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RESUMO 

SANTOS, G. S. Phaeurus antarcticus e seus fungos endofíticos: Diversidade 
química de uma farmácia oculta sob o oceano Antártico. 2022. 367f. Tese 
(Doutorado). Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade 
de São Paulo, Ribeirão Preto, 2022.  

Capítulo I: O perfil químico e as atividades antibacteriana, antiparasitária e inseticida 
da alga P. antarcticus foram investigados. O extrato hexânico (HX) e suas frações 
exibiram atividade bacteriostática e bactericida seletiva contra Staphylococcus. 
aureus. As frações HX-FC e HX-FD apresentaram atividade antiparasitária frente a 
Leishmania amazonensis e Neospora caninum. O extrato HX e a fração HX-FC 
apresentaram potencial inseticida frente a  larvas de Aedes aegypti. Através de 
análises em CG-EM, e combinação de análises estatísticas multivariadas (OPLS-DA) 
com a construção de redes moleculares (GNPS) foi possível anotar terpenos, 
esteroides  ácidos graxos e álcoois nas frações bioativas. Capítulo II: Utilizando 
técnicas metabolômicas (CLUE-EM/RMN 1H) combinadas a análises estatísticas 
multivariadas (PCA, OPLS-DA) a variabilidade espacial de metabólitos secundários 
da alga P. antarcticus e a atividade antibiofilme dos extratos e frações foram avaliados 
frente a S. aureus resistente à meticilina e oxacilina (MRSA). Os resultados revelaram 
que as mudanças no perfil químico não foram sítio específicas e podem estar 
relacionadas a diferentes estágios do ciclo de vida das algas coletadas. Porfirinas, 
terpenos e carotenoides foram anotados como sustâncias discriminantes. O ácido 
linoleico (1) e o fucosterol (2) foram isolados das frações bioativas e apresentaram 
atividade antibiofilme frente a MRSA. Capítulo III: O extrato e frações do fungo 
Penicillium purpurogenum foram submetidos a avaliação das atividades 
antibacteriana, antiparasitária, imunomoduladora e fotoprotetora. O fracionamento 
bioguiado levou ao isolamento de seis policetídeos: 5,6,8-triidroxi-4-(1´-hidroxietil) 
isocumarina (3), aspergilumarina A (4), aspergilumarina B (5) berkeleyacetal C (6), 
sescandelina (7) e vermistatina (8). O potencial fotoprotetor, imunomodulador e 
leishmanicida das substâncias foi avaliado. As substâncias 3, 4, 7 e 8 apresentaram 
fotoestabilidade e atividade fotoprotetora frente a radiação UVB-UVA. As substâncias 
3, 6, 7 e 8 apresentaram potencial imunomodulador, reduzindo a produção de 
espécies reativas de oxigênio em neutrófilos humanos estimulados pelo PMA sem 
efeitos citotóxicos. A substância 6 apresentou atividade leishmanicida frente a 
amastigotas de L. amazonensis. Capítulo IV: O perfil químico (CLUE-EM/ RMN 1H) e 
a atividade antibiofilme frente a MRSA de 21 linhagens fúngicas  foram investigados. 
O fracionamento do extrato do fungo Epicoccum nigrum, levou ao isolamento das 
epicozarinas A – B (9-10) e C (12) e de um terpeno (11) inédito. As substâncias 9 – 
12 exibiram atividade antibiofilme contra MRSA. Dentre estas,  a substância 11 
apresentou maior inibição da formação de pré-biofilme e ruptura do biofilme formado. 
Diante do contexto global, este trabalho buscou a obtenção de novos produtos 
biotecnológicos, considerando os Objetivos do Desenvolvimento Sustentável das 
Nações Unidas. Os resultados obtidos fornecem novas informações quimio-
taxonômicas e potencial biotecnológico dos organismos marinhos da Antártica como 
produtores de biomoléculas de interesse farmacêutico, enfatizando a importância da 
bioprospecção para a conservação de organismos ainda pouco conhecidos. 

Palavras-chave: Produtos naturais marinhos, Fungos antárticos, Macroalgas 
antárticas, Fotoproteção, Antimicrobianos, Doenças negligenciadas, Atividade 
imunomoduladora, Metabolômica 
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ABSTRACT 

SANTOS, G. S. Phaeurus antarcticus and its endophytic fungi: Chemical 
diversity of a hidden pharmacy underneath the Antarctic Ocean. 2022. 367f. 
Thesis (Doctoral). Faculdade de Ciências Farmacêuticas de Ribeirão Preto – 
Universidade de São Paulo, Ribeirão Preto, 2022. 

