
 
 

 

 
 

UNIVERSITY OF SÃO PAULO 

FACULTY OF ANIMAL SCIENCE AND FOOD ENGINEERING 

 

 

 

MESSY HANNEAR DE ANDRADE PANTOJA 

 

 

 

 

Thermoregulation responses in sheep: a cellular approach 

Respostas de termorregulação em ovinos: abordagem celular 

 

 

 

 

 

 

 

 

 

 

 

 

Pirassununga 

2022 



 
 

 

 
 

MESSY HANNEAR DE ANDRADE PANTOJA 

 

 

Thermoregulation responses in sheep: a cellular approach 

Respostas de termorregulação em ovinos: abordagem celular 

 

 

 

Thesis presented to the Faculty of Animal Science and 

Food Engineering of the University of São Paulo in 

partial fulfillment of the requirements for the degree of 

Doctor of Science. 

Area of study: Animal Quality and Productivity 

Advisor: Professor Dr. Cristiane Gonçalves Titto 

 

 

 

 

 

 

 

 

 

 

 

Pirassununga 

2022 



 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

MESSY HANNEAR DE ANDRADE PANTOJA 

 

Thermoregulation responses in sheep: a cellular approach 

 

Thesis presented to the Faculty of Animal Science and 

Food Engineering of the University of São Paulo in 

partial fulfillment of the requirements for the degree of 

Doctor of Science. 

Area of study: Animal Quality and Productivity 

Advisor: Professor Dr. Cristiane Gonçalves Titto 

Aproval date: ____/ ____/ _____ 

Examination board:  

 

Profª Dr
a
. Cristiane Gonçalves Titto 

Universidade de São Paulo 

Head of Examination Board 

 

Profª Dr
a
. Aline Freitas de Melo 

Universidade de la República Uruguay 

 

Profª Dr
a
. Débora Andrea Evangelista Façanha 

A Universidade da Integração Internacional da Lusofonia Afro-Brasileira 

 

Prof. Dr. Alexandre Rossetto Garcia 

Embrapa Pecuária Sudeste 

 

Profª Dr
a
. Jamile Andrea Rodrigues da Silva 

Universidade Federal Rural da Amazônia 

 

Dr. Francisco José Novais 

Universidade de São Paulo 



 
 

 

 
 

ACKNOWLEDGMENTS 

I thank God for investing in me. 

My Family, for the support, the cheering, the encouragement and the valuable prayers, 

indispensable for the realization of my dream. 

To my advisor Prof. Cristiane Gonçalves Titto, for the opportunity she offered me, for the 

trust she placed in me, for the lessons learned. 

To my friends Kelly, Manoel, Felipe and Elder for their friendship, for their laughter, for 

helping me in the most difficult moments and for their availability to carry out the collections 

for this work. And, mainly, for making my stay in Pirassununga the best possible. 

To the Postgraduate Program in Animal Science at the University of São Paulo, for the 

opportunity to provide this dream. 

To FAPESP for the financial support, without which it would not have been impossible to 

carry out the experiment, and for granting the Doctoral academic scholarship. 

To the Coordination for the Improvement of Higher Education Personnel - CAPES, for 

granting the Doctoral academic scholarship. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

Epigraph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Learning is the only thing the mind 

never exhausts, never fears, and never 

regrets.” 

Leonardo da Vinci 

 

 



 
 

 

 
 

Resumo 

PANTOJA, M. H. A. Resposta de termorregulação em ovinos: abordagem celular. 2022. 

97f. Tese (Doutorado) – Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de 

São Paulo, Pirassununga, 2022. 

O objetivo deste estudo é a identificação de diferenças fisiológicas e metabólicas entre ovinos 

mais e menos tolerantes ao calor, por meio da caracterização das alterações morfológicas, 

endócrinas e moleculares durante o estresse por calor.  O trabalho foi composto por dois 

experimentos que foram conduzidos no Campus Fernando Costa (FZEA) da Universidade de 

São Paulo, Brasil. No primeiro experimento foram utilizadas 24 ovelhas da raça Santa Inês 

(pelagem preta) prenhes e 18 não prenhes, os animais foram avaliados durante duas ondas de 

calor consecutivas e em condições de termoneutralidade. Durante experimento foram 

registrados dados meteorológicos (temperatura do ar, umidade relativa e radiação solar), 

variáveis fisiológicas (temperatura retal, timpânica e frequência respiratória) e hormonais 

(triiodotironina e prolactina). No segundo experimento foram utilizadas 80 ovelhas da raça 

Santa Inês (pelagem preta), distribuídas aleatoriamente em 4 grupos experimentais (20 

animais) alojados em piquetes com capim Aruana. Posteriormente, cada grupo foi mantido 7 

dias na Câmara climática com temperatura média de 36°C (10h00 às 16h00) e com redução 

de no termostato para 26 °C a partir das 16h00 às 10h00. Ao final de cada ciclo foram 

realizadas amostragens de temperatura retal e frequência respiratória, temperatura da 

superfície ocular por termografia infravermelho e sangue para análise de concentração de T3 

às 13h, 16h, 19h, 21h, 1h, 4h, 7h, 10h. Também, foram colhidas amostras de pele para exame 

histológico, de forma a avaliar a estrutura e a morfologia das glândulas sudoríparas. Neste 

momento foram colhidos microfragmentos de pele para a realização da transcriptoma para 

avaliar a expressão gênica de possíveis genes envolvidos na tolerância ao calor. Foram 

utilizados os parâmetros fisiológicos para selecionar animais com alta tolerância ao calor 

(HHT) e animais com baixa tolerância ao calor (LHT), e apenas nestes foram avaliadas as 

concentrações de cortisol e a expressão gênica. As análises de dados foram realizadas com 

auxílio do programa estatístico Statistical Analysis System (SAS, 2017). No experimento 1, as 

variáveis fisiológicas de animais gestantes e não gestantes foram maiores nas condições de 

onda de calor e foram relacionadas à ativação do sistema termorregulador para manutenção da 

homeotermia. A temperatura corporal central foi maior durante as ondas de calor sucessivas, 

assim como a temperatura timpânica, ambas afetadas por mudanças na temperatura do ar. No 



 
 

 

 
 

experimento 2, ovelhas de LHT apresentaram temperaturas retais e antímeros direitos mais 

elevados ao longo do dia. Animais com LHT acumularam mais calor e precisaram de mais 

tempo para dissipar o excesso de calor do que ovelhas com HHT e por fim, foram encontrados 

15 genes diferencialmente expressos entre animais de baixa e alta tolerância ao calor. Os 

cinco genes diferencialmente expressos (DE) foram upregulated e 10 genes DE foram 

downregulated no HHT em comparação com o grupo LHT. Foi possível identificar 

individualidade em relação à capacidade de termorregulação e tolerância ao calor em ovinos 

Santa Inês no grupo estudado. Estudos mais aprofundados são necessários para entender como 

a regulação genica se comporta em ovinos deslanados. 

 

Palavras-chave: Aclimatação. Ovis aries. Termólise. Transcriptoma. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

Abstract 

PANTOJA, M. H. A. Thermoregulation responses in sheep: a cellular approach. 2022. 

97f. Thesis (Doctoral) – Faculty of Animal Science and Food Engineering, University of Sao 

Paulo, Pirassununga, 2022. 

The overall objective of the study is to characterize the physiological versatility of sheep 

breed, through thermoregulatory and cellular responses, in biomarkers and morphological and 

endocrine changes during heat stress. The work was composed of two experiments that were 

carried out at the Fernando Costa Campus (FZEA) at the University of São Paulo, Brazil. In 

the first experiment, twenty-four non-pregnant and 18 pregnant Santa Inês ewes (black coat) 

were used, the animals were evaluated during two consecutive heat waves and in 

thermoneutrality conditions. During the experiment, weather variables (air temperature, 

relative humidity and solar radiation), physiological variables (rectal temperature, tympanic 

temperature and respiratory rate) and hormonal variables (triiodothyronine and prolactin) 

were recorded. In the second experiment, 80 Santa Inês sheep (black coat) were used, divided 

randomly in 4 experimental groups (20 animals) housed in paddocks with Aruana grass. 

Afterwards, each group was kept for seven days in the climatic chamber with a temperature of 

36°C (10:00 am to 4:00 pm) and with a reduction of the thermostat to 26 °C from 4:00 pm to 

10:00 am. At the end of each cycle, samples were taken of rectal temperature and respiratory 

rate, ocular surface temperature by infrared thermography and blood for T3 and insulin 

concentration analysis at 1:00 pm, 4:00 pm, 7:00 pm, 9:00 pm, 1:00 am, 4:00 am, 7:00 am, 

10:00 am. Also, skin samples were collected for histological examination in order to evaluate 

the structure and morphology of the sweat glands. At this moment, microfragments were 

collected from skin to perform the transcriptome to evaluate the gene expression of possible 

genes involved in heat tolerance. Physiological parameters were used to select animals high 

heat tolerant (HHT) and low heat tolerant (LHT), and only these will be evaluated for T3 and 

insulin concentrations and gene expression. Data analyzed were performed using the 

statistical program Statistical Analysis System (SAS, 2017). In experiment 1, the 

physiological variables of pregnant and non-pregnant animals were higher under heat wave 

conditions and were related to the activation of the thermoregulatory system to maintaining 

homeothermy. The core body temperature was higher during successive heat waves, as was 

tympanic temperature, both affected by changes in air temperature. In experiment 2, LHT 

sheep had higher rectal temperature and right antimere throughout the day. LHT Animals 



 
 

 

 
 

accumulated more heat and needed more time to dissipate excess heat than HHT sheep and 

finally, 15 genes were found differentially expressed between animals with low and high heat 

tolerance. The five differentially expressed (DE) genes were upregulated and 10 DE genes 

were downregulated in the HHT compared with the LHT group. It was possible to identify 

individuality in relation to thermoregulation capacity and heat tolerance in Santa Inês sheep in 

the studied group. Further studies are needed to understand how gene regulation behaves in 

hair sheep. 

Keywords: Acclimation. Ovis aries. Thermolysis. Transcriptome. 
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1. INTRODUCTION 

Climate change poses a significant threat to the planet and has negatively affected 

food production and increased the frequency of extreme events such as heat waves (SKUCE 

et al., 2013). In sheep, exposure to high temperatures can cause heat stress and compromise 

well-being (JOHNSON, 2018), resulting in reduced milk production (HERBUT et al., 2018), 

meat quality (RANA et al., 2014), and wool growth (THWAITES, 1967).  

To ensure animal welfare, enhance the productive capacity of animal farms, and 

facilitate adaptation to adverse climatic conditions, it is important to monitor 

thermoregulatory mechanisms that aim to maintain thermoneutrality (LUZ et al., 2016). Such 

control can be achieved by monitoring physiological variables such as sweating rate, 

respiration rate, rectal temperature (CARDOSO et al., 2015), body surface temperature (JOY 

et al., 2022), hormonal profiles of triiodothyronine (T3), insulin, and prolactin (TODINI et al., 

2007a; WHEELOCK et al., 2010; OUELLET et al., 2021), as well as animal behavior (LI et 

al., 2018). All these variables can be affected by heat stress, either alone or in combination 

and at different relative intensities depending on the heat tolerance of animals (BEATTY et 

al., 2006). 

Heat tolerance is the ability of an animal to balance heat production and dissipation 

under high air temperature conditions (HASSAN et al., 2019). This trait is known to be 

influenced by coat color and type, age, species, and origin (hot or cold climate) (OSEI-

AMPONSAH et al., 2019; DIKMEN et al., 2014). However, it is still unclear why sheep of 

the same breed and under the same environmental and management conditions differ in their 

thermoregulatory responses to heat stress. 

It is necessary to understand such differences between animals and how they allow 

each individual to overcome thermal challenges in a different manner. Therefore, studies 

evaluating physiological, hormonal, and behavioral responses during thermal challenges using 

omics data are needed to help elucidate the genetic mechanisms underlying animal responses 

to heat stress and the factors that might explain why some animals are more thermotolerant 

than others (CARABAÑO et al., 2019). This knowledge can support the selection of animals 

with superior genetic potential for adaptation to tropical climates as an attempt to improve 

herd productivity. Furthermore, selection of heat-tolerant sheep can represent a strategy to 

minimize the negative effects of climate change on livestock production. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/thermogenesis
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1.1.OBJETIVE 

1.1.1. GENERAL OBJECTIVE 

 The general objective of this study is to identify skin-associated genes related to heat 

tolerance in Santa Inês sheep with higher or lower levels of susceptibility to heat 

stress, previously characterized by differences in physiological, hormonal, behavioral, 

and morphological responses of the skin. 

1.1.2. SPECIFIC OBJECTIVES 

 Identify differences in sheep thermoregulatory responses to heat stress, connecting 

evaporative heat loss routes and energy accumulation cycles;  

 Identify the effects of acclimatation on physiological responses and endocrine patterns 

under heat stress;  

 Histologically characterize the sweat glands and epidermis of Santa Inês sheep under 

heat stress; and 

 Characterize cellular responses by RNA sequencing and identify potential candidate 

genes associated with heat stress responses in sheep with different levels of heat 

tolerance in skin tissues. 

2. LITERATURE REVIEW 

2.1.HEAT WAVE  

Climate change is occurring at a global level, causing an increase in the frequency of 

extreme events, such as the number of extremely hot days or heat waves (PASQUI; DI 

GIUSEPPE, 2019). A heat wave is defined as a period of extreme temperatures (VITALI et 

al., 2015) lasting from three (BROWN-BRANDL et al., 2005) to nine consecutive days (REIS 

et al., 2019). This change in environmental temperature can affect both human and non-

human animals. 

In humans, heat waves mostly affect people aged 60 years or older (REY et al., 2007). 

In addition to the elderly, people with obesity, hypertension, lung diseases, cardiovascular 

diseases, or diabetes are at a higher risk for heat-related conditions such as cramps, heat 

exhaustion, and heatstroke (KENNY et al., 2010). In a study by Guirguis et al. (2014), the rate 

of hospitalization was found to increase during the peak of a heat wave. 
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In animals, high temperatures can affect key factors of livestock production, such as 

animal productivity, reproduction, and health (ROJAS-DOWNING et al., 2017). 

