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ABSTRACT 

 

INFORSATO, L. An improved methodology for obtaining soil hydraulic 
properties by laboratory evaporation experiments. 2023. 76 p. Tese (Doutorado) 
– Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 
2023. 

 

Among the methods for determining the soil hydraulic properties, the laboratory 

evaporation experiment is distinguished due to its experimental easiness and the 

simultaneous acquisition of the soil water retention function, (h), and conductivity 

function, K(h). This thesis aims to improve the quality of the obtained parameters of 

the conductivity and retention functions using data measured in such evaporation 

experiments. It consists of three chapters (I, II, and III) with the respective specific 

objectives: (1) extension of the validity of the retention and conductivity models to the 

dry range of pressure heads; (2) improvement in the estimation of the K(h) function 

when using the “simplified evaporation method” and (3) evaluating parameter 

transforms for the mathematical expressions of s-shaped retention functions improving 

the uncertainty of the fitted parameters. With the results obtained in chapter I, it is 

possible to extend the validity of tested and conceptualized models without the need 

to change or reassess the known hydraulic parameters. Results from chapter II allow 

obtaining values of the conductivity function with greater exactness, mainly in sandy 

textured soils, where the “simplified evaporation method” showed to be less accurate. 

Chapter III elaborates on the reduction of uncertainties in hydraulic parameters 

determined by non-linear fitting through parameter transformation of the hydraulic 

properties. 

Keywords: Wind method. Non-linear regression. Soil hydraulic parameter 

measurement. Soil hydraulic parameter uncertainty. 
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RESUMO 

 

INFORSATO, L. Metodologia aperfeiçoada para a obtenção de propriedades 
hidráulicas do solo por ensaios de evaporação em laboratório. 2023. 76 p. Tese 
(Doutorado) – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 
Piracicaba, 2023. 

 

Dos métodos para determinação de propriedades hidráulicas do solo, o experimento 

de evaporação em laboratório se destaca pela facilidade experimental e pela 

aquisição das funções de retenção de água no solo, (h), e condutividade, K(h), 

simultaneamente. Este trabalho visa melhorar a qualidade dos parâmetros obtidos das 

funções de condutividade e retenção usando dados medidos em experimentos de 

evaporação. O trabalho é constituído por três capítulos (I, II e III) com os respectivos 

objetivos específicos: (1) extensão da validade dos modelos de retenção e 

condutividade em zonas secas; (2) melhoria na estimativa de pontos da função de 

K(h) utilizando o “simplified evaporation method” e (3) transformações de parâmetros 

nas expressões matemáticas das funções de retenção em formato de S melhorando 

a incerteza dos parâmetros ajustados. Com os resultados obtidos no capítulo I, é 

possível estender a validade de modelos testados e conceituados sem a necessidade 

de alterar ou reavaliar os parâmetros hidráulicos já conhecidos. O capítulo II permite 

obter valores da função condutividade com maior exatidão ao utilizar o método 

“simplified evaporation method”, principalmente em solos de textura arenosa, onde 

demonstrava menor exatidão. O capítulo III estuda e permite a redução de incertezas 

em parâmetros hidráulicos determinados por ajustes não lineares, através de 

transformações matemáticas dos parâmetros das propriedades hidráulicas. 

Palavras-chave: Método de Wind. Regressão não-linear. Estimativa de parâmetros 

hidráulicos. Incerteza dos parâmetros hidráulicos. 
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GENERAL INTRODUCTION 

 

The assessment and parameterization of soil hydraulic properties are necessary 

for any quantitative study involving the dynamics of water in the environment. Of 

fundamental importance for the hydrological cycle, the soil is the source from which 

terrestrial plants receive almost all the water necessary for their metabolism and 

transpiration. Currently, the ecosystem services provided by the soil are highlighted in 

scientific journals (Pereira et al., 2017). 

For the study and quantification of hydrological processes at a soil water 

balance scale, two mathematical approaches stand out. In the first place, the so-called 

bucket models, such as AquaCrop developed by FAO (Salman et al., 2021). Second, 

models based on the Richards differential equation can be used, requiring greater 

knowledge of soil hydraulic properties. The Richards equation combines the mass 

conservation law with the Darcy-Buckingham equation. 

The Richards equation allows for predicting water movement and the water 

content in time and space in the soil, but analytical solutions are available for only a 

few boundary conditions (Kool et al., 1985). Numerical solutions from robust numerical 

calculation procedures allow their application in many scenarios. 

For the Richards equation to be solved numerically and to produce reliable 

output, hydraulic properties (here considered as the water retention function, RF, and 

hydraulic conductivity function, CF) are expressed in functions such as Burdine, 1953; 

Groenevelt and Grant, 2004; Kosugi, 1996; Mualem, 1976; Van Genuchten, 1980. The 

accurate fitting of their parameters is required to minimize prediction errors in the water 

balance components and soil water dynamics. Not all model parameters can be 

obtained through measurements, but experimental setups are available to generate 

data and to parameterize the RF and CF (Durner et al. 1999). The evaporation 

experiment (EE) introduced by Wind (1966) is such a laboratory procedure. It consists 

of taking pressure head measurements in a soil sample, starting at saturation and 

evaporating to a controlled atmosphere. The EE allows fitting of both RF and CF 

simultaneously. 

The general objective of this thesis is to improve the accuracy of the prediction 

of the RF and the CF. The objective is achieved in three chapters. It extends from 
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considerations on commonly used models, then through improving data handling for 

the RF and CF and concluding in improvements in the model fitting to the soil 

hydraulics properties (SHP) data. 

In Chapter I, an alteration in the SHP model structure, applicable to most of the 

commonly used models is proposed to increase their validity from the very wet 

(saturated) range to the oven-dry range. The modification does not require to re-fit the 

parameters, and, with some assumptions, does not require new data or 

measurements. 

In Chapter II, a modification to the “simplified evaporation method” is introduced, 

a methodology that treats the data obtained by the evaporation experiment (proposed 

originally by Wind, 1966) and fits a model to these data. The assumptions for this 

proposed method reduce some bias implicit in the original method, significantly 

increasing the accuracy of the CF data for light-textured soils and increasing the 

accuracy for other texture classes to a lesser extent. 

In Chapter III, mathematical transformations for the SHP models are introduced. 

These transformations facilitate the non-linear fitting procedure and approximate the 

uncertainty associated with these parameters to a normal distribution. The method 

combines well with stochastic sampling as sometimes used to generate sets of 

parameters for an enhanced analysis of hydrological simulations. 
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1. CHAPTER I: An extension of water retention and conductivity functions to 

dryness 

 

Abstract 

Water retention and hydraulic conductivity are essential properties to predict 

water flow in soils. Commonly, these soil physical properties are represented by 

equations relating suction, soil water content and hydraulic conductivity. The most 

common empirical equations used for this purpose have a limited range of reliability, 

not functioning properly in the very dry range. An approach to extend the reliability and 

applicability of these models has been presented, making use of smoothed piecewise 

equations added to the base model and implying in changes in the base model 

parameters. We propose a modification of the model commonly known as PDI (Peters-

Durner-Iden), allowing to extend the reliability of most common base models without 

the need to change the original parameters. The transformation is analytically 

equivalent, interchangeable and allows to anchor the retention function at any point 

instead of the residual water content. Van Genuchten, Kosugi, Brooks-Corey and 

Groenevelt equations can easily be combined to the proposed model, which may be 

used to predict water flow in the dry range where most common equations are not 

reliable. 

 

 Introduction 

Soil water retention (RF) and hydraulic conductivity (CF) are the fundamental 

properties to predict water flow in soils and its linkage to key processes in the vadose 

zone, such as root water uptake (Dos Santos et al., 2017) and the fate of solutes and 

pollutants (Šimunek et al., 2018). These soil physical properties are usually 

represented by equations relating suction (absolute value of the pressure head), 

represented by h, soil water content, , and hydraulic conductivity, K. The most 

commonly used equations are those proposed by Brooks and Corey (1964), Campbell 

(1974), Van Genuchten (1980), Durner (1994), Kosugi (1996), Groenevelt and Grant 

(2004), and Peters and Durner (2008), and their parameters are calibrated using 

observed data in laboratory or field experiments. Different approaches to extend the 

range of validity of these equations to drier ranges of soil water content have been 
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presented (Ross et al., 1991; Rossi and Nimmo, 1994; Fayer and Simmons, 1995; 

Khlosi et al., 2006; Zhang, 2011; Peters, 2013). The model by Zhang (2011) consists 

of piecewise functions maintaining the parameters of the original model. A sound semi-

empirical model to do so was presented by Peters (2013, 2014), Iden and Durner 

(2014), and is commonly called the PDI model. 

To extend the applicability of retention functions to drier ranges, the PDI model 

employs a piecewise smoothed retention function, and a physical-empirical function to 

extend the conductivity equation. The Kosugi (Kosugi, 1994; Kosugi, 1996) and Van 

Genuchten – Mualem (Van Genuchten, 1980; Mualem, 1976a) (VGM), equations are 

the base functions used in the PDI model, though its concept is applicable to a variety 

of h() and K() functions. 

To be applied, the PDI model requires a rescaling of the relative saturation 

function and an extension of the conductivity function, which causes its parameters to 

be not interchangeable with known parameters of Kosugi or VGM models. One of the 

reasons for parameters to change is the prediction of a non-zero value of relative 

saturation at the suction corresponding to oven-dry conditions by Kosugi or VGM 

models.  

In this study we develop a modification to the PDI model allowing the use of the 

original Kosugi or VGM parameters, eliminating the residual water content from the 

equations and assuming a zero water content at the oven-dry suction. Solutions will 

be presented for VGM, Kosugi and Groenevelt – Grant (2004) base models.  

 Material and Methods 

Most equations to describe soil water retention follow a structure including a 

residual water content θr [m3 m-3] and a saturated water content θs [m3 m-3], together 

with a relative saturation S(h) defined as function of the suction h [m] (absolute values 

for the matric potential). This is the case, e.g., for the equations proposed by Brook 

and Corey (1964), Van Genuchten (1980) and Kosugi (1996). For these equations,  

      s rrh S h       [1] 

where the θ(h) is the water content [m3 m-3] at suction h. 
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In the PDI model (Peters 2013, 2014; Iden and Durner, 2014), S(h) from Eq. 1 

is replaced by a term Scap (h), the relative saturation of capillary water, which is a 

rescaled relative saturation from a base model (e.g. Van Genuchten, 1980 or Kosugi, 

1996). Furthermore, a term Sads (h) is added, representing the relative saturation of the 

adsorbed water. The resulting θ(h) equation is: 

        r cap r adssh S h S h       [2] 

Iden and Durner (2014) defined Sads (h) as a smoothed piecewise function 

obtained by using specific mathematical techniques (Kavetski and Kuczera, 2007). 

Instead of using a rescaled saturation function, the proposed model applies the original 

RF base model, Γcap(h), adding to it a modified adsorption component, θ0 Γads(h), 

resulting in 

      0ca adsph h h      [3] 

in which θ0 is the water content at the oven dry suction (h0) of the selected base 

function, with Γads (h) defined by 

  

0

log1
log ln 1 exp

log
ds

a

a
a

a

h
h hh b

h h b
h

   
           

    
     

  [4] 

where h0 [m] is a suction at which Γads ≈ -1, ha [m] is a suction corresponding to an 

arbitrarily defined threshold value where retention switches from predominantly 

capillary to adsorption driven, and b [−] is a smoothing parameter, analogous to Iden 

and Durner (2014). Eq. 3 is further illustrated in Figure 1, clearly showing that the 

extended model reduces to the base model at high water contents. 
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Figure 1.  Graphical representation of the proposed model for the soil water retention 

function θ(h) (Eq. 3) composed of Γcap (h) and θ0 Γads (h) 

1.2.1. Groenevelt – Grant model as the base retention function 

The Groenevelt – Grant (2004) model (GG) does not include a residual water 

content in its formulation, and can therefore be directly combined to Eq. 3 as: 

  
0

0 0

0

0
10

log
exp exp log ln 1 exp

log
GG

a

a

p p
a

h
k k h hh k b

h h bh h
h

 

   
                                         

     

  [5] 

where θGG (h) is the water content of the GG model as function of the suction, h0 is the 

suction [m] corresponding to oven-dry conditions, making θGG(h0) = 0, k0 [mp] is a fitting 

parameter, and p and k1 are dimensionless fitting parameters. The base GG model 

without considering the right part of the equation including Γads (h) would yield 

θ(h0) = θ0. 