Chapter I: The chemical profile and antibacterial, antiparasitic, and insecticidal 
activities of the seaweed P. antarcticus were investigated. The hexane extract (HX) 
and its fractions exhibited selective antibacterial activity against Staphylococcus 
aureus. Fractions HX-FC and HX-FD showed the highest antiparasitic activity against 
Leishmania amazonensis and Neospora caninum. The HX extract and the HX-FC 
fraction presented insecticidal potential against Aedes aegypti larvae. Through GC-MS 
analysis and the combination of multivariate statistical analyses (OPLS-DA) and the 
construction of molecular networks (GNPS), it was possible to annotate terpenes, 
steroids, fatty acids, and alcohols in the bioactive fractions. Chapter II: Using 
metabolomics techniques (UPLC-HRMS/1H NMR) and multivariate statistical analysis 
(PCA, OPLS-DA), the spatial variability of secondary metabolites of the seaweed P. 
antarcticus and the antibiofilm activity of extracts and fractions were evaluated against 
S. aureus resistant to methicillin-oxacillin (MRSA). The results revealed that the 
changes in the chemical profile were not site-specific and could be related to different 
life cycle stages of the collected algae. Porphyrins, terpenes, and carotenoids were 
annotated as discriminating compounds. Linoleic acid (1) and fucosterol (2) were 
isolated from the bioactive fractions and showed antibiofilm activity against MRSA. 
Chapter III: The extract and fractions of the fungus Penicillium purpurogenum were 
evaluated for antibacterial, antiparasitic, immunomodulatory, and photoprotective 
activities. The bioguided fractionation led to the isolation of six polyketides: 5,6,8-
trihydroxy-4-(1'-hydroxyethyl) isocoumarin (3), aspergillumarin A (4), aspergillumarin 
B (5), Berkeleyacetal C (6), sescandelin (7), and vermistatin (8). Compounds 3, 4, 7, 
and 8 presented photostability and photoprotective activities against UVB-UVA. 
Compounds 3, 6, 7, and 8  presented immunomodulatory activity by down-regulating 
the production of reactive oxygen species in PMA-stimulated human neutrophils 
without cytotoxic effects. Compound 6 presented leishmanicidal activity against 
amastigotes of L. amazonensis. Chapter IV: The chemical profile (UPLC-HRMS/1H 
NMR) and antibiofilm activity against MRSA of 21 fungal strains were investigated. 
Among them, the fractionation of the extract of the fungus Epicoccum nigrum led to the 
isolation of epicorazines A–B (9–10) and C (12) as well as a new terpenoid (11). 
Compound 9–12 exhibited antibiofilm activity against MRSA. Among these, compound 
11 showed the highest inhibition of pre-biofilm formation and rupture of the formed 
biofilm. Given the global context, this work sought to obtain new biotechnological 
products, considering the United Nations Sustainable Development Goals. The results 
obtained provide new information about the chemotaxonomy and biotechnological 
potential of Antarctic marine organisms as producers of biomolecules of 
pharmaceutical interest, emphasizing the importance of bioprospecting for the 
conservation of understudied organisms. 

Keywords: Marine natural products, Antarctic fungi, Antarctic seaweed, 
Photoprotection, Antimicrobials, Neglected diseases, Immunomodulatory activity, 
Metabolomics 
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1. INTRODUCTION 

1.1 The Antarctic continent  

 Antartica is known as the "Continent of Superlatives" and represents one of the 

world's last frontiers. The continental landscape is characterized by rash climate 

conditions, such as extremely low temperatures, strong seasonal shifts in solar 

radiation, high ultraviolet exposure in the summer and darkness in winter, and heavy 

seasonal changes in ice cover (DINASQUET et al., 2018; WENZEL et al., 2016).  

The continent is home to remote locations with pristine and little-studied 

ecosystems, each with their own distinct characteristics (Fig. 1). Surrounded by an 

ocean, the world's highest, driest, windiest, and coldest continent possess very 

distinctive environmental conditions that play an important role in the distribution and 

development of life (WENZEL et al., 2016).  

 

Figure 1. Antarctic glacier near the Comandante Ferraz Brazilian Antarctic Base. 

 

Source: G. S. SANTOS (2017). 

 

The Antarctic biodiversity is mainly dominated by marine organisms, seabirds 

and microorganisms and lacks terrestrial mammalian predators (Fig. 2). In fact, until 
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the establishment of scientific bases, even humans were absent from the continent 

(MELTOFTE, 2019). 

 

Figure 2. . Antarctic fauna. A – Pygoscelis antarcticus; B – Pygoscelis adeliae; C – 
Pygoscelis papua; D – Macronectes giganteus; E – Hydrurga leptonyx; F – Mirounga 
leonina. 

 
Source: M. JATOBÁ – SeCom - UNB (2017). 

 

Despite the geographical isolation, Antarctica is not protected from the impacts 

of anthropogenic activities and climate change effects. Human activities such as oil 

prospection, overfishing, pollution, and the constant release of greenhouse gases all 

exert pressure on the Antarctic ecosystems (DINASQUET et al., 2018; WAUCHOPE; 

SHAW; TERAUDS, 2019).  

A B

C D

E F
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Between 1908 and 1943, seven countries claimed Antarctic territories, to avoid 

conflicts and further territorial claims, the Antarctic Treaty  was created in 1959. The 

Treaty sets aside disputes over territorial claims and promotes peaceful use and 

scientific cooperation in the region (DODDS, 2010). Later, the Protocol on 

Environmental Protection to the Antarctic Treaty was signed in Madrid on October 4, 

1991. The protocol established the continent as an International Natural Reserve 

devoted to peace and science. The protocol provided environmental protection, 

including a ban on mining and mineral exploration; the intentional introduction of non-

native species; strict regulations on disturbance to native species; waste management; 

and environmental impact assessment requirements (WAUCHOPE; SHAW; 

TERAUDS, 2019).  

The severe environmental conditions are the bottleneck for studying organisms 

derived from polar regions. The cost of logistics is high, and specialized equipment is 

required to explore the poles. The climate conditions make it difficult to access the 

poles but do not limit biological communities’ development  (SOLDATOU; BAKER, 

2017).  However, behind the white and frozen landscapes, the Antarctic marine 

environment harbors a rich and underexplored biodiversity with unmeasurable 

biotechnological potential. To survive and overcome abiotic and ecological pressures 

such as food and space competition, predation, high UV ray exposure and low 

temperatures, polar organisms evolved different adaptation strategies, including the 

production of secondary metabolites (LEBAR; HEIMBEGNER; BAKER, 2007; 

RANGEL et al., 2020; TEIXEIRA et al., 2021).  