Temperatures above the critical threshold for animal homeothermy decrease productivity 

because nutrients are diverted from product synthesis to body temperature regulation, 

resulting in losses in productive parameters, including milk yield, animal growth, 

reproduction, and carcass traits (BAUMGARD et al., 2012). Another aspect to be considered 

is animal health: high temperatures can lead to immunosuppression, resulting in increased 

susceptibility to infectious diseases (AL-BUSAIDI et al., 2008). 

Extreme events can also impact food availability, stemming from a decrease in 

agricultural production (MENDOZA et al., 2020) caused by high temperatures, variations in 

rainfall (ROJAS-DOWNING et al., 2017), and death of animals that failed to dissipate excess 

heat (VITALI et al., 2015; MORIGNAT et al., 2014). Given these effects, livestock systems 

are expected to be increasingly affected by climate change (BERNABUCCI, 2019).  

Increased heat tolerance may be a strategy to improve animal performance under 

adverse climate conditions (BERNABUCCI et al., 2010; SCHARF et al., 2010). This 

information can guide the selection of animals capable of overcoming thermal challenges 

(HUEY et al., 2012) and maintaining high production levels under a wide variety of 

environmental conditions (MENDES et al., 2014). 

2.2.THERMAL REGULATION 

2.2.1. BEHAVIORAL RESPONSE 

When the ambient temperature increases, animals try to maintain their internal body 

temperature within the thermoneutral zone. For this, animals might increase their respiration 

and sweating rates in an attempt to facilitate heat loss (WEST, 2003), alter their behaviors by 

seeking shade and water and reducing feed intake (SHILJA et al., 2016), extend their legs to 

increase the exchange surface area, and search for cool ground (SILVA et al., 2009). 

The reduction in feed intake constitutes an adaptive behavior aimed at reducing 

thermogenesis. Peripheral and central thermosensors send information to the hypothalamus, 

which coordinates a response to reduce internal heat production through reduced feed intake. 

This response, triggered by the neural pathway, is initially transient and, in the short term, 

strictly dependent on heat dissipation capacity (PEREIRA et al., 2019). Several studies 

reported reduced feed intake in response to heat stress in sheep. For instance, a study found 

that animals showed a 17.5% decrease in feed intake and a 19% increase in water intake when 
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subjected to temperatures of 33 to 45 °C in environmental chambers as compared with 

thermoneutral conditions (22.2 °C) (MAHJOUBI et al., 2015). 

Another factor that can contribute to reducing feed intake in animals under heat stress 

is the increase in respiration rate, which, although being an important and efficient mechanism 

of heat loss, can be damaging to animal health when maintained for a long time. Prolonged 

panting reduces rumination and produces endogenous heat from muscle activity, consuming 

energy that would be used in other metabolic and productive processes to maintain 

homeothermy. From a certain point on, panting becomes an inefficient mechanism of heat 

loss (SOUZA et al., 2005).  

A study carried out by Monty et al. (1991) showed that feed intake decreases 

significantly in sheep exposed to high temperatures. When under heat stress, ruminants that 

are normally active during the day and rest at night decrease their grazing activity, tend to lie 

down to reduce locomotion, and spend more time in the shade (SILANIKOVE, 2000). These 

behavioral changes can impact herd productivity due to reduced grazing time (VAN 

WETTERE et al., 2021). 

High water intake is a typical response of sheep in warm environments compared with 

cold environments (SAVAGE et al., 2008). The increased need for water results from 

increased respiration and sweating rates (CHEDID et al., 2014). These mechanisms dissipate 

heat by evaporating water through respiration or from the skin surface. To avoid dehydration, 

animals increase their water intake.  

In addition to contributing to evaporative exchanges, water immediately cools the 

body when ingested (PEREIRA et al., 2019). Heat exchange occurs according to a thermal 

gradient between the temperature of the animal body and that of water. Given that the body 

temperature is higher than the water temperature, ingested water has a cooling effect (SOUZA 

et al., 2008). 

2.2.2. PHYSIOLOGICAL RESPONSE 

In principle, a heat-tolerant animal is able to maintain homeothermy under high 

temperature conditions, which is determined by the animal's ability to balance thermogenesis 

and thermolysis. Different physiological parameters have been used as criteria to identify 

heat-tolerant animals, such as internal body temperature, respiration rate, and sweating rate, as 

they are directly related to physiological responses to the thermal environment (CARABAÑO 

et al., 2019) (Figure 1). As the ambient temperature rises, there is a reduction in heat loss by 

non-evaporative pathways (conduction, convection, and radiation), triggering the activation of 
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evaporative pathways and increasing heat loss through increased respiration and sweating 

(SOUZA et al., 2008).  

 

Figure 1. Physiological responses to heat stress. 

The respiration rate of animals may change to compensate for variations in 

environmental conditions (MCMANUS et al., 2016). In sheep, respiration exchanges 

constitute the main mechanism of heat loss under unfavorable climate conditions 

(STARLING et al., 2002) and serve as a highly sensitive indicator of heat stress (LUCY; 

SAFRANSKI, 2017). In addition to respiration exchanges, sweating is triggered as the 

internal body temperature increases to prevent excessive heat accumulation (FERREIRA et 

al., 2009). Heat loss is achieved via evaporation of water from the skin surface 

(GEBREMEDHIN et al., 2008). 

Sweating is an autonomic response of animals to heat stress (COLLIER; 

GEBREMEDHIN, 2015), being quite efficient under conditions of high temperature and low 

humidity (LUZ et al., 2014). Although often neglected, this mechanism is very effective, as it 

requires less energy input for thermoregulation and is responsible for about 63% of total 

evaporation (SILVA; STARLING, 2003). Titto et al. (2016) showed that sweating 

significantly contributes to thermoregulation in sheep. 

However, if animals are unable to dissipate excess heat through thermolytic 

mechanisms, i.e., heat loss is not greater than heat gain, heat is stored, resulting in an increase 

in body temperature, as observed by an increase in rectal temperature (BROSH et al., 1998; 

KAUFMAN et al., 2018). Kahwage et al. (2017) reported that Santa Inês sheep increased 
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their respiration rate by more than 300%, from 31 mov/min to 126 mov/min, when the air 

temperature increased from 25.7 to 29.8 °C. Respiration exchange was not sufficient to 

dissipate excess heat, causing a 0.6 °C increase in rectal temperature. This finding 

demonstrates that rectal temperature can be used as an indicator of thermal comfort or stress 

imposed by the environment in which the animal is inserted (AL-HAIDARY, 2004). 

2.2.3. HORMONAL RESPONSE 

Triiodothyronine (T3) 

T3 is a hormone produced in the follicles of the thyroid gland (ZIMMERMANN, 

2009). The hormone is of great importance for adapting to heat stress and improving 

performance (LEITE et al., 2018b) because it is responsible for the regulation of 

thermogenesis (SILVA, 2006). T3 acts on several tissues by promoting heat production in all 

cells (TODINI, 2007b) through metabolic acceleration and ATP turnover. It is noteworthy 

that not all energy from ATP hydrolysis is used in enzymatic reactions, a part can be lost in 

the form of heat. Thus, any reaction that results in ATP hydrolysis also promotes 

thermogenesis (BIANCO, 2000). 

There are different mechanisms by which thyroid hormones enhance the use of ATP 

for heat production, such as by promoting an increase in lipolysis, lipogenesis, proteolysis, 

protein synthesis, glucose oxidation, and gluconeogenesis (SILVA, 2005). Another 

mechanism is the stimulation of uncoupling protein (UCP) expression and activity. UCPs 

occur in the inner mitochondrial membrane (REIS FILHO, 2013), and their function is to 

uncouple oxidative phosphorylation, thereby reducing ATP synthesis and producing heat 

(COLLIN et al., 2005). 

T3 is therefore a stimulator of thermogenesis. Its release is controlled by the 

hypothalamus by means of the thyrotropin-releasing hormone. When the air temperature rises, 

T3 concentrations decrease (KAHL et al., 2015), a strategy of the animal body to decrease 

heat production and accumulation and normalize internal body temperature when under heat 

stress (BRAGANÇA et al., 1998; GARCIA, 2013). The degree of T3 reduction is related to 

the ability of breeds to adapt to heat stress; T3 reduction is lower in more heat-tolerant breeds 

(PEREIRA et al., 2008). 
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Insulin 

Insulin, a hormone produced by pancreatic β-cells, is responsible mainly for the 

maintenance of blood glucose levels, cell growth, and regulation of carbohydrate, lipid, and 

protein metabolism (RAHMAN et al., 2021; WILCOX, 2005). When animals ingest feed, 

there is an increase in insulin production to maintain glucose concentrations within the normal 

range for organism functioning (KAUFMAN et al., 2015). Given that feed intake decreases 

under heat stress, insulin levels would be expected to decrease as well. However, it has been 

shown that under stress situations, insulin levels are elevated (O'BRIEN et al., 2010; 

WHEELOCK et al., 2010). It is not yet clear why such an increase occurs in animals 

subjected to high temperatures. This phenomenon may be related to increased intestinal 

permeability caused by stress, allowing the passage of endotoxins such as lipopolysaccharides 

from the intestinal lumen into the blood (LAMBERT, 2009). Thus, these responses may 

induce an increase in insulin concentrations in heat-stressed animals (BANKS et al., 2008).  

Another possibility is that, during stress, the sympathetic nervous system releases 

catecholamines, which may be responsible for stimulating α-adrenergic receptors to increase 

insulin secretion (ALVAREZ et al., 1989). Tao et al. (2012) showed that animals under heat 

stress may use glucose in peripheral tissues, possibly promoting insulin sensitivity. Insulin 

resistance may be passed onto the next generation, being expressed in progeny of mothers 

who underwent heat stress during gestation (MONTEIRO et al., 2016). However, direct 

effects of heat stress on insulin concentration are not always evident (TITTO et al., 2017). 

Indirect effects, on the other hand, were observed by Min et al. (2015); the authors found a 

change in insulin concentration related to changes in feed intake in animals under heat stress.  

Prolactin 

 Prolactin is a polypeptide hormone synthesized and secreted by the pituitary gland. It 

plays an important role in thermoregulation, lactation, and reproduction (FREEMAN et al., 

2000), and, together with thyroid hormones, is essential for adaptation of animals to heat 

stress (BEED; COLLIER, 1986). Prolactin secretion follows a circannual rhythm and is 

influenced by season, with higher levels during warmer months (FOITZIK et al., 2009; 

LINCOLN et al., 2006; ALAMER, 2011). 

 Previous studies have shown that ambient temperature stimulates prolactin release 

(RONCHI et al., 2001; HOOLEY et al., 1979) during adverse environmental conditions. 

Sheep subjected to heat stress showed an increase in prolactin concentration compared with 
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sheep in thermoneutral environments (JOY et al., 2020). Elevation of prolactin levels during 

heat stress might be related to the fact that the hormone is responsible for regulating water 

levels in the body, being particularly important for evaporative heat loss (ALAMER, 2011). 

Furthermore, prolactin acts on hair growth and seasonal shedding (ALONSO; ROSENFIELD, 

2003). The coat may favor heat loss and serve as an indicator of the tolerance of sheep to heat. 

Of note, unlike heat-susceptible animals, heat-tolerant animals do not exhibit an increase in 

prolactin production under high air temperature conditions compared with thermoneutral 

conditions; thus, prolactin can be a good indicator of heat tolerance (SCHARF et al., 2010). 

2.3.TRANSCRIPTOMICS AND SINGLE-NUCLEOTIDE POLYMORPHISMS 

The transcriptome is the complete set of transcripts of an organism, organ, tissue, or 

cell line. Important information can be obtained by quantifying the expression levels of each 

transcript under different conditions (WANG, GERSTEIN; SNYDER, 2009). Although the 

emergence of new sequencing technologies has contributed greatly to the development of 

transcriptomics, it is still necessary to convert RNA to DNA for sequencing (ALBERTS et al., 

2017). 

 During sequencing, RNA is isolated and reverse-transcribed into cDNA for 

subsequent creation of an RNA-seq library (WANG; GERSTEIN; SNYDER, 2009; 

KUKURBA; MONTGOMERY, 2015). After construction of the library, it is possible to 

identify sequence variations in transcribed regions, such as single-nucleotide polymorphisms 

(SNPs) (CLOONAN et al., 2008).  

 SNPs represent changes in only one base of the DNA sequence, i.e., mutations in the 

nitrogenous bases of the genome sequence (CAETANO, 2009). There has been an increasing 

use of SNPs in different areas of research, such as human psychiatric disorders (CHAN et al., 

2017), milk protein (LI et al., 2019), meat quality (MAGALHÃES et al., 2016), and heat 

tolerance (DIKMEN et al., 2015). Therefore, SNPs can be used as a selection tool for 

adaptation to adverse climate conditions (e.g., high temperatures), contributing to minimizing 

problems related to heat stress in tropical regions (BAENA et al., 2018). 

2.4.GENES RELATED TO HEAT TOLERANCE 

Heat stress is defined as an increase in body temperature to above the set point, caused 

by environmental factors (HANSEN, 2009). Stress can reduce herd performance (MARAI et 

al., 2007), decrease seminal quality (MOURA et al., 2018), impair spermatogonium mitosis, 

cause chromatin defects, affect the ability of sperm to fertilize oocytes (MALAMA et al., 
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2013), increase cortisol secretion (SEVI et al., 2002), and impair the immune response of 

sheep breeds with low ability to overcome thermal challenges (CAROPRESE et al., 2012). 

The response to heat stress is integrated with physiological responses and should be 

considered as a component of a system-wide gene network coordinated by a variety of cells 

and tissues to minimize the effects of the thermal environment on cellular functions 

(COLLIER et al., 2008). Of note, the physiological aspects of heat stress are generally better 

understood than molecular and genetic aspects (McMANUS et al., 2020).  

Increasing attempts have been made to understand the molecular and genetic effects of 

heat stress by investigating specific genes associated with heat tolerance and stress sensitivity 

(RENAUDEAU et al., 2012). Previous studies have identified genes that are related to heat 

stress and associated with other biological functions in sheep (Table 1). 

 

Table 1. Genes associated with heat stress in sheep. 

Function Genes Breed Reference 

Regulation of body 

temperature 

TRPM8 Santa Inês GOUVEIA et al. (2017) 

HTR4 Hu LU et al. (2019) 

Height variation DIS3L2, PLAG1, NIPBL Santa Inês GOUVEIA et al. (2017) 

Spermatogenesis  SPEF2, SPAG6 Santa Inês GOUVEIA et al. (2017) 

Coat color MCIR, ASIP, TYRP1 Crioula 
CAVALCANTI et al. 