1.2.2. Kosugi and Van Genuchten models as the base retention function  

Both the Kosugi and Van Genuchten retention models include a residual water 

content in their formulation. Consequently, a modification needs to be performed to 

suit them as base functions to the proposed model. Considering a closed-form 

retention Eq. 1, it follows that 
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            i

i

h h

sr r r

h

sr h
h f h dh f h dh f h dh      

 

              [6]  

where f (h) is a function with a known indefinite integral. Integrating Eq. 6 yields 

          r r i rs s ih S S S h S             [7] 

where Si is S(hi), and S∞ tends to zero. Now considering the water content at an 

arbitrary point (θi, hi) on the water retention equation 

   ii s rr S       [8] 

and substituting Eq. 8 into Eq. 7, we obtain 

       i s irh S h S        [9] 

Isolating θr in Equation 8 and substituting it in Eq. 7, Eq. 9 can be written as 

     
1

i
i i

s

i

h S h S
S

 
 

 
    

 [10] 

Eq. 10 is a θ(h) equation anchored to an arbitrary data pair (θi, hi). If θi tends to 

θr, Eq. 10 reduces to Eq. 1. Using Van Genuchten or Kosugi base equations in the 

format of Eq. 10 allows to define the θ(h) equation using any arbitrary data pair (θi, hi) 

instead of θr. With this approach, the equation parameters from the original base 

equations and the newly proposed equations are identical because the functions are 

analytically the same. To the best of our knowledge, Eq. 10 has not been presented 

before. 

Using VGM in Eq 10, substituting the relative saturation S(h) and Si, the new 

analogous model anchored to any data pair instead of θr becomes 

        
 1

i
i s i

i
VGM

S h S h
h

S h
   

 
      

 [11] 

with 

    
1

1

1 nn
S h h


  
   [12] 

where α [m-1] and n [−] a re fitting parameters. 
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A convenient choice for the anchor point (θi, hi) could be the oven dry condition 

(θ0, h0). In this case, Eq. 10 added to Eq. 4 multiplied by θ0 yields a new equation, 

analogous to the PDI model, reaching a zero water content at h0 without further 

changes in the base equation (Eq. 3). This extended Eq. 10 equals 

     0 0
0 0

0

0

log
log ln 1 exp

1 log a

a

s

a

h
h hh S h S b

hS h b
h

   

   
                      

     

 [13] 

Equation 13 is Eq. 3 using base models in the form of Eq. 1, which may be used 

with VGM or Kosugi. To use VGM as base model, the relative saturation considered in 

Eq. 13 should agree to Eq. 12. To use the two-parameter Kosugi (1996) model as base 

model, S(h) in Eq. 13 should be: 

    
*

ln /1
erfc

2 2
mh h

S h


 
  

 
 [14] 

where hm is the suction at median pore radius, erfc is the complementary error 

function, and σ* [−] is a fitting parameter. 

1.2.3. Hydraulic Conductivity 

The capillary conductivity function is generally related to the retention function 

through capillary bundle models. Since the RF equation and its parameters are the 

same as the base equation, the CF parameters of the base model can be maintained. 

To extend the applicability of the CF, we used the conductivity function proposed by 

Peters (2013), and Peters and Durner (2008), which relates the conductivity to the 

adsorptive function Γads (h) as: 

 
 *

0
ads

ads sat

h

a

a
hK K h


   
   [15] 

where a* [−] is a parameter related to the slope of the function in log-log scale, ω [−] 

is a weighting parameter, Ksat [m s‑1] is the saturated conductivity and Kads [m s‑1] is 

the conductivity related to the adsorption component of the retention function. 

The conductivity function related to the saturation of capillary water for VGM 

(Van Genuchten, 1980) is: 
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            2
n

1 1
1

/
/

1 1
n

cap sa

n

tK h K S h S h
       

 [16] 

with S(h) defined by Eq. 12, λ [−] is a fitting parameter and Kcap(h) [m s‑1] is the 

conductivity related to the capillary component.  

The capillary conductivity for the Kosugi (1999) model is: 

       
2

11
erfc erfc 2

2 2
cap satK h K S h S h

        
 [17] 

with S(h) defined by Eq. 14 and erfc‑1 is the inverse of the complementary error 

function. 

According to Peters (2013), liquid conductivity Kliquid can be considered the sum 

of capillary (Kcap) and adsorption (Kads) components: 

 aliquid dscapK K K   [18] 

Generally, the conductivity value at oven dry conditions is negligible (Peters, 

2014), but nevertheless, a correction to the capillary conductivity equation is proposed, 

according to: 

        
 0

*

0

1

1c acap ap c p

h
K h K h K h

h

  
      

 [19] 

with 

  
 

0

ads h

a

h
h

h


 

   
 

 

where K*cap [m s-1] is the corrected capillary conductivity. Eq. 19 will gradually reduce 

the impact of the “residual capillary flow” at h0, so the capillary conductivity becomes 

zero at Kcap(h0). The correction will become relevant at suctions near ha. Kcap in 

Eq. 18 should be substituted by K*cap from Eq. 19 to make use of the proposed 

correction. 

The most relevant equations for the proposed modified model are summarized 

in Table 1. 
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Table 1.  Summary of equations for the proposed model. 

Description Equations 
Conversion between residual 

water content θr and an arbitrary 
water content θi 
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1.2.4. Fitting procedure 

All RF and CF parameters can be simultaneously fitted in the proposed version 

of the PDI model using a standard fitting procedure. In order to show that a previously 

fitted base model, extended while maintaining the original parameters, leads to a good 

quality of fitting, a different calibration procedure is shown in the following.  

We used h() data pairs obtained during desorption of three soils representing 

different textures (Adelanto loam, Pachappa loam and Rehovot sand) retrieved from 

the dataset presented by Mualem (1976b). The measured data range from near-

saturated (measured suction 0.1 m) to very dry conditions (4.65·104 m for Adelanto 

loam, 3.19·104 m for Pachappa loam and 6.00·102 m for the Rehovot sand). The VGM 

analytical function was used as the base model for this fitting example.  

First, the base model (VGM) was fitted to the available retention and 

conductivity data of the predominantly capillary part. To do so, a criterion is needed to 

establish the suction at which adsorption becomes most important. For the Adelanto 

and Pachappa loams, we used the traditional value of h = 150 m. For the Rehovot 

sand soil with a sand content of 97%, we searched for the best fit, adding h() and K(h) 

values until a defined suction and performing the curve fit. This procedure led to the 

best fit using h = 2.5 m as threshold. It is important to mention that in this kind of well-

sorted soils adsorptive processes are predominant on a large range. Fitting the VGM 

model to data from these soils commonly yields high n and zero or slightly negative r 

values. These parameters, however, are not meaningful, as fitting hydraulic data from 

such soils to the capillary VGM model does not make sense.  

Following Iden et al. (2019), to minimize the weighted-least-squares objective 

function, a relative weight of 1000 was attributed to the water retention data and a 

weight of 1 to the hydraulic conductivity data. These fits yielded α and θr for the 

retention function, λ for the conductivity function, and n for both functions (retention 

and hydraulic conductivity). θs was treated as a known (measured) parameter. This 

fitting procedure is in line with common practice, where water contents are measured 

down to h = 150 m (usually in a pressure plate apparatus), and is similar to the 

approach assumed by Zhang (2011).  

In a second step the other parameters were fitted: ω and a for CF and ha for RF 

and CF, now considering all data, the entire range of suctions. K as a function of θ was 
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available for the Adelanto and Pachappa loams, therefore first the parameter related 

to the adsorption retention function, ha, was fitted. Subsequently, water contents from 

K(θ) data were transformed to suctions. Then, the resulting K(h) data were used to fit 

a and ω. For the Rehovot sand soil, K as a function of h was available and parameters 

ω, a and ha were fitted simultaneously. For h0 we assumed 6.3·104 m, as discussed in 

Peters (2013). For parameter b the lower limit value 0.1 from the equation proposed 

by Iden and Durner (2014) was used. 

Another approach used to fit the proposed model was to extend the RF base 

model for absolute values of suctions above a critical value |hcrit|. This critical value, 

similar to Zhang (2011), was established using a straight line on semi-log h scale, 

passing through (0, h0), the oven-dry condition, and (θcrit, hcrit) tangent to the RF base 

function. The value found for hcrit was used for ha. 

 Results and Discussion 

Although the original PDI model and the here proposed version are similar, this 

study focused on extending the validity of already known retention and conductivity 

functions, maintaining the original parameters and extending reliability of the base 

models. On the other hand, the original PDI model focused on increasing the physical 

meaning and understanding of RF and CF, splitting the RF into adsorptive and 

capillarity components; and the CF into capillary conductivity, film conductivity and 

vapor conductivity. The proposed version of the retention function maintains the 

characteristics of differentiability and continuity and behaves linearly between 

adsorption and capillary components of the RF from saturation to near ha suction, 

θ(h) = Γcap(h) + Γads(h) ≈ Γcap (h). Although it is recommended to use the adsorptive 

smoothed piecewise function proposed by Iden and Durner (2014), with the proposed 

RF version shown here the adsorption function can be easily modified to a different 

piecewise function or some other similar function. 

Figure 2 shows the examples of fitted RF and CF using the abovementioned 

soils from the Mualem (1976b) database. The extended functions refer to the proposed 

model with VGM as base model. The Γads(h) component is not shown in Figure 2 

because the function assumes negative values. The correction for conductivity was not 

used in these examples, since the value of K(h0) is of a very low order of magnitude. 

Parameter a* for the adsorptive component of CF was fitted, because the value 
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proposed by Peters (2013) a* = 1.5 was not satisfactory for the proposed model. The 

proposed model uses simple and independent functions to extend the base model, 

employing only three additional fitting parameters: a* and ω for CF and ha for RF and 

CF. Therefore, only some additional h(θ) and K(h) data are required to extend the base 

model to dryness. 

The threshold suction value where Γads becomes relevant, ha, should be 

considered near the limit of validity of the selected base model. Table 2 shows the 

fitted parameters for both analyzed soils, using VGM as the base model. Campbell and 

Shiozawa (1992) established a range from 10 m to 100 m as lower limit of validity for 

the VGM model. This agrees with results for Adelanto and Pachappa loams which fitted 

ha parameters within this range. The Rehovot sand, however, showed a parameter ha 

lower than this range, which agrees with results by Peters (2013). In addition, Table 3 

shows the root mean square error RMSE of the fitted function relative to the real data. 

Due to the linear characteristics of proposed model, if ω is already known only 

a few K(h) data points in the adsorption region are required for fitting parameter a*, 

which is related to the inclination of the hydraulic adsorption component. 

Table 2.  RF and CF fitting parameters for the base model VGM and for the extended 

model using the data from the two analyzed soils. 