Recent numbers demonstrate the growing interest of natural products scientists 

in marine-derived molecules. For example, only in 2020, 1407 new compounds were 

isolated from marine organisms while only 332 were reported in 1984 (CARROL et al., 

2021). According to a literature review, until 2016, about 30 000 publications regarding 

marine natural products have been listed in the MarinLit database, but only 3% of the 

total reported natural products from cold environments  (SOLDATOU; BAKER, 2017). 

(BLUNT et al., 2017; CARROLL et al., 2021). Despite the lower number of studies 

when compared to tropical regions, Antarctica represents a hotspot of bioprospection. 

In 2013, when then last survey was made there were patents registered for 439 

Antarctic species highlighting the biotechnological potential of polar organisms 

(NÚÑEZ-PONS et al., 2020). 
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1. 2 The Brazilian Antarctic Program and the University of São Paulo  

 Brazil signed the Antarctic Treaty in 1975, and with the establishment of the 

Brazilian Antarctic Program (PROANTAR) the Brazilian Antarctic Missions began in 

1982. Later, in 1983, these efforts enabled the country to be considered as a consultant 

member of the Antarctic Treaty. Since then, Brazil participates in the decision-making 

and policies regarding the future of the continent  (MARINHA DO BRASIL, 2016).  

 The first Brazilian Antarctic expedition (OPERANTAR I) was carried out on 

board of the oceanographic survey ship Barão de Tefé (Marinha do Brasil)  and on the 

oceanographic ship Prof. Wladimir Besnard from the Institute of Oceanography of the 

University of São Paulo (MARINHA DO BRASIL, 2016). The oceanographic ship Prof. 

Wladimir Besnard (Fig. 3) was built with funds provided by the Brazilian Federal 

agencies and  State government of São Paulo. Thus, the University of São Paulo was 

pioneer in the Antarctic expeditions and until now has contributed to the advance of 

Antarctic science. 

 

Figure 3. Oceanographic ship Prof. Wladimir Besnard. 

 

Source: https://www.io.usp.br/index.php/embarcacoes/n-oc-prof-w-besnard.html 

 The Brazilian Antarctic Base, Comandante Ferraz (Fig. 4A-B), was established 

in Admiralty Bay on King's George Island in 1984 and served as support for the 

expeditions until February 2012, when the structure was consumed by fire. After eight 

years since the accident, a new base was inaugurated in 2020 (Fig. 4C-D).  

 The Laboratory of Organic Chemistry of the Marine Environment has integrated 

two field expeditions to the continent, the first in 2015, when Dr. Hosana Maria Debonsi 

initiated the study of natural products derived from Antarctic seaweeds and their 

endophytic fungi, and the second in 2017, when samples of P. antarcticus used in this 

work were collected. The seaweed collection and isolation of fungi were conducted on 
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board the polar ship Almirante Maximiano H-41 (Fig. 4E) with the logistics support of 

the oceanographic ship Ary Rongel H-44 (Fig. 4F).  

Figure 4. Brazil in Antarctica. A-B – Old Antarctic base; C-D – New Antarctic base; E 
– Polar ship Almirante Maximiano (H-41); F – Oceanographic ship Ary Rongel. 

 

Source: SeCom – CIRM (2017); SeCIRM: https://www.marinha.mil.br/secirm/pt-
br/proantar/nova-estacao (2019).  

 

1. 3 Bioprospecting to Protect  

 The Antarctic Peninsula is one of the world's fastest warming regions. This 

environmental change has an impact on the planet's climate and will result in the loss 

of unknown biodiversity and imbalance in the continent’s biological 

communities  (SIEGERT et al., 2019). In this scenario, bioprospecting of polar 

organisms is essential to their conservation. Thus, continuous research is required to 

E F

A B

C D



6 
 

investigate Antarctic life forms and their biotechnological potential. The majority of 

Antarctic derived natural products are extracted from marine organisms and, despite 

the growing number of reports, cold-water organisms are still underexplored (DOS 

SANTOS et al., 2021; SOLDATOU; BAKER, 2017).  

 The year 2021 started the United Nations Decade of Ocean Science for 

Sustainable Development (2021 – 2030) which targets the creation of a cooperative 

framework to benefit both ocean ecosystems and society through the achievements of 

ocean science. In addition, on July 8th, 2021, the National Geographic Society 

recognized the surrounding waters of the Antarctic continent as the fifth ocean on 

Earth. In the present global context, there is no better opportunity to deepen our 

knowledge of the polar waters and gather resources from governments, industry, and 

academia to explore the hidden chemistry and biotechnological potential of polar 

marine organisms (DOS SANTOS et al., 2021).  

 This work aims to contribute to the University of São Paulo commitment to the 

United Nations Sustainable Development Goals (SDG’s) agenda. Among the 17 

SDG's, this work will contribute to numbers 3 ("Good Health and Well-Being") and 14 

("Life Below Water").  

 

1. 4 Antarctic Natural products 

 Although the oceans occupy two-thirds of the earth's surface, marine 

biodiversity remains an untapped source of new natural products. Systematic 

investigations of marine natural products began only 50 years ago. However, marine 

natural products have demonstrated high diversity and structural complexity, which are 

not found in terrestrial organisms (CARROLL et al., 2021; IOANNOU; ROUSSIS, 

2009). 

 Seaweeds have been used in food, traditional medicine, and agriculture since 

ancient times, and they were among the first marine organisms to be chemically 

analyzed (IOANNOU; ROUSSIS, 2009; MILLEDGE; NIELSEN; BAILEY, 2016). 

