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Resumo

LEÃO, L.L. Equações de evolução abstratas com termos não lineares Lq,α -Hölder. 2023.
98 p. Dissertação (Mestrado em Ciências Matemática) Faculdade de Filosofia Ciências e Letras
de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2023.

Apresentamos um estudo sobre resultados clássicos da teoria de equações diferencias abstratas,
introduzimos as funções Lq,α -Hölder junto com alguns exemplos e generalizamos alguns resulta-
dos já conhecidos a respeito de existência, unicidade e regularidade de soluções para o problema
abstrato semilinear de evolução.

Palavras chave: Equações diferenciais abstratas, Semigrupos de operadores lineares limitados,
Funções Lq,α -Hölder.



Abstract

LEÃO, L.L. Abstract evolution equations with Lq,α -Hölder nonlinear terms. 2023. 98 p.
Dissertação (Mestrado em Ciências Matemática) Faculdade de Filosofia Ciências e Letras de
Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2023.

We present a study of classical results about abstract differential equations, introduce the Lq,α -
Hölder functions including several examples and generalize some well-known existence, unique-
ness, and regularity results for the evolution abstract semilinear problem.

Keywords: Abstract differential equations, Semigroups of bounded linear operators, Lq,α -
Hölder function.
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Introduction

In this project we are interested in the study of existence, uniqueness and regularity of solutions
to the ordinary differential equations on infinite dimensional spaces (in general, a Banach space X)
described by

u′(t) = Au(t)+ f (t)
u(0) = x0 ∈ X ,

where A : D(A)⊂ X → X is the infinitesimal generator of a semigroup T (t)t≥0 and f is a suitable
function.

On the classical literature, see [Pazy, 2012, Engel et al., 2000, Lunardi, 1995] and others, one
can find several results concerning the case where f is a Lipschitz (or Hölder) function. The
novelty of this work is to consider a more general class of functions, the Lq,α -Hölder functions.

The concept of Lq,α -Hölder function is inspired on the paper [Hernandez et al., 2020], where
the authors study the controlability of abstract differential equations with state-dependent delay of
the form

u′(t) = Au(t)+F(t,u(t −σ(t,ut)))+Bv(t), t ∈ [0,a]
u(0) = φ ∈C([−p,0];X)

where σ and v are suitable functions, ut is the function ut : [−p,0]→ X defined by ut(θ) = u(t+θ)
and F is a Lq-Lipschitz function, we cite that in this work the authors considered only two simple
examples. Now we consider a generalized concept and present several examples.

In order to study the results cited above, this work is organized as follow. In the first chapter,
we revisit the basic aspects of semigroups of bounded linear operators theory. In particular, we
have studied C0-semigroups, differentiable semigroups, analytic semigroups and proved the Hille-
Yosida theorem, which characterizes when a linear operator is the infinitesimal generator of a C0-
semigroup. This chapter was based on the classic book Semigroups of linear bounded operators
and applications to partial differential equations by Amnon Pazy [Pazy, 2012] and the master
thesis of Andrea Prokopczyk [Prokopczyk, 2005], Denis Fernandes [Silva, 2017] and Michelle
Pierri [Pierri, 2006].

In the second chapter, we study the existence and uniqueness of mild, classical, and strong
solutions for the inhomogeneous abstract Cauchy’s problem

u′(t) = Au(t)+ f (t)
u(0) = x0,

where A : D(A) ⊂ X → X is the generator of a semigroup (T (t))t≥0 of bounded linear operators
on a Banach space X and f : [0,a] → X is Lipschitz. We also included some results concerning
the regularity of the mild solution of (1)-(1) that can be found on [Pazy, 2012] and [Lunardi, 1995].
We finish this chapter by studying the existence, uniqueness, and regularity of solutions for the
semilinear evolution problem

u′(t) = Au(t)+ f (t,u(t))
u(0) = x0,

where f : [0,a]× X → X is continuous and A is the infinitesimal generator of a semigroup of
bounded linear operators on a Banach space X .
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In the last chapter, we introduce the concepts of Lp
Lip-Lipschitz and Lp,α -Hölder function and

build several examples concerning different kinds of functins, we cite, osclilating functions and
functions with countable discontinuities points. In addition, we study the existence and uniqueness
of local and global solutions to the semilinear problem

u′(t) = Au(t)+F(t,u(t))
u(0) = x0,

where A is the infinitesimal generator of a semigroup and F(·) is a Lp
Lip-Lipschitz or a Lp,α -Hölder

function. We note that the results in this chapter are new and are presented in our pre-print Abstract
differential equation and Lq,α -Hölder functions by Hernández, Lisboa and Fernandes that will be
submitted for publication in the next weeks.

In the appendices, we note some results concerning Functional Analysis (see [Brézis, 2011]
and [Kreyszig, 1978]), Integration theory (see [Bartle, 2014]), and semigroup of bounded linear
operators theory.



1. Semigroups of linear operators

In this chapter, we study some aspects of strongly continuous semigroups of bounded linear
operators and analytic semigroups. These classes of semigroups are especially interesting in the
study of partial differential equations. From now on, (X ,‖·‖X) is a Banach space and (L (X),‖·‖)
denotes the space of linear operators from X into X endowed with the operator norm ‖·‖.

First of all, we define the concepts of semigroup, uniformly continuous semigroup and the
infinitesimal generator of semigroups. Then, we show some generalities of uniformly continuous
semigroups.

In Section 1.2, we introduce the concept of strongly continuous semigroups and their basic
properties. At this point, we are ready to prove the Hille-Yosida theorem. In Section 1.3, we study
differentiable and analytic semigroups.

1.1 Uniformly continuous semigroups of bounded linear operators
We start studying uniformly continuous semigroups of bounded linear operators and their basic

properties.

Definition 1.1.1 A one parameter family (T (t))t≥0 of bounded linear operators from X into X is
a semigroup of bounded linear operators on X if
i) T (0) = I, where I is the identity operator,
ii) T (t + s) = T (t)T (s) for every t,s ≥ 0.

Definition 1.1.2 A semigroup of bounded linear operators (T (t))t≥0 on X is uniformly contin-
uous if limt↓0 ‖T (t)− I‖= 0.

Definition 1.1.3 The linear operator A : D(A)⊂ X → X defined by

Ax = lim
t↓0

T (t)x− x
t

=
d+T (t)x

dt

∣∣∣∣
t=0

, for x ∈ D(A)

where

D(A) = {x ∈ X : lim
t↓0

T (t)x− x
t

exists}

is the infinitesimal generator of (T (t))t≥0 and D(A) is the domain of A.

From the definition of a uniformly continuous semigroup of bounded linear operators, the
function t 7→ T (t) from [0,∞) into L (X) is continuous at t = 0. Moreover, for t,h ∈ (0,∞) we see
that,

lim
h→0

‖T (t +h)−T (t)‖ = lim
h↓0

‖T (t)T (h)−T (t)‖

= lim
h↓0

‖T (t)(T (h)− I)‖

≤ lim
h↓0

‖T (t)‖‖T (h)− I‖ .

Then, limh↓0 ‖T (t +h)−T (t)‖ = 0, which proves that the function t 7→ T (t) is right continuous
at t ≥ 0. Proceeding similarly, we can prove the left continuity at t. From the above, t 7→ T (t) is
continuous on [0,∞).

We present now a characterization theorem of the infinitesimal generator of a uniformly con-
tinuous semigroup.
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Theorem 1.1.1 A linear operator A is the infinitesimal generator of a uniformly continuous semi-
group if and only if A is a bounded linear operator.

Proof: Let A be a bounded linear operator on X and T (t) = etA = ∑∞
n=0

(tA)n

n! .
We show that T (t) is a bounded linear operator for all t ≥ 0. For t ∈ [0,∞), x,y ∈ X and α ∈R,

we note that

T (t)(αx+ y) =

(
∞

∑
n=0

(tA)n

n!