Soil 
Fitted Parameters 

θr α [m-1] n λ ha [m] a* ω 

Pachappa loam 0.079 6.13·10-1 2.26 0.970 40.25 12.67 2.54·10-7 
Adelanto loam 0.165 3.15·10-1 2.18 0.000 36.95 10.61 6.06·10-5 
Rehovot sand 0.031 4.29 3.95 0.819 0.33 49.88 7.94·10-7 

 

Table 3.  Root mean square error (RMSE) for water content θ and hydraulic 

conductivity, log10(K [cm d-1]), of the VGM base model and of the proposed 

extended model fitted to measured data for the two analyzed soils. 

Soil 
RMSE 

θ VGM log(K)VGM θ Extended log(K) Extended 

Pachappa loam 0.0086 0.2518 0.0074 0.2274 
Adelanto loam 0.0088 0.0942 0.0073 0.0851 
Rehovot sand 0.0100 0.5920 0.0095 0.5181 
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Figure 2.  Water content θ and hydraulic conductivity K as function of suction h for 

three soils from the Mualem (1976b) database: (a) Pachappa loam, (b) 
Adelanto loam and (c) Rehovot sand. [Extended RF and Extended CF: fitted 
water retention and hydraulic conductivity functions of the extended model; 
VGM RF and VGM CF: fitted water retention and hydraulic conductivity 
functions of the base model VGM; Ads CF: fitted hydraulic conductivity 
function for the dryer range where the base model is not reliable; data cap: 
data from the capillary range (|h| ≤ 150 m for Pachappa and Adelanto loams 
and |h| ≤ 2.5 m for Rehovot sand) used to fit the base model; and data ads: 
data from the adsorption range (|h| > 150 m for Pachappa and Adelanto 
loams and |h| > 2.5 m for Rehovot sand) used to fit the remaining 
parameters]. 
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Using the critical suction proposed by Zhang (2011) as ha, its value changed to 

27.55 m for the Adelanto loam and to 31.00 m for the Pachappa loam. Calculating 

RMSE considering all h(θ) data yielded values of 8.67·10‑3 and 7.44·10‑3 respectively. 

Besides the data to fit the RF of the base model and the oven-dry suction, no additional 

data are required to fit the critical pressure value. The Rehovot sand did not respond 

well to the Zhang (2011) approach, because the adsorptive component in the CF 

function becomes relevant at a lower absolute pressure |h| than the adsorptive 

component of the RF function. In similar situations, parameter ha should be fitted 

together with parameters ω and a* to yield more reliable values. 

The possibility of expressing the base model using any arbitrary point (θi, hi) of 

the retention function, analytically interchangeable with the residual water content, 

allows to fit θi instead of residual water content for the base model. 

 Conclusion 

In this study, a new version of the PDI (Peters-Durner-Iden) soil hydraulic 

property equations (commonly called PDI) was developed. Analyzing the results, we 

conclude that 

1. The proposed version allows an extension of the validity range of 

commonly used retention and conductivity equations by summing simple 

functions, preserving the original parameter values.  

2. The transformation is analytically equivalent, interchangeable and allows 

to anchor the retention function at any point, instead of residual water 

content.  

3. The model extension is straightforward and simple, not requiring many 

additional dry-range data to be fitted.  

4. Brooks − Corey, Van Genuchten, Kosugi and Groenevelt – Grant 

equations can easily be combined to the proposed model. 

5. The proposed hydraulic model may be used to predict water flow in the 

dry range, where most common equations are not reliable. 

 



27 

 References (Chapter I) 

Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrol. 
Pap. Color. State Univ. Fort Collins CO 3: p. 27. 

Campbell, G. S. and S. Shiozawa. 1992. Prediction of hydraulic properties of soils 
using particle-size distribution and bulk density data. In: M.T. van Genuchten. et 
al (editor), International Workshop on Indirect methods for estimating the 
hydraulic properties of unsaturated soils. Univ. of California, Riverside. p. 317–
328. 

Campbell, G.S. 1974. A simple method for determining unsaturated conductivity from 
moisture Retention Data. Soil Sci. 117: 311–314. doi: 10.1097/00010694-
197406000-00001 

Dos Santos, M.A., Q. De Jong Van Lier, J.C. Van Dam, and A.H.F. Bezerra. 2017. 
Benchmarking test of empirical root water uptake models. Hydrol. Earth Syst. Sci. 
21: 473–493. doi: 10.5194/hess-21-473-2017 

Durner, W. 1994. Hydraulic conductivity estimation for soils with heterogeneous pore 
structure. Water Resour. Res. 30: 211–223. doi: 10.1029/93WR02676 

Fayer, M.J., and C.S. Simmons. 1995. Modified Soil Water Retention Functions for 
All Matric Suctions. Water Resour. Res. 31: 1233–1238. doi: 
10.1029/95WR00173 

Groenevelt, P.H., and C.D. Grant. 2004. A new model for the soil-water retention 
curve that solves the problem of residual water contents. Eur. J. Soil Sci. 55: 
479–485. doi: 10.1111/j.1365-2389.2004.00617.x 

Iden, S.C., J.R. Blöcher, E. Diamantopoulos, A. Peters, and W. Durner. 2019. 
Numerical test of the laboratory evaporation method using coupled water, vapor 
and heat flow modelling. J. Hydrol. 570: 574–583. doi: 
10.1016/j.jhydrol.2018.12.045 

Iden, S.C., and W. Durner. 2014. Comment on “Simple consistent models for water 
retention and hydraulic conductivity in the complete moisture range” by A. Peters. 
Water Resour. Res. 50: 7530–7534. doi: 10.1002/2014WR015937 

Kavetski, D., and G. Kuczera. 2007. Model smoothing strategies to remove 
microscale discontinuities and spurious secondary optima im objective functions 
in hydrological calibration. Water Resour. Res. doi: 10.1029/2006WR005195 

Khlosi, M., W.M. Cornelis, D. Gabriels, and G. Sin. 2006. Simple modification to 
describe the soil water retention curve between saturation and oven dryness. 
Water Resour. Res. 42. doi: 10.1029/2005WR004699 

Kosugi, K. 1994. Three‑parameter lognormal distribution model for soil water 
retention. Water Resour. Res. doi: 10.1029/93WR02931 



28 

Kosugi, K. 1996. Lognormal Distribution Model for Unsaturated Soil Hydraulic 
Properties. Water Resour. Res. 32: 2697–2703. doi: 10.1029/96WR01776 

Kosugi, K. 1999. General Model for Unsaturated Hydraulic Conductivity for Soils with 
Lognormal Pore-Size Distribution. Soil Sci. Soc. Am. J. 63: 270. doi: 
10.2136/sssaj1999.03615995006300020003x 

Mualem, Y. 1976a. A new model for predicting the hydraulic conductivity of 
unsaturated porous media. Water Resour. Res. 12: 513–522. doi: 
10.1029/WR012i003p00513 

Mualem, Y. 1976b. A catalogue of the hydraulic properties of unsaturated soils. Res. 
Proj. Rep. 442: 100 p. Technion, Israel Inst. of Technol., Haifa. 

Peters, A. 2013. Simple consistent models for water retention and hydraulic 
conductivity in the complete moisture range. Water Resour. Res. 49: 6765–6780. 
doi: 10.1002/wrcr.20548 

Peters, A. 2014. Reply to comment by S. Iden and W. Durner on “Simple consistent 
models for water retention and hydraulic conductivity in the complete moisture 
range.” Water Resour. Res. 50: 7535–7539. doi: 10.1002/2014WR016107 

Peters, A., and W. Durner. 2008. A simple model for describing hydraulic conductivity 
in unsaturated porous media accounting for film and capillary flow. Water Resour. 
Res. 44: 1–11. doi: 10.1029/2008WR007136 

Ross, P.J., J. Williams, and K.L. Bristow. 1991. Equation for Extending Water-
Retention Curves to Dryness. Soil Sci. Soc. Am. J. 55: 923. doi: 
10.2136/sssaj1991.03615995005500040004x 

Rossi, C., and J.R. Nimmo. 1994. Modeling of soil water retention from saturation to 
oven dryness. Water Resour. Res. 30: 701–708. doi: 10.1029/93WR03238 

Šimunek, J., M.T. Van Genuchten, and R. Kodešová. 2018. Thematic Issue on 
HYDRUS Software Applications to Subsurface Fluid Flow and Contaminant 
Transport. J. Hydrol. Hydromechanics 66: 129–132. doi: 10.1515/johh-2017-0060 

Van Genuchten, M.T. 1980. A Closed-form Equation for Predicting the Hydraulic 
Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 44: 892. doi: 
10.2136/sssaj1980.03615995004400050002x 

Zhang, Z.F. 2011. Soil Water Retention and Relative Permeability for Conditions from 
Oven-Dry to Full Saturation. Vadose Zone J. 10: 1299–1308. doi: 
10.2136/vzj2011.0019 



29 

2. CHAPTER II: An improved calculation scheme for the Simplified Evaporation 

Method for obtaining soil hydraulic parameters 

 

Abstract 

The Richards equation is commonly used to predict soil water dynamics and soil 

water storage, requiring the fitting of the water retention function (RF) and the hydraulic 

conductivity function (CF). The method based on a laboratory evaporation experiment 

(EE) followed by a fitting procedure is a traditional technique to fit RF and CF (together 

referred to as soil hydraulic properties, SHP) for a specific soil. The “simplified 

evaporation method” makes considerations to simplify the numerical procedure of the 

SHP acquisition. We modified the “simplified evaporation method” to provide more 

precise data for the SHP fitting. The results show more accurate data for the 

conductivity function for different soil texture ranges, including for sandy soils for which 

the original method produced data with undesirable bias. 

 

 Introduction 

Accurate soil hydraulic properties (SHP) are required for the prediction of soil 

water dynamics. A commonly used procedure to estimate the SHP for a specific soil is 

the Simplified Evaporation Method (SEM), first presented by Schindler (1980) and later 

improved by Peters and Durner (2008) and Peters et al. (2015). The SEM consists of 

a laboratory experimental step followed by a computational step (data evaluation and 

fitting procedure). The experimental step is performed in a soil sample, initially 

saturated with water, and subjected to evaporation while the data measurements are 

taken. The computational step is characterized by the evaluation of the data acquired 

during the laboratory experiment, using specific assumptions for the SEM, and is 

followed by a fitting procedure to finally obtain the SHP parameters (retention - RF and 

conductivity - CF functions) simultaneously (Peters et al., 2015).  

The SEM assumptions allow obtaining SHP with relative simplicity, requiring 

simple analytical calculations for data evaluation and a non-linear fitting procedure for 

obtaining the parameters. The soil hydraulic parameters estimated through SEM show 

some systematical inaccuracy for sand soils (Iden et al., 2019) and some SHP 
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differences compared with inverse modeling (Dettmann et al., 2019). The differences 

arise from non-linearities in the suction, ℎ [cm], (absolute value of the pressure head), 

as function of the vertical position (“depth”) in the sample. The “original SEM” 

(considered as the procedure described in Peters et al., 2015) cannot predict correctly 

these non-linearities in the data evaluation step. 

We introduce a new method for evaluating the data from evaporation 

experiments to parameterize the hydraulic conductivity function, K(h) [cm d-1]. The new 

method is composed of three new approaches to calculate (K, h) pair of values, 

changing the “original SEM” assumptions. The objective is to reduce the bias observed 

in the K(h) of the original SEM, using new approaches to estimate conductivity data. 

 

 Material and Methods 

2.2.1. Original data evaluation with the simplified evaporation method 

The procedure of the evaporation experiment using the SEM is characterized 

by the measurement of the suction ℎ [cm] at two vertical positions (“depths”) in a soil 

sample using tensiometers. The average water content in the sample over time, t [d], 

is calculated by weighing on a balance. Initially, the soil sample is saturated with water, 

and evaporation occurs from its surface until the sample is relatively dry and 

tensiometers stop functioning. During this process, sample weight and tensiometer 

readings (suctions) are performed periodically. Thus, at the end of the experiment, a 

time series composed of average water content and both tensiometer readings are 

available. Although not necessary, the oven-dry weight of the soil sample may be taken 

at the end of the evaporation experiment as a reference. 

