups: data-
driven and physics-based models. Considering the prevailing scenario of elevated difficulty
(in terms of resources and feasibility) in obtaining consistent data from oncologic patients,
the later category, also called phenomenological or mechanistic approach, has advanced
in modeling related phenomena. Examples including ordinary and partial differential
equations (ODEs and PDEs, respectively) illustrate the success of those approaches, such
as strategies based on ecological models and the underlying of general avascular tumor
growth (SAVAGEAU, 1980; SACHS; HLATKY; HAHNFELDT, 2001; SARAPATA; DE
PILLIS, 2014). With their relative simplicity, ODE-based approaches enable analytical
solutions and have conveniences that motivate their use until today (WODARZ; KO-
MAROVA, 2014; BENZEKRY et al., 2014; HARTUNG et al., 2014). On the other hand,
PDEs can model tumor growth into surrounding tissue (POLOVINKINA et al., 2021).
Some models describe tumors as a fluid or mixture via transport equations (BYRNE;
PREZIOSI, 2003), while others employ transport phenomena to model metastatic processes
and beyond (HARTUNG et al., 2014; XU; VILANOVA; GOMEZ, 2016).

When a model requires specific cellular structure and probabilistic nature involving
cell proliferation, equation-based approaches may not suffice. In that context, Anderson
et al. (2007) claim that while continuum mathematical models have been successfully
employed to describe several portions of matter, these portions in nature are actually
particles and cells, thus discrete. In the wake of the impressive progress of biochemistry and
biology concepts on genetics, sub-cellular levels and inner works, computational-enhanced
mathematical oncology faces the difficult task of transforming specific portion-sized data
into complex information describing emergent higher-level multi-scale cellular phenomena.

In recent years, many cell-based models have been proposed to face such chal-
lenge (DEUTSCH et al., 2021; WEERASINGHE et al., 2019). Cell-based or discrete models
are organized frameworks that keep track of fully independent individual parameters vary-
ing spatially and temporally, reflecting the heterogeneity and complex emergence found
in cancer phenomena. Computationally, they can rely on different approaches including
Monte-Carlo simulations, energy minimization techniques, volume conservation laws, and
motion rules (ANDERSON; CHAPLAIN; REJNIAK, 2007).

If these models follow a structural or grid organization, they are considered lattice-
based models, which are categorized according to the number of cells that each lattice cell
can hold (METZCAR et al., 2019). Lattice-gas cellular automata (LGCA) models admit
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more than one cell per lattice (being suitable for larger systems). On the other hand, if
the model admits that a single cell can occupy many spots, it is thus ideal for modeling
sub-cellular systems (JAMALI; AZIMI; MOFRAD, 2010). Finally, if each cell can occupy
a single lattice, it is a regular cellular automaton (CA) model (METZCAR et al., 2019).

Numerical simulations involving cell-based models are often referred to as in-
silico modeling because of their similarity and logical extension of in vitro experimen-
tation (JEANQUARTIER et al., 2016). Concerning regular cellular automaton models,
relatively simple implementations can go a long way in providing emergent complex be-
havior. Enderling et al. (2009) established only a basic set of rules concerning proliferation
and migration rates for each type of tumor cell (regular or stem) in a CA and investigated
the virtualization of very different emergent scenarios when changing these rules, including
cell clustering and tumor dormancy. Later, Poleszczuk and Enderling (2014) improved the
model by implementing it with high-performance computational techniques. These two
studies arise as the grounding basis of the automaton model herein developed.

6.2 Methodology

6.2.1 Mathematical aspects

Since a cellular automaton is composed of a multitude of equally identifiable cells
and for every cell a certain set of neighbors is used to calculate a new state, the resulting
network structure of neighborhood relations is a further important characteristic of cellular
automata. In order to describe the method adopted in this study, we initially revisit the
definition and some concepts related to cellular automata.

6.2.1.1 Basic concepts of cellular automata

In a simplified manner, a cellular automaton can be typically defined as a basic
structure considering the quadruple (C, n, S, f) as follows (DEUTSCH; DORMANN,
2005):

• C is a set of cells, not required to be finite.

• n : C×C → 0, 1 is a neighborhood function that can be seen as a relationship (usually
reflexive and symmetric) between cells. This function shows which pairs of cells are
neighbors, that is, the geometry of the cell organization. Furthermore, n must satisfy
the neighborhood size independence condition |N(c0)| = |c ∈ C : n(c0, c) = 1| = N ,
which is constant for every c0 ∈ C, i.e., the size of the neighborhood is the same for
all cells.

• S is a set of states. Each cell will have an associated state, in each moment.

• f : S|N | → S is a transition function. The transition function is a core of the CA
dynamics and is commonly expressed through rules that define the state of the cell
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in the subsequent time instant from the current state of the cell neighbors. The set of
cells C with the neighborhood function n defines the structure of the cell space. The
simplest CA model can have binary cells (e.g., two states: tumor or healthy) (HU;
RUAN, 2003). More commonly, multiple states are represented by a set of integer
values (0, 1, 2, . . . ), each having an appropriate physical or biological interpretation
(see sections 6.2.2.1 and 6.2.2.2 for our model’s neighborhood geometry and cell
states).

6.2.1.2 Stochastic cellular automata

In some situations, such as when evolution operators are stochastically approxi-
mated, the resulting states have stochastic character. Random or stochastic states can
be mathematically represented as random variables. Stochastic cellular automata can be
defined in the following way, which settles them between Bayesian networks (FRIEDMAN
et al., 2000) and multi-parameter stochastic processes (KHOSHNEVISAN, 2002):

• M is a finite set of cells.

• N is a neighbourhood mapping N : M → Mk.

• S is a separable measurable Hausdorff space (S, B) with random variables St,m from
a probability space (Ω, U , P) to (S, B).

• K is a Markov-kernel : SK × B → [0, 1], such that P(St+1,m ∈ B|St, N(m) = s) =
K(s, B).

An equivalent definition of stochastic cellular automata can be formulated through
filtrations of σ-algebras based on the graphical structure of the neighbourhood relations
(SCHNECKENREITHER, 2014). Some direct conclusions from stochastic cellular automata
include that the global stochastic process, (describing the simultaneous transition of the
states of all cells), is a Markov process itself. Furthermore a Chapman-Kolmogorov like
equation can be formulated for stochastic cellular automata.

In addition, stochastic processes are intrinsically connected to cellular automata
modeled through multi-agent systems (also called agent-based modeling) (CROOKS;
HEPPENSTALL, 2012). In those models, micro-scale autonomous agents (cells) follow
simple and programmable actions and cascade into different emerging processes, thus
creating complex macro-scale systems (tumors) with varied behavior (WANG et al., 2015).
In this paper, we explore further our model’s behaviors and stochastic characteristics in
sections 6.2.2.3 and 6.2.2.4.

6.2.2 Biological constructs and considerations

The agent-based cellular automaton model developed in this study was based on
a mix of characteristics in (ENDERLING et al., 2009; POLESZCZUK; ENDERLING,
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2014) and follows the mathematical groundings in section 6.2. It is a stochastic framework
in which a single cell (agent) originates a tumor that can have several different features
depending on model configurations and its parameters.

The model is discrete both in time and space. Regarding the latter, section 6.2.2.1
describes lattice geometry and model neighborhood. Section 6.2.2.2 presents the possible
states for each agent or cell in the model. The simulation advances in steps of ∆t days,
where every cell in the tumor will obligatorily present one of the behaviors described in
section 6.2.2.3, which also describes the main parameters of the model. Finally, as we deal
with a stochastic model, the automaton results are discussed in section 6.2.2.4 in terms of
averages of simulation batches.

6.2.2.1 Lattice and neighborhood geometry

In this work, a 2D lattice is considered in which each element can hold up to one
cell at a time. The length of each lattice element is 10µm, which is comparable to the size
of a regular cell. A 2D Moore neighborhood is considered, implying that a tumor cell can
move to any adjacent free place during a computational time step, as shown in Fig. 22a.
When there are no free lattice positions (i.e. empty space) surrounding the cell, it cannot
move nor proliferate thus staying quiescent, as depicted in Fig. 22b.

Figure 22 – Representation of the computational lattice, where each space of 100µm2 can
hold up to one cell (2D Moore).

(a) If there are available spaces, the cell can
move or proliferate to any of the adjacent

positions.

(b) If there are no available spaces, the cell
becomes quiescent until an adjacent cell

either moves or dies.

Source: Valentim, Rabi and David (2023).

6.2.2.2 Cell states

The model comprehends a heterogeneous population of tumor cells: they can either
be a regular tumor cell (RTC) or a stem tumor cell (STC). Both healthy and dead cells
are not accounted in this approach.