(2017) 

Immunoreaction IL1R1, IL1R2, HSPA2 Hu LU et al. (2019) 

Thermotolerance 

(melanogenesis) 
FGF2, GNAI3, PLCB1 Barki KIM et al. (2016) 

Energy and digestive 

metabolism 

MYH, TRHDE, 

ALDH1A3 
Barki KIM et al. (2016) 

Nervous and 

autoimmune 

responses 

GRIA1, IL2, IL7, IL21, 

IL1R1 
Barki KIM et al. (2016) 

 

The genetic basis for variations in the response of sheep to changes in environmental 

temperature (RASHAMOL et al., 2018), as well as its relationship with differences in 

physiological, endocrine, behavioral, and morphological variables, may be a decisive factor in 

the expression of genes linked to heat stress (SINGH et al., 2017).  
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2.5.ANIMAL SUSCEPTIBILITY TO HEAT STRESS 

Meteorological conditions can cause heat stress in animals, triggering a series of 

physiological, biochemical, hematological, and hormonal alterations to maintain 

homeothermy (RIBEIRO et al., 2018). However, each individual may respond differently to 

environmental conditions, and such a variation in response allows the classification of 

animals as more or less susceptible to heat stress (BROWN-BRANDL, 2018). Individual 

susceptibility is influenced by traits such as coat color, age, species, previous acclimatization, 

and health status (BROWN-BRANDL; JONES, 2011). 

Several studies have identified factors that can increase the susceptibility of animals to 

heat stress, including differences between genotypes. In sheep, hair breeds have lower rectal 

temperature and respiration rate when subjected to direct solar radiation than woolly breeds, 

demonstrating that woolly breeds are more vulnerable to heat stress than hair breeds 

(PANTOJA et al., 2017). 

Light-fleeced sheep generally suffer less from heat stress than dark-fleeced sheep 

because they exhibit higher reflectivity and absorb less radiation (McMANUS et al., 2011). 

However, there are individual variations between animals of the same breed and under the 

same environmental and management conditions, such as differences in respiration rate for 

thermoregulation (BROWN-BRANDL, 2013). For instance, in a group of animals exposed to 

an air temperature of 32.9 °C, respiration rates ranged from 78 to 167 mov/min (BROWN-

BRANDL, 2013) 

 Therefore, it is still necessary to understand animal individuality, the variables 

influencing susceptibility to stress, factors involved in the variation of the response of animals 

of the same group and breed, and how this information can be used for the selection of 

animals with better thermolytic and productive performance.  
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3. Influence of successive heat waves on the thermoregulatory responses of 

pregnant and non-pregnant ewes 

Manuscript in the article structure of Journal of Thermal Biology (submitted jan, 2022) 

  

Abstract: The frequency of heat waves has increased over the last years, with an impact on 

animal production and health, including the death of animals. Therefore, the aim of this study 

was to evaluate the dynamics of thermoregulation and hormonal responses in non-pregnant 

and pregnant ewes exposed to successive heat waves. Twenty-four non-pregnant and 18 

pregnant Santa Inês ewes with black coat color (live weight: 55±9.03 kg; age: 60 months) 

were used. Weather variables such air temperature, relative humidity, and solar radiation were 

continuously recorded. The rectal and tympanic temperatures and respiratory rate were 

measured daily. Serum triiodothyronine (T3) and prolactin were evaluated during the heat 

wave and thermoneutral periods. The physiological variables of pregnant and non-pregnant 

animals were higher under the heat wave conditions and were related to the activation of the 

thermoregulatory system for maintaining homeothermy (P < 0.05). The core body 

temperature was higher during successive heat waves (P < 0.05), as was the tympanic 

temperature, which are both affected by changes in air temperature (P < 0.05). Pregnant sheep 

had higher T3 levels in the thermoneutral environment (P < 0.05). Prolactin was not affected 

by temperature. The results indicate that the Santa Inês breed overcomes the thermal 

challenge during a heat wave without showing severe signs of thermal stress regardless of 

being pregnant or not. 

Keywords: heat stress, thermoregulation, sheep, thermoneutrality 

3.1.Introduction 

The current scenario of climate changes has increased the frequency and intensity of 

heat waves in different regions of the world (Sejian et al., 2013). A heat wave is defined as an 

extreme temperature period (Vitali et al., 2015) that can last three (Brown-Brandl et al., 2005) 

to nine consecutive days (Reis et al., 2019).  

The increase in heat waves can affect animal health and production and can cause the 

death of animals because these waves occur suddenly and change the thermal environment 

without prior conditioning of the animals (Bishop-Williams et al., 2015; Pereira et al., 2020). 

Effective thermoregulatory responses to minimize the impact of rapid changes in the thermal 

environment on animals show the acclimation capacity (Collier et al., 2019). 
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 Indigenous tropical breeds such as Santa Inês sheep exhibit characteristics related to 

heat tolerance (Lv et al., 2014). Under stressful environmental conditions, the animals 

increase their respiration rate, sweating rate and rectal temperature, in addition to 

modifications in hormonal concentrations (Morais et al., 2008; Titto et al., 2016) in order to 

avoid sudden death. However, even when acclimated to heat, a sudden change in the 

environmental temperature caused by a heat wave can represent a real challenge for sheep in 

terms of activation of their thermoregulatory system and coping with heat loss (Morais et al., 

2008; Titto et al., 2016). 

Heat waves have resulted in economic losses in different parts of the world. Despite the 

availability of studies on simulated heat waves and their effects on animal production, the 

thermoregulatory responses of sheep to sudden temperature changes, such as heat waves, are 

not sufficiently understood. Therefore, the aim of this study was to evaluate the dynamics of 

thermoregulation and hormonal responses in non-pregnant and pregnant ewes exposed to two 

successive heat waves during winter in a tropical climate. 

3.2.Material and methods 

 Ethical approval 

The procedures were approved by the Ethics Committee on Animal Experimentation 

(CEUA/FZEA/USP Declaration 7498130919), considering the legal and ethical issues of the 

interventions performed. 

3.2.1. Animals 

Twenty-four non-pregnant and 18 pregnant Santa Inês ewes with a black coat color (live 

weight: 55 ± 8.6 kg; body condition score: 2.5 on a scale from 1 to 5; age: 60 months) were 

used. Pregnancy was confirmed by ultrasound. During the experiment, the ewes had a mean 

of 90 days of gestation (mid-gestation) considering a mean duration of pregnancy of 150 days. 

The animals were kept on Aruana pasture (Panicum maximum cv. Aruana), with free access 

to artificial shade under an asbestos-cement roof painted white on the upper side (1 

m²/animal). 
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3.2.2. Experimental design 

The experiment was designed to assess the thermoregulatory response of animals under 

different outdoor environmental conditions and was carried out in the winter of 2020 in 

southeastern Brazil. 

Data were collected during successive heat waves, with the interval being characterized 

by low temperatures that occurred at the end of winter (September). The 1
st
 heat wave 

occurred over four consecutive days with temperature above 35 °C, reaching a maximum 

temperature of 37.2 °C, and the 2
nd

 heat wave occurred on seven consecutive days with air 

temperatures above 37.5 °C, reaching a maximum temperature of 39.8 °C. The interval 

between the 1
st
 and 2

nd
 heat wave was 14 days. 

The animals were also evaluated in winter in the absence of a heat wave, which was 

called the thermoneutral period (no stress). The data were collected at a mean ambient 

temperature of 24.7 °C and the maximum temperature recorded on the day was 27.2 °C. The 

mean maximum air temperature during winter is 28 °C in Pirassununga-SP.  

3.2.3. Meteorological variables 

The air temperature (°C), air relative humidity (%), and solar radiation (W/m
2
) were 

continuously recorded by an automatic weather station (Davis, Vantage Pro 2, Arizona, 

USA). The station was programmed to take readings every 5 minutes. 
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Fig. 1: Maximum values of air temperature (A), air relative humidity (B), and solar radiation 

(C) during successive heat waves: morning (6 a.m.-12 p.m.), afternoon (12 p.m.-6 p.m.), and 

night (6 p.m.-6 a.m.).  

3.2.4. Physiological variables 

The respiratory rate (breaths per minute), rectal temperature (°C) and tympanic 

temperature (°C) were measured in the afternoon (4 p.m.). The respiratory rate was obtained 

by observation of thoracoabdominal movements, the rectal temperature was measured with a 

digital clinical thermometer, and the tympanic temperature was measured with an ear 

thermometer (TCI100, Incoterm) inserted into the animal’s ear canal. 

 

3.2.5. Triiodothyronine (T3) and prolactin measurement 

On the penultimate day of each heat wave, a blood sample was collected from each 

animal by external jugular vein puncture into vacuum tubes without anticoagulant. The 

samples were centrifuged at 3000 rpm for 15 min and refrigerated at -20 °C. Triiodothyronine 

and prolactin were measured by enzyme immunoassay (EIA) using commercial kits according 

to the manufacturer’s instructions (Monobind, Lake Forest, CA, USA). Both kits were 

validated by demonstrating parallel curves between standard concentrations and serially 

diluted serum samples. The intra- and interassay coefficients of variation were, respectively, 

3.8 and 6.3% for T3 and 5.5 and 7.3% for prolactin. 

3.2.6. Statistical analysis 

The variables were measured at three time points: during the two successive heat waves 

and during a period without heat stress (thermoneutrality). The response variables were 

analyzed using a mixed model, considering a Poisson distribution for respiratory rate and a 

normal distribution for the other variables. The model included the random effect of sheep, 

considering a specific correlation matrix of better fit because of the repeated measures in the 
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same animal, as well as the fixed effects of physiological state (pregnant or non-pregnant) and 

stress condition/heat wave (no stress, wave 1, and wave 2) and the interaction between these 

effects. Significance was set at 5% and 5% to 7% indicated a trend. 

3.3.Results 

The animals had higher mean respiratory rates (P < 0.05; Table 1) in the 1
st
 and 2

nd
 heat 

waves when compared to the thermoneutral period. The rectal temperature was significantly 

higher (P < 0.05) in the 1
st
 and 2

nd
 heat waves than in the thermoneutral environment. 

Additionally, there was not difference (P > 0.05) in rectal temperature between non-pregnant 

and pregnant ewes. 

Santa Inês sheep had higher tympanic temperatures (P < 0.05; Table 1) in the 1
st
 and 2

nd
 

heat waves. There was not difference (P > 0.05) in tympanic temperature between non-

pregnant and pregnant ewes. 

 

Table 1: Mean and standard error values of the physiological variables of non-pregnant and 

pregnant Santa Inês ewes measured during successive heat waves and in the thermoneutral 

environment. 

 Non-pregnant Pregnant 

Respiratory rate (breaths per minute) 

Thermoneutral 45.50 ± 3.22 Ca 49.11 ± 3.86 Ca 

1
st
 Heat wave 89.83 ± 4.52 Ba 78.22 ± 4.87 Bb 

2
nd

 Heat wave 124.83 ± 5.33 Aa 104.18 ± 5.77 Aa 

Rectal temperature (°C) 

Thermoneutral 38.99 ± 0.08 Ba 38.90 ± 0.09 Ba 

1
st
 Heat wave 39.86 ± 0.11 Aa 39.67 ± 0.13 Aa 

2
nd

 Heat wave 39.90 ± 0.71 Aa 39.72 ± 0.08 Aa 

Tympanic temperature (°C) 

Thermoneutral 34.61 ± 0.35 Ca 34.46 ± 0.41 Ca 

1
st
 Heat wave 38.94 ± 0.12 Aa 38.67 ± 0.14 Aa 

2
nd

 Heat wave 37.04 ± 0.22 Ba 37.05 ± 0.27 Ba 

A,B different capital letters indicate a significant difference in the columns (P < 0.05).  

a,b different lowercase letters indicate a significant difference in the rows (P < 0.05). 
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Pregnant (P < 0.05) and non-pregnant (P = 0.065) animals exhibited higher T3 levels in 

the thermoneutral environment when compared to the 2
nd

 heat wave (Table 2). 

 

Table 2: Mean and standard error values of triiodothyronine (ng/mL) in non-pregnant and 

pregnant Santa Inês ewes measured during successive heat waves and in the thermoneutral 

environment. 

 Non-pregnant Pregnant 

Thermoneutral  2.67 ± 0.163 Aa 2.58 ± 0.163 Aa 

1
st
 Heat wave 2.55 ± 0.163 ABa 2.20 ± 0.163 Aba 

2
nd

 Heat wave 2.37 ± 0.163 Ba 2.22 ± 0.166 Ba 

A,B different capital letters indicate a significant difference in the columns (non-pregnant: P = 0.065; pregnant: P 

< 0.05).  

a,b different lowercase letters indicate a significant difference in the rows (P < 0.05). 

 

 

Prolactin levels did not differ between non-pregnant and pregnant ewes (Fig. 2), nor 

were they influenced by successive heat waves (P > 0.05). 

 

Fig. 2: Mean prolactin levels in non-pregnant and pregnant Santa Inês ewes recorded during 

successive heat waves and in the thermoneutral environment. 

3.4.Discussion  

The average air temperatures during winter in southeastern Brazil are generally within 

the thermoneutral range for wool sheep, with temperatures below 31 °C. According to Van 

Wettere et al. (2021), thermal stress causes an impact on the performance and welfare of 

sheep when temperatures fall below 12 °C (lower critical temperature) or rise above 25 to 31 
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°C (upper critical temperature), situations that trigger the mechanisms of thermoregulation 

and challenge the capacity of sheep to maintain homeothermy.  

During the successive heat waves in winter, the rapid change in ambient temperature 

exceeded the upper critical limit for sheep. The temperatures reached a maximum of 37.2 °C 

in the 1
st
 heat wave and of 39.8 °C in the 2

nd
 heat wave. Therefore, the challenge for sheep to 

regulate their body temperature was different between the 1
st
 and 2

nd
 heat waves. In both heat 

waves, the animals exhibited a substantial increase of evaporative heat loss by significantly 

increasing the respiratory rate in an attempt to minimize the tendency for increases in body 

temperature (Souza et al., 2008). The maximum temperature recorded was higher during the 

2
nd

 heat wave than during the 1
st
 wave and therefore triggered a greater effort of 

thermoregulation by increasing the respiratory rate to dissipate excessive heat. 