Figure 3 illustrates the experimental setup of an evaporation experiment. The 

length of the column is 𝐿 [cm], the average volumetric water content of the soil at a 

discrete time 𝑡௜ is 𝜃௜ [cm3 cm-3], and the suctions measured by the two tensiometers 

are denoted by ℎ௜,ଵ [cm] and ℎ௜,ଶ [cm]. The vertical positions of the tensiometers are 

𝑧ଵ = 0.25 𝐿 and 𝑧ଶ = 0.75 𝐿. The vertical axis 𝑧 is positive upwards and 𝑧 = 0 is at the 

bottom of the soil sample. 
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Figure 3. Profile view of the experimental setup for the evaporation experiment. The 

length of the column of the soil sample is 𝐿 [cm], the red rectangle 

represents the balance, 𝑟 is the radius of the soil sample [cm], the vertical 

position in the soil sample [cm] is represented by 𝑧 (where 𝑧 = 0 cm is taken 

at the sample bottom), 𝑧ଶ and 𝑧ଵ are the vertical positions of the upper and 

lower tensiometer, respectively, and 𝑧௖௧௥ is the vertical position of the center 

of the soil sample (adapted from Peters et al., 2015). 

The original SEM calculates the suction in the center of the soil sample, 

ℎప,௔௩௘
തതതതതതത [cm] as the arithmetic mean of the two suctions ℎ௜,ଵ and ℎ௜,ଶ at time 𝑡௜ (Peters and 

Durner, 2008; Schindler, 1980): 
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The hydraulic conductivity is calculated as: 
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where 1

2
i

H


  is the vertical pressure gradient at the center of the soil sample, 1

2
i
h


  is 

the suction gradient with respect to the soil sample depth at the center of the sample, 
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𝑞
௜ି

భ

మ

 is the water flow at the center of the soil sample at time 𝑡
௜ି

భ

మ

. The water flux across 

the center, 𝑞
௜ି

భ

మ

, is computed as: 
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where 𝜃̅௜ is the average water content in the soil sample estimated by the weight at 

time 𝑡௜. 

2.2.2. Improved evaluation by Peters et al. (2015) 

Peters et al., (2015) proposed improvements to the SEM process to incorporate 

some non-linearities in space and time, specifically changing the considerations for 

ℎప,௔௩௘
തതതതതതത, which becomes ℎప,௠ప௫

തതതതതതത, and is calculated as 

  , , ,1i mix avg i ave avg i geoh h h      [23] 

where ℎప,௚௘௢
തതതതതതത is the geometric mean of the suction 
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and 𝜑௔௩௚ is a weighting factor calculated as 

 
1

avg h
 

   [25] 

For the retention function (RF), the value pairs ( ; h) are estimate from the 

average water content in the whole soil sample ( i ) at time ti, and the correlated suction 

,i mixh . So, the RF data used for fitting are the pairs ( ,;i i mixh ). The average water content 

is calculated from the weight of the soil sample.  

2.2.3. Removing bias in the hydraulic conductivity function 

As shown by Iden et al. (2019), the improved scheme of Peters et al. (2015) still 

leads to a bias in the calculated conductivity data, especially for light-textured (sandy) 

soils. This is caused by the fact that the spatial distribution of suction ℎ(𝑧) is very 

nonlinear in many sandy-textured and peaty soils. In general, the errors in the 

calculated data points of the CF are caused by an error in the average suction 
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(abscissa of K(h) function) or the calculated hydraulic conductivity (ordinate). As the 

latter is calculated from the hydraulic head gradient and the water flux across the center 

of the column, three error sources can be distinguished corresponding to the 

calculation of: 

1. the average suction to which the conductivity is assigned (hctr), 

2. the suction gradient at the center of the column (∇hctr), 

3. the water flux density across the center (qctr). 

In the following, we introduce three revised calculation schemes that decrease 

these errors and their propagation in the CF. 

2.2.4. Prediction of the suction at the center of the sample 

Instead of analyzing the functions ℎଵ(𝑡) and ℎଶ(𝑡), we start with the respective 

reverse functions 𝑡ଵ(ℎ) and 𝑡ଶ(ℎ) as illustrated in Figure 4. These functions return the 

time of arrival of a suction ℎ at the position of the two tensiometers. First, we select a 

suction measured by the bottom tensiometer, ℎ௜ଵ, and calculate the average time for 

this suction to be reached by: 
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where 𝑤 is a weighting factor. For 𝑤 = 1, the average becomes arithmetic, and if 

𝑤 →  0, the average becomes geometric. The time 𝑡௖௧௥,௜ can be interpreted as the time 

at which the measured suction ℎ௜ଵ reaches the center of the soil column. This allows 

us to calculate the suction at the center of the column as function of time by applying 

the reverse function. We used 𝑤 = 2, which yielded good results and for which the 

arrival time 𝑡௖௧௥,௜ becomes greater than the arithmetic (and the geometric) means 

corresponding to the two times. Figure 4 illustrates the calculation. 

The concept for the calculating the value of ℎ as an average of time refers to 

the time each specific value of ℎ takes to move from the upper to the lower tensiometer. 



34 

 
Figure 4. Time series of the measured suction (ℎ) and the calculation of the suction 

as function of time (t) at the center of the soil column by Eq. (26), with upper 

and lower tensiometer readings (up tensio and low tensio respectively) and 

estimates for the average suction at the center of the sample. 

2.2.5. Prediction of the suction gradient at the center of the sample 

The calculation of the spatial derivative of the suction ∇ℎ =
ௗ௛

ௗ௭
 is based on the 

concept outlined in the preceding section. In general, the position and time of an 

arbitrary suction ℎ in between the tensiometers can be calculated by it. To calculate 

∇h at the center of the column, the values of the suction a little above (upward), ℎ௨௣௪, 

and a little below (downward), ℎௗ௡௪, the center of the soil sample profile are required. 

When using the arithmetic mean to calculate 𝑡௖௧௥,௜ (equivalent to considering the 

velocity of downward movement of a specific value ℎ as constant), this procedure is 

intuitive, but for the average considering 𝑤 =  2 in Eq. 26 it is less straightforward. 

Considering 𝛥𝑧∗ [cm] as a small absolute distance from ℎ௖௧௥ to ℎ௨௣௪ and from ℎ௖௧௥ to 

ℎௗ௡௪, to calculate the respective time for ℎ௨௣௪ and ℎௗ௡௪: 

 
2 2

sq top bott t t     [27] 

 

*
sq

eq

t z
t

dist

 
    [28] 

where the 𝑡௧௢௣ and 𝑡௕௢௧ are the respective value of time for the upper and lower 

tensiometers to reach a specific value of ℎ, the ∆𝑡௘௤ is the squared equivalent time in 
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which the considered value of ℎ is in relation to ∆𝑧∗ and 𝑑𝑖𝑠𝑡 is the distance between 

tensiometers. So, the respective times for ℎ௨௣௪ and ℎௗ௡௪ can be calculated as 
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Calculating tupw and tdnw for each specific ℎ value, the respective points 

(hupw, tupw) and (hdnw, tdnw) are obtained. Figure 5 shows the behavior of hctr, hupw and 

hdnw as a function of time, together with the measurements of the upper tensiometer, 

lower tensiometer, and the true values of hctr (True hctr). 

    
Figure 5. Suction as a function of time of the upper tensiometer (up tensio), lower 

tensiometer (low tensio), the true value of the suction at the center of the 

soil sample profile (True hctr), the estimated suction at the center of the soil 

sample profile (hctr) and the estimated suction at distance 𝛥𝑧∗ above the 

center of the soil sample (hupw), and at 𝛥𝑧∗ below the center of the soil 

sample (hdnw).  

Finally, the vertical gradient at the center of the soil sample profile at each time 

is calculated as 

 *2
upw dnw

ctr

h h
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   [30] 
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where 2∙z* is the distance between respective suctions hupw and hdnw at a specific 

time. z* must have the same value as in Eq. 28. 

Fig 6 illustrates the process of obtaining hctr, hupw and hdnw, and therefore the 

gradient. From graph (1) to (2), the inversion for the tensiometer data is calculated, 

from (2) to (3), the values for tctr (black line), tupw (green) and tdnw (yellow), are calculated 

as averages (Eqs. 26 and 29). From (3) to (4) all inverses are undone, that is, t(h) data 

is transformed to h(t) data, returning to values of h as function of t. The gradient is 

calculated using hupw (green) and hdnw (yellow) in (4), as described in Eq. 30. 

 
Figure 6. Process flow for obtaining hctr, hupw and hdnw from both tensiometers data 

(orange and blue lines). Graphs (1) and (4) show suction (h) as a function 

of time (t). Graphs (2) and (3) show t as a function of h. In Graph (3), tctr 

(black line), tupw (green) and tdnw (yellow) are represented, and in Graph (4) 

their respective inverse functions hctr, hupw and hdnw. 
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2.2.6. Prediction of the water flux across the center of the sample 

The flux at the center of the soil sample, qctr, is calculated based on the 

measurements of the scale, the bottom tensiometer and the estimate of hctr. Two 

consecutive measurements (represented by the subscripts i-1 and i) of hbot with 

estimates of hctr can be transformed into qctr, which is the water content flux at the 

center of the soil sample profile. The first step is to estimate the water content at the 

center of the soil sample (ctr) and the water content related to the lower tensiometer 

(bot). For this, interpolated values from the RF data ( ,;i i mixh ) are used as an 

approximation for i ih   (as described in topic “Improved evaluation by Peters et al. 

(2015)”). 
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Then, the water storage, wcl  [cm], is calculated as 
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where bot is the water content related to the bottom tensiometer suction, and ctr is the 

average water content at the center of the soil sample (at 𝑧 = 0.5 𝐿). After calculating 

wcl  for both consecutive times, ti-1 and ti, the 𝑞
ଵି

భ

మ

 at a specific time 𝑡
ଵି

భ

మ

, is calculated 

as 
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where 1,wc il   is the wcl  at ti-1, and ,iwcl  is the wcl  at ti. The new 𝑞௖௧௥ substitutes the original 

𝑞
ଵି

భ

మ

 for the estimation of K, using the data pair (𝑞௖௧௥, 𝑡
ଵି

భ

మ

). 
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2.2.7. Data Analysis 

To evaluate the proposed procedure, evaporation experiments were simulated 

using HYDRUS-1D (Šimůnek et al., 2013), which solves Richards equation by finite 

element formulation. For the virtual evaporation experiment, the simulations 

considered capillarity and adsorption for the flow of liquid water using the PDI model 

(Iden and Durner, 2014; Peters, 2013, 2014) coupled with isothermal vapor flow at a 

constant 20º C. Three different soils of a broad range of textures (Rehovot Sand, 

Sandy Loam, and Clay Loam) were used. Table 4 presents the parameters for each 

soil. All the simulations considered soil sample height 𝐿 =  5 cm, 101 equidistant 

nodes, and 15 days of simulation. A constant surface flow of 1.0 cm/day or a maximum 

surface suction equal to 106 cm was used. More details of the simulations are available 

at Peters et al., (2015). 

Table 4. Soil water parameters for the PDI model, hm [cm] is the suction 

corresponding to the median pore radius,  [−] is the standard deviation of 

the lognormal density function, r [−] is the residual water content, s [−] is 

the saturated water content,  [−] is the tortuosity factor, Ks [cm d-1] is the 

saturated water content and  [−] is the weighting factor for the capillary and 

film flow. 