Secondary metabolite production is directly related to abiotic factors in both the marine 

and terrestrial environments (TEIXEIRA et al., 2019a). In this sense, the seas and 

oceans present a number of adverse conditions, such as changes in salinity, acidity, 

temperature, ultraviolet radiation incidence, and nutrient competition, that make this 

environment an excellent trigger for the production of differentiated metabolites 

(CONTE et al., 2021). 
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 The polar regions, which include the Arctic and Antarctica, are considered the 

most extreme on earth (LIU et al., 2013). As a result, there is a limitation in the 

development of biological communities, and their biodiversity is dominated by marine 

organisms and microorganisms (GODINHO et al., 2013). 

 The Antarctic marine environment is characterized by high biological activity and 

biogeochemical cycling (BALDI et al., 2010). The intensity of biological activity and 

nutrient cycling in this environment is directly related to the high primary production 

that occurs during the summer (DUCKLOW et al., 2008; FONDA UMANI et al., 2005). 

Due to the isolation caused by the Antarctic Circumpolar Current, the benthic 

communities in the region are characterized by a high degree of endemism and the 

presence of cold-adapted species (WIENCKE et al., 2007). 

 In the Antarctic marine environment, seaweeds are important primary producers 

and plays an essential role in carbon cycling (NĘDZAREK, A., RAKUSA-

SUSZCZEWSKI, 2004). In addition to primary production, seaweeds shelter  a variety 

of associated organisms, including fish, invertebrates and microorganisms such as 

bacteria and fungi (LOQUE et al., 2010). 

To survive the harsh conditions of the marine environment, seaweeds have 

developed/improved several defense strategies. Regarding secondary metabolites, 

these adaptations resulted in the production of diverse molecules biosynthesized by 

different metabolic pathways (IOANNOU; ROUSSIS, 2009). For example, to modulate 

microbial colonization on its surface and avoid herbivory, seaweeds produce 

compounds capable of balancing these ecological relationships and ensuring their 

survival (PERSSON et al., 2011). Abiotic factors such as increasing or decreasing 

temperature can also influence the metabolic profile displayed by macroalgae 

(FARIMAN; SHASTAN; ZAHEDI, 2016). For example, previous studies indicated the 

relationship between the decrease in water temperature and the increase in the 

production of polyunsaturated fatty acids (FARIMAN; SHASTAN; ZAHEDI, 2016; 

NOMURA et al., 2013).  

In addition to the production of secondary metabolites, the association between 

seaweeds and microorganisms might characterize another form of defense and 

adaptation (SURYANARAYANAN, 2012). Marine fungi have been recognized as a 

prolific source of  bioactive compounds. In the marine environment, they occur as 

spores, fragments of hyphae and mycelia and are classified into two distinct groups: 

obligate marine fungi and facultative marine fungi (JONES; KOHLMEYER; 
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KOHLMEYER, 1980). Obligate marine fungi are those that grow and sporulate 

exclusively in a marine or estuarine habitat, while marine facultative fungi are those 

found in freshwater or terrestrial environments, which are able to grow and possibly 

also sporulate in the marine environment (PANG et al., 2016). 

 In polar regions such as Antarctica, fungi are further classified as psychrophilic 

and psychrotolerant (HARDING et al., 2011). The endemic Antarctic fungi are 

classified as true psychrophilic because they are capable of growing and sporulate 

exclusively in the Antarctic environment. The so-called psychrotolerant are 

cosmopolitan ecotypes that resulted from an adaptation to the climatic conditions of 

Antarctica, thus being able to develop in the region (ROSA et al., 2019b).  

 Macroalgae are the second largest source of fungi in the marine environment, 

evidencing the ecological relationship between these two groups of organisms 

(BUGNI; IRELAND, 2004). The fungi that colonize the algal surface are called epiphytic 

and those capable of colonizing the tissues and internal parts of the algae are then 

called endophytic (SURYANARAYANAN, 2012). By definition, endophytic fungi are 

those that colonize or spend part of their life cycle inside the host tissue, in a 

relationship that can range from symbiotic-mutualistic to latent-pathogenic (BUGNI; 

IRELAND, 2004; JONES; KOHLMEYER; KOHLMEYER, 1980; SURYANARAYANAN, 

2012).  
Studies related to Antarctic seaweeds and their symbionts are limited by 

logistics and safety in the face of extreme conditions in these environments. A few 

studies describe the diversity and biotechnological potential of the fungal community 

associated with the Antarctic seaweeds Acrosiphonia arcta, Adenocystis utricularis, 

Monostroma hariotii, Palmaria decipiens, Ulva intestinalis, Desmarestia menziesii and 

Phaeurus antarcticus, however, the methodologies used in these works did not target 

the isolation of endophytic fungi. Furthermore, only the potential of crude extracts was 

investigated with no records of isolated compounds (FURBINO et al., 2014; GODINHO 

et al., 2013).  

1. 4. 1 Natural products from Antarctic seaweed 

Seaweeds are a rich source of secondary metabolites, including antibacterial, 

antifungal, antiparasitic and photoprotective compounds (FALKENBERG et al., 2019; 

SHANNON; ABU-GHANNAM, 2019). Plocamium cartilagineum is a red macroalga 

species widely distributed on the Antarctic Peninsula. Previous chemical investigations 
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of this macroalga led to the identification of different chemogroups (YOUNG et al., 

2013). In a recent report, Shilling and co-workers (2019) isolated nine monoterpenes 

from three chemogroups of this alga, including four new compounds named anverenes 

B–E (Fig. 5). All isolated compounds were submitted to clonogenic survival assay 

using a human cervical cancer cell line (HeLa). Anverene D was the most active 

compound with IC50 value of 1.19 (SHILLING et al., 2019a). 