The increase in the respiratory rate during the two heat waves was important to maintain 

the thermal balance. The high respiratory rates limited increases in body temperature and 

therefore minimized the potential consequences of thermal stress. Even the respiratory rate is 

high but the animal was efficient in dissipating heat, maintaining homeothermy, some 

consequences of thermal stress may not occur (Eustaquio Filho et al., 2011), a situation 

observed in the present study. Although the sheep showed an increase in rectal temperature of 

1.1 to 1.5 °C during the heat wave compared to the thermoneutral environment, which 

indicates relevant levels of heat storage, this temperature was below the maximum limit for 

the species, which is 39.9 °C (Liu et al., 2012). Thus, the thermoregulatory responses 

associated with the preconditioning of the animals to the 1
st
 heat wave reduced the impact of 

heat stress on the animal, which was able to maintain the core body temperature in the 

appropriate range. Another factor that may have contributed to maintaining the rectal 

temperature within the limits for sheep was sweating. Although not measured in the present 

study, heat loss by sweating was probably important to maintain homeothermy, especially 

during the 2
nd

 heat wave that was more challenging. This was demonstrated by Pulido-

Rodríguez et al. (2021) who observed that sheep activate heat loss mechanisms (respiratory 

rate and sweating) to maintain a stable body temperature when subjected to high solar 

radiation. 

Another important parameter was the tympanic temperature that increased during the 

heat wave, demonstrating the influence of ambient temperature on this variable and its rapid 

response to changes in air temperature (Guidryr and McDowell, 1966). In fact, the tympanic 

temperature more faithfully reflects the temperature of the hypothalamus and has a lower 

thermal inertia than the rectal temperature. Despite the increase in tympanic temperature 
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during the heat wave, this variable remained below the rectal temperature values (Boere et al., 

2003). This difference in rectal and tympanic temperatures is to be expected and only tends to 

vary in terms of its magnitude. Whenever sheep utilize high respiratory rates, there is the side 

effect of selective cooling of the brain. Countercurrent heat exchange occurs between venous 

blood cooled at the level of the nasal turbinates and blood of the carotid artery at the level of 

the circle of Willis (Wang et al., 2016). This heat exchange allows the blood supply to the 

brain and thus to the tympanum to occur at a lower temperature than the body temperature. 

This can be demonstrated by the greater differences between rectal and tympanic 

temperatures in the 2
nd

 heat wave, when the highest respiratory rates were also recorded 

(Meiners and Dabbs, 1977), resulting in low temperatures in the brain and in the tympanum. 

The brain temperature is usually a priority in the cooling of the body and therefore 

oscillates little, whereas in animals with selective cooling of the brain the body temperature 

frequently increases beyond the reference values when the animals are exposed to adverse 

climate conditions (Eustaquio Filho et al., 2011; Maloney et al., 2001). Furthermore, the 

animals may have been preconditioned to the high temperature during the 1
st
 heat wave. Thus, 

even under more severe heat stress conditions during the 2
nd

 heat wave, the thermoregulatory 

mechanisms responded better due to preconditioning, eliciting a more intense and prolonged 

response characterized by a greater capacity to limit the increases in body temperature (Yadav 

et al., 2019). 

In addition to changes in physiological parameters, hormonal alterations may occur 

during heat stress. Lower plasma T3 concentrations were observed, which may be an attempt 

by the animals to reduce the production and accumulation of body heat (Garcia, 2013; 

Koluman and Daskiran, 2011) in order to maintain the thermal balance. The levels of T3 are 

higher in the thermoneutral environment because the animal does not need to reduce heat 

production. Although not significant, it is important to point out that there was a downward 

trend in T3 compared to thermoneutrality, which was more marked in the 2
nd

 wave, a finding 

that is probably related to the duration of the heat wave. 

Regarding prolactin, some authors have shown that the ambient temperature is 

responsible for stimulating the release of this hormone under adverse environmental 

conditions (Alamer, 2011; Pereira et al., 2019). However, there were no differences in 

prolactin levels in response to the temperature increase caused by the successive heat waves 

between pregnant and non-pregnant ewes. This finding can be explained by the fact that Santa 

Inês sheep are considered a naturalized breed and are therefore better adapted to overcome the 

thermal challenges imposed by the environment, showing a superior thermolytic performance 
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due to specific adaptive morphological and physiological characteristics and thus being more 

tolerant to heat (Titto et al., 2016; Pantoja et al., 2017). Scharf et al. (2010) also reported the 

lack of a prolactin response to heat stress in heat-tolerant breeds. In that study, prolactin 

production was not increased in heat-tolerant animals, while animals that were more 

susceptible to heat increased the production of prolactin in the environment with high air 

temperature compared to the thermoneutral environment.  

The heat wave during winter demanded more from the thermoregulatory system of the 

animals; however, there was no difference in thermoregulation between pregnant and non-

pregnant Santa Inês ewes even at high temperatures. This finding may be related to the fact 

that pregnant ewes were in mid-gestation. According to McConn et al. (2021), the differences 

in the thermoregulatory responses between non-pregnant animals and animals in mid-

gestation are minimal. Animals are more sensitive to heat in late gestation because of the 

metabolic activity and heat production related to fetal growth (He et al., 2019); thus, a 

difference exists in the additional heat generated by the fetus in the last third of gestation 

when compared to the mid-gestation fetus. 

3.5.Conclusions 

The present results showed similar thermoregulatory responses in pregnant and non-

pregnant Santa Inês sheep, even during successive heat waves. The thermoregulatory response 

of sheep in the 2
nd

 heat wave indicates an additional capacity for heat loss, permitting the 

maintenance of body temperature stability even under more severe heat conditions. During the 

heat waves, we did not observe endocrine changes that would indicate acclimation. Despite 

differences in the extent of evaporative heat loss, both groups of sheep were efficient and 

were able to overcome the thermal challenge posed by the two heat waves. 
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4. Circadian rhythms and heat tolerance prediction in Santa Inês sheep 

Manuscript is in ABNT standards 

Abstract: This study was to identify Santa Inês sheep with different degrees of 

thermoregulatory responses to thermal stress in a climatic chamber, evaluating circadian 

rhythm of evaporative heat loss routes and energy accumulation to classify heat tolerance. 

Eighty black coat Santa Inês ewes, not pregnant, were used in this study. Sheep were chosen 

from different Brazilian regions (Sao Paulo, Minas Gerais, Bahia), to use animals from 

different populations. Sheep were subjected to heat stress in a climatic chamber for eight 

days, the 80 animals were divided in four cycles of 20 each, each group were kept for seven 

days in the climatic chamber with a temperature of 36 °C (10:00 to 16:00) and with 

maintenance of 26 °C from 16:00 to 10:00. At the end of each cycle (days 7 and 8), samplings 

Rectal temperature (RT), Respiratory rate, tympanic temperature, sweating rate and body 

surface temperature at 13h, 16h, 19h, 21h, 1h, 4h, 7h, 10h. The BLUP prediction of the 

reduction of rectal temperature between 01:00 to 7:00 after the accumulation of heat between 

10:00 to 21:00 was used to classify the animals as high heat tolerant (HHT) and low heat 

tolerant (LHT). RT, respiratory rate, tympanic temperature, sweating rate and body surface 

temperature presented the effect of heat tolerance degree (P>0.05) and hour of sampling 

(P<0.05). Higher means of all physiological variables were observed for LHT sheep (P<0.05). 

The heat storage methodology proved to be adequate in characterizing the degree of heat 

tolerance of Santa Inês sheep kept in a climatic chamber. 

 

Keywords: Heat stress, Thermolysis, Ovis aries 

 

4.1.Introduction 

Heat stress negatively influences the physiology and metabolism of animals, reducing 

productivity and making the animal more susceptible to disease (HAFEZ, 1973). Raising 

sheep in tropical regions shows the concern with choosing animals with greater tolerance to 

heat. It can be evaluated by the animal's ability to adjust to these adverse environmental 

conditions, with minimal loss of performance (McDOWELL, 1989). 

To assess physiological adaptation and heat tolerance, mainly related through changes 

in thermal balance, measurements of respiration and body temperature are already well-

established criteria (ABI SAAB; SLEIMAN, 1995; BIANCA; KUNZ, 1978). Rectal 
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temperature can be taken as an index of adaptability when values are closer to the normality 

of the species (HOPKINS; KNIGHTS; LEFEURE, 1978). Similarly, animals that present a 

lower increase in rectal temperature and lower respiratory rate are considered more heat 

tolerant (BACCARI Jr., 1986). 

In sheep, in addition to rectal temperature and respiratory rate, sweating rate also plays 

an important role in thermoregulation (SIQUEIRA; FERNANDES; MARIA, 1993). Skin 

evaporation in sheep occurs on the surface layer of the epidermis, by sweating (SILVA, 2000; 

SILVA; STARLING 2003; GEBREMEDHIN et al., 2008), and it is the most efficient way of 

thermolysis, as the animal spends less energy for its thermoregulation (SILVA, 2000). In 

sheep, sweating is often neglected due to the existence of the physical barrier of the wool, 

which prevents the evaporation of sweat (BERNABUCCI et al., 2010), however, in fur 

animals, stimulation and sweat discharges occur frequently when the animal is subjected to 

high air temperatures (McMANUS et al., 2011, TITTO et al., 2016).  

During a period of high temperatures, an acclimation period allows sheep to stabilize, as 

heat acclimation is the ability of an organism to perform activities in a normal way and 

increase heat dissipation (MOSELEY, 1997). This process is caused by the constant elevation 

of the body's core temperature, which is maintained for long periods, therefore, with the 

ability to reduce physiological tensions, such as increased respiratory rate and rectal 

temperature, promoting animal comfort (McCLUNG et al., 2008). On the other hand, 

acclimatized animals maintain a greater heat transfer to the skin, increasing its heat 

dissipation capacity, therefore, the organisms become more tolerant to high air temperatures 

(MOSELEY, 1997). 

In order for a production to be exploited to the fullest, it is necessary to know the 

physiology and behavior of the animal and the climatic conditions that these animals will be 

subject to, in addition to understanding the individual responses that may be linked to the 

genetic profile (PAIVA et al., 2005). However, each individual may respond differently to 

high ambient temperatures. Although all animals could present heat stress, some of them may 

be more or less susceptible to this environment and remain in homeostasis for a longer time 

(PULIDO-RODRÍGUEZ et al., 2021). 

The genetic improvement carried out in Brazilian sheep breeds and the crossing with 

other breeds introduced in the country has generated a positive advance in production, but it is 

still necessary to understand the functional relationship between pure breed animals and their 

environment, based on the knowledge of thermoregulatory responses in the face of 

environmental stress. Based on this, the objective of this study was to identify Santa Inês 
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sheep with different degrees of thermoregulatory responses to thermal stress in a climatic 

chamber, evaluating circadian rhythm of evaporative heat loss routes and energy 

accumulation to classify heat tolerance. 

4.2.Material and Methods 

The study was approved by Comissão de Ética no Uso de Animais da Faculdade de 

Zootecnia e Engenharia de Alimentos under nº 7498130919. 

4.2.1. Location and facilities 

Experimental period was done in the summer of 2021 (january-february) in the 

climatic chamber of the Department of Animal Reproduction, FVMZ/USP,  Campus 

Fernando Cost, Universidade de São Paulo, Pirassununga-SP, Brazil. The climatic chamber 

has an area of 56 m2 and is fully enclosed by brick walls, cement floor, and a slab. Each 

chamber is equipped with an external temperature and humidity controller, internal 

thermostats, and an exhaust fan. Mineral salt and corn silage (0.7% live weight) were 

provided daily. The animals were fed once a day (at 7:30 am) and had ad libitum access to 

water and the feed trough.  

The animals were obtained from the Biometeorology, Ethology and Animal Welfare 

Research Facility of the Laboratory of Biometeorology and Ethology, Department of Animal 

Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 

Fernando Costa Campus, Brazil. Sheep were housed in pens with artificial shade provided by 

white-painted fiber cement tiles (1 m
2
 per animal) and access to a pasture of Panicum 

maximum cv Aruana and mineral and corn silage supplementation, as well as water ad 

libitum. 

4.2.2. Animals and meteorological variables 

Eighty black coat Santa Inês ewes, not pregnant, were used in this study. Sheep were 

chosen from different Brazilian regions (Sao Paulo, Minas Gerais, Bahia), to use animals 

from different populations. 

During the experimental period, a data logger (HOBO® U12-013 Data logger) was 

positioned inside the climatic chamber to register air temperature and relative humidity 

(Figure 1). 
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Figure 1: Mean air temperature and relative humidity during thermal challenge in a climatic 

chamber 

 

4.2.3. Experimental design 

Sheep were subjected to heat stress in a climatic chamber for eight days, preceded by 

two days of adaptation. In the first two adaptation days, the temperature of the climatic 

chamber was maintained equal to the current temperature of the external environment (around 

26°C). From the 3rd to the 10th, the thermal treatment (stressor factor) was carried out, and 

the heat treatment in the climatic chamber with a temperature of 36°C started at 10:00 until 

16:00, with a reduction of the thermostat temperature to 26 °C from 16:00 to 10:00. 

The 80 animals were divided in four cycles of 20 each, as we used 5m²/animal to 

avoid discomfort. Between days 9 and 10 physiological variables were evaluated at 13:00, 

16:00, 19:00, 21:00, 01:00, 04:00, 7:00 e 10:00. Rectal temperature (RT),was measured using 

a digital clinical thermometer (Geratherm® rapid GT-195-1, Germain, ±0,2°C), Respiratory 

rate (breaths min−1) was measured by observing the thoracic-abdominal movements of sheep 

for one min, tympanic temperature (°C) was measured using an ear thermometer (TCI100, 

Incoterm, ±0.2 °C) placed in the animal’s ear canal, sweating rate using Schleger and Turner 

method (1964) and body surface temperature was measured using an infrared thermometer 

(G-Tech Premium, Incoterm, ±0.2 °C). 

4.2.4. Statistical analysis 

Rectal temperature was used as the response variable, and analyzed by the restricted 

maximum likelihood method (REML) under a mixed model. This included the fixed effects of 

the assessment cycle (4 cycles with 20animals each), equivalent to the group of 
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contemporaries, and the time effect within the assessment cycle and, as a random, the animal 

effect. The BLUP predictions obtained for each ewe, which quantify the individual heat stress 

response, were used to rank ewes from most heat tolerant to least tolerant.  