78

There are some crucial differences between those two types of cells. The vast majority
of tumor cells will usually be RTCs, which have a maximum proliferation potential pmax,
thus generating a finite number of offspring cells. They can only give birth to RTCs and
eventually may die (either by programmed death, apoptosis, or when they reach their
maximum replication potential). In those cases, the tumor cell is removed from the lattice.
Also called nonclonogenic cells, RTCs are visually represented in this model in colors
ranging from red (maximum proliferation potential) to black (exhausted cell). By relying
on this graphical pattern, this mechanism is sketched in Fig. 23.

Figure 23 – A graphical representation regarding the proliferation potential of RTCs.

Source: Valentim, Rabi and David (2023).

On the other hand, STCs completely lack internal regulatory mechanisms regarding
cell death, thus being permanent. They have an infinite proliferation capacity and will
continue replicating independently of how may divisions they have endured. These cells
can be categorized in clonogenic or true stem cells. The first group can only give birth to
regular (i.e. mortal) cells with limited proliferation potential. The latter can perform an
asymmetric division in which the daughter is an RTC, but might also generate an identical
true stem cell. The mechanisms regarding the differences between aforementioned cells
are depicted in Fig. 24, in which STCs are represented in yellow and the probability of a
symmetrical division from a true stem cell is PS.
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Figure 24 – Cell populations included in the model. Outcomes of an evolving tumor will
depend on its original progenitor cell and if it is either nonclonogenic, clonogic, or stem.

Source: Valentim, Rabi and David (2023).

6.2.2.3 Model mechanics and cell behavior

Every cell in the model will obligatorily present one of the following behaviors
during each time step. At first, every cell has a chance PA of undergoing apoptosis. This is
usually a very low rate, since tumor cells can generally activate a number of processes to
avoid cell death (HANAHAN; WEINBERG, 2011). Naturally, PA = 0 for every STC since
they are allegedly immortal.

If the cell endures, it has a proliferation probability PP = CCT ∆t/24, where CCT

is cell cycle time. This probability suggests that a cell will replicate more or less according
to its natural cycle. If the original cell is a true STC, it will have a low, but essential,
chance PS of generating another identical STC.

If the cell neither dies nor replicates, it has a chance Pµ = µ∆t of migrating
according to its displacement capacity µ. In case the cell fails upon all these probabilities
within the same time step, it stays quiescent or dormant. This state of dormancy is also
achieved if the cell is completely surrounded and lacks free space for either proliferating or
moving.

Figure 25 sketches the four possible mechanisms for each cell during any time
step, along with their probabilities. By including ∆t, every probability is adjusted to the
respective time scale used in the simulation. One exception is the chance for symmetrical
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division by stem cells because the time scale has already been considered when calculating
its proliferation chance.

Figure 25 – During each time iteration, a tumor cell obligatorily triggers one of four
events: apoptosis, proliferation, migration, or quiescence. These events are temporarily

exclusive (i.e., a cell will only perform one of them during a single time step).

Source: Valentim, Rabi and David (2023).

The flowchart in Fig. 26 summarizes the logic developed for this model and
implemented in the algorithm discussed in section 6.2.3. While this figure provides a
general overview of how each cell can act during a simulation time step, some specific
details are addressed in section 6.2.3, such as the approach regarding domain/lattice
extension.
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6.2.2.4 The stochastic process

Cell behavior described in section 6.2.2.3 is modeled through probabilities so that
the cellular automaton herein considered is a stochastic process. Therefore, a batch of
simulations must be carried out for any investigation (study) using the model.

Some authors argue that for general trends and ideas a low number of simulations
- such as five - is enough (ENDERLING et al., 2009) whereas for more delicate testing
(or performance evaluation) a number from 50 to 100 should suffice (POLESZCZUK;
ENDERLING, 2014). This necessity for replications casts a light on the importance of
developing a simulation code with as low computational effort (in terms of CPU time and
memory) as possible, which is a programming goal discussed in section 6.2.3. An alternative
to decrease the number of simulations is to implement some deterministic characteristics
to the model, thus transforming it into a hybrid approach. For more information on the
latter, please refer to section 6.4.

In order to express overall results from the batch of simulations, one can use
averages and standard deviations to describe cells population dynamics, with RTC and
STC populations being described separately. On the other hand, tumor development in
space cannot be mathematically described using averages. Therefore, in order to spatially
represent a virtualized tumor one must elect the most representative replicate from the
simulation batches (i.e. one whose average diffusivity, RTC and STC counts are closer to
average values).

6.2.3 Computational implementation

The cellular automaton herein described was coded in Python, chosen as program-
ming language due to its versatility and accessible learning curve. Even though other
languages such as Fortran, C and C++ could be faster to tackle procedures such as array
swapping and random events, Python has a number of libraries that greatly improve both
code accessibility and readability without jeopardizing its speed.

In (POLESZCZUK; ENDERLING, 2014), some high-performance techniques are
presented towards the development of a cellular automaton for tumor growth. According
to their tests regarding speed and memory, an improved code containing their suggestions
would greatly improve performance in comparison to a “naive” code. Overall, the authors
defend the use of specific libraries of the target language instead of trying to build
customized code (e.g. use of C++ Standard Template Library, STL, to tackle random
events). Many of their suggestions have been applied in the present automaton, with a
few occasional caveats and adaptations since the programming languages are different
(e.g., numpy was used instead of STL). Those suggestions are briefly discussed in this
section along with some details regarding code implementation. The final code used for
simulations in section 6.3 has been shared on a public GitHub repository (VALENTIM,
2022).
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6.2.3.1 The coded lattice

A squared matrix represents the 2D-lattice in the model described in section 6.2.2.1,
Therefore, each tumor starts as an empty matrix with a single cancerous cell at its center.
The numpy library then provides the data structure for the matrix, namely a 2D array
with only integer values.

In the tumor matrix, a zero represents an empty space while a nonzero element is
a tumor cell. Although one could simply use a matrix of zeros and ones, Poleszczuk and
Enderling (2014) suggest using a so-called coded lattice, in which each element value in the
tumor matrix not only indicates the presence of a cell but also provides some additional
information without relying on extra memory. In this case, each element value represents
the proliferation potential of the corresponding cell positioned at that site. Following this
approach, after each successful replication of a nonclonogenic cell, its current proliferation
potential is updated by simply subtracting one. Besides, by looking at each element value
in the matrix, one can quickly grasp how many divisions that corresponding cell can still
endure.

In the coded lattice, STCs are characterized by the smallest integer value above
the maximum proliferation potential for that tumor setting. For instance, if a tumor with
pmax = 10 is simulated, new RTCs will be represented by the value 11 and will decrease
this value by one for every successful division (generating a cell with an identical value).
Then, in this simulation STCs would be represented by the value 12. In the algorithm, one
would have to establish that, if an element of the tumor matrix is higher than 11, then it
is a stem cell and normal rules do not apply to it (such as apoptosis). Figure 27 illustrates
that process.

Figure 27 – An example of a coded lattice. Colors represent the convention adopted in
Figs. 23 and 24.
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Source: Valentim, Rabi and David (2023).
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6.2.3.2 Loops and array operations

When using a numerical matrix as lattice, one needs to sweep every row and
column in order to access every element. One usual way to program such a routine is using
nested loops, which is a very slow computational task in Python. An alternative is to use
array operations, which perform, for instance, algebraic calculations on entire arrays and
matrices.

Nevertheless, these operations do not fit very well with the systematic time-
incremental procedure that a cellular automaton generally follows, particularly because
the code will need to rely on random events to determine how a cell will act. Therefore,
as a middle-ground solution, one can opt for using the matrix-specific numpy command
matrix.nonzero, which will quickly scan the matrix and return row and column indexes
related to every tumor cell (i.e., all elements greater than zero).

Next, a single array pertaining the coordinates from all tumor cells in the tissue
will be created. This will enable a single iterative loop to check the content in the main
tumor matrix according to the coordinates in the array. This approach is generally faster
than relying on nested loops to find tumor cells in this matrix.

6.2.3.3 Random ordering and neighbor selection

There are multiple ways of having access to random numbers using Python. One
usual way is through the package random and drawing a pseudo-random number between
0 and 1 each time the chance of a cell fulfill some action is tested. Another approach is to
use the numpy library to draw a full array of pseudo-random numbers at once. The latter
can be faster than the former when the length of the referred array is sufficiently large.

In our model, one always knows the number of tumor cells at the beginning of
each time iteration. Therefore, one can use numpy.random to generate an entire array
of random numbers, thus generating random chances for apoptosis, proliferation, and
migration for each cell at the beginning of each time iteration. Those chances are stored in
three separate arrays and compared to the respective set probabilities when the behavior
of each cell is tested and decided.