Tavares and co-workers (2020) described the isolation of fucoxanthin from 

Desmarestia anceps. Fucoxanthin presented UVA and UVB absorption, photostability 

when incorporated into a sunscreen formulation, and antioxidant activity after UVA 

induction of ROS production on reconstructed human skin. This compound presented 

photoprotective properties and potential to be used as a UV-booster on sunscreens 

(TAVARES et al., 2020a). 

 

Figure 5. Compounds isolated from Antarctic seaweeds.  

 

1. 4. 2 Natural products from Antarctic marine fungi 

 In the period ranging from January 2018 to December 2021, fungi were the 

second most prospected Antarctic organism, highlighting the interest of natural 

products researchers in this new reservoir of bioactive molecules. Herein examples of 

metabolites isolated from Antarctic derived fungi and their bioactivity reported in the 
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review article Natural Products from Poles: Structural diversity and biological activities 

are described (DOS SANTOS et al., 2021). 

 The chemical investigation of the Antarctic fungus Aspergillus sydowii SP-1 led 

to the isolation of the new alkaloid acremolin C together with the four known 

compounds cyclo-(L-Trp-L-Phe), (4-hydroxyphenylacetic acid, (7S)-(+)-

hydroxysydonic acid, and (7S,11S)-(+)-12-hydroxysydonic acid (Fig. 6). These 

compounds were screened against Staphylococcus aureus, Staphylococcus 

epidermidis, methicillin resistant S. aureus (MRSA), and methicillin-resistant S. 

epidermidis (MRSE). Acremolin C presented inhibition activities against MRSA and 

MRSE with MIC values of 32 and 16 μg/mL, respectively, while compounds cyclo-(L-

Trp-L-Phe), 4-hydroxyphenylacetic acid, and (7S,11S)-(+)-12-hydroxysydonic acid  

presented higher inhibition effects against MRSA and MRSE with MIC values ranging 

from 0.5 to 1 μg/mL (LI et al., 2018).  

A fungal isolate from marine sediment collected from Prydz Bay, Antarctica was 

identified as a Penicillium crustosum strain which produced the new polyene 

compound (2E,4E,6E,8E)-10-hydroxyundeca-2,4,6,8-tetraenoic acid, and a new 

diketopiperazine named fusaperazine F, together with the known compounds cis-bis-

(methylthio)-silvatin and xylariolide D (Fig. 6). Fusaperazine F exhibited bioactivity 

against K562 cells, with an IC50 value of 12.7 μM (LIU et al., 2019). 

A strain of Aspergillus insulicola HDN151418 was isolated from an unidentified 

sponge sample collected 410 m deep from Prydz Bay, Antarctica. Using a UV-HPLC 

guided approach, three new tripeptides named sclerotiotide M, sclerotiotide N, and 

sclerotiotide O were isolated from this fungus together with the known compounds, 

sclerotiotide L, sclerotiotide F and sclerotiotide B (Fig. 6). Sclerotiotide M presented 

potent antimicrobial activity towards Bacillus cereus, Proteus mirabilis, Mycobacterium 

phlei, Edwardsiella tarda and B. subtilis with MIC values ranging from 1.56–6.25 µM. 

Sclerotiotide N was most active against E. tarda with MIC value of 1.56 µM (SUN et 

al., 2020). 

A new polyketide named 9-O-methylneuchromenin, together with the four 

known compounds neuchromenin, asterric acid, myxotrichin C, and deoxyfunicone 

(Fig. 6) were isolated from the fungus Penicillium glabrum (SF-7123). The compounds 

9-O-methylneuchromenin, asterric acid and myxotrichin C presented inhibitory activity 

of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with 

IC50 values of 2.7 µM, 28.1 µM, and 10.6 µM respectively. These compounds also 
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downregulated the production of NO in LPS-stimulated RAW264.7 macrophages. 

Additionally, 9-O-methylneuchromenin downregulated NO synthase and 

cyclooxygenase-2 and inflammatory pathways dependent on nuclear factor kappa B 

and protein kinase in BV2 and RAW264.7 cells. Myxotrichin C  and deoxyfunicone 

were found to inhibit the protein tyrosine phosphate 1B with IC50 values of 19.2 µM and 

24.3 µM (HA et al., 2020).  

Figure 6. Compounds isolated from Antarctic-derived fungi. 
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1. 5 The seaweed Phaeurus antarcticus 

 Phaeurus antarcticus Skottsberg (Fig. 7) is a brown seaweed endemic to the 

Antarctic Peninsula and adjacent islands south of the Antarctic convergence. It occurs 

in the coastal and sub-coastal areas at  depths that vary between 8 and 10 meters. It 

belongs to the order Desmarestiales, family Desmarestiaceae, and genus Phaeurus. 

P. antarcticus is considered one of the most primitive species in its family due to the 

simple structure of its thallus (CLAYTON; WIENCKE, 1990). 

 Currently, there are few works describing the chemical composition of P. 

antarcticus (IKEN et al., 2009a; TEIXEIRA et al., 2019b), and the biological activity of 

isolated molecules from this alga have not been reported. Additionally, reports 

addressing the diversity of endophytic fungi associated with this seaweed and their 

biotechnological potential are scarce (FURBINO et al., 2014; GODINHO et al., 2013), 

highlighting the relevance of the chemical investigation and bioactivities of P. 

antarcticus and its endophytic fungi. 

Figure 7. The seaweed Phaeurus antarcticus. 