Physiological variables (rectal temperature, respiratory rate, tympanic temperature, 

sweating rate, body surface temperature) were analyzed by ANOVA with fixed effect of heat 

tolerance degree (HHT or LHT) and hour of sampling and their interaction, and animal and 

cycles as aleatory effect. Means were compared by Tukey-Kramer at 5% of significance. All 

results are reported as the mean ± standard error of the mean. The SAS for Windows 9.4 

software (2018) was used for the statistical analyses. 

4.3.Results and Discussion 

 The BLUP prediction of the reduction of rectal temperature between 01:00 to 7:00 

after the accumulation of heat between 10:00 to 21:00 was used to classify the animals as high 

heat tolerant (HHT) and low heat tolerant (LHT). Negative values from -0.57 to -0.01 explain 

a higher reduction of rectal temperature and 54 % of the animals were called HHT. Positive 

values from 0.02 to 0.68 showed a lower reduction and 46% of the animals were called LHT. 

 There was variation between the rectal temperature samples in the two groups of 

sheep, high and low heat tolerant, observed by the maximum and minimum values (Table 1). 

Minimum values of RT were similar between HHT and LHT at 7h, 10h and 13h (P>0.05), but 

lower minimum values were observed for HHT on the other samples (P<0.05). Maximum 

values were always lower for HHT sheep (P<0.05), which shows a better capacity to maintain 

rectal temperature above 39.0°C. Body core temperature can be used as an indicator of stress 

due to excess heat or cold since its variation among animals is relatively small in a given 

environment (SALLES et al., 2016). This small variation in HHT sheep can be also explained 

by better thermoregulation using the respiratory system (JOHNSON, 1989). 

 The methodology used in this study to classify sheep by heat tolerance presented a 

good result, as we could divide them into two distinguishable groups and also observed by the 

minimum and maximum results of rectal temperature that there are differences between HHT 

and LWT related to heat storage. 

Some other studies used heat storage as a methodology to understand the heat loss 

efficiency (FISHER et al., 2008; HILLMAN et al., 2009; HOOPER et al., 2018) and our 

methodology seems to be an easy way to classify sheep as high heat tolerant and low heat 

tolerant using eight measurements of rectal temperature within a three hours interval. 
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Table 1. Minimum and maximum values of rectal temperature of high heat tolerant and low 

heat tolerant sheep along the day inside climatic chamber with air temperature between 36°C 

to 26° 

Hour Minimum 

HHT 

Minimum 

LHT 

 Maximum 

HHT 

Maximum 

LHT 

13 38.1 a 38.2 a  38.9 b 39.4 a 

16 38.0 b 38.9 a  38.9 b 39.6 a 

19 38.3 b 38.5 a  39.0 b 39.9 a 

21 38.4 b 38.7 a  38.9 b 39.4 a 

1 38.1 b 38.5 a  38.9 b 39.4 a 

4 37.7 b 38.1 a  38.7 b 39.3 a 

7 38.0 a 38.2 a  38.9 b 39.4 a 

10 38.1 a 38.1 a  38.9 b 39.5 a 

Different letters in the same line between HHT and LHT differs by Tukey-Kramer (5%) 

 

Rectal temperature, respiratory rate, tympanic temperature, sweating rate and body surface 

temperature presented the effect of heat tolerance degree (P>0.05; Table 2) and hour of 

sampling (P>0.05; Table 3), but not an interaction (P>0.05). 

 

Table 2. Means and standard error of thermoregulatory responses of high heat tolerant (HHT) 

sheep and low heat tolerant (LHT) sheep during heat stress in a climatic chamber 

 HHT LHT P value 

Rectal Temperature (°C)  38.75±0.018 39.13±0.020 0.001 

Respiratory Rate (breaths.min
-
¹) 48±0.9 51±1.0 0.0129 

Tympanic temperature (°C) 36.89±0.048 37.10±0.052 0.0144 

Sweating rate (g.m
-
².h

-
¹) 345.68±8.645 372.64±9.448 0.0356 

Body surface temperature 36.76±0.029 36.99±0.032 0.001 

 

Higher means of all physiological variables were observed for LHT sheep (P<0.05). 

Despite mean values of physiological variables being near the expected variation of sheep 

under heat stress, LHT animals always presented higher means which showed less adaptive 

responses to the hot ambient.  
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Table 3. Means of thermoregulatory responses of sheep during heat stress in a climatic 

chamber 

Hour Rectal 

Temperature 

Respiratory 

Rate 

Tympanic 

Temperature 

Sweating 

Rate 

Body Surface 

temperature 

13 39.08 a 66 a 37.98 a 402.1 a 37.6 a 

16 39.18 a 64 a 37.50 b 388.9 a 37.5 a 

19 39.22 a 56 b 37.27 b 380.7 a 37.0 b 

21 39.09 a 52 b 36.72 c 378.4 a 36.7 bc 

1 38.90 b 41 c 36.30 c 286.1 b 36.5 c 

4 38.82 bc 38 c 36.33 c 296.7 b 36.4 cd 

7 38.55 d 37 c 36.45 c 343.7 ab 36.3 d 

10 38.68 cd 44 c 37.31 b 396.8 a 37.0 b 

Standard 

error 

0.038 1.968 0.100 18.091 0.061 

Respiratory rate (breaths.min-¹); rectal temperature, tympanic temperature and body surface 

temperature (°C); Sweating rate (g.m
-
².h

-
¹). Means with different letters in the same line differ by 

Tukey-Kramer (P<0,05). 

 

At 10h, in the beginning of the heat treatment, sweating rate was able to maintain 

rectal temperature near basal levels, as the air temperature before 10h was around 26°C. As 

the air temperature increases between 10 and 16h, rectal temperature increases at 13 and 16h 

(P<0.05), and at 19h and 21h it is still similar to the hottest hours of the day (P>0.05). 

Throughout the day, sweating rates were higher than those found for Santa Ines sheep 

in heat stress, 230.2 g.m-².h-¹ (TITTO et al., 2016), showing that animals were usi Inês ng this 

thermoregulation system all day. 

At 13h and 16h, higher means of respiratory rate and body surface were observed 

(P<0.05). Although RR was high compared to 1h to 10h, Santa Inês sheep did not increase 

this heat dissipation mechanism as wool breeds (WOJTAS et al., 2014). The respiratory 

evaporation is a physiological mechanism used in intense responses for shorter periods of the 

day (SILVA; STARLING, 2003) and it is very important for thermoregulation in wool sheep 

(BROCKWAY et al., 1965, MCMANUS et al., 2009, SILVA et al., 2002). On the other hand, 

sweating rate is more used by hair breeds like Santa Inês, as it plays a crucial role in 

thermoregulation (TITTO et al., 2016), and sweating rates, remarkably high, can be 
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considered as a thermoregulatory response aiming for the stability of body temperature 

(MARAI et al., 2007). 

 Tympanic temperature varied 1.68°C throughout the day, with the highest 

temperature observed at 13h (P<0.05). In a study in a thermoneutral environment, higher 

values of tympanic temperature were around 33.86°C (SOUZA et al., 2015), lower compared 

to our results. Tympanic temperature in sheep is related to brain temperature and is affected 

by RR as vasodilation inside the nose reflects in reduction of heat (PEREIRA et al., 2019). 

The lower RT was found at 7h, and differs from the other ones (P<0.05). It was 

expected to find lower values of temperature during dawn, however, inside the climatic 

chamber, the temperature drop does not seem to exert the same thermoregulation function as 

in the open environment, since there is no natural ventilation. 

4.4.Conclusion 

 The heat storage methodology proved to be adequate in characterizing the degree of 

heat tolerance of Santa Inês sheep kept in a climatic chamber. The circadian rhythm of 

physiological variables linked to thermoregulation are affected by the variation of air 

temperature throughout the day and heat storage is different between animals with high and 

low heat tolerance. 
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5. Influence of heat stress on the physiological, hormonal, and behavioral responses 

of high and low heat-tolerant Santa Inês sheep 

Manuscript in the article structure of International Journal of Biometeorology (submitted 

may,2022) 

 

Abstract: This study aimed to assess differences in physiological, hormonal, and behavioral 

responses between high and low heat-tolerant sheep during heat stress. Twenty-four sheep 

were used in the study, the 12 most heat-tolerant and 12 less heat-tolerant individuals 

identified in a thermotolerance assessment of 80 sheep. Animals were maintained for 10 days 

in a climatic chamber at an average temperature of 36 °C (10:00 am to 04:00 pm) and a 

maintenance temperature of 28 °C (0400 pm to 10:00 am). Rectal temperature, respiratory 

rate, sweat rate, ocular surface temperature, right antimere temperature, tympanic 

temperature, triiodothyronine, and insulin were analyzed at 01:00 pm, 04:00 pm, 07:00 pm, 

09:00 pm, 1:00 am, 4:00 am, 7:00 am, and 10:00 am. Skin samples were collected for 

histological analysis after prolonged stress. High low-tolerant sheep had higher rectal and 

right antimere temperatures throughout the day. Although no differences in skin morphology 

were observed between groups, low heat-tolerant sheep continued to sweat for a longer period 

after the end of the thermal challenge in an attempt to lose heat. Low heat-tolerant animals 

accumulated more heat and needed more time to dissipate excess heat than high heat-tolerant 

sheep and cannot dissipate heat as efficiently as high heat-tolerant individuals. These findings 

show that there is ample variation in thermoregulatory response between animals of the same 

breed maintained under the same environmental conditions. 

Keywords: Santa Inês breed, behavior, endocrine response, physiology 

 

5.1.Introduction 

In tropical countries, heat stress is one of the major factors influencing animal 

productivity, reproduction, health, immunity, and survival (Mandal et al. 2021). The impacts 

of heat stress are easily noticeable because they cause alterations in physiological parameters, 

behavioral responses, and hormonal profile, leading to reduced feed intake and, consequently, 

decreased growth rate (Mahjoubi et al. 2015; Kahl et al. 2015; Carabaño et al. 2019). 

Sheep might be increasingly exposed to the deleterious effects of heat stress as a result 

of climate change and rising air temperatures; therefore, it is crucial to develop strategies to 

minimize production losses and maintain herd performance under adverse environmental 
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conditions (Renaudeau et al. 2012). Heat tolerance has been studied in different species and 

breeds for the genetic selection of animals with better responses to high-temperature 

environments and improved production performance in tropical regions (Titto et al. 2016a; 

Sejian et al. 2021). However, little is known about individual differences in thermoregulatory 

response in woolless sheep or the mechanisms underlying how animals from the same breed, 

group, and environment respond differently to heat stress (McManus et al. 2010; Brown-

Brandl 2013). Such information can be decisive for the selection of more productive animals 

in tropical climate countries as well as for designing effective approaches to reduce the 

impacts of climate change based on individual responses of sheep to heat stress (Saizi et al. 

2019). 

There is a gap in our knowledge about what makes one animal more susceptible to heat 

stress than another. Therefore, it is important to understand the effects of heat stress on 

individual thermoregulatory responses, mainly in tropical conditions. Considering these 

observations, this study aimed to identify differences in physiological, endocrine, and 

behavioral responses between high heat-tolerant and low heat-tolerant sheep exposed to heat 

stress in a climatic chamber. 

5.2.Material and methods 

5.2.1. Ethical approval 

All experimental procedures were approved by the Animal Ethics Committee at the 

Faculty of Animal Science and Food Engineering of the University of São Paulo 

(CEUA/FZEA/USP protocol no. 7498130919). 

5.2.2. Animals 

This study used 80 black-coat, non-pregnant, Santa Inês sheep aged between 4 and 5 

years with homogeneous body condition (score 3 in a scale from 1 to 5). Animals were 

chosen from different populations in different regions and climatic environments in Brazil.  

5.2.3. General experimental procedures 

The animals were obtained from the Biometeorology, Ethology and Animal Welfare 

Research Facility of the Laboratory of Biometeorology and Ethology, Department of Animal 

Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 

Fernando Costa Campus, Brazil. Sheep were housed in pens with artificial shade provided by 

white-painted fiber cement tiles (1 m
2
 per animal) and access to a pasture of Panicum 
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maximum cv Aruana. For the experiment, the animals were taken to a climatic chamber at the 

Department of Animal Reproduction of the same university.  

The climatic chamber has an area of 56 m
2
 and is fully enclosed by brick walls, cement 

floor, and a slab. Each chamber is equipped with an external temperature and humidity 

controller, internal thermostats, and an exhaust fan.  

Mineral salt and corn silage (0.7% live weight) were provided daily. The animals were 

fed once a day (at 7:30 am) and had ad libitum access to water and the feed trough. 

5.2.4. Experimental design and thermotolerance assessment  

Before the beginning of the experimental phase, the rectal temperature of animals was 

measured in a thermoneutral environment (average air temperature of 24.7 °C). High heat-

tolerant (HHT) and low heat-tolerant (LHT) sheep had a mean rectal temperature of 38.4 ± 

0.51 and 38.6 ± 0.46 °C, respectively. 

The experiment was divided into two phases. In phase 1, sheep were subjected to heat 

stress in a climatic chamber for eight days, preceded by two days of adaptation. The climatic 

chamber was kept at 36 °C from 10:00 am to 0400 pm and at 26 °C from 04:00 pm to 10:00 

am. Between day nine and 10, rectal temperature was recorded at 01:00 pm, 04:00 pm, 07:00 

pm, 21:00 pm, 01:00 am, 04:00, 07:00 am, and 10:00 am. From the classification of animals 

in relation to heat management, the 12 top-ranking (high heat tolerant) and 12 bottom-ranking 

(low heat-tolerant) individuals were selected for use in the second phase of the experiment. 

Data analysis was performed using a restricted maximum likelihood (REML) mixed model. 

The model included contemporary and time effects as fixed effects and animal and residual 

effects as a random. BLUP values quantifying individual responses to heat stress were used to 

rank the sheep according to heat tolerance. 

In phase 2, both groups were placed together in the climatic chamber, which was 

maintained at 36 °C from 10:00 am to 04:00 pm and at 28 °C from 04:00 pm to 10:00 am. 

