• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.74.2011.tde-24052011-085146
Document
Auteur
Nom complet
Carolina Melleiro Gimenez
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Pirassununga, 2011
Directeur
Jury
Costa, Ernane Jose Xavier (Président)
Brennecke, Kathery
Tech, Adriano Rogério Bruno
Titre en portugais
Identificação de bovinos através de reconhecimento de padrões do espelho nasal utilizando redes neurais artificiais
Mots-clés en portugais
Biometria animal
Processamento digital de imagens
Rastreabilidade
Zootecnia de precisão
Resumé en portugais
As Redes Neurais Artificiais (RNA) são modelos matemáticos associados à inteligência computacional capaz de aprender e generalizar informações, podendo assim ser utilizada como um classificador de imagens. O presente trabalho objetiva analisar o espelho nasal bovino com o intuito de comprovar que é uma característica única e permanente do animal podendo assim, ser sua identificação única. O experimento foi dividido em duas etapas. Para compor o banco de dados da primeira etapa foram utilizados 51 bovinos da raça Nelore com idade média de 11 meses, dos quais foram coletadas para a formação do banco de dados dezesseis imagens de cada animal, totalizando uma base de 816 imagens. Na segunda etapa do experimento foram utilizados 16 bovinos do banco de dados inicial, escolhidos de forma aleatória, com idade média de 23 meses. Destes foram coletadas 11 imagens para verificar se os padrões do espelho nasal, com o passar dos meses, mantêm seu padrão tornando possível, assim, a identificação do animal. Os algoritmos de processamento digital de imagens foram implementados utilizando o software MATLAB®. Após o processamento das imagens, as características vetorizadas foram utilizadas para treinamento e teste de uma rede neural artificial utilizando o algoritmo MLP, implementado usando o compilador C DGW, que serviu como classificador das mesmas. Também foi utilizado o algoritmo do K vizinhos mais próximos (K-nn), para realizar os testes de classificação, usando um método estatistico. A validação do classificador foi realizada mediante análise estatística dos seus erros e acertos. O erro médio quadrático utilizado neste estudo foi menor que 1%. Os resultados apresentados pelo classificador K-nn foram maiores que o da Rede Neural Artificial, porém ambos não alcançaram acertos acima de 90%, o que é considerado adequado a um classificador. Pode-se concluir que o método utilizado para extração de características não apresentou uma boa representatividade, porém ainda assim foi possível observar a tendência classificatória dos animais através das características do espelho nasal, assim como a tendência da permanência dos padrões com o envelhecimento do animal.
Titre en anglais
Identification of bovines through recognition of images patterns of the muzzle using artificial neural nets
Mots-clés en anglais
Animal precision
Biometrics animal
Digital image processing
Traceability
Resumé en anglais
Artificial Neural Networks (ANN) are mathematical models associated with artificial intelligence that can learn and generalize information, therefore they can be used as images classifiers. This paper aims to analyze the cattle muzzle in order to prove that it is a unique and permanent characteristic of the animal thus, being used as its unique identification. The experiment was divided into two stages. To make the database of the first phase were used 51 Nelore bovines with an average age of 11 months, from which sixteen images of each animal were collected totalling of 816 images for the database. In the second stage of the experiment 16 bovines from the initial database were used, chosen randomly, with an average age of 23 months. From those 11 images were collected to verify if the standards of the muzzle remain the same after a couple of months, so the animal can be identified. The processing digital image algorithms were implemented using MATLAB® software. After the images processing, vectorized features were used to train and test an artificial neural network using the MLP algorithm, implemented using the C compiler DGW, and was used as a classifier. We also used the algorithm of K nearest neighbors (Knn) to perform the classification tests using a statistical method. The validation of the classifier was performed using statistical analysis of their mistakes and successes. The average square error used in this study was less than 1%. The results presented by K-nn classifier were higher than the one of Artificial Neural Network; nevertheless, both failed to reach above 90% success, which is considered suitable for a classifier. It can be concluded that the method used for feature extraction did not show a good performance, although it was possible to observe the trend of classification of animals through the characteristics of the muzzle, as well as the tendency of the permanence of the standards with the animal aging.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
ME3781290.pdf (4.22 Mbytes)
Date de Publication
2011-05-24
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.