Tese de Doutorado
DOI
https://doi.org/10.11606/T.6.2018.tde-13032018-111857
Documento
Autor
Nome completo
Lael Almeida de Oliveira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1996
Orientador
Banca examinadora
Siqueira, Arnaldo Augusto Franco de (Presidente)
Barreto, Maria Cecilia Mendes
Benicio, Maria Helena D Aquino
Bussab, Wilton de Oliveira
Tanaka, Ana Cristina D'Andretta
Título em português
Comparação de dois indicadores da desnutrição materna usando regressão e classificação por árvore e logÃstica multinomial
Palavras-chave em português
Desnutrição Materna
Métodos EstatÃsticos
Resumo em português
As curvas de Rosso e de Siqueira para avaliação do estado nutricional de gestantes foram comparadas, em uma amostra de 565 gestantes. Para que essa comparação fosse feita a contento, utilizaram-se técnicas estatÃsticas tradicionais como: regressão múltipla por stepwise, coeficientes de associação, de concordância, de especificidade e de sensibilidade, métodos gráficos e técnicas mais atuais de classificação, como logÃstica multinomial, regressão e classificação por árvores do tipo AID. Os resultados indicaram vantagem da curva de Siqueira, em termos de consistência, eficiência e associação, com relação ao prognóstico para a adequação do peso do RN. A análise das interrelações mostraram que a curva de Rosso tem uma tendência em sub-classificar a gestante, com relação ao seu peso e ao peso do seu RN. Para validar e confirmar tais resultados, procurou-se comparar as técnicas de classificação, uma vez que existiam cinco técnicas, cada qual, devido à s suas caracterÃsticas, com alguns resultados distintos. A comparação entre as técnicas de classificação foi feita por intermédio da taxa de má- classificação, usando validação cruzada em 1 O e 5 partes, obtendo-se vantagem das técnicas CHAID e LogÃstica Multinomial, seguidas de CART, SPLUS, KS. A validação cruzada permitiu também confirmar a vantagem da curva de Siqueira, com o destaque para o fato que o melhor diagnóstico, com relação ao prognóstico da adequação do peso do RN, é na primeira consulta do pré-natal, abrindo o horizonte de diagnóstico precoce, prevenção e intervenção logo no inÃcio da gravidez, o que indica o seu uso com maiores chances de bons resultados.
Título em inglês
Comparison of two indicators of maternal malnutrition using tree regression and classification and multinomial logistics
Palavras-chave em inglês
Maternal Malnutrition
Statistical Methods
Resumo em inglês
The curves of Rosso and Siqueira, used to evaluate the nutritional state of pregnant women, were compared in a sample of 565 mothers. In order to make this comparison sucessful, traditional statistical techniques were used such as: multiple regression by stepwise, coefficients of association, concordance, specificity and sensibility, and graphical methods, and the updated techniques of classification, such as: multinominal logistic, regression and classification through trees of AID type. The results showed the advantage of the Siqueira curve, in terms of consistency, eficiency and association, related to prognosis of the adequacy of the weight of the newbom. The analysis of the interrelations showed that the curve of Rosso has a tendency to under classify the pregnant women concerning their weight and the weight of the newborn. In order to validate and confirm these results, comparisons of classification of techniques were searched, since there were five techniques and, each one, due to its own characteristics, presented some distinct results. The comparison between the techniques of classification were made by means of misclassification rate, using cross-validation in 10 and 5 parts, where CHAID techniques and Multinominal Logistic showed advantages, followed by CART, SPLUS and KS. The cross-validation also allowed us confirm the advantage of the Siqueira curve, with emphasis on the fact that the best diagnose, concerning the prognosis of the adequacy of the weight of the newborn, is obtained in the first antenatal care appointment. This expands horizons for precocious diagnose, prevention and intervention at the very beginning of pregnancy, which indicates its use with better chances of good results.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-13