The latter temperature represents a 2 °C increment in relation to that of phase 1. The aim was 

to subject sheep to a new thermal challenge and thus ensure that the acclimatization 

mechanisms activated in phase 1 did not interfere with the results of phase 2. During the 

experimental period, sheep were evaluated for feeding behavior, physiological variables, 

surface temperatures, and blood parameters at 01:00 pm, 04:00 pm, 07:00 pm, 21:00 pm, 

01:00 am, 04:00, 07:00 am, and 10:00 am. 
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5.2.5. Meteorological variables 

During the experimental period, air temperature and relative humidity within the climate 

chamber were recorded (Fig. 1) using data loggers (HOBO
®
 U12-013). 

 

Fig. 1 Mean air temperature (Tair) and relative humidity (RH) during thermal challenge in a 

climatic chamber 

5.2.6. Physiological variables 

Respiratory rate (breaths min
−1

) was measured by observing the thoracic-abdominal 

movements of sheep for one min. Rectal temperature (°C) was measured using a digital 

clinical thermometer (TH150, G-Tech, ±0.2 °C). Sweat rate (g m
−2

 h
−1

) was determined by 

the method of Schleger and Turner (1964). Tympanic temperature (°C) was measured using 

an ear thermometer (TCI100, Incoterm, ±0.2 °C) placed in the animal’s ear canal. 

5.2.7. Surface temperature measurements 

The surface temperature of the ocular region (°C) was measured by infrared 

thermography using a manual focus infrared camera (875-2i, Testo, Germany) with a thermal 

sensitivity (NETD) of <50 mK. The camera was maintained at the level of the ocular region at 

a distance of about 0.5 m. The emissivity was 0.98. The surface temperature of the right 

antimere (°C) was measured using an infrared thermometer (G-Tech Premium, Incoterm, ±0.2 

°C). 

5.2.8. Triiodothyronine (T3) and insulin measurement 

Blood samples were collected into 10 mL vacuum tubes by puncture of the external 

jugular vein. Samples were centrifuged at 3,000 rpm for 20 min, and the serum was 

immediately frozen at −20 °C until determination of Triiodothyronine (T3) and insulin levels. 
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These hormones were measured by an enzyme immunoassay using commercial kits according 

to the manufacturer's instructions (Monobind, Lake Forest, CA, USA). Both kits were 

validated by parallel curves between standard concentrations and serially diluted serum 

samples. The intra- and inter-assay coefficients of variation were 3.8% and 6.3%, 

respectively, for T3 and 4.5% and 6.2%, respectively, for insulin. 

5.2.9. Skin morphology 

A biopsy was performed on the right side of the animal, in the middle dorsal region. 

Before collection of the biopsy, the area was shaved, disinfected, and anesthetized by 

application of 1 mL of local anesthetic without vasoconstrictor (2% lidocaine hydrochloride). 

Then, micro fragments of skin tissue were excised using an 8 mm diameter punch. Specimens 

were immediately fixed in 10% buffered formalin for 24 h and stored in 70% alcohol until 

histological analysis. 

Each fragment was cut into 4 µm thick sections and stained with hematoxylin and eosin 

for histopathological evaluation. Sections were examined under an optical microscope 

(Leica
®
 DM500) at 40× magnification. One image was acquired per section. Images were 

analyzed using ImageJ software version 1.52a (National Institutes of Health, USA). 

The parameters described below were determined in each section. For epidermal and 

dermal thicknesses (µm), 30 measurements per slide were made at different sections of the 

epidermis and dermis. Sweat gland density (number of sweat glands per linear micrometer) 

was determined by counting sweat glands with the aid of the multi-point tool and dividing the 

number by the length of the epidermal surface. Glandular area (µm
2
) was measured using the 

freehand selection tool, which allowed tracing the area of each sweat gland. Distance of sweat 

gland from the epidermis (µm) was measured from the most distant edge of sweat glands (in 

relation to the epidermis) to the beginning of the epidermis. The arithmetic mean of 

parameters was used for statistical analysis, except that of sweat gland density. 

5.3.0. Behavior 

Animal behavior was observed during three consecutive days. Feeding time (min) and 

water drinking events were analyzed continuously and individually by the animal focal 

sampling technique. Evaluations were carried out from 8:00 to 18:00 by a trained observer 

(Martin and Bateson 1993; Titto et al. 2011). 
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5.3.1. Statistical analysis 

For the Phase 1 data, as already presented, the model included contemporary and time 

effects as fixed effects and animal and residual effects as a random. 

For the Phase 2 data, to model the response traits as a function of the covariates, a 

specific distribution under GLMM with a better link function was used. The better link 

function ensures good fitted values, and one specific distribution is typically used for each 

trait. Fixed factor of tolerance group (categorical with two levels high and low) and day time 

(continuous). The interaction terms are tolerance group × day time (like a cubic regression). 

To incorporate the dependency among observations of the same animal, we used nested as 

animal random intercept. For feed intake behavior, the model included the random effect of 

sheep as well as the fixed effects heat tolerance and observed hours 8 to 17h) and the 

interaction between these effects. 

5.3.Results 

Low heat-tolerant sheep had higher rectal temperature (Table 1) than high heat-tolerant 

sheep (p = 0.0011). However, respiratory rate, tympanic temperature, and sweat rate did not 

differ between groups (p > 0.05). Right antimere temperature was higher in low heat-tolerant 

animals (p = 0.0282; Table 1). No difference in ocular temperature was observed between 

groups (p > 0.05). There were no significant differences (p > 0.05) in T3 and insulin levels 

between high and low heat-tolerant sheep. 

 

Table 1 Means and standard error of respiratory rate, rectal temperature, tympanic 

temperature, sweat rate, right antimere temperature, ocular temperature, triiodothyronine (T3), 

and insulin between high heat-tolerant and low heat-tolerant sheep  

Variable 
High heat-tolerant 

sheep 

Low heat-tolerant 

sheep 
P-value 

Respiratory Rate (breaths min
−1

) 42.5 ± 2.63 43.3 ± 2.65 0.8189 

Rectal Temperature (°C) 38.6 ± 0.063 38.9 ± 0.063 0.0011 

Tympanic temperature (°C) 36.5 ± 0.083 36.6 ± 0.083 0.2762 

Sweat rate (g/m
2
/h) 360.7 ± 17.63 356.6 ± 17.63 0.8682 

Right antimere temperature (°C) 36.9 ± 0.083 37.1 ± 0.083 0.0282 

Ocular temperature (°C) 38.8 ± 0.094 39.0 ± 0.094 0.2629 

T3 (ng/mL) 3.0 ± 0.311 2.9 ± 0.311 0.9045 

Insulin (μIU/mL) 18.6 ± 2.458 15.8 ± 2.431 0.1823 
 

Skin morphology did not differ between groups (p > 0.05) (Table 2). 
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Table 2 Skin morphological characteristics of high heat-tolerant and low heat-tolerant sheep 

Variable 
High heat-tolerant 

sheep 

Low heat-tolerant 

sheep 

P-

value 

Sweat gland density (glands µm
−1

) 0.01 ± 0.0011 0.01 ± 0.0011 0.4618 

Glandular area (μm
2
) 11453 ± 1015.1 10680 ± 1015.1 0.5956 

Distance of sweat glands
a
 (μm) 1016 ± 81.2 1101 ± 81.1 0.4670 

Epidermal thickness (μm) 45.90 ± 5.595 42.44 ± 5.595 0.6663 

Dermal thickness (μm) 2194 ± 75.5 2279 ± 75.5 0.4318 
a 
Distance of sweat glands from the epidermis 

 

There was no difference in feed intake between high heat-tolerant and low heat-tolerant 

sheep (p > 0.05). However, air temperature influenced feed intake (p < 0.05; Table 3). There 

was no difference in water intake between groups (p = 0.429). 

 

Table 3 Timing of feed intake of high heat-tolerant and low heat-tolerant sheep during 

thermal challenge in a climatic chamber 

Hour 
High heat-tolerant 

sheep 
Low heat-tolerant sheep P-value 

08:00 32.92 ± 3.27 a 38.58 ± 3.27 a 0.9996 

09:00 11.62 ± 4.01 b 15.00 ± 4.28 b 1.0000 

10:00 25.14 ± 4.28 abc 17.27 ± 3.42 b 0.9966 

11:00 21.71 ± 4.28 abc 22.00 ± 3.78 ab 1.0000 

12:00 16.20 ± 3.58 bc 23.09 ± 3.42 ab 0.9977 

13:00 34.00 ± 4.28 ac 16.33 ± 3.78 b 0.1976 

14:00 22.14 ± 4.28 abc 26.50 ± 4.01 ab 1.0000 

15:00 13.60 ± 3.58 b 26.37 ± 4.01 ab 0.6775 

16:00 24.17 ± 3.27 abc 27.64 ± 3.42 ab 1.0000 

17:00 22.73 ± 3.42 abc 13.33 ± 3.27 b 0.9037 

Means in columns followed by different letters are significantly different (p < 0.05) 

 

It was possible to observe an increase in physiological variables (respiratory rate, rectal 

temperature, and tympanic temperature), mainly between 10:00 and 16:00, when the thermal 

challenge was applied (Fig. 2). After this period, these physiological variables decreased in 

both high heat-tolerant and low heat-tolerant animals. Respiratory rate and tympanic 

temperature decreased more rapidly with decreasing temperatures than sweat rate. The sweat 

rate of high heat-tolerant animals did not vary much over time, but that of low heat-tolerant 

animals increased after the end of heat treatment. The rectal temperature of low heat-tolerant 

animals was higher throughout the day.  
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Fig. 2 Predicted (pred) and observed (Δ and Χ) physiological variables of high heat-tolerant 

(HHT) and low heat-tolerant (LHT) sheep throughout the day 
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Right antimere temperature was higher in low heat-tolerant than in heat-tolerant animals 

throughout the day, peaking between 10:00 and 16:00, when the environmental temperature 

was highest (Fig. 3). Ocular temperatures of low heat-tolerant animals remained higher for 

most of the day. 

 

 

 

Fig. 3 Predicted (pred) and observed (Δ and Χ) surface temperatures of high heat-tolerant 

(HHT) and low heat-tolerant (LHT) sheep throughout the day  

 

Insulin concentration increased during the thermal challenge in low heat-tolerant sheep 

(Fig. 4), demonstrating the influence of the circadian cycle on this hormone. By contrast, the 

variation of T3 concentration with time was similar between high heat-tolerant and low heat-

tolerant sheep, but the curve for high heat-tolerant animals had a more pronounced inversion. 
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Fig. 4 Predicted (pred) and observed (Δ and Χ) triiodothyronine and insulin levels in high 

heat-tolerant (HHT) and low heat-tolerant (LHT) sheep throughout the day 

5.4.Discussion  

Physiological response of high heat-tolerant and low heat-tolerant sheep 

Santa Inês sheep are considered to be well adapted to high temperature conditions, with 

an upper critical limit of 31 °C (Van Wettere et al. 2021). In the current study, the air 

temperature reached 36 °C, outside the thermoneutrality zone of sheep. Thus, sheep were 

challenged to maintain homeothermy during hot periods, requiring activation of latent heat 

loss mechanisms.  

The use of such mechanisms was similar in both high heat-tolerant and low heat-

tolerant sheep, as demonstrated by the similar changes in physiological, hormonal, and 

behavioral variables. High heat-tolerant animals were expected to use heat loss mechanisms 

more intensely. We observed that animals of the same breed under the same environmental 

conditions did not show the same heat loss efficiencies, despite using thermoregulatory 

mechanisms in a similar manner. For instance, rectal temperature was higher in low heat-

tolerant animals. Sheep with low heat tolerance were not able to efficiently dissipate heat 
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accumulated over the experimental period; even during hours of reduced air temperature, low 

heat-tolerant animals did not reach the basal rectal temperature of 38.6 °C. By contrast, the 

high heat-tolerant group was able to dissipate heat more efficiently, showing rectal 

temperatures of 38.3 °C between 3:00 and 10:00. The basal rectal temperature of high heat-

tolerant animals was 38.4 °C. 

Unlike rectal temperature, ocular temperature did not differ between high heat-tolerant 

and low heat-tolerant animals, even though the variable is sensitive to thermoregulatory 

changes associated with heat stress (Schaefer et al. 2007) and has a good correlation with 

rectal temperature (Barros et al. 2016). Low heat-tolerant sheep did however have higher right 

antimere temperatures; these animals probably attempted to dissipate excess heat via 

vasodilation, which increases blood flow to the skin surface (Morrison and Nakamura 2011; 

Pezeshki et al. 2011; Mota-Rojas et al. 2021), ultimately leading to increased skin 

temperature. Such changes facilitate heat dissipation by non-evaporative mechanisms 

(Gesualdi Junior et al. 2014). This heat dissipation mechanism might have been responsible 

for the higher skin temperature in low heat-tolerant sheep.  

The use of surface heat exchange by low heat-tolerant sheep likely occurred because 

these individuals required more time and effort to dissipate excess heat. Evaporative 

mechanisms were likely not sufficient to eliminate accumulated heat, particularly after the end 

of the thermal challenge, when the main heat exchange mechanism (i.e., panting) is reduced 

(Starling et al. 2002). Furthermore, morphological characteristics of the skin did not differ 

between groups. Although low heat-tolerant animals had a greater need to dissipate heat, the 

thermal challenge was not sufficient to increase sweat production. It is known that sweat 

gland activation contributes to heat loss via cutaneous routes. The area occupied by the 

secretory part of sweat glands determines heat dissipation capacity via sweating (Bianchini et 

al. 2006). Gland-to-epidermis distance also did not differ between animals. The distance of 

sweat glands from the epidermis is related to the functional activity of glands: distant sweat 

glands have reduced functional activity (Ferreira et al. 2009).  

Overall, high heat-tolerant and low heat-tolerant sheep did not differ in skin 

morphological characteristics, resulting in a similar sweat rate. However, low heat-tolerant 

animals continued to sweat after the period of thermal challenge, probably in an attempt to 

dissipate excess heat. The sweat rate remained high after 16:00 (end of thermal challenge), 

until night time, when the air temperature was markedly lower, demonstrating that sweating 

was important for the reestablishment of thermal balance in the low heat-tolerant group. 

Similar findings were reported by Titto (2016b), who observed persistent sweating in sheep 
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even after the air temperature had decreased and panting had ceased. Despite the use of 

sweating to dissipate heat, these animals still needed to exchange heat with the environment 

through peripheral vasodilation.  