For a model to describe different tumor geometries, random arrays can also be
applied when considering the direction along which the tumor will effectively grow. In this
cellular automaton, such direction is considered twice, first when the coordinate array is
swept and behavior is attributed to each cell. If any specific direction is arbitrarily chosen,
it will interfere in growth orientation (i.e. left to right). Therefore, the coordinates regarding
cells can be randomly accessed during each time step by means of numpy.random.shuffle
command, guaranteeing that no geometric shape will be favored during tumor evolution.

The second time occurs when checking for free adjacent spots (or neighbors) each
time a cell might proliferate or move. An array containing the directions for each of the 8
possible neighbors (see Fig. 22a) is shuffled every time a cell behavior is activated. Then,
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tumor matrix is checked for each possible location, returning the content when the first
free lattice is matched. If all adjacent spots are occupied, cell quiescence command is
passed.

It is worth mentioning that although this approach of not checking every neighbor
before acting is faster according to Poleszczuk and Enderling (2014), it may be problematic
when extending the stochastic cellular automaton model to a hybrid model. In this case
one would need to have information on all neighbors surrounding a tumor cell, since it
may "prefer" to migrate to a place with a higher nutrient availability.

6.2.3.4 Dynamically growing domain

A frequent problem when modeling tumor growth is that one does not know a
priori the final size of the neoplastic mass. One would have to know beforehand properties
such as cell density and diffusivity, besides emergent complex dynamics. Therefore, it may
be difficult to establish tumor matrix size in the cellular automaton.

Poleszczuk and Enderling (2014) suggest that a dynamically growing domain could
be used as a workaround for such problem. Therefore, the present model starts every
simulation with a small 11x11 matrix whose center hosts the progenitor tumor cell. After
every new proliferation or migration, the model keeps track of how close every tumor
cell is from this domain/matrix borders. The automaton is coded to add a few rows and
columns to tumor matrix and re-center the old lattice to the new one every time that a
tumor cell reaches the penultimate empty spot in every lattice direction. This approach
allows the model to effectively deal with different types of tumor configuration by relying
on very large matrices only when really necessary.

Such approach has an important caveat. As this automaton was developed aiming
at a future expansion to a hybrid model, dealing with expanding matrices lacking border
definitions would be a problem when synchronously considering PDEs (whose borders are
really important). Nevertheless, we decided to maintain this approach, relying on linear
transformations and scaling tools to handle the future expansion.

6.2.3.5 Dense vs. sparse matrices

Even when using dynamically growing domains, the tumor matrix customarily
has a high number of zero elements (characterizing free space). Therefore, it is natural
to think of employing sparse matrices since those are commonly used in simulations
of mathematical problems (such as PDE solving). However, when sparse matrices were
implemented in this model, they lagged considerably behind of other approaches during
empirical speed tests (check section 6.2.3.6 for more information). Accordingly, in the
referenced study (POLESZCZUK; ENDERLING, 2014) there is no mention to using sparse
matrices to increase speed performance.
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One way to justify such speed disadvantage is that, depending on the input
parameters, this model will often describe dense tumors, whose matrices will constitute in
its majority nonzero elements. Additionally, this cellular automaton was initially designed
with dense matrices in mind and the version using sparse ones was developed later.
Therefore, it is here acknowledged that a similar automaton could be conceived using
sparse matrices.

In terms of memory saving, sparse matrices are indeed much more efficient. When
running several different tests, such as ones in section 6.3, our model stores every snapshot
of the lattice for every time step and every replicate of a simulation. This allows revisiting
any instance of tumor evolution in order to visualize or post-process any needed detail.
Nevertheless, the variables produced are very long lists of large matrices. Converting each
matrix to its sparse correspondent is a workaround to save considerable disk space (thus
improving speed during variable writing and reading).

6.2.3.6 Speed tests

Over 40 different versions of this cellular automaton have been coded during the
development of this model. Some versions were incomplete, some were too slow, and others
were not very readable or practical. Since the simulation of in silico models tend to become
slower as cell populations increase, runtime speed was a main aspect considered during
code development.

In this vein, the most recent version of the code has been continuously improved to
become faster and more efficient, mainly in line with implementation approaches previousy
discussed. The impact of some of those implementation techniques on average runtime
is presented in Fig. 28, which compares performance of five representative versions of
the code during development. Main characteristics of each code version are described
in Tab. 9. Each test consisted of a batch of 10 simulations using the same parameters
and with compatible cell population outcomes. Averages and standard deviations were
presented. Code ’E’ is the most stable and fastest version of the cellular automaton thus
far developed and was used for all subsequent simulations in section 6.3.

Table 9 – Description of each main code version evaluated in the speed performance test.

Code version Main characteristics (comparatively)
‘A’ Sparse matrix to represent tumor cells
‘B’ Use of large lattice with no expanding domain
‘C’ Coordinate system with an expanding domain; use of Random library
‘D’ Similar to ‘C’, but using Numpy-Random library
‘E’ Similar to ‘D’, but using shuffle instead of choice

Source: Valentim, Rabi and David (2023).
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Figure 28 – Speed performance tests for representative code versions and time steps
(N=10 replicates).

(a) T = 500 time steps.
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(b) T = 2000 time steps.
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(c) T = 5000 time steps.
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Source: Valentim, Rabi and David (2023).

6.3 Results

In this section, some of the complex scenarios that can be generated from the
stochastic cellular automaton are discussed by reproducing the cases studied by Enderling
et al. (2009). Firstly, some general parameters and details are presented in section 6.3.1.
Different cases pertaining dormancy periods, stem cells, and diffusive/dense tumors are
then exposed and commented in subsequent sections.

6.3.1 Parameters and details

Although the scenarios studied in this section were taken from the work by En-
derling et al. (2009), it is worth highlighting that this cellular automaton model also
presents mixed attributes from the one detailed in a more recent paper (POLESZCZUK;
ENDERLING, 2014). Therefore, actual input values used in the simulations were from
the latter. Nevertheless, the qualitative behavior and magnitude of results are the same.

In all simulations some parameters were kept constant, namely time step ∆t, cell
cycle time CCT proliferation probability PP , and lattice cell width, whose values are
presented in Tab. 10. Other variables, such as migration potential µ, maximum simulation
steps T , maximum proliferation potential pmax, apoptosis rate PA, and probability of
symmetrical stem division PS, were set in view of the tested scenario.

All tumors originated from a single progenitor cell. All simulations were replicated
five times. The population dynamics in every scenario considered averages and standard
deviations of these replicates. The spatial snapshots of evolving tumors considered the one
whose number of cells were closer to the calculated average.
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Table 10 – Common parameters and probabilities for all studied scenarios.

Parameter Value Unit
Time step (∆t) 1/24 day

Cell cicle time (CCT) 24 hours
Proliferation probability 4.17% (per time step)

Lattice cell width 10 µm
Source: Valentim, Rabi and David (2023).

6.3.2 First scenario: Tumor growth from a cell without clonogenic potential

The first scenario refers to an original nonclonogenic cell, i.e. a tumor cell with
limited replication capacity. In this scenario, migration potential is µ = 10 cell width/day,
apoptosis probability is null PA = 0 and tumor cells only die after they expire their
maximum proliferation potential, which can be pmax = 10, pmax = 15, or pmax = 20. For
each of these cases, the population dynamics is shown in Fig. 29 and a representative
spatial snapshot of tumor evolution is pictured in Fig. 30.

Table 11 lists the maximum and final cell count for each modeled proliferation
potentials. From these results, it is noticeable that, regardless of how many times cells
are able to divide, they can never generate a long-lasting tumor with every cell dying
after sufficient time is passed. The tumor size is also limited, with cells still capable of
proliferating in inner parts of neoplastic tissue while exhausted/dying ones concentrate at
extremities. These results are in accordance with those obtained by Enderling et al. (2009)
and indicate that tumors originating from a nonclonogenic cell will eventually perish.

Table 11 – Average results for the first scenario. Tumor growth from a cell without
clonogenic potential.

Proliferation potential Max. RTC count Final RTC count
pmax = 10 280 ± 43 0
pmax = 15 3, 191 ± 306 0
pmax = 20 8, 657 ± 574 0

Source: Valentim, Rabi and David (2023).
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Figure 29 – First scenario: Population dynamics of a tumor originated by a nonclonogenic
cell with different proliferation potentials (average of 5 simulations with pmax = 10,

pmax = 15, and pmax = 20).

Source: Valentim, Rabi and David (2023).
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Figure 30 – First scenario: Spatial evolution of a representative tumor originated by a
nonclonogenic cell with different proliferation potentials.