)
(αx+ y)

= I(αx+ y)+
tA(αx+ y)

1!
+

t2A2(αx+ y)
2!

+ . . .

= α

(
∞

∑
n=0

tAn

n!

)
(x)+

(
∞

∑
n=0

(tA)n

n!

)
(y)

= αT (t)(x)+T (t)(y),

because A, A0 = I and An = A◦A◦ · · · ◦A are linear maps. We also note that

‖T (t)‖=

∥∥∥∥∥ ∞

∑
n=0

(tA)n

n!

∥∥∥∥∥≤ ∞

∑
n=0

(t ‖A‖)n

n!
= et‖A‖,

which implies that T (t) is a bounded linear operator. Moreover, T (0) = I +∑∞
n=1

(0A)n

n! = I and

T (t + s) =
∞

∑
n=0

(t + s)nAn

n!

=
∞

∑
n=0

n

∑
i=0

n!
(n− i)!i!

t isn−i A
n

n!

=
∞

∑
i=0

∞

∑
n=i

(tA)i

i!
(sA)n−i

(n− i)!

=
∞

∑
i=0

(tA)i

i!

∞

∑
k=0

(sA)k

k!

= T (t)T (s),

which proves that (T (t))t≥0 is a semigroup of bounded linear operators. We also note that

‖T (t)− I‖ =

∥∥∥∥∥ ∞

∑
n=0

(tA)n

n!
− I

∥∥∥∥∥
=

∥∥∥∥∥I +
∞

∑
n=1

(tA)n

n!
− I

∥∥∥∥∥
=

∥∥∥∥∥tA
∞

∑
n=1

(tA)n−1

n!

∥∥∥∥∥
=

∥∥∥∥∥tA
∞

∑
n=0

(tA)n

(n+1)!

∥∥∥∥∥
≤ t ‖A‖

∞

∑
n=0

tn ‖A‖n

n!
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≤ t ‖A‖et‖A‖,

which implies that limt→0+ ‖T (t)− I‖ = 0, because ‖A‖ < ∞ and t ‖A‖et‖A‖ → 0 as t → 0. From
the above, we have that (T (t))t≥0 is a uniformly continuous semigroup.

We prove now that A is the infinitesimal generator of (T (t))t≥0. For t ≥ 0, we see that∥∥∥∥T (t)− I
t

−A
∥∥∥∥ =

∥∥∥∥∥ ∞

∑
n=1

tn−1An

n!
−A

∥∥∥∥∥
=

∥∥∥∥∥ ∞

∑
n=2

tn−1An

n!

∥∥∥∥∥
≤

∞

∑
n=2

tn−1‖A‖n

(n−2)!

=
∞

∑
n=0

t‖A‖2 tn−2‖A‖n−2

(n−2)!

= t‖A‖2
∞

∑
n=0

(t‖A‖)n

n!
= t‖A‖2et‖A‖.

Using this formula and that (T (t))t≥0 is uniformly continuous, we have that

lim
t↓0

∥∥∥∥T (t)− I
t

−A
∥∥∥∥≤ lim

t↓0
t‖A‖2et‖A‖ = 0,

which implies that A is the infinitesimal generator of (T (t))t≥0.
Assume now that (T (t))t≥0 is a uniformly continuous semigroup of bounded linear operators

on X . Fixing ρ > 0 small enough such that ‖I −T (s)‖< 1 if 0 < s < ρ , we have∥∥∥∥I −ρ−1
∫ ρ

0
T (s)ds

∥∥∥∥= ∥∥∥∥ρ−1
∫ ρ

0
[I −T (s)]ds

∥∥∥∥≤ ρ−1
∫ ρ

0
‖I −T (s)‖ds < 1,

which implies that ρ−1 ∫ ρ
0 T (s)ds and

∫ ρ
0 T (s)ds are invertible (see Proposition A.0.4). Moreover,

for h > 0 we note∥∥∥∥∫ ρ+h

0
T (s)ds−

∫ ρ

0
T (s)ds

∥∥∥∥ =

∥∥∥∥∫ ρ

0
T (s)ds+

∫ ρ+h

ρ
T (s)ds−

∫ ρ

0
T (s)ds

∥∥∥∥
≤

∫ ρ+h

ρ
‖T (s)‖ds

≤ Mh −→ 0 as h → 0,

where M = sups∈[ρ,ρ+h] ‖T (s)‖, thus we can conclude that
∫ ρ

0 T (s)ds is a bounded linear operator
and from the Bounded Inverse Theorem (see Theorem A.0.5), we conclude that (

∫ ρ
0 T (s)ds)−1 is

also a bounded linear operator. Moreover, for 0 < h < ρ we get

h−1(T (h)− I)
∫ ρ

0
T (s)ds = h−1

[∫ ρ

0
T (h)T (s)ds−

∫ ρ

0
T (s)ds

]
= h−1

[∫ ρ

0
T (s+h)ds−

∫ ρ

0
T (s)ds

]
= h−1

[∫ ρ+h

h
T (s)ds−

∫ ρ

0
T (s)ds

]
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= h−1
[∫ ρ+h

ρ
T (s)ds−

∫ h

0
T (s)ds

]
hence

h−1(T (h)− I) = h−1
[∫ ρ+h

ρ
T (s)ds−

∫ h

0
T (s)ds

]
(
∫ ρ

0
T (s)ds)−1.

Using now that limh→0+ h−1 ∫ h
0 T (s)ds = I, we have that

lim
h→0+

1
h

∫ ρ+h

ρ
T (s)ds = lim

h→0+

1
h

∫ h

0
T (s+ρ)ds = T (ρ) lim

h→0+

1
h

∫ h

0
T (s)ds = T (ρ)

and

lim
h→0+

T (h)− I
h

= (T (ρ)− I)(
∫ ρ

0
T (s)ds)−1 = A,

which proves that A is a bounded linear operator on X . This completes the proof.

Theorem 1.1.1 shows that a bounded linear operator is the infinitesimal generator of a uni-
formly continuous semigroup. Now, we guarantee the uniqueness of this semigroup.

Theorem 1.1.2 Let (T (t))t≥0 and (S(t))t≥0 be uniformly continuous semigroups of bounded
linear operators. If

lim
h→0+

T (h)− I
h

= A = lim
h→0+

S(h)− I
h

,

then T (t) = S(t) for all t ≥ 0.

Proof: Let τ > 0 be fixed. We show that T (t) = S(t) for every 0≤ t ≤ τ . Using that t 7→ ‖T (t)‖ and
s 7→ ‖S(s)‖ are continuous, there exists a constant C > 0 such that ‖T (t)‖‖S(s)‖≤C for s, t ∈ [0,τ].
From the assumption, for ε > 0, we can select δ > 0 such that for 0 ≤ h ≤ δ

h−1 ‖T (h)−S(h)‖ = h−1 ‖T (h)− I − (S(h)− I)‖

=

∥∥∥∥T (h)− I
h

−A−
[

S(h)− I
h

−A
]∥∥∥∥

≤
∥∥∥∥T (h)− I

h
−A
∥∥∥∥+∥∥∥∥S(h)− I

h
−A
∥∥∥∥

<
ε

τC
.