 

Source: GODINHO et al., (2013); ALGAEBASE: 
https://www.algaebase.org/search/genus/detail/?genus_id=42681. 

 

 

1. 6 Metabolomic and chemometrics approaches  

In natural products research metabolomics has been defined as the 

comprehensive and quantitative analysis of all metabolites produced by a given 

organism. The metabolomic approach is often used to target distinct chemical profiles 

and avoid the isolation of known compounds with previously described bioactivities  

(ZHAO; ZHANG; LI, 2018). 

Metabolomic analysis is divided into targeted and non-targeted studies. In 

targeted studies, the search is focused on predefined metabolic pathways or 
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compound classes. On the other hand, in non-targeted studies, all the metabolites 

present in extracts/fractions will be recorded and often large datasets are generated.  

Data acquisition in natural products metabolomic studies commonly relies in 

hyphenated techniques such as gas chromatography coupled to mass spectrometry 

(GC-MS) and liquid chromatography coupled to mass spectrometry (LC-MS) or nuclear 

magnetic resonance (NMR) (ZHAO; ZHANG; LI, 2018).  

Usually, non-targeted studies needed to be coupled to chemometric approaches 

such as multivariate analysis, or computational techniques such as the Global Natural 

Products Social Molecular Networking workflows to allow data mining and a 

comprehensive understanding of metabolic patterns (DEMARQUE et al., 2020; 

GRIFFITHS et al., 2010; YANG et al., 2013). 

Chemometrics aims to extract chemically relevant information from data 

produced in chemical experiments relying on mathematical models. For example, a 

measurement of the chemodiversity of molecules produced by different organisms can 

be obtained by evaluating the size of the chemical space visualized by a multivariate 

analyses (MVA) such as the principal component analysis (PCA) (WOLFENDER et al., 

2019).  

Multivariate statistical analysis of the data generated from GC/LC-MS and NMR 

can be performed to visualize data patterns through unsupervised clustering such as 

PCA, using soft independent modelling by class analogy (SIMCA), or supervised 

clustering such as partial least squares (PLS), partial least squares discriminant 

analysis (PLS-DA) and orthogonal partial least square discriminant analysis (OPLS-

DA). Additionally, multivariate models can find relations among correlated variables, 

as is often the case in metabolomics studies, and possess the ability to distinguish 

systematic variation from noise (ROBOTTI; MARENGO, 2016; WOLD; ESBENSEN; 

GELADI, 1987).  

Supervised analysis such as OPLS-DA can be useful to discriminate between 

two classes, such as healthy versus diseased, allowing us to target disease biomarkers 

or drug targets for treatments. In natural products research, this approach can be used 

to discriminate between bioactive and inactive fractions and, thus, allows prioritizing 

the isolation of specific metabolites responsible for bioactivity (WOLD; ESBENSEN; 

GELADI, 1987).  

 An illustration of the possible applications for each multivariate models is shown 

in figure 8.  
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Figure 8. Multivariate models and their applicability. 

 

Adapted from (WOLD; ESBENSEN; GELADI, 1987).  

 

1. 7 Investigated biological activities 

 

1. 7. 1 Photoprotection  

 The skin is the primary body protection against external damages such as 

mechanical lesions and microbial infections. When exposed to sunlight human skin 

triggers the production of vitamin D and β-endorphin which display beneficial health 

effects (MEAD, 2008). 

However, the deleterious effect of continuous skin exposure to ultraviolet 

radiation (UVR) has been known since 1960. Unprotected or prolonged exposure to 

UVR leads to numerous changes in the skin, such as actinic keratosis, which has been 

identified as a precursor of non-melanoma skin cancer and squamous cell carcinoma. 

These conditions are related with UVA radiation, because of its ability to penetrate 

deeper in the skin (RAFFA et al., 2019). 

 Concerns regarding the effects of global warming have also been discussed in 

the context of skin related diseases since there is decrease of the stratospheric ozone 

layer and consequently an increase of UVR reaching the Earth’s surface. The UV 

portion of the magnetic spectrum includes  long wave UVA radiation (320-400 nm), 
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medium wave UVB (280-320) and short wave UVC radiation (100-280 nm) (MU et al., 

2021; SLOMINSKI; PAWELEK, 1998; URBAN et al., 2016).   

 In this context, sunscreens formulations represent an additional protection 

against UVR damage. However, recent studies have demonstrated the toxic potential 

of UV filters to human health, including DNA damage, penetration into placenta, 

alteration of spermatozoids and endocrine functions (JESUS et al., 2022).  

Additionally, UV filters such as benzophenone-3 and octyl methoxycinnamate 

are harmful to marine organisms, especially corals. Benzophenone-3 was considered 

toxic to larval forms of the coral Stylophora pistillata and cytotoxicity was observed to 

other six coral species  (DOWNS et al., 2016).  

Compounds derived from natural sources have been studied to as 

photoprotective components against the damage produced by UV radiation. Marine 

derived compounds such as mycosporins, alkaloids, isocoumarins (present in fungi), 

mycosporin-like amino acids (MAAs, found in cyanobacteria, algae, and animals) have 

stood out as new candidates for sunscreens formulations and represent a source of 

new photoprotective compounds (MACIEL et al., 2018; SINGH et al., 2017; THIESEN 

et al., 2017). 