(a) pmax = 10

(b) pmax = 15

(c) pmax = 20

Source: Valentim, Rabi and David (2023).
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6.3.3 Second scenario: Tumor growth from a clonogenic cell

In the second scenario, the modeled tumor is generated from a clonogenic cell,
i.e. a tumor stem cell that, though permanent can only generate daughter cells with
limited capabilities. Migration potential, apoptosis probability and maximum proliferation
potential are the same as in the first scenario, i.e., µ = 10 cell width/day, PA = 0, and
pmax = 10, pmax = 15 or pmax = 20 . The population dynamics is shown in Fig. 31 and a
representative spatial snapshot of tumor evolution is presented in Fig. 32. Table 12 lists
the maximum and final cell counts for each simulated case.

Differently from the previous scenario, the tumor does not disappear regardless of
how many days pass, but reaches a stable size indefinitely maintained. This new feature
is due to the clonogenic STC in neoplasm center, which creates a new RTC with full
proliferation capacity every time it replicates. Besides, the clonogenic cell never dies, thus
replenishing RTC population as those cells become exhausted. The maximum possible
tumor size is indicated by cells migration and proliferation potentials, with higher values
generating larger masses.

It is noticeable from spatial projections in Fig. 32 that, regardless of pmax, tumor
shape is always circular (spherical if extended to three dimensions), with new cells in the
inside and exhausted cells on the outside. Results from this scenario also match those
obtained by Enderling et al. (2009), where authors claim this outcome can likely be used
to describe some types of benign tumors, which live in patients for up to decades and
never reach a dangerous size nor become malignant.

Table 12 – Average results for the second scenario. Tumor growth from a clonogenic cell.

Proliferation potential Max. RTC count Final RTC count
pmax = 10 2, 049 ± 241 1, 699 ± 522
pmax = 15 6, 676 ± 1, 070 4, 442 ± 872
pmax = 20 13, 012 ± 1, 525 8, 912 ± 1, 643

Source: Valentim, Rabi and David (2023).
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Figure 31 – Second scenario: Population dynamics of a tumor originated by a clonogenic
STC for different proliferation potentials (average of 5 simulations with pmax = 10,

pmax = 15, and pmax = 20).

Source: Valentim, Rabi and David (2023).
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Figure 32 – Second scenario: Spatial evolution of a representative tumor originated by a
clonogenic STC with different proliferation potentials.

(a) pmax = 10

(b) pmax = 15

(c) pmax = 20

Source: Valentim, Rabi and David (2023).
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6.3.4 Third scenario: Tumor growth from a true stem cell

The third scenario presents a tumor originated from a true stem cell, i.e., a
permanent tumor cell with probability PS of generating an identical daughter cell, as
indicated in the third frame of Fig. 24. Migration potential is µ = 10 cell width/day and
apoptosis probability is null PA = 0 (same as scenarios 1 and 2). Tumor cells only die after
they expire their maximum proliferation potential, which can be pmax = 10, pmax = 15,
or pmax = 20. The chance for symmetrical STC replication is PS = 5%. The population
dynamics is shown in Fig. 33 and a representative spatial snapshot of tumor evolution is
pictured in Fig. 34. Table 13 lists both RTC and STC final counts for each simulated case.

Table 13 – Average results for the third scenario. Tumor growth from a true stem cell.

Proliferation potential Final RTC count Final STC count
pmax = 05 85, 167 ± 25, 076 1, 947 ± 594
pmax = 10 24, 386 ± 8, 479 32 ± 12
pmax = 15 4, 731 ± 746 1.4 ± 0.5
pmax = 20 8, 273 ± 1, 385 1.8 ± 0.7

Source: Valentim, Rabi and David (2023).

This scenario is the first in the chapter in which tumors can quickly reach large
dangerous sizes. As discussed by Enderling et al. (2009), stem cells population apparently
dictates tumor size and endurance. This becomes clearer from Tab. 13, suggesting that
neoplasms with higher RTC count are those presenting more STCs.

Figures 33 and 34 also highlight a counter-intuitive idea: cells with lower maximum
proliferation potential tend to grow much larger tumors. The underlying reason is that
as RTCs with low pmax die faster they make available space for STCs to replicate, thus
rising chances for symmetrical division and consequently increasing STC population. When
RTCs can divide many times before exhausting, they make no room for the very small
initial STC population to reproduce, drastically reducing the chances for tumor grow over
a stability point. This is what happens in the simulations where pmax = 15 and pmax = 20,
as shown in aforementioned figures.
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Figure 33 – Third scenario: Population dynamics of a tumor originated by a true STC
with different proliferation potentials (average of 5 simulations with pmax = 5, pmax = 10,

pmax = 15, and pmax = 20).

(a) Evolution of regular tumor cells (RTCs).

(b) Evolution of stem tumor cells (STCs).

Source: Valentim, Rabi and David (2023).
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Figure 34 – Third scenario: Spatial evolution of a representative tumor originated by a
true STC with different proliferation potentials.

(a) pmax = 5

(b) pmax = 10

(c) pmax = 15

(d) pmax = 20

Source: Valentim, Rabi and David (2023).
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6.3.5 Fourth scenario: Tumor growth with different apoptosis rates

In the fourth scenario, the nonzero apoptosis condition is explored. A tumor
originated by a true STC is simulated with pmax = 10, µ = 10, and PS = 1% for four
different apoptosis rates. For each outcome, the population dynamics is shown in Fig. 35
and a representative spatial snapshot of tumor evolution is presented in Fig. 36. Table 14
lists the final counts pertaining RTCs and STCs for each simulated case.

Figure 35 – Fourth scenario: Population dynamics of a tumor originated by a true STC
with different apoptosis rates (average and standard deviation of 5 simulations with

PA = 0%, PA = 1%, PA = 10%, and PA = 30% a day).

(a) Evolution of regular tumor cells (RTCs).

(b) Evolution of stem tumor cells (STCs).

Source: Valentim, Rabi and David (2023).
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Figure 36 – Fourth scenario: Spatial evolution of a representative tumor originated by a
true STC with different apoptosis rates.

(a) PA = 0%

(b) PA = 1%

(c) PA = 10%

(d) PA = 30%

Source: Valentim, Rabi and David (2023).
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Table 14 – Average results for the fourth scenario. Tumor growth with different apoptosis
rates

Apoptosis chance Final RTC count Final STC count
PA = 0 2, 628 ± 677 1.0 ± 0.0

PA = 1% /day 3, 241 ± 872 2.8 ± 2.2
PA = 10% /day 22, 771 ± 4, 443 173 ± 75
PA = 30% /day 106, 296 ± 9, 969 14, 958 ± 3, 400

Source: Valentim, Rabi and David (2023).

As thoroughly discussed by Enderling et al. (2009), outcomes represented in Figs. 35
and 36 are probably the most interesting and revealing among analyzed scenarios. As
the chance of programmed cell death increases, the overall tumor cell populations also
dramatically rise. The extreme case of 30% daily chance of apoptosis yields a large
neoplastic mass with an average of over 120 thousand cells after 400 days, from which
around 12% are stem cells. The elevated number of STCs is actually what justifies such
large tumors. In fact, as RTCs can die at an increased rate in this scenario, there is much
more free space left for STCs to create identical daughter cells (whose chance of apoptosis
is always zero).

Tumor shapes for cases with higher cell death start to present protrusions around
their extremities, a morphological sign of malignant advanced tumors (refer to Figs. 36c
and 36d). Furthermore, when PA is low but nonzero, there is still a chance of a tumor with
morphology and size as illustrated in Fig. 36b to become similar to the one represented in
Fig. 36d. The start of this process is depicted in Figs. 35a and 35b, as the population of
stem cells plotted by the orange curve slowly rises. Given enough time, overall population
will increase, thus creating potentially large and malignant tumors. This phenomenon of
very slow growth with low apoptosis rate can be characterized as some types of dormancy
periods seen in many cancers.
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6.3.6 Fifth scenario: influence of migration potential and stem symmetrical proliferation

The fifth and final simulation accounts for how the migration potential of cells
and the chance of STC symmetrical replication affect tumor size and shape. In all cases
analyzed in this scenario, pmax = 10 and PA = 1%, but µ and PS vary from 1 to 10 cell
width/day and 1% to 10%, respectively. In each case, population dynamics is presented in
Fig. 37 and possible spatial forms regarding tumor evolution are represented in Fig. 38.
Table 15 lists both RTC and STC final counts for each case combination.

Figure 37 – Fifth scenario: Population dynamics of a tumor originated by a true STC
with different migration potentials and probabilities of stem symmetrical division (average

and standard deviation of 5 simulations).

(a) RTC dynamics for a low chance of stem
symmetric division (PS = 1%)

(b) RTC dynamics for a low chance of stem
symmetric division (PS = 10%)

(c) STC dynamics for a low chance of stem
symmetric division (PS = 1%)

(d) STC dynamics for a low chance of stem
symmetric division (PS = 10%)

Source: Valentim, Rabi and David (2023).
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Table 15 – Average results for the fifth scenario. Influence of migration potential and stem
symmetrical proliferation.