Influence of air temperature on thermoregulatory response 

Changes in the body temperature of domestic animals are influenced by environmental 

temperature (Terrien et al. 2011). In the current study, we observed that rectal temperature 

had rhythmic oscillations during the day, particularly when the ambient temperature was high 

(from 10:00 to 16:00). Oscillations surpassed the upper critical limit as a result of the increase 

in rectal temperature. High ambient temperatures may also increase surface temperatures, 

given that heat exchange occurs in the skin even in the absence of solar radiation. In sheep, 

the circadian rhythmicity of respiratory rate favors heat dissipation. This adaptive strategy 

aims to maintain the internal body temperature within the ideal range (De et al. 2017). 

Circadian oscillation of rectal temperature, respiratory rate, and surface temperature is 

influenced by the suprachiasmatic nucleus of the hypothalamus, whose main function is to 

regulate oscillations of the internal medium to modulate the setpoint (Rodrigues and 

Rodrigues 2007). These physiological adjustments are essential to prevent hyperthermia, 

especially in tropical regions where the ambient temperature varies significantly between day 

and night.  

Although there were no differences in feed intake between high heat-tolerant and low 

heat-tolerant groups, the parameters varied throughout the day. This response can be seen as a 

transient adaptive behavior aimed at reducing thermogenesis, being, in the short term, strictly 

dependent on heat dissipation capacity (Pereira et al. 2019). Therefore, the changes in feed 

intake in low heat-tolerant animals may be linked to heat gain and loss. Sheep likely resumed 

feeding when they were able to dissipate heat and reduce their internal temperature for short 

periods. By contrast, high heat-tolerant animals were able to maintain feed intake during 

periods of the day when the temperature was below 36 °C.  

The absence of solar radiation in the current experiment might also have contributed to 

the variation in feed intake in Santa Inês sheep. Feed intake behavior is different in animals 

raised in the field. Under pasture conditions, the air temperature directly influences feed 

intake and may change daily feeding patterns (6:00–12:00 and 12:00–18:00), shifting 

consumption to night time (Portugal et al. 2000). Although feed intake varied with 

temperature, this relationship did not influence insulin level, which increased during heat 

stress (O'brien et al. 2010; Wheelock et al. 2010). During stress, the sympathetic nervous 
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system releases catecholamines that are responsible for stimulating α-adrenergic receptors to 

increase insulin secretion (Alvarez et al. 1989). On the other hand, T3 concentration was not 

influenced by the increase in air temperature. It was expected that T3 levels would be lower 

during periods of warmer temperatures to ensure a reduction in heat production (Bragança et 

al. 1998; Garcia 2013). Nevertheless, low heat-tolerant animals had lower T3 levels than high 

heat-tolerant animals throughout the day, probably because of their greater heat accumulation. 

Thus, the degree of T3 reduction is related to the ability to adapt to heat stress; more tolerant 

animals have a lower T3 decrease in stress situations (Pereira et al. 2008).  

5.5.Conclusion 

Low heat-tolerant sheep accumulated more heat during the thermal challenge and 

required more time to dissipate excess heat. Furthermore, these animals continued to sweat 

even after the air temperature had decreased. The findings demonstrate that low heat-tolerant 

Santa Inês sheep cannot dissipate heat with the same efficiency as high heat-tolerant 

individuals. This information is important for understanding variations in the 

thermoregulatory response of animals of the same breed under the same environmental and 

management conditions and for selecting animals with better thermoregulatory performance 

under high temperature conditions. 
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6. Skin differential gene expression indicate candidate genes for ovine heat stress 

tolerance 

 

Manuscript in the article structure of Animal (not yet submitted) 

 

Abstract: Our objective is to identify potential candidate genes of the heat stress response in 

the skin of Santa Inês sheep of different heat tolerance levels.  Twenty-four sheep were used 

in the study, the 12 most heat-tolerant and 12 less heat-tolerant individuals identified in a 

thermotolerance assessment of 80 sheep. Animals were maintained for 10 days in a climatic 

chamber at an average temperature of 36 °C (10:00 am to 04:00 pm) and a maintenance 

temperature of 28 °C (0400 pm to 10:00 am). From 24 animals, 14 were chosen to do the skin 

sample. The seven high heat tolerant (HHT) animals and the seven low heat tolerant (LHT) 

ones were chosen as two contrasting groups. A micro fragment of skin tissue of each sheep 

were excised using an 8 mm diameter punch and stored in RNA later solution (Invitrogen) in 

a freezer at -20°C for further RNA extraction. A total of 15,989 genes were found expressed 

in the sheep skin samples, of which 15 genes were differentially expressed (DE; FDR < 0.05) 

between the two groups. The five DE genes were upregulated and 10 DE genes 

downregulated in the HHT compared with the LHT group. These genes are involved in 

cellular protection against stress (HSPA1A e HSPA6), protein synthesis process (28S, 

18S, and 5S ribossomal RNA) and immunologic responses (IGHG4, GNLY, CXCL1, 

CAPN14 e Serum amyloid A-4). The results indicated that High heat tolerance sheep showed 

up regulation for the cell protection genes and immune response. Probably the expression of 

these genes is important to ensure greater tolerance to heat because animals can better protect 

the body from damage caused by heat stress in cells and for immunity, even in adverse 

situations 

Keywords: transcriptomic, gene, thermotolerance, sheep 

6.1.Introduction 

The skin is the organ that works as a barrier between intern and extern ambient, 

protecting the body from mechanical damage, chemical damage, ultraviolet radiation and 

allows to maintain homeostasis (Singh et al., 2014). The skin contributes to homeostasis by 

detecting thermal changes and triggering defense responses (Romanovsky, 2014). This occurs 

through cutaneous heat and cold receptors that are located in the skin and send thermal 
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sensory information to the preoptic area, where the afferent signals of cold and heat are 

processed, generating a differentiated response to changes in skin temperatures, which is 

characterized by vasodilation in response to heat and by vasoconstriction in response to cold 

weather (Morrison and Nakamura, 2011). 

The skin contains components such as hair, sebaceous glands and sweat glands 

(Kobielak et al., 2015). In this organ, sweating occurs, which is triggered as the internal body 

temperature increases, and prevent excessive accumulation of heat in the body (Ferreira et al., 

2009), allowing the heat transport from deep tissues to the skin (Johnson and Kellogg Jr, 

2010), where the heat lost by evaporation of moisture from the surface of the skin occurs 

(Gebremedhin et al., 2008). This mechanism is an autonomic response of animals under heat 

stress (Collier and Gebremedhin, 2015).  

Given the importance of the skin in thermoregulation, this tissue has been studied to 

identify genes associated with heat stress. Expression of Hsp70 was reported in the upper 

epidermal layer in rat skin, around blood vessels, hair follicles, and sebaceous glands (Souil et 

al., 2001), in humans, epidermal keratinocytes were found to provide a natural barrier against 

possible stressful environmental attacks (Zhou et al. 1998; Jonak et al. 2009), and significant 

number of genes (HSP70, MMPs, iNOS, Caspase and Bcl-2 family) in bovine and buffalo 

dermal fibroblasts (Singh et al., 2014).  

Thus, characterizing the cellular response by RNA sequencing is important to 

understand the differences in the stress responses of sheep subjected to high temperature, and 

can also be a tool for the selection of more productive animals in tropical environments. 

Therefore, our objective is to identify potential candidate genes of the heat stress response in 

the skin of Santa Inês sheep of different heat tolerance levels. 

6.2.Material and methods 

6.2.1. Ethical approval 

The procedures were approved by the Ethics Committee on Animal Experimentation 

(CEUA/FZEA/USP Declaration 7498130919), considering the legal and ethical issues of the 

interventions performed. 

6.2.2. Local and Animals 

Eighty black coat Santa Inês sheep were used. All ewes were not pregnant, had body 

condition score of 3 (scale from1 to 5) and 4,3±0,7 years. The animals were obtained from the 

Biometeorology, Ethology and Animal Welfare Research Facility of the Laboratory of 
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Biometeorology and Ethology, Department of Animal Science, FZEA/USP, Brazil. Sheep 

were housed during five months in pens with artificial shade provided by white-painted fiber 

cement tiles (1 m
2
 per animal) and access to a pasture of Panicum maximum cv Aruana, and 

corn silage supplementation. For the experiment, the animals were taken to a climatic 

chamber at the Department of Animal Reproduction of the same university (FVMZ/USP). 

The climate chamber has an area of 56 m
2
 fully enclosed with brick walls and ceiling slabs, 

with cement flooring, temperature and humidity controller in a external area, internal 

thermostats and an exhaust fan. The animals had free access to water, corn silage and mineral 

supplementation. 

6.2.3. Experimental design e Heat tolerance test 

The experiment was divided into two phases. In phase 1, the animals were subjected to 

heat stress in a climatic chamber for ten days, two days of adaptation to the new environment 

and 8 days of heat treatment (stressor factor). The heat treatment was set at a temperature of 

36°C, starting from 10:00 to 16:00, maintained at 26 °C from 16:00 to 10:00. On the 9th and 

10th days, rectal temperature data were collected at 1:00 pm, 4:00 pm, 7:00 pm, 9:00 pm, 1:00 

am, 4:00 am, 7:00 am and 10:00 am. Rectal temperature was used as the response variable, 

and analyzed by the restricted maximum likelihood method (REML) under a mixed model. 

This included the fixed effects of the assessment cycle (4 cycles with 20animals each), 

equivalent to the group of contemporaries, and the time effect within the assessment cycle 

and, as a random, the animal effect. The BLUP predictions obtained for each ewe, which 

quantify the individual heat stress response, were used to rank ewes from most heat tolerant to 

least tolerant. After the end of phase 1, 12 high heat tolerant (HHT) and 12 low heat tolerant 

(LHT) animals were selected from this classification to phase 2. 

 After seven days, the second phase was done during ten days inside the climatic 

chamber, with temperature of 36°C from 10:00 to 16:00, and reduced to 28 °C from 16:00 to 

10:00, 2 °C above heat treatment in phase 1 to avoid acclimatation. 

6.2.4. Collection of skin samples 

From 24 animals, 14 were chosen to do the skin sample. Data analysis was performed 

similar to phase 1. The seven high heat tolerant (HHT) animals and the seven low heat 

tolerant (LHT) ones were chosen as two contrasting groups.  

Inside the climatic chamber, with air temperature of 36ºC after 10 hours of heat stress, 

a biopsy was performed on the right side of the animal, in the middle dorsal region. Before 
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collection of the biopsy, the area was shaved, disinfected, and anesthetized by application of 1 

mL of local anesthetic without vasoconstrictor (2% lidocaine hydrochloride). A micro 

fragment of skin tissue of each sheep were excised using an 8 mm diameter punch and stored 

in RNA later solution (Invitrogen) in a freezer at -20°C for further RNA extraction. 

Sequencing analyzes will be performed at the Genomics Center of ESALQ, Piracicaba, São 

Paulo, Brazil. 

6.2.5. Bioinformatics analysis 

Quality control, read mapping, and differential expression (DE) analysis 

Sequence data statistics and quality were estimated using the FASTQC tool version 

0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The quality control of 

the reads (QC) was performed using TRIM Galore software version 0.6.6 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove sequence 

adapters, low quality reads (QPhred<30), and short reads (<70pb). The clean reads were 

mapped against the sheep reference genome (Ovis aries, assembly GCA_016772045.1) 

available from the NCBI database (www.ncbi.nlm.nih.gov) using the STAR 2.7.3a software1.  

The abundance (read counts) of mRNAs for all annotated genes was calculated using 

Counts Per Million (CPM) and were kept only genes that presented at least one CPM in at 

least 30% of samples. The EdgeR package2 implemented in R language was used to identify 

differentially expressed genes (GDE) from high and low heat tolerance groups. The 

significance threshold for DE genes was set at a False Discovery Rate (FDR) ≤0.05 after 

multiple correction tests3. Genes were considered upregulated and downregulated according 

to FDR and the positives and negatives log2 fold-change (Log2FC), respectively, in the high 

heat tolerance (HHT) group compared to the low heat tolerance (LHT) group. 

6.3.Results 

RNA sequencing data and differential gene expression analysis for skin samples 

The sequencing of the skin samples generated an average of 11,6 million paired-end 

reads per sample (2 x 100 bp), remaining about 11,2 million after the QC. Approximately, 

82.46 % of the reads were mapped against the sheep reference genome (ATTACHMENT A). 

The Multi-Dimensional Scaling (MDS) plot showed a lack of clustering among animals 

belonging to the same experimental group (ATTACHMENT B). 
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A total of 15,989 genes were found expressed in the sheep skin samples, of which 15 

genes were differentially expressed (FDR < 0.05) between the two groups (ATTACHMENT 

C). The five DE genes were upregulated and 10 DE genes downregulated in the HHT 

compared with the LHT group (Fig 1).  

 

Fig 1. Volcano plot of log2FoldChange (x-axis) versus -log10 p value adjusted (FDR≤0.20, y-

axis) of high and low heat tolerance sheep skin samples. 

Hierarchical clustering analysis of the 15 DE genes showed a similar expression 

pattern among some samples of the groups (Fig 2).  
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Fig 2. Heatmap with 15 differentially expressed genes between skin samples from high heat 

tolerance (HHT 146; 149; 154; 159; 181; 188; 198) and low heat tolerance (LHT 143; 148; 

150; 155; 165; 186; 194) sheep. Each gene expression is shown in the lines and the samples in 

columns, resulting in a hierarchical group of genes and samples. In red are the upregulated 

and in yellow are the downregulated genes in the high heat tolerance animals 

6.4.Discussion 

 10 genes were identified as differential expression in sheep classified as high heat 

tolerant (HHT) and low heat tolerant (LHT) under high air temperatures. These genes are 

involved in cellular protection against stress (HSPA1A e HSPA6), protein synthesis process 

(28S , 18S , e 5S ribossomal RNA) and immunologic responses (IGHG4, GNLY, CXCL1, 

CAPN14 e Serum amyloid A-4).  

HSPA1A and HSPA6 

The heat shock protein family is a group of chaperones involved in the folding, 

stabilizing, and transport functions of proteins throughout the cell. The main isoform is Hsp70 

which is encoded by the HspA1A gene (Borges et al., 2012) and HSPA6 (Hsp70B'), which is 

also a member of the HSPA family but receives little attention compared to HSPA1A, which 

is more widely studied (Hsp70-1) (Deane and Brown, 2018).  