Soil hm [cm]  [-] r [-] s [-]  [-] Ks [cm d-1]  [-] 

Rehovot Sand 25.0 0.62 0.030 0.40 0.55 1700 9.1∙10-7 
Sandy Loam 198 1.24 0.083 0.43 -0.52 8.00 2.5∙10-4 
Clay Loam 442 1.36 0.295 0.50 -0.91 0.65 2.7∙10-3 

 

To investigate the proposed theory, noise was added to the simulated 

evaporation experiment data. Two levels of noise were added to the suction data 

representing the tensiometer readings. In scenario (i), a standard deviation of 

𝜎௛ =  0.2 cm was added to both tensiometer suction values (random and normally 

distributed), and for scenario (ii), a standard deviation 𝜎௛ = 1.0 cm was used. For all 

soils and scenarios, the estimates for the CF points were analyzed and compared 

“New SEM” considering all three proposed modifications (hctr, ∇hctr and qctr). Since the 

new proposal for qctr relies on tensiometer suction readings, subjected to higher errors 

than the balance, a second procedure was tested, “New SEM (q/2)”, considering only 
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hctr and ∇hctr (and the flux is estimated with the original procedure, 1

2
i
q


). The equations 

to calculate CF data with New SEM and New SEM (q/2) respectively become: 
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For the comparison of the estimated SEM data, a nonlinear fitting procedure 

was performed to find the best conductivity parameters for the model considering the 

noisy data for both scenarios. Then, the RMSD between the true function was 

compared with the resulting fitting function for scenarios (i) and (ii) respectively for each 

soil. For this comparison, values between pF 1.75 and pF 5.00 (pF defined as log10(h), 

for h in cm; pF 1.75 corresponding to 56.2 cm; pF 5.00 to 100,000 cm), were used for 

RMSD calculation. 

 Results and Discussion 

Figure 7 shows the plot of the true conductivity function, the new proposed SEM 

data calculation, and the original SEM calculation for the Rehovot Sand soil without 

noise. Visually, the introduced SEM estimate provided a result closer to the true curve. 

The bias of the original method was already discussed in Iden et al., (2019) for sandy 

soils, and is caused by non-linearities of the gradient and the approximation of the flux 

at the center of the sample. The noisy data around pF 1.0 and pF 2.0 are due to 

computational numerical inaccuracies. To reduce the error in the gradient calculation, 

0.2 cm was used for z*, for all gradient ∇hctr calculations. 
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Figure 7.  Logarithm of the hydraulic conductivity K [cm d-1] as a function of the pF, 

showing the true function used for the simulation for the Rehovot Sand soil, 

the data estimated with the proposed (New SEM) and original (Ori. SEM) 

calculation procedures. 

Figure 8 presents the CF and the estimated SEM data for Rehovot Sand soil 

with added noises, showing in the left two graphs data calculated with the new 

proposed SEM considering New SEM (hctr, ∇hctr and qctr) and in the right graphs data 

calculated with New SEM (q/2), (hctr and ∇hctr), with flux density calculated by the 

original procedure. The greater noise in the New SEM compared to the New SEM (q/2) 

is caused by the propagation of the error of the suction values, since the new method 

calculates qctr using the respective tensiometer reading, while the original method uses 

only weight data from the balance. 
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Figure 8. Log10(K [cm d-1]) as a function of pF. The continuous line is the true 

conductivity. The dots and triangles are estimates provided by SEM. Top 

figures: Scenario I with h = 0.2 cm. Bottom figures: Scenario II with 

h = 1.0 cm. The left figures are calculated by the New SEM, the right 

figures with the New SEM, but considering qctr as half of the flow density at 

the surface. 

The fitted conductivity functions of the noisy data are shown in Fig. 9. All three 

soils and both scenarios are displayed. For soils Sandy Loam and Clay Loam, the fitted 

curves are overlapping, showing neither worsening nor improvement in the fits when 

comparing the new method with the original method to provide the SEM data. For the 

Rehovot Sand soil, an improvement is observed when using the new method (New 

SEM fit) and the new method with the original density flux (New SEM (q/2) fit) when 

compared with the original SEM fit. The erroneous bias observed in Fig. 7 and by Iden 

et al. (2019) disappeared when using the proposed method. 

Scenario I (h = 0.2) Scenario I (h = 0.2) 

Scenario II (h = 1.0) Scenario II (h = 1.0) 
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Figure 9. Log10(K [cm d-1]) as a function of pF of the true conductivity function (dashed 

black line) and the fitted functions K(h) for the soils: Rehovot Sand, Sandy 

Loam and Clay Loam, for scenarios I (left figures, lower noise level) and II 

(right figures, higher noise level). 

The RMSD comparing the fitted functions with the true function showed 

improvement when using the new method (Table 5). The new method using hctr, ∇hctr 

Rehovot Sand 

Scenario I (h = 0.2) 

Sandy Loam 

Scenario II (h = 1.0) 

Rehovot Sand 

Scenario II (h = 1.0) 

Clay Loam 

Scenario I (h = 0.2) 

Clay Loam 

Scenario II (h = 1.0) 

Sandy Loam 

Scenario I (h = 0.2) 
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and qctr, provided lower values of RMSD overall, except for the case of the Rehovot 

Sand soil with noise 𝜎௛ = 1.0 cm where the RMSD was lower than for the new method 

(hctr and ∇hctr), but considering the original qctr. This is an indication that the qctr 

calculation using tensiometer measurements can cause a higher uncertainty than 

using the original flux for calculation. However, it is important to mention that 

𝜎௛ =  1.0 cm is a relatively high uncertainty for modern tensiometer readings. Anyway, 

even at a higher uncertainty, both proposed methods provided better results than the 

original procedure. 

Table 5. RMSD of the logarithm values (base 10) of the fitted K(h) functions 

compared to the true function using different added noise levels (h). 

Original fit is the original SEM methodology, New SEM fit uses the new 

proposal for the SEM data for the fitting and New SEM (q/2) fit considers 

the new calculation for SEM but using the original flux density at the center 

of the soil sample. 

  
Noise 
Level 

Log10(K) RMSD 

  h New SEM fit New SEM (q/2) fit Original fit 

Rehovot 
Sand 

0.2 0.2775 0.3556 0.6340 
1.0 0.4716 0.3605 0.6348 

Sandy Loam 
0.2 0.2304 0.3267 0.3741 
1.0 0.2304 0.3267 0.3741 

Clay Loam 
0.2 0.2259 0.2711 0.3070 

1.0 0.2212 0.2753 0.3075 
 

 Conclusions and suggestions 

We introduced a new method for parameterizing the hydraulic conductivity 

function K(h) by the simplified evaporation method, SEM, (Schindler, 1980). The 

proposed method improved the SEM data for the K(h) when compared to the original 

method proposed by Peters et al., (2015). With a statistical bias added to the 

tensiometer data, the new estimation also predicted more accurately the data for K(h) 

for a broad range of soil texture scenarios simulated. 

For each component used to calculate SEM K(h) data, a new approach was 

presented. Two levels of modification were studied: K(h) considering the new approach 

for hctr, ∇hctr and qctr, and K(h) considering the new approach for hctr and ∇hctr but 
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keeping the original method for the flow qctr). Both levels of modification were tested 

for two different statistical noise levels added to the exact data. In all scenarios, the 

new method provided better results. The comparison in between the two classes, New 

SEM provided lower RMSD in almost all realized tests, only for higher noise level with 

soil Rehovot Sand the New SEM (q/2) provided lower RMSD. 

In general, the results removed the bias that SEM estimates for K(h), especially 

in light-textured soils. For future study, we suggest comparison with more tested 

methods for determining hydraulic properties, e.g. inverse modeling, and also to 

estimate the magnitude of the difference of the proposed method compared to the 

original method on actual evaporation experiment data. Also, the authors suggest 

testing hctr (instead of ,i mixh ) to determine the retention function through SEM. 
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3. CHAPTER III: A fitting procedure for the soil water retention function with 

improved uncertainty analysis 

 

Abstract 

Soil water retention and conductivity functions (RF and CF) need to be 

calibrated for numerically solving the Richards equation, commonly used in vadose-

zone hydrological modeling. The determination of RF and CF parameters is normally 

performed using measured data of water content, suction, and hydraulic conductivity 

under equilibrium (static) or transient (dynamic) conditions. Parameter fitting is 

performed by nonlinear regression, resulting in average parameter values, their 

uncertainty (commonly expressed as standard error), and parameter correlations. The 

standard error can be evaluated from the fitting process. We evaluated the uncertainty 

of the fitted parameters and proposed transformations of the RF parameters with two 

objectives: (i) to reduce the uncertainty of the parameters by expressing the RF using 

water contents at two arbitrary suctions, instead of the traditional saturated (s) and 

residual (r) water content and (ii) to transform the remaining RF parameters to 

approach a normal distribution for the uncertainty of the parameter probability 

distribution (PPD). To describe the RF, we focused on the frequently used Van 

Genuchten model. The proposed transformations allow an improved understanding of 

the parameter probability distribution of the fitted parameters and a reduction of the 

parameter uncertainty. The results show that the transformations allowed the reduction 

of the uncertainty of parameters s and r, and were successful in obtaining a normal 

distribution for PPD in most of the analyzed scenarios, also increasing the 

convergence of fitting procedures which use derivatives to search for the parameter 

values which minimize the summed squared error. The statistical benefits acquired 

with the transformations are relatively low, however, they come at no extra cost and 

do not require additional experimental data, physical considerations, or model 

simplifications. 

 

 Introduction 

The soil water retention function (RF) and hydraulic conductivity function (CF) 

are used in vadose zone hydrological models to numerically solve the Richards 
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equation. Most of the retention functions of these models have a common 

mathematical structure as  

           sr rh S h  [36] 

where S(h) is the effective saturation function, h [cm] is the suction (absolute value of 

the matric potential), s [cm3 cm-3] is the saturated water content defined as the water 

content at h = 0 and r [cm3 cm-3] is the residual water content, the water content at 

h = ∞. 

A common model to describe the RF and CF is the Van Genuchten (1980) 

model. It links a mathematical function for RF with the capillary bundle model proposed 

by Mualem (1976) to yield a function for CF, and is referenced here as VGM. Other 

commonly used models are Van Genuchten (1980) coupled to the (Burdine, 1953) 

capillary bundle model, the Kosugi (1994, 1996) RF linked to the Kosugi (1999) CF, 

and the Groenevelt and Grant (Grant et al., 2010; Groenevelt & Grant, 2004) model 

linked to Mualem (1976) or Burdine (1953). All these models are composed of 

mathematical functions with mostly empirical fitting parameters. 

For the VGM model, the S(h) function is 

   


   
(1/ ) 1

1
nnS h h  [37] 

and the CF is 

           

21 (1/ )/( 1)1 1
nl n n

sK K S h S h  [38] 

where  [cm-1], n [–], and l [–], are fitting parameters and Ks [cm h-1] is the saturated 

hydraulic conductivity. The VGM effective saturation model (Eq. 37) assumes 

unimodality, i.e., the retention function has exactly one inflection point. If the 

assumption of unimodality is satisfied, the reliable application of the VGM model 

depends on well-established parameters. Parameters Ks and s have a clear physical 

meaning and may be acquired experimentally, although the determination may impose 

problems. For example, Ks presents a high spatial variability and extensive field 

experiments at the appropriate scale may be needed to measure its value properly 

(Durner, 1994; Pachepsky et al., 2014; Wen & Gómez-Hernández, 1996). Besides this, 
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measurements at full saturation may be difficult to establish (Durner, 1994). The r 

parameter may be treated as a mere fitting parameter (Van Genuchten & Nielsen, 

1985) or considered to have a physical meaning (Iden & Durner, 2014; Peters, 2013). 

These parameters, and the remaining ones, may be calibrated by fitting to 

experimental data of retention and/or (less common) hydraulic conductivity. 