PS = 1% PS = 10%
Migration pot. Final RTC count Final STC count Final RTC count Final STC count

µ = 1 383 ± 110 1.6 ± 0.8 1, 063 ± 148 16 ± 2
µ = 5 1, 541 ± 1, 002 1.7 ± 0.9 45, 494 ± 8, 729 294 ± 50
µ = 10 5, 971 ± 2, 483 4.3 ± 2.4 212, 795 ± 32, 244 1, 043 ± 227

Source: Valentim, Rabi and David (2023).

The main interesting aspect of outcomes from fifth scenario is that every combina-
tion can lead to potentially large and malignant cancers (Figs. 37c and 37d show growing
STC populations in all cases - albeit some much faster than others). Growth speed, on the
other hand, seems to be positively connected to µ and PS values: the higher their values,
the more sprawling the resulting neoplasms. As clusters appearance is also identified,
some combination of parameters could yield a scenario in which distant metastasis can be
virtualized.

In case of highly migrating cells with low potential of STC creation, cell clusters
are created (Fig. 38e) and chances of a resulting invasive diffusive tumor are higher. If cells
are movable and still generate a high number of STCs, then the resulting neoplasms will
be denser but equally prone to invasion and with a much larger overall mass (Fig. 38f).

6.4 Model limitations and future expansion

The automaton model discussed in this chapter is not only capable of describing
several different scenarios, as shown in section 6.3, but also is ready to be expanded
upon. By coupling PDE systems to the automaton, it is possible to improve the solely
stochastic characteristics of the CA, enabling deterministic features to compensate some
shortcomings, thus transforming the former into a hybrid model.

Hybrid models are a recent category in which continuum characteristics are incorpo-
rated into discrete models. Advantages of such approach are clear for modeling multi-scale
phenomena since the discrete part can focus on cell movements scale while the continuum
methods can model events on larger scales (REJNIAK; ANDERSON, 2011). This capacity
of being able to bridge scale gaps while communicating aspects of different magnitudes
across the model makes hybrid approaches very interesting for describing several aspects
of cancer phenomena (ANDERSON et al., 2007).

Accordingly, Anderson et al. (2007) proposed a hybrid model constituting of discrete
methods to deal with tumor cells while considering continuous methods to model micro-
environment factors such as host tissue, matrix-degradative enzymes and oxygens. Their
model focused on the micro-scale level to produce simulations of tumor at tissue-scale
and could be easily implemented to incorporate other scales range (such as sub-cellular).
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Consequently, many other hybrid models emerged, each with their own characteristics and
often involving different discrete and continuum tools (IBRAHIM et al., 2015; ALEMANI
et al., 2012).

There are some stochastic CA model’s main shortcomings that could be directly
compensated. Firstly, by disregarding dead cells, the CA model also dismisses the remains
of those cells, which could cause toxicity unbalance in tumor micro-environment. Secondly,
the CA model does not take into account the nutrient availability in the tissue where the
tumor grows. It is known that tumors can react very differently depending on oxygen lack or
abundance. For instance, some cells can effectively change the biomechanical characteristics
in order to migrate if they are at a oxygen-deprived environment (HORMUTH et al.,
2021b). A diffusion PDE coupled to the CA could be used to tackle both these problems.

Therefore, the diffusion equation could be an important tool to model the micro-
environment surrounding the tumor. It could correctly describe oxygen (or other nutrient)
being diffused throughout the tissue in which the tumor grows as modeled by the CA.
Simultaneously, it could also account for the toxicity of cell remains in the environment.
Following transport laws, this part of the model would be completely deterministic while
also depending on outcomes from the stochastic CA (e.g., if a cell replicates, it will increase
the nutrient consumption in that lattice area, interfering with the diffusion equation). On
the other hand, the deterministic portion of the model solved at each time step would also
interfere with probabilities generated by the CA (e.g., if nutrient availability is very low,
the chance of a RTC undergoing apoptosis is higher in that area).

Another problem with the CA model in its current form is that it does not take
healthy cells into consideration, not establishing any stress relation between cells and
the surrounding extracellular matrix, fact shown to be important in tumor progression
(TALONI et al., 2015; WEERASINGHE et al., 2019). As an attempt to improve this
characteristic on the hybrid model, a differential equation to model tumor viscoelasticity
and its surrounding tissue may well be a very useful strategy.

A hybrid model could potentially contain at least two equations describing tumor
micro-environment: one dealing with nutrient diffusivity and the other tackling tissue
stresses. In short, the central framework of the model would be the stochastic CA previously
described, but it would influence and be influenced by the coupled deterministic models.
Governing equations would be simultaneously solved and updated along with the time
steps of the CA. Boundary conditions (for the equations) would be correctly selected
according to the phenomena being considered.

In this context, fractional calculus can be an interesting tool to model both diffusive
and viscoelastic aspects of those systems (WEST, 2021). Fractional models have been
applied to vast number of different areas (BALEANU; AGARWAL, 2021), including in
health sciences and biomathematics (KUMAR; SINGH, 2020), in which it has provided
a singular perspective on mathematical oncology and cancer modeling (WEST, 2022;
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VALENTIM; RABI; DAVID, 2021; VALENTIM et al., 2021; VALENTIM et al., 2020).
Furthermore, fractional viscoelastic models have been widely explored in the literature,
show promising features to describe tissue heterogeneity (GHITA; COPOT; IONESCU,
2021; CARMICHAEL et al., 2015) while non-integer operators are well known for extending
the capabilities of diffusive models (DEBBOUCHE et al., 2021; MAGIN et al., 2019).

6.5 Conclusion

In this chapter, we have introduced and discussed the development and implemen-
tation of a stochastic cellular automaton model for tumor dynamics. The model has been
created based on main characteristics of the frameworks presented by Poleszczuk and
Enderling (2014) and Enderling et al. (2009).

Although designed from a relatively simple set of agent-based rules, the stochastic
cellular automaton model can simulate several different scenarios regarding tumor growth
such as dormancy periods, instability caused by cell-death/competition and invasion –
effectively capturing the emergency and complexity inherent to oncological phenomena.

Future expansion is also explored, opening the path to transforming the model
into a hybrid framework featuring deterministic characteristics from differential equations
capable of potentially mitigate model shortcomings.

The framework herein discussed is an interesting tool for in silico modeling, with
promising capabilities and possibilities to support further research in mathematical oncol-
ogy, thus improving diagnosis tools and/or personalized treatment.
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7 TOWARDS A HIGHER INTERDISCIPLINARY COMPLEXITY: HYBRID OR
MULTI-PHYSICS MODELS

This chapter addresses the use of either hybrid or multi-physics models in mathemat-
ical oncology, both in classical and modern senses, discussing the various interdisciplinary
aspects of the theme by recalling to several concepts from previous chapters and combining
them into complex frameworks. It also reviews the latest efforts in the literature concerning
these models and contextualizes the work produced in the thesis within this frame, paving
the prospective way of how this study can be continued and expanded from fundamental
to potentially translational research.

It is organized in the following manner: Section 7.1 briefly introduces hybrid models,
presenting their main categories. Section 7.2 describes some examples of continuous systems
for classical hybrid models, pitching fractional calculus as an additional degree of flexibility
and addressing some of the major issues with these models and their most apparent
shortcomings. Section 7.3 presents some modern approaches discussed in the literature,
using large databases and algorithms combined to physics-based modeling. Finally, section
7.4 wraps up the discussion by defending broad interdisciplinary approaches as the only
way viable in mathematical oncology.

7.1 Introduction

Hybrid cellular automata (HCA) models have been used to explore and study
cancer and tumor dynamics in recent years. These models can be used to simulate the
behavior of cancer cells by incorporating different biological and physical mechanisms
that govern tumor growth dynamics. HCA models typically include both continuous and
discrete variables, which often characterize phenomena such as cell division and death, cell
spatial distribution, and interactions between cells themselves and/or with the surrounding
microenvironment (REJNIAK; ANDERSON, 2011; ZANGOOEI; HABIBI, 2017).

Classical HCA models compose a comprehensive category of frameworks in which
discrete components can be either on-lattice (Cellular Potts, Hexagonal CA, Square-lattice
CA and Multi-compartment CA) or off-lattice (sub-cellular, vertex, ellipsoid, and spherical
cell-centered). They show reciprocal relation between the number of cells handled by
each modeling technique and the level of included cellular details (e.g., cellular detail vs
spatial scale; deformable body vs single points). Continuous components usually address
time-dependent intracellular molecular kinetics (via ODEs), cell populations / ecology
models (via ODEs), or time- and space-dependent extracellular dynamics (via PDEs), to
different extents of complexity (CHAMSEDDINE; REJNIAK, 2019).