Let 0 ≤ t ≤ τ and choose n ≥ 1 such that t
n < δ . From the semigroup property and the last

inequality, we see that

‖T (t)−S(t)‖

=
∥∥∥T
(

n
t
n

)
−S
(

n
t
n

)∥∥∥
=

∥∥∥∥∥n−1

∑
k=0

T
(
(n− k)

t
n

)
S
(

k
t
n

)
−T

(
(n− k−1)

t
n

)
S
(
(k+1)

t
n

)∥∥∥∥∥
≤

n−1

∑
k=0

∥∥∥T
(
(n− k)

t
n

)
S
(

k
t
n

)
−T

(
(n− k−1)

t
n

)
S
(
(k+1)

t
n

)∥∥∥
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≤
n−1

∑
k=0

∥∥∥T
(
(n− k−1)

t
n

)
T
( t

n

)
S
(

k
t
n

)
−T

(
(n− k−1)

t
n

)
S
( t

n

)
S
(

k
t
n

)∥∥∥
=

n−1

∑
k=0

∥∥∥T
(
(n− k−1)

t
n

)[
T
( t

n

)
−S
( t

n

)]
S
(

k
t
n

)∥∥∥
≤

n−1

∑
k=0

∥∥∥T
( t

n

)
−S
( t

n

)∥∥∥∥∥∥T
(
(n− k−1)

t
n

)∥∥∥∥∥∥S
(

k
t
n

)∥∥∥
<

n−1

∑
k=0

t
n

ε
τC

C

= n
t
n

ε
τ
=

t
τ

ε ≤ ε,

which implies that T (t) = S(t). Noting that τ > 0 is arbitrary, we conclude that T (t) = S(t) for all
t ≥ 0.

Now, we present some important properties of uniformly continuous semigroups.

Corollary 1.1.3 Let (T (t))t≥0 be a uniformly continuous semigroup of bounded linear operators
on X . Then

i) there exists a constant ω ≥ 0 such that ‖T (t)‖ ≤ eωt for all t ≥ 0,
ii) there exists a unique bounded linear operator A such that T (t) = etA,

iii) the operator A in (b) is the infinitesimal generator of (T (t))t≥0,
iv) the function t 7→ T (t) is differentiable and dT (t)

dt = AT (t) = T (t)A.

Proof: All the assertions follow easily from (ii).
(ii) Since (T (t))t≥0 is an uniformly continuous semigroup, its infinitesimal generator A is a

bounded linear operator (see Theorem 1.1.1). Thus, defining S(t) = etA, we have that
(S(t))t≥0 is uniformly continuous and A is its infinitesimal generator. Then, using Theo-
rem 1.1.2, T (t) = S(t) for all t ≥ 0. Thus, T (t) = etA and A is the infinitesimal generator of
(T (t))t≥0.

(i) We only note that

‖T (t)‖=
∥∥∥etA

∥∥∥≤ ∞

∑
n=0

∥∥∥∥tnAn

n!

∥∥∥∥≤ ∞

∑
n=0

tn ‖A‖n

n!
= e‖A‖t .

(iii) Follows from the proof of item (ii).
(iv) For h ≥ 0, we have that∥∥∥∥T (t +h)−T (t)

h
−T (t)A

∥∥∥∥≤ ‖T (t)‖
∥∥∥∥T (h)− I

h
−A
∥∥∥∥≤ e‖A‖t

∥∥∥∥T (h)− I
h

−A
∥∥∥∥

hence d+T (t)
dt = T (t)A for all t ≥ 0.

On the other hand, for 0 < h ≤ t,∥∥∥∥T (t)−T (t −h)
h

−T (t)A
∥∥∥∥ =

∥∥∥∥T (t −h+h)−T (t −h)
h

−T (t)A
∥∥∥∥

=

∥∥∥∥T (t −h)T (h)−T (t −h)
h

−T (t)A
∥∥∥∥

≤ ‖T (t −h)‖
∥∥∥∥T (h)− I

h
−T (h)A

∥∥∥∥
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≤ e‖A‖(t−h)
∥∥∥∥T (h)− I

h
−T (h)A

∥∥∥∥
≤ e‖A‖t

∥∥∥∥T (h)− I
h

−T (h)A
∥∥∥∥

≤ e‖A‖t
∥∥∥∥T (h)− I

h
−A+A−T (h)A

∥∥∥∥
≤ e‖A‖t

(∥∥∥∥T (h)− I
h

−A
∥∥∥∥+‖A−T (h)A‖

)
≤ e‖A‖t

∥∥∥∥T (h)− I
h

−A
∥∥∥∥+ e‖A‖t ‖I −T (h)‖‖A‖ ,

which implies that d−T (t)
dt = T (t)A for t > 0. Thus, dT (t)

dt = T (t)A for all t ≥ 0.
To finish, we can see that AT (t) = T (t)A and switching it in the above limits,

T (h+ t)−T (t)−hAT (t) = T (h)T (t)− IT (t)−hAT (t) = (T (h)− I −hA)T (t).

Then,

lim
h→0

T (t +h)−T (t)
h

−AT (t) = lim
h→0

(
T (h)− I

h
−A
)

T (t) = 0,

which implies that dT (t)
dt = AT (t) for all t ≥ 0.

1.2 Strongly continuous semigroups of bounded linear operators
In this section, we study the class of strongly continuous semigroups of bounded linear opera-

tors and their properties.

Definition 1.2.1 A semigroup (T (t))t≥0 of bounded linear operators on X is a strongly continu-
ous semigroup of bounded linear operators if

lim
t↓0

T (t)x = x, ∀x ∈ X . (1.1)

A strongly continuous semigroup of bounded linear operators on X will be called a semigroup
of class C0 or simply a C0-semigroup. From Equation (1.1), it follows that the function t 7→ T (t)x
is continuous in t = 0 for all x ∈ X .

We note that if (T (t))t≥0 is a uniformly continuous semigroup of bounded linear operators,
then limt↓0 T (t) = I. In particular, limt↓0 T (t)x = x for all x ∈ X , which shows that (T (t))t≥0 is a
C0-semigroup.

Next, we present an important property of C0-semigroups, the exponential boundedness. Using
this property, we can obtain the continuity of the map t 7→ T (t)x, as show Corollary 1.2.2.

Theorem 1.2.1 Let (T (t))t≥0 be a C0-semigroup on X . Then, there are constants ω ≥ 0 and
M ≥ 1 such that ‖T (t)‖ ≤ Meωt , ∀t ∈ [0,∞).

Proof: We show first that there is η > 0 such that ‖T (t)‖ is uniformly bounded on [0,η ]. If
this is false, there is a sequence (tn)n∈N satisfying tn ≥ 0, limn→∞ tn = 0 and ‖T (tn)‖ ≥ n for all
n ∈N. From the Uniform Boundedness Theorem (see Theorem A.0.6), there exists x ∈ X such that
{‖T (tn)x‖ : n ∈N} is unbounded. Thus, ‖T (t)‖ ≤ M for 0 ≤ t ≤ η . Moreover, ‖T (0)‖= 1 implies
that M ≥ 1.
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Let ω = η−1 ln(M) ≥ 0. For t ≥ η , we can write t = mη + δ , where m ∈ N and 0 ≤ δ < η .
Indeed, let ϒ = {n ∈ N : ηn ≤ t}. Using that ϒ is bounded, there exists m ∈ N such that ηm ≤ t
and η(m+ 1) > t, which implies there exists 0 ≤ δ < η such that t = ηm+ δ . Noting that t

η =

m+ δ
η > m, we get

‖T (t)‖ = ‖T (mη +δ )‖
= ‖T (η) . . .T (η)T (δ )‖
≤ ‖T (η)‖m‖T (δ )‖
≤ MmM

≤ M
t
η M

= (elnM)
t
η M

= Meωt ,

which allows us to end the proof.

Corollary 1.2.2 If (T (t))t≥0 is a C0-semigroup on X then t 7→ T (t)x is a continuous function
from R+

0 (the nonnegative real line) into X , for all x ∈ X .

Proof: Let x ∈ X . For t ∈ [0,∞) and 0 ≤ t < h, we get

‖T (t +h)x−T (t)x‖ = ‖T (t)T (h)x−T (t)x‖
= ‖T (t) [T (h)x− x]‖
≤ ‖T (t)‖‖T (h)x− x‖
≤ Meωt‖T (h)x− x‖.