The most well-known software for specifically fitting the RF and CF to observed 

data is RETC (Van Genuchten et al., 1991). Alternatively, any statistical fitting software 

for generic models as well as dedicated libraries for different programming languages 

may be employed. The fitted parameters carry uncertainties that can be expressed as 

a probability density distribution, where the reported parameter value is the most likely 

one. A quick and frequently used method to obtain the best estimate for a parameter 

is to consider the uncertainty of the estimated parameter as a normal distribution. 

Consequently, minimizing the sum of squared deviations, named Least Squares 

method (LS), becomes equivalent to finding the Maximum Likelihood Estimator (MLE). 

In this condition, the uncertainties of the parameters can be expressed similarly to the 

standard deviation () (Press, 2007). The parameter uncertainty will be affected by the 

dispersion of the fitting data, the ability of the model to reproduce the shape of the data 

set, and the statistical procedure used to perform the fitting. 

The assumption of normality for the parameter probability distribution, PPD, for 

the fitted parameters might not be assured, which can lead to problems when using 

the respective estimate of , when  is relatively big. Also, considering that the normal 

density distribution ranges from -∞ to +∞ with any real number in its domain, physically 

inconsistent values will be included in the domain for  (>0), n (>1), and Ks (>0). This 

inconsistency may become a problem when stochastically using the estimated 

uncertainty of the parameters to analyze the quality of the fitting procedure or evaluate 

a model compared to a data set, as in Wesseling et al. (2020a, 2020b) and Pinheiro & 

de Jong van Lier (2021). 

Methods like Monte Carlo are commonly employed to generate the probability 

of the parameter value of a model, given a data set, yielding the complete probability 

distribution of the parameter. However, this technique requires much more 

computational effort. Expressing the parameter uncertainty as a single value 

(deviation) is usually preferred, but the normality of the frequency distribution of the 
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parameters should be warranted. Furthermore, it is of obvious interest to minimize 

parameter uncertainty. 

In this context, we propose parameter transformations for the VGM parameters 

of the RF to improve the normality of the associated frequency distributions. We also 

propose a transformation of residual and saturated water contents allowing a reduction 

in the uncertainty of these parameters. The proposed parameter transformations allow 

an improved soil hydraulic fitting process, especially important in the setting of 

stochastic (Monte Carlo) modeling procedures. 

 

 Material and Methods 

3.2.1. Transforming the retention function expression 

To develop a new formulation of RF models based on Eq. 36, we consider 

    


 
h

S h f h  [39] 

where f(h), the base model equation (Eq. 36), can be expressed as 

             


         
1 2

1 2
r

h h h

s hr h
h f h f h f h  [40] 

This results in 

                       1 2 1 2sr r hh S S S S S S  [41] 

where S1 is S(h1), S2 is S(h2), Sh is S(h) and S  is S(h) when h tends to infinity, 

corresponding to S  tending to zero in the VGM model. Then 

                          1 2 1 2r r r r hs s sh S S S S S  [42] 

We now define two arbitrary water contents 1 and 2, corresponding to S1 and 

S2: 

       1 1sr r S  [43] 

       2 2sr r S  [44] 
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Isolating r from Eq. 43 yields 

 
  




1

1

1

1
s

r

S
S  [45] 

Substituting Eq. 45 in Eq. 44. and isolating s results in 

 
    


  




1

1

2 1 2

2

1 1
s

S S
S S  [46] 

and substituting Eq. 46 in Eq. 43 yields 

  
  




1

1

1 2 2

2
r

S S
S S  [47] 

Subtracting Eq. 46 from Eq. 45 allows to solve for (s - r) in terms of 2 and 1. 

 
   

 
 1

2 1

2
s r S S  [48] 

and substituting Eqs. 43 and 48 in Eq. 42 yields 

       
    2

2 1
2 2

1

h S h S
S S  [49] 

Eq. 49 is analogous to Eq. 36, now expressing the RF in terms of any two 

arbitrary  and h points, (1, h1) and (2, h2) instead of the original r and s. This 

formulation is an extension of the proposed RF equation presented by Inforsato et al. 

(2020). The conversion to (s , 0) and (1 , ) parameters can be performed with Eqs. 

46 and 47.  

 

3.2.2. Parameter transformations 

The transformations used for the VGM parameters, originally proposed by 

Carsel & Parrish (1988) and applied by Peters and Durner, (2015), are 

 

 
 
 









  



  

  

    

ln

ln

ln 1 1

s sK K e

e

n n e
 [50] 



51 

Inserting Eq. 50 in Eq. 37 yields, for the RF  

    


     

1 1
1

v

v v
e

e e
S h e h  [51] 

For the CF we obtain, by substitution in Eq. 38 

    
 

 
         

2

1 1
1 1

v

v v

v

e
e el

eK e S h S h  [52] 

It should be noticed that both  and  are affected by the dimension of  and Ks, 

respectively. For the case of , defining h1 as suction expressed in unit  and h2 as 

suction expressed in unit , corresponding values of  are  () and ().A 

conversion factor a ( -1) can be determined such that,  

 







    
1

2 1
2

2 1

1 2

 
h e

h ah a
h e  [53] 

from which it follows that  

    2 1 ln a  [54] 

For example, in a soil with  = 0.015 cm-1 = 1.5 m-1,  will be equal to 

ln(0.015) = -4.20 (for  in cm-1) or to ln(1.5) = 0.405 (for  in m-1). In this case, 

a = m-1/cm-1 = 100, ln(a) = 4.605 and Eq. 38 is verified true. 

Similarly, to convert between units 1 and 1 for K with conversion factor b 

( -1), for the conversion of  we obtain 

    2 1 ln b  [55] 

To transform  from its value  corresponding to unit  for h to  corresponding 

to unit , it can be shown that  

 
  1

2 a  [56] 

       ln e  [57] 
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3.2.3. Software description 

A software was developed to fit the proposed model to data using the 

Marquardt-Levenberg method, ML, (Marquardt 1963). The ML is widely used and well 

documented (Press, 2007). A brief explanation follows. 

The ML fits the parameters of an established model by minimizing the sum of 

squares between the observed data and the predicted data through an iterative 

method, i.e. non-linear least squares. ML is a combination of the Gradient descent 

method and Newton’s method. In ML, each parameter step of the iteration to reduce 

the sum of squares is determined by 

  


      
1T T

next currenta a J J I J r  [58] 

where a is the vector containing the parameter values, J is the Jacobian matrix, I is the 

identity matrix, r is the residues vector and  is a damping factor. If  is taken high, the 

iteration step tends to become equal to Newton’s method, and if  is assumed low, the 

iteration step tends to the Gradient descent method, considered more adequate for 

local adjustments. The superscripted letter T refers to the transposed matrix, the 

current subscript refers to current parameter values (fitted in the last iteration), and next 

refers to the values of the fitted parameters in the current iteration. In Eq. 58, the weight 

matrices are hidden, and the TJ J  approximates the Hessian matrix, avoiding the need 

to use second-order derivatives. 

After fitting, the parameter standard error, , is estimated by 

 
 




 

2

1T

j jj

C J J

C
 [59] 

where C is the variance-covariance matrix, the subscribed j refers to each component 

of the vector containing the standard error for each parameter and the jj refers to each 

component of the diagonal of the C matrix. Although this formula provides good 

predictions of the uncertainty when the deviations are low (when the estimation of the 

parameter uncertainty of the MLE is approximately equal to the parameter 

uncertainties provided by the LS method), the exactness tends to decrease with 

increasing deviation leading to an error in the uncertainty estimation, as the 
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determination of the parameter uncertainties predicted by Eq. 59 does not include 

biased parameter uncertainties. 

 

3.2.4. Complex-step differentiation approximation 

The derivatives used in the developed software are calculated using 

complex-step differentiation. The underlying theory can be found in Squire & Trapp 

(1998), Martins et al. (2003), and Anderson et al. (2001). Only a brief explanation 

based on Martins et al. (2003) is given here. 

Considering that a complex function        , ,f z u x y i v x y  is differentiable in 

the imaginary plane, the Cauchy-Riemann equations are satisfied: 

 
   

  
   

&
u v u v
x y y x  [60] 

The desired derivative is defined as 

    
 
 

'
u v

f z i
x x  [61] 

and, since the imaginary part is zero for this problem, the derivative becomes

  



'
u

f z
x

 . Using the leftmost expression from Eq. 60, the derivative can be defined 

as 

          
 

           
   * *

**

* *0 0

Im, ,
' ' lim lim

h h

f x ihv x y h v x yu v v
f z f z

x y y h h  [62] 

where Im refers to the real value multiplied by i of the complex number. Then, the 

rightmost part of Eq. [62] can be approached by 

  
   

  
*

*
*

Im
' for small values of

f x ih
f x h

h  [63] 

Eq. 63 is very convenient for our purposes as it allows to be applied to other RF 

and CF models. It is computationally more efficient than calculating the analytical 

derivatives, and it does not require to calculate the differences used for finite 
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differences numerical differentiation     f x h f x  or      f x h f x h , which may 

represent a source of error. 

 

3.2.5. Parameter uncertainty analysis and comparison 

 Developed scenarios: criteria and analysis 

To evaluate the fitting procedure, synthetic data were used to obtain better 

control of the fits and to exclude errors arising from the relationship between the model 

and the fitted data. Three parameter sets for RF available in RETC software (Van 

Genuchten et al., 1991) were used for analysis, corresponding to Clay Loam (CL), 

Sandy Loam (SaL), and Silty Clay (SiC) USDA texture classes (Table 6). For each of 

the three RF parameters, water contents were calculated at suctions selected 

equidistantly on the pF-scale (pF = log10|h[cm]|), step 0.3, from pF 0.0 to pF 4.2, 

totaling 15 (, h) data pairs. 

Table 6. Parameters of the retention functions analyzed for the VGM model.  

  r s  [cm-1] n Ks [cm h-1] 

Clay Loam 0.095 0.41 0.019 1.31 0.26000 0.5 

Sandy Loam 0.065 0.41 0.075 1.89 4.42083 0.5 

Silty Clay 0.070 0.36 0.005 1.09 0.02000 0.5 

 

Noise was added to the calculated water content data to allow for the evaluation 

of the parameter uncertainty resulting from the fitting procedure. Scenarios with 

different noise levels were applied, corresponding to the calculated water contents at 

the respective suction together with four values of standard deviation . For each 

scenario, the original water contents in each dataset were substituted by a biased one 

(bias), maintaining the respective h value. The bias was randomly sampled, obeying a 

normal distribution with respective  as mean and deviation corresponding to the four 

considered deviation levels, , equal to 0.001, 0.005, 0.01, or 0.02 cm3 cm-3, 

respectively). 
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 Bootstrap method 

The Resampling Bootstrap Method (Efron & Tibshirani, 1993; Press, 2007) was 

used to create the probability distribution of parameters. The method consists of 

substituting the dataset with randomly chosen data from the same dataset, maintaining 

its original size. This step was repeated 10,000 times for each analyzed scenario. After 

the Bootstrap process, each of the sampled data sets was used to fit the RF, resulting 

in 10,000 new sets of fitted parameters used to create the probability distributions. The 

analysis of transformed parameters was performed for transformed parameters  and 

n (with Eq. 49), and using all the transformations (, n, as well as substituting s and r 

by two arbitrarily “anchored” points, with Eq. 50). 

 Normality test 

To determine the normality of the parameter probability distribution (PPD), the 

D'Agostino normality test (D’Agostino, 1971; D’Agostino & Pearson, 1973) was 

applied. D'Agostino’s normality test (D’Ag.) considers skewness (Sk.) and kurtosis 

(Kur.) and as such it compares the bias and the tail of the distribution to a normal 

distribution. The skewness and kurtosis were also calculated for all PPD, subtracting 

3 from the kurtosis, making it zero for a normal distribution. 