HCA models can be used to study the development of different factors on cancer,
such as the effects of distinct treatments on tumor growth or the impact of different
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microenvironmental conditions on cancer cell behavior. For instance, a finite-state automata
model can be used to represent different cell states whereas a continuous dynamics system
describes cell behavior according to such state (PHILLIPS et al., 2020). On a different
note, those models can also be used to predict the outcome from different medical care
strategies or to identify potential targets for cancer treatment - e.g., breast cancer therapy
(LAI et al., 2022).

In the last decade, after the recent boost of artificial intelligence and machine
learning techniques, the field of data-oriented models has received a lot of attention.
In consequence, hybrid models have expanded to additionally combine concepts from
continuous and discrete models with approaches from mathematical areas such as machine
learning, game theory and data optimization, resulting in a new class of predictive models
for cancer analysis and treatment response, being often referred to as multi-physics models.
The increasing availability of clinical data in large online repositories (HWANG, 2021)
have propelled a rise on data-driven models using statistical correlations and algorithms,
particularly the computer vision area. Accordingly, data-driven models can integrate to
physics-based models working as calibration and validation resources while the latter
can reduce domain dimension and mitigate computational burden (CHAMSEDDINE;
REJNIAK, 2019). The integration of physics-based models with data-driven and optimiza-
tion models can provide a novel systematic search for optimal treatment protocols while
considering uncertainties.

7.2 Classical hybrid models: diffusion and viscoelastic equations

In classical HCA models, one can consider several different applications or uses
for the continuous equation(s). For instance, an ODE can be employed to represent cell
density, where the variable represents the number of cells per unit volume in tumor
microenvironment. Alternatively, it can be used to model the effects of chemokines on
cancer cell behavior, such as the way cancer cells migrate and invade surrounding tissue.
Other possible application approaches immune cell density, in which the variable represents
the number of immune cells present in the tumor microenvironment. It can also be used
to model the effects of the immune system on cancer growth, such as the way immune
cells attack and kill cancer cells.

This section will approach two possible applications for continuous equations: (i) The
attainability of nutrients (e.g., oxygen), where the variable represents their concentrations
in the microenvironment, modeling the effects of their availability on cancer behavior,
such as the way cancer cells adapt to hypoxic conditions; (ii) Tissue stiffness, where the
variable represents mechanical properties of the tumor microenvironment and their effects
on cancer cell behavior, such as how tumor cells can sense, respond, and adapt to tissue
changes.
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7.2.1 HCA model with a fractional diffusion equation for oxygen concentration

A HCA model for tumor growth that incorporates a continuous variable modeled
by a diffusion equation is the hybrid lattice Boltzmann-cellular automaton model. This
model combines a continuous-state lattice Boltzmann method (LBM) to simulate the
flow of blood and oxygen through tumor microenvironment with a discrete-state cellular
automaton to simulate the behavior of cancer cells (ALEMANI et al., 2012; MOHAMAD,
2019). It is important to note that not only mesoscopic LBM can be used, but also other
macroscopic discretization methods, such as finite differences or finite volumes, or even
purely analytical methods can be employed to describe the continuous part of the model.

In this application, oxygen concentration is a continuous variable governed by a
transport equation, describing the way that the nutrient disseminates through the tissue in
the tumor microenvironment. By neglecting sink (e.g., consumption) terms, the simplest
diffusion equation is of the form

∂c

∂t
= D̄∇2c, (7.1)

where c is oxygen concentration, t is time, D̄ is the diffusion coefficient, and ∇2 is the
Laplacian operator. In the hybrid model, oxygen concentration can be used as an input
to the cellular automaton studied in chapter 6, which can be adapted to simulate the
behavior of cancer cells based on the local conditions given by c(t) in Equation 7.1.

Every time the model evaluates their agent-based movement (what each cell can
do, i.e., either divide, die, migrate, or remain quiescent), it will consider c value at that
point in time and space. For instance, we can program the automaton to increase the
likelihood of division and movement towards oxygen-abundant spaces and make the chance
of apoptosis higher where the nutrient is deprived. The final action will depend both on
chance and also on local oxygen concentration, causing the model to show both stochastic
and deterministic characteristics.

Equation 7.1 can also be expanded to integrate a complete fluid system, simulating
blood flow around the tumor along with nutrient diffusion. This expansion is particularly
useful if the administration of chemotherapeutics and medicine targeted to kill cancer cells
should be modeled in view of outcome prediction of different treatment strategies, while
identifying potential targets for future cancer therapies. Additional expansions regard
different transport geometries, particularly useful to model cancers occurring in specific
tissues that can be approximated by a not-so-complex geometry (e.g., in-situ ductal
carcinoma). Even though the possibilities are many for hybrid approach (already complex
by definition), model complexity must be carefully considered.

In HCA models for tumor dynamics that incorporate diffusion phenomena, domain
conditions for the equation can be divided into two main categories: initial and boundary
conditions. The former specify system state at time t = 0. For example, the initial condition
for the oxygen concentration in the tumor microenvironment might be a known value or
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it could be derived from experimental measurements. Boundary conditions specify the
specifications at the domain limit, such as at tumor surface or at the interface between
tumor and surrounding tissue. Traditional boundary conditions (to be) used in HCA
models invoking a diffusion equation are the following:

1. Neumann boundary conditions: These conditions specify the normal derivative
of the concentration at the boundary. For example, a Neumann boundary condition might
specify that the normal derivative of the oxygen concentration is zero at the surface of the
tumor, indicating that no oxygen is flowing into or out of the tumor through the surface.
It also refers to impermeable boundaries.

2. Dirichlet boundary conditions: These conditions specify the value of the concen-
tration at the boundary. For example, a Dirichlet boundary condition might specify that
the oxygen concentration is a known value at the surface of the tumor.

3. Robin boundary conditions: These conditions are a combination of Neumann
and Dirichlet boundary conditions, and they specify both the normal derivative and the
value of the concentration at the boundary. It also refers to mass/species transfer through
convention.

It is important to note that the choice of boundary conditions will depend on the
specific cancer being studied and cancer growth mechanisms being modeled. Hence, they
should be specified in order to be consistent with specific characteristics or geometries of
the tissue approached and will potentially need to be adjusted depending on the tumor
location being modeled.

As an additional possibility to expand the capabilities of the diffusion model coupled
to the HCA framework, we can employ a fractional order operator on the time-dependent
derivative rewriting Eq. (7.1) as

∂αc

∂tα
= D̄∇2c, (7.2)

where 0 < α ≤ 1 is the arbitrary order of the model that admits a non-integer order
and may change the model behavior through what is known as the memory effect. This
additional resource appears because fractional operators are mathematically non-local,
defined as a function in which the current state of the system depends on its past history.
This is particularly useful to model the transport of dissolved substances in porous media,
which is coherent to the context of oxygen diffusing through tissue (IYIOLA; ZAMAN,
2014).

Accordingly, there is considerable amount of research dedicated to exploring the
fractional diffusion equation and its many variations (and, in some cases, its generalization
to the fundamentally-different wave equation when 1 < α ≤ 2 ) (WU et al., 2015; COSTA;
CAPELAS DE OLIVEIRA, 2012; MAGIN et al., 2008; GORENFLO; MAINARDI, 2003).
Besides the aforementioned memory effect, the main aspect researched is anomalous
diffusion, in which the mean squared displacement of particles deviates from the linear
relationship predicted by the classical diffusion equation. Once again, this effect is in-
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teresting for modeling the transport of dissolved substances in porous media. Another
important aspect of the generalized model is scale-invariance, which means that the same
equation can describe the diffusion process at different length scales, enabling the model
to deal with different magnitudes and tissue sizes (and in the context of the hybrid model,
different grid sizes for the automaton domain).

One can note in Eq. (7.2) that the spatial derivative is unaltered from the classical
diffusion equation – there are other versions in which this derivative is also generalized
(VALENTIM, 2018). In addition, it is important to note that the choice of fractional order
operator and the order parameter value will depend on the specific tumor / system char-
acteristics. It is also important to use values based on models validated with experimental
data, ensuring that the model is well-posed and the parameters are well-calibrated.

7.2.2 Hybrid models with fractional viscoelasticity equations

Even though tissue plasticity and mechanical properties have been studied as
important characteristics in cancer progression (TALONI et al., 2015), an HCA model for
tumor growth that incorporates a continuous variable modeled by tissue viscoelasticity is
not a very common approach. Tissue viscoelasticity is a complex mechanical property that
describes the way that tissue responds to applied loads, and it is not totally understood in
the context of tumor growth (KUMAR; WEAVER, 2009).

However, some recent papers have proposed the use of HCA models to simulate
the mechanical interactions between cancer cells and the surrounding tissue in order to
understand the mechanisms of cancer cell migration and invasion. These models are based
on the hypothesis that cancer cells can sense and respond to changes in tissue mechanical
properties and this behavior is important for the progression of cancer (RICE; DEL RIO
HERNANDEZ, 2020).