83 
 

 

HSPA1A and HSPA6 were more expressed in high heat tolerance animals. This 

increased expression in the skin during heat challenge may be because members of this 

protein family are induced by several types of stressors, including heat stress which is capable 

of activating heat shock transcription factors., e.g., HSPA1 (HSP70) and HSPA6 (Hsp70B') 

(Su et al., 2021). Furthermore, these proteins are involved in mitigating the deleterious effect 

of heat stress, so as to maintain cellular integrity and skin homeostasis against environmental 

stressors (Maibam et al., 2017), playing an important role in inhibiting apoptosis, ensuring 

cell survival (Noonan et al., 2007). In addition, the variation in the expression of HSPs from 

groups classified as high and low heat tolerance may be related to heat resistance and 

adaptation to different climatic conditions (Soghi et al., 2013; Raza et al., 2021) showing that, 

despite the animals were from the same race and under the same environmental conditions, 

they respond differently to the increasing in air temperature. 

CAPN14 

The relationship between calpain and heat stress is still unclear, but studies with 

buffaloes have found this gene to be more expressed during heat stress (Singh et al., 2014). 

They are calcium dependent proteins (Tizioto et al., 2013) and animals suffering from heat 

stress have reduced circulating calcium and this could reduce calpain synthesis. During heat 

stress, with lower food intake, there is a reduction in the availability of circulating calcium 

(Kadzere et al., 2002). The HHT group is likely to be able to overcome the effects of high 

temperature and therefore has a higher expression of CAPN14, with calcium mobilization. 

The higher amount of calpain may be related to better meat quality (Scheffler, 2022). 

It has been seen that the highest expression of CAPN1 is related to the tenderness of the meat 

(Avilés et al., 2013). On the other hand, CAPN14 expression may be linked to immunity, 

since CAPN14 can be triggered by Th2-associated signaling, through interleukins (IL) such as 

IL-13 and IL-4 (Davis et al., 2016). Th2 cells secrete IL-4, IL-5 and IL-13 and are responsible 

for immunity, and it has already been identified in the activation of mast cells in immune 

responses against helminths (Zenobia and Hajishengallis, 2015). In addition, capains are 

involved in several functions, including restructuring of cytoskeletal and membrane proteins, 

signal transduction, and inactivating enzymes involved in cell cycle progression, gene 

expression, and apoptosis (Chakraborti et al., 2012). 

Thus, the higher expression of CAPN14 in animals more heat tolerant may be a 

response of this group to the negative effects of stress. HHT animals may have higher 
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expression of calpain in the skin as a way to improve immunity and it may be that this 

contributes to the better ability to handle heat stress compared to LHT animals. 

LOC114108665 (growth-regulated alpha protein-CXCL1) 

Growth-regulated alpha protein (CXCL1) is an important component of cellular 

responses to harmful agents. For this reason, intercellular signaling involving CXCL1 must be 

very rapid (Korbecki et al., 2022). CXCL1 is induced in normal cells by exogenous stimuli, 

such as microbial products and/or inflammatory cytokines. In response to bacterial endotoxin, 

IL-1 and TNF-α are potent inducers of CXCL chemokines in mononuclear phagocytes, 

epithelial cells and structural mesenchymal cells (Chensue, 2006). 

 CXCL1 may also have its production stimulated by IL-17. IL-17A has as its main 

function protection against extracellular bacteria and fungi, due to its ability to recruit 

neutrophils to infected areas (Normanton and Marti, 2013). IL-17 needs to be combined with 

specific immunostimulatory cytokines such as IL-6 and IL-21 and tumor growth factor-β to 

drive its development, although the IL-17-producing T cell may be involved in potent 

inflammatory responses, a subset of Th17 regulatory cells (rTh17) that express the anti-

inflammatory cytokine IL-10 has been identified (Zenobia and Hajishengallis, 2015). 

 Stress can stimulate the production of IL-17 and IL-6 (Ganesan et al., 2017; Kim et al., 

2021), probably this fact is responsible for the higher expression of CXCL1 in animals under 

stress. And just like CAPN14, the higher expression of CXCL1 in HHT sheep may be related 

to greater protection of the animal in response to heat stress, presenting a good immune 

response in adverse climatic conditions in which the immune system is suppressed. 

LOC101108781 (immunoglobulin heavy constant gamma 4-like-IGHG4)  

The immunoglobulin heavy constant gamma 4 (IGHG4) genes are responsible for 

encoding the immunoglobulin (Braga et al., 2019). Immunoglobulins can be expressed in the 

epidermis and are involved in skin immunity (Jiang et al., 2015), being proteins induced in 

response to antigen exposure. 

 It is known that chronic heat stress is responsible for affecting the immune system of 

the animal's organism (Jin et al., 2011; Marrero et al., 2021). During stress conditions, after 

the initiation of the immune response by immunoglobulins, pro- and anti-inflammatory 

cytokines are secreted and play a key role in determining the immune status of an organism 

(Arango-Duque and Descoteaux, 2014). Some cytokines enhance inflammatory responses and 
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are called pro-inflammatory cytokines, while other cytokines suppress inflammatory 

responses and are called anti-inflammatory cytokines (Dinarello, 2000). 

 Thus, interleukin-10 (IL-10) is an anti-inflammatory cytokine involved in the 

inflammatory response (Siddiqui et al., 2020). Thus, the lower immunoglobulin response in 

HHT may have been due to the increase in IL-10 in this group as a result of the higher 

expression of HSPs that are able to regulate the immune response and the activation of 

regulatory T cells (Spienrings and Eden, 2017). Furthermore, induction of IL-10-producing T 

cells is a feature of HSPs immunization (Wendling et al., 2000).  

LOC101120613 (Serum amyloid A-4 protein)  

Serum amyloid A (SAA) increases its concentration in response to inflammation (Al-

Dawood et al., 2017). This response is predominantly driven by the endogenous cytokines 

interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, induced in macrophages that 

bind to toll-like receptors (TLR). Several functions have been described for Serum amyloid A, 

and pro- and anti-inflammatory activities can be highlighted. Pro-inflammatory activities are 

more prominent, requiring a small concentration of SAA, and are also related to leukocyte 

migration through their chemokine-inducing capacity and chemotactic effect (Buck et al., 

2016). 

The higher expression of Serum amyloid A may be due to heat stress, which increases 

the production of IL-6 (Ganesan et al., 2017) and influences the production of SAA. Thus, 

heat stress has already been proven to increase plasma concentrations of amyloid A (Ríus et 

al., 2022). Another factor that may explain the higher expression of Serum amyloid A is the 

higher expression of HSP70 in this group (Ather et al., 2013; Mallick et al., 2021). Responses 

to extracellular HSPs appear to involve a variety of cell surface receptors that may determine 

their influence on tissue immune reactions (Calderwood et al., 2016). Thus, the higher Serum 

amyloid A expression in HHT ewes may once again be related to higher heat tolerance. 

GNLY  

 Granulysin protein (GNLY) of the saposin family is involved in protective immunity 

and is released by natural killer (NK) cells, NKT cells, γδ T cells, and cytotoxic T 

lymphocytes (Thuong et al., 2016). The main receptors of NK cells and T cells are known as 

killer immunoglobulin-like receptors (KIR) which are designated by the number of 

immunoglobulin domains (D) (Almeida-Oliveira and Diamond, 2008). On the other hand, 
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according to Ruiz et al. (1996), immunoglobulin can inhibit the activity of cells and reduce 

their toxicity and probably can affect the release of the protein granulysin.  

 As for the protective action of granulysin, it occurs when NK cells and T 

lymphocytes identify an infected cell, enzymes are retained in the cytotoxic granule by 

binding to a granular protein called serglycine. Cytotoxic cell granules contain two types of 

effector molecules, pore-forming proteins that disrupt cell membranes (perforin, granulysin) 

and proteases (granule granzymes) (Lieberman, 2016) that induce apoptosis in infected 

mammalian cells. 

 Bacterial cell apoptosis mediated by these proteins causes damage to critical 

processes necessary for survival, causing DNA damage, inducing reactive oxygen species, 

disrupting the mitochondrial outer membrane, interfering with RNA splicing and protein 

translation, providing mechanisms for kill diverse bacterial strains that grow under varying 

conditions (Walch et al., 2014). These molecules rapidly mobilize the immune system to 

respond to infection and tissue injury to mediate an inflammatory response. Activated T cells 

and NK cells release GNLY, which activates monocytes, therefore, GNLY may be a mediator 

of pro-inflammatory responses (Tewary et al., 2010). 

28S, 18S, and 5S ribosomal RNA 

Ribosomal RNA (rRNA; 28S, 18S, 5.8S, and 5S in eukaryotes) are encoded by many 

copies of ribosomal DNA throughout the genome, which exhibit tissue-specific expression 

patterns (Parks et al., 2018). The 28s, 18s and 5s genes identified in the skin were less 

expressed in high heat tolerance animals. These genes had not yet been found in sheep and, 

therefore, it is still unclear what the function of these genes would be in the skin and how 

temperature might influence their expression. Thus, the effect of heat stress on RNA 

metabolism in mammalian cells is not well characterized. Evidence suggests that processing 

and transport pathways for 5s RNA, rRNA and mRNA may be sensitive to hyperthermia. 

Furthermore, the synthesis of 18s and 28s rRNAs in the cytoplasm can be affected by heat 

stress (Sadis et al., 1988). 

 The lower expression of 28s, 18s and 5s ribosomal RNA in high heat tolerance sheep 

in our study suggests that this group suffers less under stressful conditions and therefore does 

not require ribosomal modifications to the same degree as low heat tolerance animals. LHTs 

probably need to adjust RNA structure/function to try to combat the negative effects of heat 

stress, so greater ribosomal changes are necessary for specific transcripts to be translated in 

response to different environmental conditions (Baldridge and Contreras, 2014) thus 
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controlling the gene expression in an attempt to combat the effects of heat stress. This process 

is termed methylation, however, what are the effects of each of these methylation events, 

which specific transcripts are translated, and what are the functional consequences of most 

rRNA modifications are still unclear (Liberman et al., 2020).  

LOC101112166 (putative SEC14-like protein 6-SEC14L6) 

Sec14 domain proteins interface with many cellular activities (Bankaitis et al. 2012) 

such as signal transduction, transport and organelle biology, where they integrate lipid 

metabolism with other biochemical processes (Saito et al., 2007). 

Lipid metabolism involves the synthesis of structural and functional lipids (such as 

phospholipids, glycolipids, cholesterol, prostaglandins, etc.) that are characteristic of 

individual tissues (Gyamfi et al., 2019). This gene may be important during the negative 

effect of stress for energy production, which is important because thermoregulation requires a 

high energy cost (Zhang and Dong, 2021) being responsible for the consumption of energy 

that would be used in other metabolic and productive processes to maintain homeothermy 

(Souza et al., 2005). and may also be related to energy reserve and thermal insulation. 

This gene may be responsible for the production of prostaglandins that play an 

important role in the inflammatory response. Prostaglandin production is generally low in 

non-inflamed tissues, but increases immediately during inflammation and before leukocyte 

and immune cell recruitment (Ricciotti and FitzGerald, 2011). Therefore, SEC14 may be 

directly and indirectly involved in several functions that are linked to heat stress, the lower 

expression in HHT animals may be due to a greater ability to deal with stress and to suffer 

less at high temperatures compared to LHT.  

6.5.Conclusion 

 High heat tolerance sheep showed up regulation for the cell protection genes 

(HSPA1A and HSPA6) and immune response (CXCL1, CAPN14 and Serum amyloid A-4, 

IGHG4). Probably the expression of these genes is important to ensure greater tolerance to 

heat because animals can better protect the body from damage caused by heat stress in cells 

and for immunity, even in adverse situations. Further studies should be carried out to better 

understand the other genes addressed in this article. 
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ATTACHMENT A – Number of reads per sample before and after quality control analysis for 

sheep skin samples 

Samples Input Read Pairs 

(million) 

Pair  Reads after 

QC (million) 

Pair mapped 

reads after QC 

(million) 

Pair mapped 

reads after QC 

(percentage) 

143 13885339 13307659 11447908 86.02% 

146 13438037 13035136 11321520 86.85% 

148 11752185 11467806 6839980 59.65% 

149 11945962 11697834 10626529 90.84% 

150 10897524 10385676 8460079 81.46% 

154 11954216 11447075 9781361 85.45% 

155 10594118 10064905 7909237 78.58% 

159 11455108 11023329 9456302 85.78% 

165 10899364 10479880 8786644 83.84% 

181 11306668 10866579 9346649 86.01% 

186 11688296 11371042 10037809 88.28% 

188 10564597 10149352 8353187 82.30% 

194 12274355 11764747 9142578 77.71% 

198 10618638 10068141 8223356 81.68% 
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ATTACHMENT B – Multidimensional scale plot to visualize the clustering among animals 
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ATTACHMENT C –The differentially expressed genes (FDR <0.20) between High and Low 

heat tolerance groups are in bold 

 

Gene Symbol logFC logCPM PValue FDR 

LOC114112149 -7,01268 6,215439 1,38E-06 0,011903 

LOC114112704 -5,50822 8,359267 1,49E-06 0,011903 

LOC121818850 -5,03427 9,235533 9,00E-06 0,047964 

LOC114112490 -5,22442 11,48877 1,24E-05 0,049621 

LOC114112702 -3,80641 3,939383 1,85E-05 0,053079 

LOC121818849 -5,21762 11,86924 1,99E-05 0,053079 

CAPN14 3,678007 4,129129 3,71E-05 0,084688 

LOC121818848 -4,41965 9,975605 5,25E-05 0,104931 

LOC114108665 3,957593 3,992829 5,91E-05 0,104944 

HSPA6 4,149938 7,724497 7,26E-05 0,111541 

HSPA1A 2,36498 8,241096 7,67E-05 0,111541 

LOC101108781 -2,81799 8,678852 9,63E-05 0,125813 

LOC101112166 -1,50208 6,127239 0,000102 0,125813 

LOC101120613 2,29924 1,45648 0,000117 0,134129 

GNLY -3,26188 1,40785 0,000167 0,177703 

PTGS2 2,652206 4,465429 0,000207 0,206772 

LOC114112489 -4,16313 12,11477 0,000261 0,245407 

 

 

 

 

 

 

 

 

 

 

 

 

 