To visually analyze the difference between the predicted normal distributions 

and the PPD provided by the Bootstrap Method, histograms with PPD were plotted (50 

bins in each graph, excluding data outside the interval +/- 3 ), as well as each 

respective normal distribution (deviation and average provided by the fitting 

procedure).  

For statistical validation of the observed differences, the Wilcoxon Signed Ranks 

test was used (Conover, 1999). 

 

 Results and Discussion 

3.3.1. Description of the generated soils 

Figure 10 presents the exact retention curves for the three soils used as bases 

(Table 6), together with the generated data points for each scenario ( equal to 0.001, 

0.005, 0.01 and 0.02 cm3 cm-3). 
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Figure 10. Plotted functions of the three analyzed soils: Clay Loam (CL), Sandy Loam 

(SaL) and Silty Clay (SiC). The solid line represents the exact VGM retention 

function, the dots represent the generated data at four levels of added noise. 

3.3.2. Arbitrary anchoring point analysis 

The use of Eq. 49 instead of the traditional Eq. 36 allows to establish one or two 

well-determined RF points, (, h), and to use them as know parameters, reducing the 

number of parameters to be fitted. Fig 11 shows the constraints of the VGM model for 

some values of parameters n and , using Eq. 49 and with parameters (2, 

h2) = (0.30, 102) and (1, h1) = (0.15, 104). 
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Figure 11. Soil water retention curves expressed by Eq. 49 with parameters (2, 

h2) = (0.30, 102) and (1, h1) = (0.15, 104), varying  at n = 1.5 (top), and 

varying n at  = 0.02 cm-1 (bottom). 

 

3.3.3. Anchoring point and parameter uncertainty 

Table 7 shows traditionally fitted parameters s and r for the Silty Clay soil at 

the level of 0.01 cm3 cm-3 added noise (SiC 0.01), together with results for fits using 

Eq. 49 with alternative anchoring points. In transform 1, h1 was set to 1 cm (pF = 0) 

and h2 was set to 15 849 cm (pF = 4.2), whereas in transform 2 these values were 



58 

h1 = 4 cm (pF = 0.6) and h2 = 7 943 cm (pF = 3.9). The results show the deviation, , 

of the parameter estimates to decrease, especially at the dry side (2 versus r) when 

using anchoring points within the observed suction domain. 

Table 7. Comparison of the deviation, , of the model parameters s and r, and 

parameters of the model expressed in two arbitrary points (2, h2) and (1, 

h1) for the fitting procedure made with data from the Silty Clay at the level 

of 0.01 cm3 cm-3 added noise (SiC 0.01), h values in cm. 

  Traditional Transform 1 Transform 2 

 h2= 0.0 h1=∞ h2=1.0 h1=15849 h2=4.0 h1=7943 

 θs θr θ2 θ1 θ2 θ1 

value 0.360 0.282 0.360 0.288 0.360 0.291 

 2.33∙10-3 1.06∙10-2 2.33∙10-3 4.71∙10-3 2.32∙10-3 3.40∙10-3 

 

To illustrate and understand the deviations observed in Table 7, for each soil 

with added noise we performed 1000 regressions, each one using a different value of 

h1 according to an even distribution on a log-scale between 1 cm and 107 cm. On the 

left, for each h1 value, a corresponding 1 was fitted, maintaining the value of h2 fixed 

at 1.0. The calculated deviation of 1 () is shown in Figure 12 for the cases of 

Clay Loam 0.02, Sandy loam 0.02 and Silty Clay 0.01. In the case of Clay Loam 0.02, 

the magnitude of the deviation is considerably lower when choosing h1 inside the 

measured data domain and(1) increases steadily when |h1| is chosen at values 

higher than 15 000 cm. Similarly, on the right part of the Figure 12 the deviation () of 

2 as a function of h2 while fixing h1 at 107 is shown. An h2 within the observed range 

of suctions reduces , while the choice of an h2 at a large (or “infinite”) value, like in 

the case of traditional r, yields a high parameter uncertainty. 
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Figure 12. Left side: deviations () of fitted 1 as a function of h1 for scenarios Clay 

Loam 0.02, Sandy Loam 0.02, and Silty Clay 0.01, maintaining h2 fixed at 

1.0. Right side: deviations () of fitted 2 for each value h2 for the same soil 

data, maintaining h1 fixed at 107 cm. Red cross-marks on the h-axis indicate 

the observed suctions. The crosses represent the observed data for each 

soil scenario, Clay Loam 0.02, Sandy Loam 0.02, and Silty Clay 0.01. The 

black continuous lines are the deviations at each specific h. 
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Figure 13 gives another example of the described behavior, showing the 

observed data and the fitted RF. In this figure, the dashed lines represent the upper 

and lower deviations (), estimated at each value of h with a new regression 

considering the arbitrary h1 value as the respective suction. 

 
Figure 13. Retention function with the deviation of the parameter at each value of h. 

Red diamonds represent the observed data (-h), the continuous black line 

represents the fitted retention function, dashed lines are the upper and lower 

deviations () calculated at each h value (fixing each h as h1). 

The best choice for h1 and h2 in Eq. 49 to minimize respective values of  

corresponds to low values of the second derivative of the objective function with 

respect to 2 or 1, since ML uses an approximation of second derivatives to estimate 

. This will lead to different optimal values of h2 and h1 depending on the data set.  

There is no straightforward procedure to determine the best values of h2 and h1 

to minimize , and a trial-and-error procedure is the best option. However, from our 

tests, it follows that the values for h2 and h1 can best be chosen inside the range of 

observed data, slightly distant from the highest and lowest observed h boundaries. 
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3.3.4. Parameter normality test analysis 

 Transforms of parameters  and n 

Parameter transformations according to Eq. 50 include RF parameters  = ln() 

and  = ln(n-1). Applying D'Agostino’s normality test, skewness and kurtosis were 

determined for the transformed parameters  and  distribution obtained by bootstrap 

for each of the soil data scenarios (Table 8). A low D’Agostino test value indicates 

proximity to a normal density distribution. In general, the parameter transformations 

approached the distributions to normal ones, with some exceptions (Table 8). Table 9 

presents the same results for untransformed parameters. The differences between the 

D’Agostino’s test for transformed n and  are significant according to the Wilcoxon test 

(Wilcoxon = 28.0, p-value = 6.94∙10-4), for the skewness (Wilcoxon = 8.0, 

p-value = 1.19∙10-5) and kurtosis (Wilcoxon = 62.0, p-value = 0.036). A general 

transformation that improves every PPD was not found, nevertheless, the results show 

improvement in approaching the PPD to the normal distribution. When the transform 

moves the PPD away from the normal distribution, the absolute difference value of 

D'Agostino’s test tends to be lower when compared with the scenarios where the 

transformation approached the PPD to normal distribution. 

The p-value for D'Agostino’s test was calculated for skewness and kurtosis, 

again to compare the transformed and untransformed parameters, but none of those 

led to a significant value. Skewness values of transformed parameters, , and , are in 

between +/- 0.5, and the kurtosis in between +/- 1.5. A positive kurtosis indicates that 

considering  as the deviation will overestimate the true deviation. 
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Table 8. D'Agostino’s (D’ag.) normality test values, skewness (Sk.) and kurtosis 

(Kur.) of soil for the distribution of the uncertainty of the parameters  and . 

Highlighted values refer to cases were normality decreased when applying 

the proposed transformations of  and n; non-highlighted values refer to an 

approximation of the normal distribution when applying the transformations. 

    Parameter 

   = ln( [cm-1])  = ln(n-1) 

Soil ( ) D'ag. Sk. Kur. D'ag. Sk. Kur. 
CL (0.001) 86.6 -0.12 -0.32 5.2 0.03 -0.10 
CL (0.005) 117.9 0.27 -0.08 99.7 0.03 0.63 
CL (0.01) 117.9 0.27 -0.08 99.7 0.03 0.63 
CL (0.02) 819.5 0.69 0.99 61.6 -0.16 0.24 
SaL (0.001) 88.4 0.23 0.15 16.2 0.09 0.11 
SaL (0.005) 407.5 -0.41 0.91 178.3 -0.34 -0.11 
SaL (0.01) 173.1 0.32 0.28 107.8 -0.17 -0.33 
SaL (0.02) 127.4 0.26 0.28 132.9 0.26 0.30 
SiC (0.001) 260.8 0.41 0.01 13.4 -0.09 -0.01 
SiC (0.005) 663.6 0.25 -0.72 266.8 -0.45 0.17 

SiC (0.01) 357.1 0.30 1.12 88.0 0.13 0.46 
 

Table 9. D'Agostino’s (D’ag.) normality test values, skewness (Sk.) and kurtosis 

(Kur.) of soil for the distribution of the uncertainty of the parameters  and n. 

    Parameter 

 
  [cm-1] n 

Soil ( ) D'ag. Sk. Kur. D'ag. Sk. Kur. 
CL (0.001) 67.0 -0.09 -0.31 13.1 0.07 -0.11 
CL (0.005) 750.7 0.76 0.18 732.7 0.67 0.75 
CL (0.01) 750.7 0.76 0.18 732.7 0.67 0.75 
CL (0.02) 1896.5 1.26 1.66 438.7 0.56 0.12 
SaL (0.001) 102.3 0.24 0.17 21.2 0.10 0.10 
SaL (0.005) 356.6 -0.38 0.82 149.5 -0.29 -0.17 
SaL (0.01) 342.1 0.46 0.37 57.2 -0.01 -0.31 
SaL (0.02) 167.8 0.26 0.50 488.6 0.58 0.34 
SiC (0.001) 495.2 0.59 0.13 261.0 0.42 -0.19 
SiC (0.005) 678.6 0.68 -0.36 477.8 0.49 -0.45 
SiC (0.01) 497.9 0.23 1.82 703.1 0.66 0.76 

 

Figures 14a and 14b present some distributions to visualize how the parameter 

distribution behaves and how the proposed transformations affect the uncertainty 
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distribution. Considering all fitted  parameters and  = ln() parameters, the  

parameter acquired with CL (0.02) data was the most distant from a normal distribution 

according to D'Agostino’s test = 1896. The corresponding transformation approached 

the uncertainty to a normal distribution, significantly decreasing the absolute value of 

skewness and kurtosis. For the n parameter, its value acquired with CL (0.005) data 

was the most distant from a normal distribution according to D'Agostino’s test, and the 

skewness reduced from 0.67 to 0.03 due to the transformation of . Considering all 

four SaL datasets with added noise, SaL (0.005) was most distant from a normal 

distribution, for  (transformed ), D'Agostino = 407, and SaL (0.02) for the parameter 

n, with D'Agostino = 489. Considering  and  parameters for the SiC soil data with 

noise, the PPD most distant from a normal distribution was SiC (0.005), and 

considering n and  = ln(n-1), SiC (0.01). Unlike for the transformed parameter, an 

increase of probability near the minimum possible value for parameter n (where n = 1) 

in SiC (0.01) can be observed. 
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Figure 14a.  Parameter probability per parameter value. The blue line represents the 

distributions of the uncertainty of the parameters considering calculated 

deviation . The normalized histogram is the parameter probability 

distribution obtained through bootstrap. D’Ag. Sk. and Kur. refer to 

D'Agostino’s test, skewness and kurtosis of the gray density distribution. 
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Figure 14b.  Parameter probability per parameter value. The blue line represents the 

distributions of the uncertainty of the parameters considering calculated 

deviation . The normalized histogram is the parameter probability 

distribution obtained through bootstrap. D’Ag. Sk. and Kur. refer to 

D'Agostino’s test, skewness and kurtosis of the gray density distribution. 
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 Retention function fitting analysis with simultaneous transform of all parameters 

The effect of retention function fitting of a complete transform of all parameters 

([, n, s and r] to [, , 2 and 1]) was analyzed. To do so, two values for h2 and h1 

were chosen following the suggestions described in the topic “Anchoring point and 

parameter uncertainty”. Although optimum values for h could be found by analyzing 

Figure 12, this kind of information is not expected to be available before commonly 

performed fitting procedures. Therefore, values in between the fourth and fifth highest 

and lowest observed data were chosen, corresponding to h2 = 11.2 cm (pF = 1.05) and 

h2 = 1413 cm (pF = 3.15), applied to all the soils. Table 10 provides the D’Agostino 

normality test values of the PPD for all the parameters transformed simultaneously, 

indicating if the normality of the distribution increased (uncolored) or decreased 

(shaded). On average, the results show a higher degree of normality when 

transforming the parameters. Similarly, Table 11 presents the D’Agostino normality test 

values for parameter s and r for comparison with transformed values in Table 10 

(D’Agostino´s test for values of n and  is shown in Table 9). 