On the other hand, for t > 0 and 0 < h < t we see that

‖T (t)x−T (t −h)x‖ = ‖T (t −h) [T (h)x− x]‖
≤ ‖T (t −h)‖‖T (h)x− x‖
≤ Meω(t−h)‖‖T (h)x− x‖
≤ Meωt‖T (h)x− x‖.

From previous estimatives, limh↑0 T (t −h)x = T (t)x = limh↓0 T (t +h)x, which proves that the
map t 7→ T (t)x is continuous on R+

0 .

In Theorem 1.2.3 below we present some properties of the infinitesimal generator of a C0-
semigroup on X .

Theorem 1.2.3 Let (T (t))t≥0 be a C0-semigroup on X and let A be its infinitesimal generator.
Then,

i) for x ∈ X ,

lim
h↓0

1
h

∫ t+h

t
T (s)xds = T (t)x. (1.2)

ii) For x ∈ X ,
∫ t

0 T (s)xds ∈ D(A) and

A
(∫ t

0
T (s)xds

)
= T (t)x− x. (1.3)
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iii) For x ∈ D(A), T (t)x ∈ D(A) and

d
dt

T (t)x = AT (t)x = T (t)Ax. (1.4)

iv) For x ∈ D(A),

T (t)x−T (s)x =
∫ t

s
T (τ)Axdτ =

∫ t

s
AT (τ)xdτ. (1.5)

Proof:
i) For t ≥ 0 and h > 0, we see that∥∥∥∥1

h

∫ t+h

t
T (s)xds−T (t)x

∥∥∥∥ =

∥∥∥∥1
h

∫ t+h

t
(T (s)x−T (t)x)ds

∥∥∥∥
≤ 1

h

∫ t+h

t
‖T (s)x−T (t)x‖ds.

Using that t 7→ T (t)x is continuous, for ε > 0, we can select h0 > 0 such that for h < h0,

1
h

∫ t+h

t
‖T (s)x−T (t)x‖ds ≤ 1

h

∫ t+h

t
εds ≤ ε

h
(t +h− t) = ε

hence,

lim
h↓0

1
h

∫ t+h

t
T (s)xdx = T (t)x.

ii) Let x ∈ X and h > 0. Then,(
T (h)− I

h

)(∫ t

0
T (s)xds

)
=

1
h

∫ t

0
(T (s+h)x−T (s)x)ds

=
1
h

[∫ t

0
T (s+h)xds−

∫ t

0
T (s)xds

]
=

1
h

[∫ t+h

h
T (s)xds−

∫ t

0
T (s)xds

]
=

1
h

[∫ t+h

t
T (s)xds−

∫ h

0
T (s)xds

]
=

1
h

∫ t+h

t
T (s)xds− 1

h

∫ h

0
T (s)xds.

Noticing that the right-hand side converges to T (t)x− x, we infer that
∫ t

0 T (s)xds ∈ D(A)
and A(

∫ t
0 T (s)xds) = T (t)x− x.

iii) Let x ∈ D(A) and h > 0. Then, limh↓0
T (h)x−x

h exists and

lim
h↓0

T (h)− I
h

T (t)x = lim
h↓0

T (h)T (t)−T (t)
h

x = lim
h↓0

T (t)
T (h)− I

h
x = T (t)Ax.

Thus, T (t)x ∈ D(A) and d+T (t)x
dt = AT (t)x = T (t)Ax. To prove the formula (1.4), for t > 0,

we show that the left derivative of T (·)x at t exists and is equal to d
dt T (t)x = T (t)Ax.

For 0 < h < t we set∥∥∥∥T (t)x−T (t −h)x
h

−T (t)Ax
∥∥∥∥ =

∥∥∥∥T (t −h)
(
(
T (h)x− x

h
)−T (h)Ax

)∥∥∥∥
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≤ ‖T (t −h)‖‖T (h)x− x
h

−Ax+Ax−T (h)Ax‖

≤ Meω(t−h)
(∥∥∥∥T (h)x− x

h
−Ax

∥∥∥∥+‖Ax−T (h)Ax‖
)

≤ Meωt
∥∥∥∥T (h)x− x

h
−Ax

∥∥∥∥+Meωt‖Ax−T (h)Ax‖,

which implies that d−

dt (T (t)x) = T (t)Ax. This concludes the proof of (iii).
iv) Let x ∈ D(A). From (iii), T (t)x ∈ D(A) and d

dt (T (t)x) = T (t)Ax = AT (t)x. Then, for t,s ≥ 0,

T (t)x−T (s)x =
∫ t

s

d
dτ

(T (τ)x)dτ =
∫ t

s
AT (τ)xdτ =

∫ t

s
T (τ)Axdτ.

The Corollary 1.2.4 below proves that if A is an infinitesimal generator, then A is closed (see
Definition A.0.1) and D(A) is dense in X .

Corollary 1.2.4 If A is the infinitesimal generator of a C0-semigroup (T (t))t≥0, then A is closed
and its domain, D(A), is dense on X .

Proof: It is obvious that D(A) ⊂ X . Let x ∈ X and xt =
1
t
∫ t

0 T (s)xds. From item (ii) of Theorem
1.2.3, we know that

∫ t
0 T (s)xds ∈ D(A) for t > 0, hence

lim
h↓0

T (h)− I
h

(
1
t

∫ t

0
T (s)xds

)
=

1
t

lim
h↓0

T (h)− I
h

(∫ t

0
T (s)xds

)
=

T (t)x− x
t

,

which implies that xt ∈ D(A) for all t ≥ 0. Moreover, from Theorem 1.2.3 (i),

lim
t↓0

xt = lim
t↓0

1
t

∫ t

0
T (s)xds = T (0)x = x.

Thus xt → x as t ↓ 0, which shows that x ∈ D(A) and D(A) = X .
The linearity of A is obvious. To prove that A is closed, let (xn)n be a sequence in D(A) such

that xn → x and Axn → y as n → ∞. From Theorem 1.2.3 (iv), for n ∈ N we have

T (t)xn − xn =
∫ t

0
T (s)Axnds. (1.6)

Using that t 7→ T (t) is a continuous operator and

‖T (t)Axn −T (t)y‖ ≤ ‖T (t)‖‖Axn − y‖ ≤ Meωt‖Axn − y‖,

we conclude that the integrand on the right-hand side of (1.6) converges to T (s)y uniformly on
bounded intervals.

Therefore, for a > 0 and t ∈ [0,a],∥∥∥∥∫ t

0
T (s)Axnds−

∫ t

0
T (s)yds

∥∥∥∥≤ ∫ t

0
‖T (s)(Axn − y)‖ds ≤ Meωa‖Axn − y‖a

and ∫ t

0
T (s)Axnds →

∫ t

0
T (s)yds.
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Taking limits on both sides of (1.6), we obtain that

T (t)x− x =
∫ t

0
T (s)yds.

Hence,

lim
t↓0

T (t)x− x
t

= lim
t↓0

1
t

∫ t

0
T (s)yds = T (0)y = y,

which implies that x ∈ D(A) and Ax = y.

Theorem 1.2.5 Let (T (t))t≥0 and (S(t))t≥0 be C0-semigroups with infinitesimal generators A
and B, respectively. If A = B, then T (t) = S(t) for t ≥ 0.

Proof: Let x ∈ D(A) = D(B). From Theorem 1.2.3, the map s 7→ T (t − s)S(s)x is differentiable
and

1
h
[T (t − (s+h))S(s+h)x−T (t − s)S(s)x]

=
1
h
[T (t − (s+h))S(s+h)x−T (t − (s+h))S(s)x]

+
1
h
[T (t − (s+h))S(s)x−T (t − s)S(s)x]

=
1
h
[T (t − (s+h))(S(s+h)x−S(s)x)]

+
1
h
[(T (t − (s+h))x−T (t − s)x)S(s)x]

= T (t − (s+h))
S(s+h)−S(s)

h
x︸ ︷︷ ︸

converges to BS(s)x

−T (t − (s+h))
I −T (h)

h︸ ︷︷ ︸
converges to A

S(s)x.

