• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Tatiana de Souza Moraes
Knowledge Area
Date of Defense
Piracicaba, 2020
Martinelli, Adriana Pinheiro (President)
Dusi, Diva Maria de Alencar
Lubini, Greice
Vieira, Maria Lucia Carneiro
Title in English
Unravelling the transition from vegetative to reproductive stages using Passiflora organensis as a model plant
Keywords in English
Flowering time
Plant architecture
Abstract in English
The genus Passiflora is an excellent model for phase transition studies, because there are obvious morphological differences between plants in the juvenile, adult vegetative, and adult reproductive stages. In almost all species of the genus Passiflora, plants in the juvenile stage produce leaves with different morphology from the adult plants, and do not produce tendrils. On the other hand, plants in the adult vegetative stage develop tendrils at the leaf axils, and in the adult reproductive stage plants produce from the axillary meristems, tendrils and flowers, simultaneously. The proteins belonging to the FT/TFL1 family are important regulators of the phase transition process and need to interact with specific transcription factors to perform their biological functions. The basic region/leucine zipper (bZIP) and the teosinte branched1/ cycloidea/ proliferating cell factor (TCP) transcription factor (TF) families, which contain key players of plant development, are two families of genes encoding proteins that form unique complexes with FT/TFL1. The product of the FLOWERING LOCUS T (FT) gene is considered as the florigen agent and interacts with the bZIP protein FLOWERING LOCUS D (FD), resulting in the induction of flowering by activating transcription of genes involved in floral meristem identity, such as LEAFY (LFY) and APETALA1 (AP1). In addition, literature reports reveal that in some species, the proteins encoded by the FT and bZIP transcription factors interact with 14-3-3, a highly conserved scaffold protein, resulting in the formation of a hexameric protein complex. This complex plays a critical role in flowering time control, being designated as the florigen activation complex (FAC). Moreover, some proteins belonging to the TCP family may interact with FT protein, as well as with the product of its paralog TWIN SISTER OF FT (TSF), modulating their activity in the axillary buds to repress the premature floral transition of axillary meristems. In Passiflora species the molecular mechanisms involved in the vegetative-reproductive phase transition are basically unknown. Thus, this work aims to elucidate the mechanisms involved in the phase transition process during the development of Passiflora organensis, focusing on the transition to flowering. Then, with the use of appropriate developmental study tools, including light and electron microscopy, associated with gene expression analysis and protein-protein interaction techniques, the present work (a) morphologically characterized the transition from vegetative to reproductive phases in Passiflora organensis, (b) identified and characterized the gene structure of LFY and AP1 genes as well as FT/TFL1, bZIP, TCP and 14-3-3 gene families in Passiflora organensis, (c) characterized the expression pattern of the FT/TFL1 gene family, LFY, and AP1 by qRT-PCR and in situ hybridization analysis, (d) validated the activity of proteins encoded by genes belonging to FT/TFL1, bZIP, TCP and 14-3-3 families by yeast two-hybrid assay, and (e) performed heterologous functional analyzes by overexpression of the Passiflora organensis genes PoFT, PoTSFa, PoTFL1, PoBFT, PoATC, and PoMFT in the model plant Arabidopsis thaliana. The results of this work are fundamental to conclude the characterization of the activity of these genes in Passiflora organensis and will be important for selecting the right genes to focus on future research and for applications in studies of yield increase in Passiflora species with commercial interest, such as passionfruit
Title in Portuguese
Desvendando a transição de fase vegetativa-reprodutiva usando Passiflora organensis como planta modelo
Keywords in Portuguese
Arquitetura da planta
Abstract in Portuguese
O gênero Passiflora é um excelente modelo para estudos de transição de fase, pois há diferenças morfológicas evidentes entre as plantas nas fases juvenil, adulta vegetativa e adulta reprodutiva. Na quase totalidade das espécies do gênero Passiflora, as plantas na fase juvenil produzem folhas com morfologia diferente da fase adulta e não produzem gavinhas. Já as plantas na fase adulta vegetativa, produzem gavinhas nas axilas das folhas e na fase adulta reprodutiva produzem, a partir dos meristemas axilares, gavinhas e flores. As proteínas pertencentes à familia FT/TFL1 são importantes reguladores do processo de transição de fase e precisam interagir com fatores de transcrição específicos para desempenhar suas funções biológicas. Nesse sentido, as proteínas da família bZIP (basic region/leucine zipper) e TCP (teosinte branched1/ cycloidea/proliferating cell factor) são fatores de transcrição que formam complexos únicos com as proteínas da família FT/TFL1. O produto do gene FLOWERING LOCUS T (FT) é considerado como o agente florígeno e interage com a proteína FLOWERING LOCUS D (FD), pertencente à familia bZIP, resultando na indução do florescimento pela ativação da transcrição de genes envolvidos na identidade do meristema floral, como LEAFY (LFY) e APETALA1 (AP1). Além disso, a literatura revela que as proteínas FT e bZIP em algumas espécies interagem com proteínas altamente conservadas chamadas 14-3-3, resultando na formação de um complexo proteico hexamérico. Este complexo desempenha um papel crítico no controle do tempo de floração e é designado como complexo de ativação do florigeno. Ademais, algumas proteínas pertencentes à família TCP podem interagir com a proteína FT, assim como com o produto do seu parálogo TWIN SISTER OF FT (TSF), modulando a atividade dos meristemas axilares reprimindo a floração. Em Passiflora os mecanismos moleculares que controlam o desenvolvimento vegetativo-reprodutivo são praticamente desconhecidos. Dessa forma, o objetivo deste trabalho foi elucidar os mecanismos envolvidos no processo de transição de fases durante o desenvolvimento de Passiflora organensis, com foco maior na transição para o florescimento. Assim, com o uso de ferramentas apropriadas ao estudo do desenvolvimento, que incluem microscopia óptica e eletrônica, associadas a técnicas de análise de expressão gênica e interação proteína-proteína, o presente trabalho (a) caracterizou morfologicamente a transição das fases vegetativa-reprodutiva em Passiflora organensis, (b) identificou e caracterizou a estrutura gênica dos ortólogos das famílias de genes FT/TFL1, bZIP, TCP e 14-3-3, além dos genes LFY e AP1 em Passiflora organensis, (c) caracterizou o padrão de expressão dos genes da família FT/TFL1 e dos genes LFY e AP1 por qRT-PCR e hibridização in situ, (d) validou a atividade das proteínas codificadas pelos genes pertencentes à família FT/TFL1, bZIP, TCP and 14-3-3 por analise de duplo híbrido, e (e) realizou análises funcionais heterólogas por superexpressão dos genes PoFT, PoTSFa, PoTFL1, PoBFT , PoATC e PoMFT de Passiflora organensis na planta modelo Arabidopsis thaliana. Os resultados desta pesquisa são fundamentais para concluir a caracterização da atividade desses genes em Passiflora organensis e serão importantes para selecionar os genes certos para focar em pesquisas futuras e para aplicações em estudos de incremento de produção em espécies do gênero Passiflora com interesse comercial, como o maracujazeiro
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.