Table 10. D'Agostino’s normality test values for the probability distribution of the 

transformed parameters (all transformations performed simultaneously), for 

the fitting procedure of analyzed soil data. A shaded background indicates 

a lower degree of normality after parameter transformation, and unshaded 

cells represent indicate a higher degree of normality after transformation. 

The value for h2 was pF = 1.05 and for h1 pF = 3.15. 

  D'Agostino 

Soil ()  = ln( [cm-1])  = ln(n-1) 2 1 

CL (0.001) 83.8 4.8 161.2 128.7 

CL (0.005) 316.0 34.0 45.2 26.8 

CL (0.01) 129.9 136.6 186.4 439.7 

CL (0.02) 698.8 61.6 19.4 16.7 

SaL (0.001) 72.1 27.4 165.7 23.9 

SaL (0.005) 531.6 155.3 934.4 18.9 

SaL (0.01) 205.5 107.4 145.3 62.7 

SaL (0.02) 161.4 99.8 3.7 42.1 

SiC (0.001) 328.5 27.8 33.9 22.2 

SiC (0.005) 595.4 241.7 384.5 66.4 

SiC (0.01) 329.0 142.4 223.8 304.8 
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Table 11. D'Agostino’s normality test values for the probability distribution of 

parameters s and r, for the fitting procedure of analyzed soil data. 

  D'Agostino 

Soil () s r 

CL (0.001) 446.1 25.8 

CL (0.005) 337.6 592.2 

CL (0.01) 337.6 592.2 

CL (0.02) 461.7 635.6 

SaL (0.001) 616.9 121.6 

SaL (0.005) 1259.7 13.4 

SaL (0.01) 2204.1 78.5 

SaL (0.02) 114.6 100.3 

SiC (0.001) 68.2 892.6 

SiC (0.005) 201.3 1584.0 

SiC (0.01) 182.4 789.5 

 

The values of the D'Agostino tests for normality confirm, on average, an 

increase in the degree of normality of the distribution of the PPD of the parameters in 

the performance of the fitting. The difference has statistical significance according to 

the Wilcoxon test (Wilcoxon = 94.0 and p-value = 2.87∙10-6). Some differences 

between the values of the D'Agostino normality test are observed when fitting 

transformed  and n only (Table 8) and performing the fitting procedure transforming 

all parameters (Table 10), which indicates that transforming the s and r parameters 

impacts the normality of uncertainty of other parameters. Nonetheless, this change is 

not significant (Wilcoxon = 116.0 with p-value = 0.75). 

Figures 15a, 15b, and 15c present the results of the fitting process of the 

abovementioned scenarios, visually demonstrating the impact of transformations 

s ↔ 2 and r ↔ 1. The soils presented in these figures are CL (0.02), SaL (0.02), 

SiC (0.005) for parameters s and 2; and CL (0.001), SaL (0.01), SaL (0.005) and 

SiC (0.01) for parameters r and 1. Transformed and untransformed parameters  

and n are not shown due to visual similarities to Figures 14a and 14b. The blue lines 

correspond to the normal distributions, i.e., the estimated PPD for each parameter 

estimated with the LS fitting procedure. The gray histograms are the PPD provided by 

the bootstrapping method. Close to each PPD, the D’ag. Sk. and Kur. values refer to 

D'Agostino’s test, skewness, and kurtosis of the respective histogram. Above each pair 
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of histograms, the acronym and level of noise added for each soil dataset are 

presented. The chosen soils synthesize the visual characteristics observed when 

comparing transformed and untransformed parameters. The s ↔ 2 transformation 

PPD approximated to a normal distribution in soils dataset CL (0.02) and SaL (0.02), 

and was distanced in SiC (0.005). With the r ↔ 1 transformation, the PPD 

approximated in soils datasets SaL (0.01) and SiC (0.01), but was distanced in soils 

CL (0.001) and SaL (0.005). In CL (0.02) and SaL (0.02) a visual approximation to a 

normal distribution is observed, which agrees with the result of the D’Agostino test. In 

SiC (0.005) the distance is increased mainly because of the kurtosis. Soil CL (0.001) 

was distanced from a normal distribution by transforming the parameter. For 

SaL (0.01) and SaL (0.005) only a small difference is observed, the first one coming 

closer and the second one being distanced from the normal distribution respectively. 

The SiC (0.01) showed more normality concerning skewness and kurtosis, but the 

transformed PPD had multimodal behavior, which may be a consequence of the 

Bootstrapping and a low amount of data in the in the drier part of the function. Although 

in some soils presented in Figures 15a, b, and c the transformation decreased the 

normality of the PPD, in all these scenarios the transformation narrowed the 

distribution. 

Considering all the transformed parameters, parameter 1 for soil CL (0.02) 

showed the closest-to-zero skewness (Sk. = 0.003), and SaL (0.005) for parameter 2 

the highest one (Sk. = 0.77), with an average skewness of 0.049. The lowest kurtosis 

(Kur. = 0.005) occurred for SiC (0.001) and parameter  = ln(n-1), and the highest one 

(Kur. = 1.46) for soil CL (0.01) for the same parameter, with an average kurtosis of 

0.17. For comparison, the average skewness and kurtosis for the untransformed 

parameters are 0.12 and 0.38 respectively. Most of the values obtained for skewness 

and kurtosis for transformed parameters may be considered close to a normal 

distribution. 
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Figure 15a. Frequency distribution of the parameters s and 2, estimated from the 

fitting procedures for soil scenarios CL(0.02), SaL(0.02), and SiC (0.005). 

The normalized histogram is the parameter probability distribution obtained 

through Bootstrapping, the blue curve represents the corresponding normal 

distribution. D’ag. Sk. and Kur. refer to D'Agostino’s test, skewness, and 

kurtosis of the gray density distribution. 
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Figure 15b.  Frequency distribution of the parameters r and 1, estimated from the 

fitting procedures for soil scenarios CL(0.001), SaL(0.01), and SaL (0.005). 

The normalized histogram is the parameter probability distribution obtained 

through Bootstrapping, the blue curve represents the corresponding normal 

distribution. D’ag. Sk. and Kur. refer to D'Agostino’s test, skewness, and 

kurtosis of the gray density distribution. 
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Figure 15c.  Frequency distribution of the parameters r and 1, estimated from the 

fitting procedures for soil scenarios SiC (0.01). The normalized histogram is 

the parameter probability distribution obtained through Bootstrapping, the 

blue curve represents the corresponding normal distribution. D’ag. Sk. and 

Kur. refer to D'Agostino’s test, skewness, and kurtosis of the gray density 

distribution. 

To test if the benefits of parameter transformation are significant only on soil 

data with higher statistical errors, a similar test was conducted for soil data with added 

noise levels 0.001 and 0.005 with untransformed parameters, and with a simultaneous 

transform of all parameters. The comparison between PPD with all parameters 

transformed and untransformed resulted in Wilcoxon = 46.0 with p-value = 2.0∙10-3, 

resulting in a statistically significant difference closer to the normal distribution when 

transformed (on average). 

3.3.5. Correlation analysis 

The correlation between the parameters is affected by the transformations. An 

analysis of the correlation was conducted for the fitting process considering 

untransformed and transformed parameters, ([, n, s and r] or [ , , 2 and 1] 

respectively) for all considered soil data sets. In general, a decrease in the absolute 

values of the correlation matrix (i.e., a lower correlation between parameters) is 

observed. Low linear correlation is desired because it increases the level of 

significance of the parameters, on the other hand, correlation close to 1 positive or 

negative, are indicators that the data can be explained without the need for one of the 
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parameters. Only the ( , n) parameter pair with its correlated transformation ( , ) 

were not statistically different in terms of correlation. 

Wilcoxon tests were realized for correlations of all parameter pairs to determine 

the significance of difference between transformed and untransformed parameters. 

The results of the test reached the same value of p-value = 9.77∙10-4, showing a 

significant and systematic decrease in the correlations. Considering only the absolute 

values of the correlations, the parameter pairs presenting significant difference from 

their transformed equivalents are (s , r), ( , r), (n , r), maintaining the 

p-value = 9.77∙10-4. Table 12 provides the average of the absolute value of the pair 

correlations. 

Table 12. Pairs of parameters with each respective average of the absolute value of 

their linear correlations (corr). 

Untransformed  Transformed 

Parameter 
pair corr  

 Parameter 
pair corr  

( , n) 0.814  (, ) 0.814 
( , s) 0.645  ( , 2) 0.454 
( , r) 0.567  ( , 1) 0.238 
(n , s) 0.419  ( , 2) 0.390 
(n , r) 0.848  ( , 1) 0.509 
(s , r) 0.303  (2 , 1) 0.084 

 

A software to perform the nonlinear regressions with transformed and 

untransformed parameters as described in this chapter is available at 

https://github.com/infoleon/hp_Fit. 

 Conclusion 

This study proposes transformations of the parameters of VGM retention 

function model with the purpose of obtaining parameter probability distributions closer 

to normal distributions and to decrease the uncertainty of the probability distribution of 

parameters s and r. With some considerations, the transformation for parameters s 

and r is applicable to any S-shaped retention function. It can be concluded that: 
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1. The transformations approach the parameter probability distributions to a 

normal distribution in most of the tested soil scenarios. Skewness and kurtosis 

of transformed parameters indicate normality of the distributions. 

2. The proposed parameter transformations increase the convergence of the 

parameter in the fitting procedure when using the Marquardt method. 

3. The traditionally used values of s and r in common retention functions can 

be substituted by two water contents at arbitrary pressure heads which, if 

chosen within the observed range of pressure heads, allow a reduction of 

parameter uncertainty. 
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4. CONCLUDING REMARKS 

 

In this thesis, three main chapters were presented with subjects dealing with the 

improvement of the prediction and understanding of the soil water retention function 

(RF) and the hydraulic conductivity function (CF). The RF and CF are keystones to soil 

hydraulic behavior which can be evaluated by hydrological models. Numerical 

hydrological models based on the Richards equation are highly robust nowadays, but 

their output is as reliable as the parameterization of the hydraulic properties used as 

model input. 

Chapter I extends the use of the RF and CF to the drier range where the 

common models cannot predict retention and conductivity reliably. In Chapter II, a 

modification of the assumptions for the simplified evaporation method used to 

parameterize the RF and the CF is proposed. This modification increases the accuracy 

of the predicted retention and conductivity data, using this widely used laboratory 

technique. In Chapter III, a parameter transformation to improve the estimation of RF 

parameter uncertainties resulting from the fitting procedure is proposed. The 

transformation makes the parameter probability distribution resemble more to a normal 

distribution, providing a more accurate value for the standard deviation of the 

parameters and facilitating the application of stochastic techniques. 

Overall, the author is confident that the presented innovations may contribute to 

an improved determination of soil hydraulic properties, increasing accuracy and 

decreasing uncertainty in parameters and in simulation results obtained by 

hydrological modeling.  

 