 

1. 7. 2 Neutrophils as new drugs target for chronic inflammatory diseases  

Neutrophils are polymorphonuclear and phagocytic leukocytes that function as 

the first line of defense against pathogenic organisms. In fact, they are the most 

abundant leukocytes in blood, and,  from the circulation, they are mobilized to sites of 

inflammation and/or infection (ROSALES, 2020). When their receptors interact with 

antigens in the pathogen's cell wall, mechanisms such as the production of reactive 

oxygen (ROS) species and the release of neutrophil extracellular traps are activated 

(NETs)(HIRSCHFELD et al., 2017).  

However, in the chronic inflammatory process hyperactivity of neutrophils leads 

to increased ROS production, resulting in an imbalance in redox homeostasis. The 

deregulation in neutrophils functions promotes exacerbated oxidative stress and 

consequently irreversible cellular and tissue damage (AMULIC et al., 2012; MORTAZ 

et al., 2018). 

In fact, both inefficiency and exacerbation of neutrophil responses contribute to 

the pathophysiology of several diseases. In particular, chronic inflammatory diseases 

such as systemic lupus erythematosus (SLE) (TOLLER-KAWAHISA et al., 2015). In 
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this context, molecules with the ability to regulate neutrophil function such as ROS 

production might represent an alternative to the development of new therapeutic 

agents for this disease. 

 

1. 7. 3 Leishmaniasis 

Leishmaniasis is caused by more than twenty species of Leishmania and is 

transmitted to humans by the bite of infected female phlebotomine sandflies 

(TORRES-GUERRERO et al., 2017). The disease affects humans and animals, 

causing public health problems especially in underdeveloped and developing countries 

(DOS SANTOS VARJÃO et al., 2022). 

 There are three main forms of the disease: cutaneous leishmaniasis (CL), 

visceral leishmaniasis (VL), and mucocutaneous leishmaniasis (MCL). The most 

common form of leishmaniasis is CL, which is caused by the L. amazonensis species. 

Currently, CL affects 12 million people globally, and 2 million new cases occur each 

year. CL is endemic in almost 100 countries 350 million people are at risk of contracting 

the disease (DE VRIES; SCHALLIG, 2022).  

Pharmacotherapy for the treatment of leishmaniasis is represented by a few 

chemotherapeutic agents, such as pentavalent antimonials, amphotericin B, 

paromomycin, and miltefosine, which have several limitations regarding toxicity and 

lack of efficacy in endemic areas (TORRES-GUERRERO et al. 2017; FALKENBERG 

et al. 2019). 

Due to the toxicity of existing therapies, as well as the emergence of resistant 

forms of Leishmania, there is an increased need for the development of more effective 

and less toxic antileishmanial drugs.  

 

1. 7. 4 Neosporosis 

 Neosporosis is caused by the etiological agent Neospora caninum. This parasite 

infects mammalian species, like cattle, sheep, goats, horses, and dogs. Neosporosis 

causes abortion in cattle and neuromuscular disorders in dogs. The economic loss 

related to neosporosis in milk and livestock production is estimated at billions of dollars 

per annum. In addition, despite the efforts of industry and scientific community 

Neosporosis still does not have a specific treatment. For this reason, when animals 
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are diagnosed with Neosporosis they are sacrificed to avoid a disease outbreak 

(PEREIRA et al. 2017).  

 The investigation of natural products as anti-Neospora agents is very limited 

and has been focused on plant extracts (LEESOMBUN; BOONMASAWAI; 

NISHIKAWA, 2017; SEO et al., 2013).  The first report of marine-derived compounds 

against N. caninum was published by our research group and revealed that the 

Antarctic seaweed D. antarctica presented anti-Neospora activity, highlighting the 

potential of marine-derived natural products in the prospection of new anti-Neospora 

treatments (DOS SANTOS et al., 2020).  

 

1. 7. 5 Antibacterial and antibiofilm  

 Antibiotic resistance is one of the biggest threats to global health. Despite the 

fact that antibiotic resistance occurs naturally, this process has been accelerated by 

the misuse of antibiotics in human and animal health. The advent of multidrug resistant 

bacteria is rapidly rising, causing diseases such as severe pneumonia, tuberculosis, 

blood poisoning, gonorrhea, and food borne diseases. Due to the new resistance 

mechanisms evolved by bacteria, these diseases are becoming harder, and 

sometimes impossible to treat (ASLAM et al., 2018; WHO, 2022).  

 Biofilm forming bacteria are a major public health concern due to biofilm’s ability 

to withstand external stresses and contribute to the persistence of chronic infections 

(DE LA FUENTE-NÚÑEZ et al., 2013). Biofilms are immobile microbial communities 

which can colonize and grow on different surfaces such as medical implants and 

catheters. In biofilms, bacterial populations are crammed by extra cellular matrix (ECM) 

which possesses bacterial secreted polymers such as exopolysaccharides (EPS), 

extracellular DNA, proteins amyloidogenic proteins (SHARMA; MISBA; KHAN, 2019; 

WHITCHURCH et al., 2002).  

It is estimated that 80% of chronic and recurrent microbial infections are caused 

by bacterial biofilms. Microbial biofilms display different resistance mechanisms when 

not observed in planktonic cells, including lower cell permeability, efflux pumps, drug 

modifying enzymes and drug neutralizing proteins.  These characteristics make the 

search for antibiofilm compounds an important initiative in order to aid in the fight 

against microbial resistance (SHARMA; MISBA; KHAN, 2019).  
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1. 7. 6 Aedes aegypti control 

 The Aedes aegypti mosquito is the vector responsible for the transmission of 

viral pathogens such as dengue, chikungunya, yellow fever and zika viruses. This 

species, native to Africa, is now distributed to all continents (KRAEMER et al., 2015; 

MCGREGOR; CONNELLY, 2021). 