In the models, the continuous variable is modeled by a constitutive equation that
describes the relationship between tissue stress and strain. The equation is based on the
concept of viscoelasticity, which describes the way that the tissue behaves as a combination
of elastic and viscous materials.

Analogous to the procedure described in the previous section, the discrete-state
cellular automaton in chapter 6 is adapted to simulate the behavior of cancer cells and
their actions based on the mechanical properties of the tissue and other variables in the
model. In this framework, the viscoelasticity model can represent the capacity of a healthy
tissue to physically push back the increase in tumor size, potentially hindering its growth,
access to nutrients, and consequent general progression towards malignancy.

Viscoelasticity can be modeled using the generalized versions of Kelvin-Voigt or
Maxwell model. One can obtain the canonical version of these fractional order models
by replacing the integer order derivatives in their respective constitutive equations with
fractional order derivatives, which in turn are defined using different fractional order
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operators, such as the Riemann-Liouville, Caputo, and Riesz derivatives.
The generalized Kelvin-Voigt model is defined as

σ(t) = GDαϵ(t) + ηD(1−α)ϵ(t), (7.3)

where σ(t) is the stress, ϵ(t) is the strain, G is the elastic modulus, Dα is the fractional
derivative of order α, η is the viscosity coefficient, and α is a parameter that can be
adjusted to control viscoelasticity degree. The generalized Maxwell model is defined as

σ(t) = GDαϵ(t) + ηD(1−α) dϵ(t)
dt

, (7.4)

where ϵ(t) is the strain, G is the elastic modulus, Dα is the fractional derivative of order
α, η is the viscosity coefficient, and α is a parameter that can be adjusted to control
viscoelasticity degree. It is important to note that although fractional viscoelasticity
models have been increasingly used to characterize tissue materials (COUSSOT et al.,
2009; MAGIN et al., 2008) and generally study biological tissue dynamics (MERAL;
ROYSTON; MAGIN, 2010; MAGIN, 2010; MAGIN, 2012; GONZALEZ-RODRIGUEZ
et al., 2012; MAINARDI, 2012; QIU et al., 2018; CARMICHAEL et al., 2015; JAMALI;
AZIMI; MOFRAD, 2010); these are relatively new models and their behavior can be hard
to predict. Therefore, the development of fractional order viscoelastic models is an active
area of research in mechanics and material science.

7.2.3 Limitations and implementation difficulties

Although fractional models can extend model capabilities, this flexibility does not
come without some drawbacks. Fractional order models can be more complex than integer
order models, and their behavior can be difficult to predict. This can make it challenging
to interpret the results from models and to use them to make predictions. In addition,
these models can be difficult to solve numerically, making it challenging to obtain accurate
numerical solutions (DIETHELM; GARRAPPA; STYNES, 2020).

In terms of parameter identification, some fractional order models may not preserve
system initial and boundary conditions, which can make it difficult to apply them to
certain types of initial and boundary value problem as well as to identify and estimate
model parameters from experimental data. In addition, there is a broad debate on physical
interpretations of a fractional derivative and its lack of intuitive meaning, with multiple
interpretations depending on author and application context, adding an extra layer of
complexity in relating them to physical systems (SABATIER; FARGES; TARTAGLIONE,
2022).

Despite these limitations, fractional order models have been successfully applied in
a wide range of fields such as physics, engineering, chemistry, and biology, while showing
to be useful in modeling complex systems. However, it is important to be aware of
these limitations and to consider if the increased potential entailed by fractional calculus
compensates its implementation into an already complex framework such as HCA model.
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7.3 A step beyond: combining large data pools and machine learning algorithms

In recent years, the field of hybrid models in mathematical oncology have expanded
to include the combination of phenomenological frameworks (such as physics-based equa-
tions or cellular automata) with machine learning and data-oriented algorithms, combining
the strengths of both categories. Also known as multi-physics modeling, one example of this
approach is to use deep learning algorithms to extract features from medical images, such
as CT scans and MRI images, and then use these features to fine-tune input parameters
to a continuous physical model, such as the aforementioned diffusion equation to simulate
the transport of nutrients.

Another example is to use computer-vision algorithms to predict the most ap-
propriate treatment for a patient with cancer and then use continuous physical models
to simulate tumor response to treatment. Additionally, it is also possible to use deep
learning algorithms to learn the relationship between continuous physical equations and
cancer growth, then use this learned relationship to make predictions of different growth
scenarios and treatment response. It is important to note that this approach requires a
large amount of data and computational resources, being relatively new and active area of
research. However, there are major developments and breakthroughs in the area occurring
at a remarkable pace (DJURIC et al., 2017; BEJNORDI et al., 2017; YALA et al., 2019;
ARDILA et al., 2019).

The lack of quality datasets undergoes slow mitigation by the development of
public medical images collections, enabled mainly by universities and medical research
centers (KHOURY; IOANNIDIS, 2014; MEYER et al., 2014). The Cancer Imaging Archive
(TCIA) repository is probably the most relevant example of joint effort in this aspect, with
several terabytes of content made public, duly categorized and identified (CLARK et al.,
2013). Therefore, the latent need of developing tools that can harness such information
has propelled the scientific community to explore data science (HEY, 2009), recovering
and perfecting concepts long ago left aside (FRADKOV, 2020) and profoundly impacting
all fields of research, particularly in health (ELAZIZ et al., 2020; WU et al., 2021; ZHENG
et al., 2020; CRAIK; HE; CONTRERAS-VIDAL, 2019) and clinical oncology (DE ANDA-
JÁUREGUI; HERNÁNDEZ-LEMUS, 2020; HUYNH et al., 2020).

Accordingly, in recent years researchers have proposed supervised machine learning,
especially deep learning algorithms, as tools capable of utilizing the increasing compu-
tational power available to extract previously inaccessible information from oncologic
diagnostic images (BEJNORDI et al., 2017), promising to revolutionize various segments
within personalized medicine (DJURIC et al., 2017) and changing the clinical scenario
(ARDILA et al., 2019). Specifically with regard to breast cancer, recent studies demon-
strate that such algorithms can assist imaging diagnoses, mainly in screening benign cases
(patient dispensing) and possibly malignant cases (for subsequent manual confirmation by
radiologists) (YALA et al., 2019; YI et al., 2021). Moreover, approaches in this sense seem
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to point a direction to the elaboration of low-cost strategies for real-time implementation
of decision-making clinical support systems (GANGGAYAH et al., 2019).

In the specific context of a prospective HCA model entailing data-based tools,
there seems to exist at least two specific databases in TCIA capable of feeding the
proposed model, depending on the desired image exam type. The first option is the Breast
Cancer Screening – Digital Breast Tomosynthesis (BSC-DBT) database provided by Duke
University (BUDA et al., 2020), with images from 5060 patients and clinical support
data (BUDA et al., 2021). The second is the Curated Breast Imaging Subset – Digital
Database for Screening Mammography (CBIS-DDSM), provided by Stanford University
(SAWYER-LEE et al., 2016), including 1566 patients (LEE et al., 2017). A priori, the
first option should probably be preferred because tomosynthesis exams have an extra
dimension of information and greater detection capacity compared to traditional digital
mammograms. Data from TCIA is already organized and treated, which reduces the need
for in-depth data conditioning. Nevertheless, activities such as contrast improvement and
segmentation may be necessary. Equally important, the images have already been labeled
by professionals, which is essential for training a machine learning model.

Figure 39 outlines a concept framework for creating a modern hybrid model (or
multi-physics hybrid model) employing several concepts studied in this thesis, such as
multiscale modeling, cellular automata and fractional calculus, along with data-oriented
approaches, such as machine learning. The framework depicts the proposal of a model that
leverages terabytes of labeled diagnostic cancer images (in this case, breast cancers such as
invasive ductal carcinoma or ductal carcinoma in situ) to enable a two-fold contribution:
it guides parameter fine-tuning in the multiscale modeling represented by differential
equation models and the cellular automata while still being used as a validation baseline
for the accuracy of the final model. Results achieved by the framework can be potentially
approached both in an exploratory way (elucidating mechanisms, exploring the emergence
factors and creating surrogate models) and as a tool to guide and improve decision-making
in detection processes (as an enhanced binary classifier in screening trials).