Using Theorem 1.2.3 and the definition of the infinitesimal generator, we conclude that

dT (t − s)S(s)x
ds

= lim
h↓0

T (t − (s+h))S(s+h)x−T (t − s)S(s)x
h

= T (t − s)BS(s)x−T (t − s)AS(s)x = 0.

Thus, s 7→ T (t − s)S(s)x is constant. Using s = 0 and s = t we have that T (t)x = S(t)x for
all x ∈ D(A). Furthermore, using that D(A) dense in X and T (t) and S(t) are bounded, there is a
sequence (xn)n in D(A) such that xn → x and

T (t)x = lim
n→∞

T (t)xn = lim
n→∞

S(t)xn = S(t)x.

Theorem 1.2.6 Let A be the infinitesimal generator of the C0-semigroup (T (t))t≥0. If D(An) is
the domain of An, then

⋂∞
n=1 D(An) is dense in X .

Proof: Let

D = { f : (0,∞)→ C : f is infinitely differentiable with compact support}.
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For x ∈ X and φ ∈ D , let

y = x(φ) =
∫ ∞

0
φ(s)T (s)xds. (1.7)

Noting that the support {s ∈ (0,∞) : φ(s) 6= 0} is compact, it is easy to see that the integral
above is well defined, thus y ∈ X . Moreover, for h > 0 we have

T (h)− I
h

y =
1
h

[
T (h)

∫ ∞

0
φ(s)T (s)xds−

∫ ∞

0
φ(s)T (s)xds

]
=

1
h

[∫ ∞

0
φ(s)T (s+h)xds−

∫ ∞

0
φ(s)T (s)xds

]
=

1
h

[∫ ∞

0
φ(h− s)T (s)xds−

∫ ∞

0
φ(s)T (s)xds

]
=

∫ ∞

0

φ(h− s)−φ(s)
h

T (s)xds. (1.8)

Noting that the integrand on the right-hand side of (1.8) converges to −φ ′(s)T (s)x as h ↓ 0 uni-
formly on [0,∞) we conclude that y ∈ D(A) and

Ay = lim
h↓0

T (h)− I
h

y =−
∫ ∞

0
φ ′(s)T (s)xds.

In addition,

lim
h↓0

T (h)− I
h

Ay = lim
h↓0

T (h)− I
h

(∫ ∞

0
−φ ′(s)T (s)xds

)
=

∫ ∞

0
lim
h↓0

−φ ′(h− s)−φ ′(s)
h

T (s)xds

=
∫ ∞

0
φ ′′(s)T (s)xds

Repeating the previous argument for n = 1,2, . . . , we have that y ∈ D(An) and

Any = (−1)n
∫ ∞

0
φ(n)(s)T (s)xds, n = 1,2, . . .

which proves that y ∈
⋂∞

n=1 D(An).
Let Y = {y = x(φ) : x ∈ X and φ ∈ D}. From the above Y ⊆

⋂∞
n=1 D(An).

To conclude the proof we show that Y is dense in X . If this is false, from Hahn-Banach’s
Theorem (see Theorem A.0.7), there is a non-zero functional x∗ ∈ X∗ such that x∗(y) = 0 for every
y ∈ Y and therefore

0 = x∗
(∫ ∞

0
φ(s)T (s)xds

)
=
∫ ∞

0
φ(s)x∗(T (s)x)ds (1.9)

for every x ∈ X ,φ ∈ D . Then, for x ∈ X , the continuous function s 7→ x∗(T (s)x) must vanishes
identically on [0,∞) since otherwise, it would have been possible to choose φ ∈ D such that the
left-hand side of (1.9) does not vanish. Thus, for s = 0, x∗(T (0)x) = x∗(x) = 0 for all x ∈ X , which
implies that x∗ = 0. This is a contradiction.
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1.3 The Hille-Yosida Theorem
Now, we study a characterization of infinitesimal generators of C0-semigroups of contractions.

We start defining C0-semigroup of contractions and the Yosida approximation of an infinitesimal
generator together with his resolvent set.

Definition 1.3.1 A C0-semigroup (T (t))t≥0 is called uniformly bounded if exists M > 0 such
that ‖T (t)‖≤M for all t ≥ 0. In addiction if M = 1, it is called a C0-semigroup of contractions.

Definition 1.3.2 Let A : D(A)⊂ X → X be a linear operator.
i) The resolvent set of A is the set defined by

ρ(A) = {λ ∈ C : (λ I −A)−1 exists and is continuous on X}.

ii) The resolvent operator is the function R : ρ(A)→L (X) given by R(λ : A) = (λ I−A)−1.
iii) The spectrum of A is the complementar of the resolvent set, denoted by σ(A).
iv) Let A : D(A)⊂ X → X be a linear operator such that ρ(A) 6= /0. The Yosida aproximation

of A is defined by

Aλ = λAR(λ : A) = λ 2R(λ : A)−λ I, λ ∈ ρ(A). (1.10)

Lemma 1.3.1 Let A : D(A) ⊂ X → X be a densely defined closed linear operator and assume
(0,∞)⊂ ρ(A) and ‖R(λ : A)‖ ≤ 1

λ for all λ > 0. Then
i) limλ→∞ λR(λ : A)x = x, for all x ∈ X .

ii) limλ→∞ Aλ x = Ax, for all x ∈ D(A).
iii) For λ ∈ ρ(A), Aλ is a bounded operator in X . Moreover, Aλ is the infinitesimal generator of

the uniformly continuous semigroup of contractions (etAλ )t≥0 and

‖etAλ x− etAµ x‖ ≤ t‖Aλ x−Aµx‖, for all x ∈ X ,λ > 0 and µ > 0.

Proof:
i) For λ ∈ ρ(A) and x ∈ D(A),

‖λR(λ : A)x− x‖ = ‖λ (λ I −A)−1x− (λ I −A)(λ I −A)−1x‖
= ‖(λ I −A)−1 [λx− (λ I −A)x]‖
≤ ‖(λ I −A)−1‖‖Ax‖

≤ 1
λ
‖Ax‖.

From the above, limλ→∞ ‖λR(λ : A)x− x‖ ≤ limλ→∞
1
λ ‖Ax‖= 0 and

lim
λ→∞

λR(λ : A)x = x,∀x ∈ D(A). (1.11)

Let x ∈ X and (xn)n be a sequence in D(A) such that xn → x. Noticing that ‖λR(λ : A)‖ ≤ 1,
for ε > 0, we select Nε ∈ N such that ‖λR(λ : A)(xn − x)‖ ≤ ε

3 and ‖xn − x‖ ≤ ε
3 for all

n ≥ Nε . Using (1.11), we see that

‖λR(λ : A)x− x‖ = ‖λR(λ : A)x−λR(λ : A)xNε +λR(λ : A)xNε − xNε + xNε − x‖
≤ ‖λR(λ : A)(xNε − x)‖+‖λR(λ : A)xNε − xNε‖+‖xNε − x‖

≤ ε
3
+

ε
3
+

ε
3
= ε,

which proves that limλ→∞ λR(λ : A)x = x for all x ∈ X .
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ii) Let x ∈ D(A). Using the definition of Aλ and item (i),

lim
λ→∞

Aλ x = lim
λ→∞

λAR(λ : A)x = lim
λ→∞

AλR(λ : A)x = A lim
λ→∞

λR(λ : A)x = Ax.

iii) From (1.10), we see that

‖Aλ‖= ‖λ 2R(λ : A)−λ I‖ ≤ λ 2‖R(λ : A)‖+‖λ I‖ ≤ λ 2 1
λ
+λ = 2λ

and hence Aλ is a bounded linear operator, for each λ ∈ ρ(A). From Theorem 1.1.1, we
conclude that Aλ is the infinitesimal generator of {etAλ }t≥0. Moreover, for t ≥ 0 we get

‖etAλ ‖= ‖et(λ 2R(λ :A)−λ I)‖ ≤ etλ 2‖R(λ :A)‖e−tλ‖I‖ ≤ etλ 2 1
λ e−tλ =

etλ

etλ = 1,

which proves that {etAλ }t≥0 is a C0-semigroup of contractions.
From the above remarks, for x ∈ X and λ ,µ > 0,

‖etAλ x− etAµ x‖ =

∥∥∥∥∫ 1

0

d
ds

((
etsAλ et(1−s)Aµ

)
x
)

ds
∥∥∥∥

=

∥∥∥∥∫ 1

0
(tAλ etsAλ et(1−s)Aµ )x+

(
etsAλ

(
−tAµet(1−s)Aµ

))
xds
∥∥∥∥

≤
∫ 1

0
‖etsAλ et(1−s)Aµ‖‖tAλ x− tAµx‖ds

≤ t‖Aλ x−Aµx‖
∫ 1

0
‖etsAλ ‖‖et(1−s)Aµ‖ds

≤ t‖Aλ x−Aµx‖.