 In Brazil, this mosquito has been responsible for the outbreaks of dengue, 

chikungunya, and zika viruses. The country has been facing an uninterrupted dengue 

epidemic since 1986 (VALLE; NACIF PIMENTA; AGUIAR, 2016). The WHO 

recommends that since there is no treatment for the viral diseases transmitted by A. 

aegypti, combating the vector is the most efficient strategy for controlling outbreaks 

(BENELLI, 2015). 

 Recently, the Brazilian National Dengue Control Program has promoted the 

replacement of highly toxic synthetic insecticides (organophosphates, pyrethroids and 

carbamates) for more environmentally friendly compounds, such as pyrethroids 

(cypermethrin and deltamethrin). However, they still display toxicity to the environment 

(PILON et al., 2022). In this context, we aimed to prospect new insecticidal compounds 

from Antarctic marine organisms in order to contribute to the development of safer and 

ecofriendly alternatives to those currently on the market.  
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1. 8 Preface  

 This doctoral thesis is divided into four chapters. Chapters I and III were 

developed in the School of Pharmaceutical Sciences of Ribeirão Preto – University of 

São Paulo, Brazil. Chapters II and IV were developed in the Strathclyde Institute of 

Pharmacy and Biomedical Sciences – University of Strathclyde, United Kingdom.  

 Parts of the introduction of this thesis were published as a review article “Natural 

Products from the Poles: Structural Diversity and Biological Activities” in the Brazilian 

Journal of Pharmacognosy.    

Chapter I describes the evaluation of the antibacterial, antiparasitic, and 

insecticidal potential of the seaweed Phaeurus antarcticus and the annotation of 

bioactive metabolites through the combination of multivariate analysis and GC-MS 

Molecular Networking. 

Chapter II provides an insight into the spatial variability of secondary metabolite 

production and the antibiofilm activity of P. antarcticus, through the combination of 

proton nuclear magnetic resonance (1H NMR) and high-resolution mass spectrometry 

(HRMS) data and multivariate analysis. 

Chapter III presents the isolation of photoprotective, immunomodulatory, and 

antileishmanial compounds from the endophytic fungi Penicillium purpurogenum.  

Chapter IV reports the metabolomic profiling of endophytic fungi isolated from 

P. antarcticus collected in different locations in the South Shetland Islands and the 

isolation of antibiofilm compounds from the fungus Epicoccum nigrum.  
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5. 5 CONCLUSION 

A total of 27 fungal strains were isolated from the inner tissues of the 

seaweed Phaeurus antarcticus collected in different locations across the Antarctic 

Peninsula. Sequencing of the ITS region led to the identification of fungi belonging 

to the Arthrinium, Cladosporium, Curvularia, Epicoccum, Nigrospora, Penidiella, 

Penicillium and Periconia genera. Additional sequencing experiments of the ACT 

region led to the identification of six Cladosporium species associated with this 

seaweed. A chemical profiling of 21 strains was achieved by proton NMR, HRMS 

and multivariate analysis. The strains identified as Penidiella aggregata and 

Cladosporium halotolerans presented unique chemical constituents and appeared 

as outliers in the PCA scatter plot. In the PCA loading scatter plot was possible to 

target the unique secondary metabolites responsible for the chemical distinction. 

In the C. halotolerans extracts, nitrogen containing compounds were annotated 

(rigidiusculamide A, huaspenone C, stachyline A, monascuskaochroman). In the 

Penidiella extracts, a polyketide, (sporminarin A), was annotated as discriminant 

metabolite. Despite the unique chemical profiles, in the antibiofilm evaluation 

Penidiella and C. halotolerans extracts were not among the most active samples 

against methicillin and oxacillin resistant S. aureus. The antibiofilm assays 

revealed that P. terrigenum, C. perangustum (LMC 1016) and E. nigrum extracts 

exhibited the highest antibacterial and antibiofilm effects. 

 A chemotaxonomic study was conducted with the Cladosporium isolates 

using proton NMR and HRMS data combined to the molecular identification results. 

A PLS-DA model was constructed to visualize the distribution of metabolites among 

the six different species of Cladosporium. Results revealed that the clustering 

observed in the phylogenetic tree was similar to the clustering observed in the PLS-

DA model, indicating that the closest related strains also presented similar 

chemical profiles. These findings are an important contribution to the 

understanding of chemosystematics of Antarctic derived Cladosporium and could 

be used to guide future bioprospection and ecological investigations.  

 In the search for antibacterial and antibiofilm compounds, the fungus E. 

nigrum presented a more diverse chemical profile when compared to P. terrigenum 

and C. perangustum (LMC1016). For this reason, the strain was selected for large 

scale fermentation and isolation of metabolites. The purification of bioactive 

fractions led to the isolation of 4 metabolites, epicorazine A (9), epicorazine B (10), 
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epicorazine C (12), and a novel terpene (11). Epicorazine A – C  exhibited MIC 

and MBEC values of 50 µg/mL, 200 µg/mL and 25 µg/mL, respectively, but no 

effect on post-biofilm viability was observed.  Compound 11 presented MIC and 

MBEC values of 25 µg/mL and was able to inhibit 100% of post-biofilm viability at 

a concentration of 100 µg/mL .  

 In conclusion, fungi endophytes associated with the seaweed P. antarcticus 

presented a diverse chemical profile, that could source novel antimicrobial and 

antibiofilm compounds. E. nigrum produced interesting sulfur containing 

metabolites with potential biotechnological applications in the pharmaceutical 

industry. Thus, despite the highly cytotoxic effects of the isolated compounds 

reported in the literature, in vivo models are encouraged to assess the toxic 

potential of epicorazines.  
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