Good practices for data-based computer science algorithms (GÉRON, 2019) enable
the aforementioned two-fold data use, where input data is randomly divided into two
non-intersecting groups: the training set, composed of 80 to 85% of the input data, and the
test set, composed of the remaining 15 to 20% of the data. This compartmentalization is
essential for future evaluation of the developed classifier model and, as the name suggests,
the two data sets should be used at different stages of the project. Then, the process
known as feature extraction takes place, in which significant attribute calculations for the
application (such as size, shape, and texture of masses) are derived from the segmented
objects in the images. It is important that the features represent tissue attributes and are
stable (i.e., insensitive to spatial translations and rotations) (RANGAYYAN et al., 2010),
as they are relevant to guide multiscale models. In the literature, there is a collection of
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approaches that propose algorithms for feature extraction, whether designed or automatic,
each with different success rates depending on the application (XIE et al., 2020). Extracted
features are essential in the suggested framework, as they serve as guiding parameters and
one of the bridges between machine learning and multiscale models.

Figure 39 – Concept scheme for a complex multi-physics hybrid model.
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A deep learning algorithm is the core of the machine learning portion of the
framework, where it powers a classifier model that should be able to assess the data
as possibly benign or malignant scenarios. Although other machine learning algorithms
have been used in the literature to address oncological phenomena, deep learning has
been shown to be superior in classifying and organizing data from diagnostic and health-
related images (BUDA et al., 2021; DJURIC et al., 2017; YALA et al., 2019; YI et
al., 2021; GANGGAYAH et al., 2019; ASRI et al., 2016). These algorithms can vary
widely in their characteristics, which involve combinations and depth of neural networks,
activation functions, and optimization methods. In fact, fractional calculus has recently
been envisioned as a tool in the intrinsic implementation of machine learning algorithms
(NIU; CHEN; WEST, 2021).

The implementation of the deep learning model can use the powerful apparatus of
TensorFlow 2 (DEVELOPERS, 2021), a wide and robust open source end-to-end platform
created by Google, and the high-level Keras API in Python (CHOLLET; SAFARI, 2021).
These tools are frequently used in cutting-edge applications, including academic research
in various fields, and constitute a broad and flexible ecosystem compatible with the
framework devised here (PANG; NIJKAMP; WU, 2020). Although TensorFlow already
offers a high number of powerful tools for building and implementing machine learning
models, there is also the possibility of modifying and shaping the architecture of its code,
if prospectively needed throughout the project. It should be noted that training a deep
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learning model requires a high computational power due to the high number of data in
source images (in digital mammography and even more in digital breast tomosynthesis).
The implementation infrastructure through TensorFlow is facilitated by the optimized
use of such computational package and the ability to utilize graphical processing units to
handle the millions of algebraic operations required during model training.

The next step after training the model is the evaluation stage, in which adjusted
parameters of the model will be used to classify unseen images in the process (those
from the test set). The evaluation metrics of the developed classifier should take into
account parameters involving the sensitivity and false positive / negative rates of the
model, depending on the desired end use. Tools and standards such as BIRADS (Breast
Imaging Reporting and Data System) and ROC (Receiver Operating Characteristic) curves
can also be incorporated. The classifier should be optimized until its results over the test
set are satisfactory (for example, until the model reaches a certain limit of false negatives
or a desired point on ROC curve).

After a satisfactory development of the classifier, parameters trained by the deep
learning model and identified features are fed to multi-scale models of the framework.
It is important to emphasize that more than one model can be used and they function
complementarily to each other, in order to leverage and explore information from provided
data. Ordinary differential equations (ODEs) of non-integer order can be used to provide
an overview of how a particular tumor growth frame can progress over time.

The literature shows that there are several models like these (BENZEKRY et al.,
2014), including those that can be used as assistants in medical clinics, and fractional
calculus can be used as an additional tool to calibrate such models and explore the
so-called memory effects in the tumor (VALENTIM et al., 2020). Some studies explore
the relationship between fractional order α and the memory of a particular system (DU;
WANG; HU, 2013). In this sense, as investigated in (VALENTIM et al., 2021), non-integer
order models can offer ways to explore multi-step models that evoke emerging features
of tumors, such as those related to cancer hallmarks (HANAHAN; WEINBERG, 2000;
HANAHAN; WEINBERG, 2011).

Furthermore, the multiscale portion of the suggested framework is centered around
a cellular automaton, like the one discussed in chapter 6 (VALENTIM; RABI; DAVID,
2023), which tracks entirely individual elements evolving in time and space, therefore
capable of reflecting heterogeneity and complexity of tumor growth (DEUTSCH et al.,
2021). Although it functions as an in silico virtualization model, such CA model does not
have specific characteristics that allow it to virtualize a breast cancer, or clinical data
to support its dimensions, shapes, and growth rate. This is where value parameters and
features generated by the machine learning model in the framework can be incorporated,
adjusting the parameters of the CA model and making it much more specific to the
targeted cancer application.
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In addition, in the multiscale context, there is the possibility of coupling PDEs, such
as the reaction-diffusion equation discussed in section 7.2.1, or the viscoelasticity ODEs
in section 7.2.2. By functioning as microenvironmental devices, they could extend the
simulation scale and be employed, for instance, to determine whether a tumor virtualized
by the automaton could cross the basal membrane, which is crucial to transform from in
situ carcinoma to invasive ductal carcinoma.

7.4 Final remarks: An interdisciplinary research for transdisciplinary teams

This chapter introduced and explored the composition of different types of hybrid
models, both traditional and innovative, by combining concepts introduced in previous
chapters while reflecting on approaches in the literature. A potential framework for a
complex hybrid model was also outlined.

The hybrid models (described in this chapter) figure as an absolute representation
of cancer modeling as an interdisciplinary research subject. They involve biological inter-
pretation in multiple scales, from molecular and cellular level to the tissue and organ level,
requiring the integration of different concepts to provide a more complete understanding
of the disease. They demand large amounts of data and computational power in order to
harness the information in data from different sources such as clinical assets and diagnostic
images. They also depend upon a reasonable level of mathematics and physics knowledge,
particularly if advanced tools such as fractional calculus are employed.

Hence, hybrid models are perfect examples of how mathematical oncology claims
for the collaboration from different disciplines (and researchers) to effectively employ and
combine resources and methods into novel frameworks, concepts and treatment strategies.
Moreover, multidisciplinary teams can be more capable of coordinating interdisciplinary and
transdisciplinary concepts, thus transforming fundamental research findings into clinical
applications and narrowing the distance between blackboard research and breakthrough
clinical application.
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8 CONCLUSION, CONTRIBUTIONS AND FUTURE WORK

This doctorate thesis addresses Mathematical Oncology as a multi-faceted and
complex subject, which it is indeed. By all means, the conducted study did not intend
to be a thorough analysis of the subject (a widely comprehensive one) but a viewpoint
that highlights its interdisciplinary aspects, particularly focusing on fractional calculus
applications, phenomenological approaches and hybrid models. It is expected that this
work contributes to Mathematical Oncology at least in three distinct ways.

Firstly, it reviews and highlights fractional calculus as an important tool in cancer
modeling by publishing the first review paper in the area, coining the term Fractional
Mathematical Oncology and underlying the mathematical tool as a powerful and strategic
approach in view of prospective challenges and opportunities in tumor dynamics modeling.
This work also discusses several particularities of fractional-order models to describe tumor
dynamics, assessing their prediction and description capabilities in light of the memory
effect phenomenon. Moreover, this thesis proposes a novel variable-order model to describe
multi-step tumor growth and shows how a simple periodic function can fit it to extant
clinical data seamlessly, thus encouraging and opening results for further discussion on how
flexible variable orders may favor the adoption of fractional ordinary differential equations
to describe tumor growth

Secondly, this work develops and makes available an open-source code (based on
an existing approach in the literature) that models an agent-based stochastic cellular
automaton capable of simulating several different scenarios regarding tumor growth
such as dormancy periods, instability caused by cell-death/competition and invasion. By
effectively capturing the emergency and complexity inherent to oncological phenomena,
aforementioned approach figures as an interesting tool for in silico modeling, with promising
capabilities and possibilities to support further research in mathematical oncology.

Thirdly, this work contextualizes and summarizes concepts approached across its
chapters into hybrid models, which can be interpreted as absolute representations of cancer
modeling as an interdisciplinary research subject. The thesis outlines and paves the way
to the development of a complex multi-physics framework that encompass deterministic,
stochastic, phenomenological, and data-driven characteristics, effectively coordinating
approaches of different areas into a combined effort in fundamental and translational
research.

Finally, even though Mathematical Oncology often entails the use of complex tools
to analyze complex phenomena, respected researchers such as Byrne (2010) and West (2022)
seem to suggest that the best approach might actually be a holistic balance achieved only
when simple and reducionist concepts of several different areas are coordinated together.
In this context, a natural path of evolution for the research conducted in this doctorate
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is to expand it in collaboration with multidisciplinary teams capable of translating its
fundamental research aspects into clinical applications, thus helping to elevate what is
now research at a blackboard stage into devices either to aid decision making in oncology
or to increase understanding on the progression of specific cancers.
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