The last result before the main theorem of this section gives us an important property of closed
linear operators that will be used along all the text.

Lemma 1.3.2 Let A : D(A)⊆ X → X be a closed linear operator and a > 0. If f ∈ L1([0,a] ;X) is
such that A f ∈ L1([0,a] ;X), then

A
(∫ a

0
f (s)ds

)
=
∫ a

0
A f (s)ds

Proof: Let τ = {αi : i = 1,2, . . . ,n} a partition of [0,a] and

S( f ,τ) =
n−1

∑
i=1

f (ηi)(αi+1 −αi),ηi ∈ [αi,αi+1] .

Noting that

AS( f ,τ) = A

(
n−1

∑
i=1

f (ηi)(αi+1 −αi)

)

=
n−1

∑
i=1

A f (ηi)(αi+1 −αi),

from hypothesis we conclude that S( f ,τ) ∈ D(A) and

S( f ,τ)−→
∫ a

0
f (s)ds and AS( f ,τ)−→

∫ a

0
A f (s)ds,
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as ΛP = sup1≤k≤n |αi+1−αi| −→ 0. Finally, noting that A is a closed linear operator, we infer that

A
(∫ a

0
f (s)ds

)
=
∫ a

0
A f (s)ds.

Now we present the main result of this section, which establishes sufficient and necessary
conditions on A so that it is the infinitesimal generator of a C0-semigroup of contractions.

Theorem 1.3.3 — Hille-Yosida. A linear (unbounded) operator A is the infinitesimal generator of
a C0-semigroup of contractions (T (t))t≥0 if and only if

i) A is closed and D(A) = X .
ii) The resolvent set ρ(A) of A contains R+ and

‖R(λ : A)‖ ≤ 1
λ
, ∀λ > 0. (1.12)

Proof: Assume that A is the infinitesimal generator of a C0-semigroup of contractions. From
Corollary 1.2.4, A is closed and densely defined on X . To show that ‖R(λ : A)‖ ≤ 1

λ , for λ > 0, we
define the operator R(λ ) : X → X by

R(λ )x =
∫ ∞

0
e−λ tT (t)xdt. (1.13)

Noting that the function t 7→ T (t)x is continuous and uniformly bounded, the integral on the
right-hand side of (1.13) exists and defines a bounded linear operator. Moreover,

‖R(λ )x‖ ≤
∫ ∞

0
e−λ t‖T (t)‖‖x‖dt = ‖x‖

∫ ∞

0
e−λ tdt =

‖x‖
λ

.

In addition, for λ > 0, we see that

T (h)− I
h

R(λ )x =
1
h

[∫ ∞

0
e−λ tT (t +h)xdt −

∫ ∞

0
e−λ tT (t)xdt

]
=

1
h

[∫ ∞

h
e−λ (t−h)T (t)xdt −

∫ ∞

0
e−λ tT (t)xdt

]
=

1
h

∫ ∞

h

eλh

eλ t
T (t)xdt +

1
h

∫ h

0

eλh

eλ t
T (t)xdt

−1
h

∫ h

0

eλh

eλ t
T (t)xdt − 1

h

∫ ∞

0

1
eλ t

T (t)xdt

=
1
h

∫ ∞

0

eλh

eλ t
T (t)xdt − 1

h

∫ h

0

eλh

eλ t
T (t)− 1

h

∫ ∞

0

1
eλ t

T (t)xdt

=
eλh

h

∫ ∞

0

1
eλ t

T (t)xdt − eλh

h

∫ h

0

1
eλ t

T (t)−
∫ ∞

0

1
eλ t

T (t)xdt

=

(
eλh −1

h

)(∫ ∞

0

1
eλ t

T (t)xdt
)
− eλh

h

∫ h

0

1
eλ t

T (t)xdt

=

(
eλh −1

h

)
R(λ )x− eλh

h

∫ h

0

1
eλ t

T (t)xdt. (1.14)
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Noting that limh→0
eλh−1

h = λ and that∥∥∥∥∥ eλh

h

∫ h

0
e−λ tT (t)xdt − x

∥∥∥∥∥ ≤ eλh

h

∫ h

0
e−λ t‖T (t)x−T (0)x‖dt

≤ eλh

h
sup

s∈[0,h]
‖T (s)x− x‖

∫ h

0
e−λ tdt −→ 0 as h → 0,

we obtain that the right-hand side of (1.14) converges to λR(λ )x−x as h ↓ 0. This implies that for
every x ∈ X and λ > 0, R(λ )x ∈ D(A), AR(λ ) = λR(λ )− I and (λ I −A)R(λ ) = I.

On the other hand, from Lemma 1.3.2, for x ∈ D(A), we have that

R(λ )Ax =
∫ ∞

0
e−λ tT (t)Axdt

=
∫ ∞

0
e−λ tAT (t)xdt

= A
(∫ ∞

0
e−λ tT (t)xdt

)
= AR(λ )x,

which implies

R(λ )(λ I −A)x = R(λ )λx−R(λ )Ax = λR(λ )x−AR(λ )x = (λ I −A)R(λ )x = x.

From the previous, R(λ ) is the inverse of (λ I −A). Then,

‖R(λ : A)‖= ‖(λ I −A)−1‖= ‖R(λ )‖ ≤ 1
λ
, λ > 0.

Let x ∈ D(A). From Lemma 1.3.1, we have that

‖etAλ x− etAµ x‖ ≤ t‖Aλ x−Aµx‖ ≤ t‖Aλ x−Ax‖+ t‖Ax−Aµx‖. (1.15)

From the Inequality (1.15) and Lemma 1.3.1, it follows that (etAλ x)λ>0 is convergent in X , for all
x ∈ X . Moreover, the convergence is uniform on compact intervals of t. We denote this limit by
T (t)x, which is linear and bounded. Since D(A) is dense on X and ‖T (t)‖ ≤ 1, there is a unique
linear bounded extension of T (t)x on X , which we denote by T (t)x. We now note that,

i) (T (t))t≥0 is a semigroup of bounded linear operators.
For x ∈ X and t,s ≥ 0,

T (0)x = lim
λ→∞

Tλ (0)x = lim
λ→∞

Ix = x,

T (t + s)x = lim
λ→∞

Tλ (t + s)x = lim
λ→∞

Tλ (t)Tλ (s)x = T (t)T (s)x.

ii) (T (t))t≥0 is a semigroup of contractions.
Let x ∈ X . Using that (Tλ (t))t≥0 is a semigroup of contractions, we have

‖T (t)x‖=
∥∥∥∥ lim

λ→∞
Tλ (t)x

∥∥∥∥= lim
λ→∞

‖Tλ (t)x‖ ≤ 1,

which implies that ‖T (t)‖ ≤ 1 for all t ≥ 0.
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iii) (T (t))t≥0 is strongly continuous.
Note that

‖T (t +h)x−T (t)x‖ ≤ lim
λ→∞

‖Tλ (t +h)x−Tλ (t)x‖→ 0,

because Tλ ((t)x)−→ T (t)x uniformly on compacts intervals of [0,∞).

From the above remarks, we conclude that (T (t))t≥0 is a C0-semigroup of contractions.
To finish the proof, we show that A is the infinitesimal generator of (T (t))t≥0. Let x ∈ D(A).

Using the definition of T (t), Theorem 1.2.3 (iv) and that

‖Tλ (s)Aλ x−T (s)Ax‖ ≤ ‖Tλ (s)Aλ x−Tλ (s)Ax‖+‖Tλ (s)Ax−T (s)Ax‖
≤ ‖Tλ (s)Ax‖‖Aλ x−Ax‖+‖Tλ (s)Ax−T (s)Ax‖

we infer that limλ→∞ Tλ (s)Aλ x = T (s)Ax uniformly on compact sets of s. From the above, for
t > 0,

T (t)x− x = lim
λ→∞

(Tλ (t)x−Tλ (0)x) = lim
λ→∞

∫ t

0
esAλ Aλ xds =

∫ t

0
T (s)Axds. (1.16)

Let B be the infinitesimal generator of (T (t))t≥0 and let x ∈ D(A). From (1.16) and Theorem
1.2.3 (i), we see that

Bx = lim
h↓0

T (h)x− x
h

= lim
h↓0

1
h

∫ h

0
T (s)Axds = T (0)Ax = Ax,

which implies that D(A)⊆ D(B) and A = B on D(A).
Noting that B is the infinitesimal generator of (T (t))t≥0, it follows from the necessary condi-

tions that 1 ∈ ρ(B). On the other hand, by assumption (ii), we have that 1 ∈ ρ(A), then (I−A) and
(I −B) are invertible. Remarking that D(A)⊆ D(B), (I −B)D(A) = (I −A)D(A) = X and

(I −B)−1(I −B)D(A) = (I −B)−1X

we infer that D(A) = (I − B)−1X = D(B). Therefore, A is the infinitesimal generator of a C0-
semigroup of contractions.

Next, we present two corollaries of the Hille-Yosida Theorem. The first is a property that
justifies the name "Yosida approximation" and the second is about an estimative for the norm of
the resolvent operator.

Corollary 1.3.4 Let A be the infinitesimal generator of a C0-semigroup of contractions (T (t))t≥0.
If Aλ is the Yosida approximation of A, then

T (t)x = lim
λ→∞

etAλ x, ∀x ∈ X . (1.17)

Proof: From the proof of Theorem 1.3.3 it follows that the right-hand side of (1.17) defines a
C0-semigroup of contractions, (S(t))t≥0, with infinitesimal generator A. From Theorem 1.2.5, we
obtain that T (t) = S(t), for all t ≥ 0.

Corollary 1.3.5 Let A be the infinitesimal generator of a C0-semigroup of contractions (T (t))t≥0.
Then ρ(A)⊇ {λ : Reλ > 0} and ‖R(λ : A)‖ ≤ 1

Reλ for all λ with Re(λ )> 0.
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Proof: Let λ ∈ C such that Reλ > 0 and R(λ ) be the operator

R(λ )x =
∫ ∞

0
e−λ tT (t)xdt.

From the proof of Hille-Yosida Theorem (see Theorem 1.3.3), we know that R(λ ) = (λ I −A)−1

and, hence, {λ ∈ C : Reλ > 0} ⊂ ρ(A). Moreover, for λ ∈ {λ ∈ C : Reλ > 0} and x ∈ X ,

‖R(λ : A)x‖ ≤
∫ ∞

0
‖e−λ t‖‖T (t)x‖dt ≤

∫ ∞

0
e(Reλ )t‖T (t)‖‖x‖dt ≤ ‖x‖

Reλ
,

which conclude the proof.

The following example shows that the resolvent set of the infinitesimal generator of a C0-
semigroup of contractions need not contain more than the open right half-plane.

■ Example 1.1 Let X = BU([0,∞)) the space of all bounded uniformly continuous functions on
[0,∞) and T (t) : X → X be defined by

(T (t) f )(x) = f (t + x).

We claim that (T (t))t≥0 is a C0-semigroup of contractions on X . In fact,
i) (T (t))t≥0 is a semigroup.

For f ∈ X , x ∈ [0,∞) and t,s ≥ 0, we get

T (0)( f (x)) = f (0+ x) = f (x),
T (t + s)( f (x)) = f ((t + s)+ x) = f (t + s+ x) = T (t)T (s)( f )(x).

ii) (T (t))t≥0 is semigroup of contractions.
For f ∈ X ,

‖T (t) f‖= sup
x≥0

‖T (t) f (x)‖= sup
x≥0

‖ f (t + x)‖ ≤ ‖ f‖.

iii) (T (t))t≥0 is strongly continuous.
For f ∈ X , we have that

lim
t→0

‖T (t) f − f‖= lim
t→0

sup
x≥0

‖T (t) f (x)− f (x)‖= lim
t→0

sup
x≥0

| f (t + x)− f (x)|= 0

because f is uniformly continuous.
Moreover, from the definition of the operator T (t) it is easy to see that the infinitesimal gener-

ator of (T (t))t≥0 is given by
(A f )(s) = f ′(s), f ∈ D(A), (1.18)

where
D(A) = { f : [0,∞)→ [0,∞) : f , f ′ ∈ X}. (1.19)

From Corollary 1.3.5, we know that ρ(A)⊇{λ : Reλ > 0}. In addition, for λ ∈C, the equation
(λ −A)ϕλ = 0 has nontrivial solution given by ϕλ (s) = eλ s. Furthermore, if Reλ ≤ 0 and ϕλ ∈ X
therefore the closed left half-plane is in the spectrum σ(A) of A. Then, by definition, the closed
left half-plane is not in the resolvent set of A. ■

The Hille-Yosida Theorem can be extend to semigroups such that ‖T (t)‖ ≤ eωt , for all t ≥ 0
and some ω ≥ 0. Let (T (t))t≥0 be a C0-semigroup satisfying the above conditions and define
S(t) = e−ωtT (t). Then,
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i) (S(t))t≥0 is linear for every fixed t.
In fact, for x,y ∈ X and λ ∈ C,

S(t)(x+λy) = e−ωtT (t)(x+λy) = e−ωtT (t)x+λe−ωtT (t)y = S(t)x+λS(t)y.

ii) (S(t))t≥0 is a semigroup.
For t,s ∈ [0,∞),

S(0) = e−ω(0)T (0) = e0T (0) = I

S(t + s) = e−ω(t+s)T (t + s) = e−ωtT (t)e−ωsT (s) = S(t)S(s).

iii) (S(t))t≥0 is strongly continuous.
We just observe that

lim
t↓0

S(t)x = lim
t↓0

e−ωtT (t)x = (lim
t↓0

e−ωt)(lim
t↓0

T (t)x) = lim
t↓0

T (t)x = x.

iv) (S(t))t≥0 is a semigroup of contractions.
For t ≥ 0,

‖S(t)‖= ‖e−ωtT (t)‖ ≤ ‖e−ωt‖‖T (t)‖ ≤ eωt

eωt = 1.

From above remarks, (S(t))t≥0 is a C0-semigroup of contractions. Moreover, if A is the in-
finitesimal generator of (T (t))t≥0, then (A−ωI) is the infinitesimal generator of (S(t))t≥0 because
dS(t)

dt

∣∣
t=0 = d

dt (e
−ωtT (t))

∣∣
t=0 = A−ωI. On the other hand, if A is the infinitesimal generator of

a C0-semigroup of contractions (S(t))t≥0, then (A + ωI) is the infinitesimal generator of a C0-
semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤ eωt . Certainly, T (t) = eωtS(t). From the above remarks,
we obtain the next characterization of the infinitesimal generators of a C0-semigroups satisfying
‖T (t)‖ ≤ eωt .

Corollary 1.3.6 A linear operator A is the infinitesimal generator of a C0-semigroup satisfying
‖T (t)‖ ≤ eωt if and only if

i) A is closed and D(A) = X .
ii) The resolvent set ρ(A) of A contains {λ : Imλ = 0,λ > ω} and ‖R(λ : A)‖ ≤ 1

λ−ω , for
all λ > ω .

Proof: Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0 such that ‖T (t)‖ ≤ eωt .
From the previous remarks, (A−ωI) is the infinitesimal generator of S(t) = e−ωtT (t). Thus, from
Hille-Yosida Theorem (see Theorem 1.3.3), (A−ωI) is closed and D(A−ωI) = X . Moreover,
ρ(A−ωI)⊃ R+ and ‖R(λ : A−ωI)‖ ≤ 1

λ , for all λ > 0.
Using that D(A) = D(A − ωI), we have D(A) = X and noting that (A − ωI) is closed we

conclude that A is closed. Moreover, noting that R(λ : A) = R(λ −ω : A−ωI), we infer that
{λ ∈ C : Imλ −0,λ > ω} ⊂ ρ(A) and

‖R(λ : A)‖= ‖R(λ −ω : A−ωI)‖ ≤ 1
λ −ω

, for λ > ω.

Assume that conditions (i) and (ii) are satisfied. Then, (A−ωI) is closed, D(A−ωI) = X ,
R+ ⊂ ρ(A−ωI) and ‖R(λ : A−ωI)‖ = ‖R(λ +ω : A)‖ ≤ 1

(λ+ω)−ω = 1
λ . From Hille-Yosida

Theorem (see Theorem 1.3.3), (A−ωI) is the infinitesimal of a C0-semigroup of contractions
(S(t))t≥0. Using the above remarks, we infer that A is the infinitesimal generator of T (t) = eωtS(t)
such that ‖T (t)‖ ≤ eωt , for all t ≥ 0.
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1.4 Examples
In this section, we present some examples of semigroups of bounded linear operators. We start

with Cauchy’s functional problem and then we study the finite-dimensional matrix semigroup. The
main reference to this section is [Engel et al., 2000].

1.4.1 Cauchy’s functional equation
In 1821 Cauchy proposed in his Cours d’Analyse book the following problem.
Problem 1: Find all the continuous functions T : R+ → C such that

T (t + s) = T (t)T (s), t,s ≥ 0 (1.20)
T (0) = 1. (1.21)

It is obvious that t 7→ eat satisfies the problem (1.20)-(1.21), for all a ∈ C. We want to show
that all solutions for this problem are given by this family of functions. To this end, we start
remembering some properties of the exponential function.

Proposition 1.4.1 Given a ∈ C, T (t) := eat is differentiable and satisfies the initial value problem
(IVP):

d
dt

T (t) = aT (t), t ≥ 0 (1.22)

T (0) = 1. (1.23)

Reciprocally, the function T : R+ → C defined by T (t) = eta for some a ∈ C is the only differ-
entiable function satisfying the problem (1.22)-(1.23). Finally, we observe that a = d

dt T (t)
∣∣
t=0.

Proof: Noting that

lim
h→0

e(t+h)a − eta

h
= lim

h→0

eta(eha −1)
h

= aeta

we conclude that t 7→ eta is differentiable and d
dt eta = aeta. Then, if T (t) = eta we have d

dt T (t) =
aT (t) and T (0) = 1, that is t 7→ eat is a solution to IVP.

To show the uniqueness, suppose that S : R+ → C is another differentiable function satisfying
(1.22)-(1.23) and define Q : [0, t]→ C by Q(s) = T (s)S(t − s). Once Q is differentiable, we have

d
ds

Q(s) =
d
ds

T (t)S(t − s)−T (t)
d
ds

S(t − s)

= aT (t)S(t − s)−T (t)aS(t − s)
= 0,

therefore Q is constant. On the other hand, for s= 0 we have Q(0) = S(t) and for s= t, Q(t) = T (t),
fromwhere T (t) = S(t) for all t > 0.

Proposition 1.4.2 Let T : R+ → C be a continuous function satisfying (1.20)-(1.21). Then, T is
differentiable and there exists a unique a ∈ C such that (1.22)-(1.23) holds.
Proof: Once T is continous, we can define

V (t) :=
∫ t

0
T (s)ds, t ≥ 0,

which is differentiable and holds V ′(t) = T (t). Also, noting that∣∣∣∣1t
∫ t

0
T (s)ds−T (0)

∣∣∣∣≤ 1
t

∫ t

0
|T (s)−T (0)|ds <

1
t

εt = ε, ∀ε > 0,



20 Chapter 1. Semigroups of linear operators

we have limt↓0
1
t V (t) = V ′(0) = T (0) = 1. Therefore, there is t0 > 0 small enough such that

V (t0) 6= 0. Hence, V is invertible on t0, which implies that

T (t) =V (t0)−1V (t0)T (t) = V (t0)−1
∫ t0

0
T (t + s)ds

= V (t0)−1
∫ t+t0

t
T (s)ds

= V (t0)−1(V (t + t0)−V (t)), ∀t ≥ 0.

From previous, we conclude that T is differentiable and

d
dt

T (t) = lim
h→0

T (t +h)−T (t)
h

= lim
h→0

T (h)−T (0)
h

T (t) = T ′(0)T (t).

This shows that T satisfies de IVP with a = T ′(0).

Now, combining the last two results, we get an answer to Cauchy’s problem in the following
sense.

Theorem 1.4.3 Let T : R → C be a continuous function satisfying (1.20)-(1.21). Then, there
exists a unique a ∈ C such that

T (t) = eta, ∀t ≥ 0.

R We stress that (1.20)-(1.21) is not just a formal identity, but has meaning in linear dynamical
systems description. More precisely, let x0 ∈ C be the state of our system at t = 0. Then,
x(t) = T (t)x0 describes the state of the system for t ≥ 0 and

x(t + s) = T (t + s)x0 = T (t)T (s)x0 = T (t)x(s)

describes the system at time t + s.

1.4.2 Matrix semigroups
Now, we consider Cauchy’s problem stated before on X = Cn. In this case, as we know,

L (X) = {T : X → X : T is linear} can be identified with Mn(C), the space of all complex n× n
matrices, and a linear dynamical system on X will be given by

T : R+ →Mn(C)

satisfying the functional equation

T (t + s) = T (t)T (s), t,s ≥ 0 (1.24)
T (0) = I. (1.25)

In this new context, we state the next problem as
Problem 2: Find all continuous maps T : R+ → Mn(C) satisfying the functional equation

(1.24)-(1.25).
As before, functions given by t 7→ etA, where A ∈Mn(C) is any complex matrix, are solutions

to the problem. In fact, we have the next result.
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Proposition 1.4.4 For any A ∈Mn(C), the map

t 7→ etA ∈Mn(C)

is continuous and satisfies the system{
e(t+s)A = etAesA, t,s ≥ 0
e0A = I.

Proof: Since the series ∑∞
k=0

tk‖A‖k

k! converges, we have e0A = ∑∞
k=0

0kAk

k! = I +∑∞
k=1

0kAk

k! = I and

e(t+s)A =
∞

∑
n=0

(t + s)nAn

n!

=
∞

∑
n=0

n

∑
i=0

n!
(n− i)!i!

t isn−i A
n

n!

=
∞

∑
i=0

∞

∑
n=i

(tA)i

i!
(sA)n−i

(n− i)!

=
∞

∑
i=0

(tA)i

i!

∞

∑
k=0

(sA)k

k!

= etAesA.

In order to show that t 7→ etA is continous, we observe that

e(t+h)A − etA = etA
(

ehA − I
)
, ∀t,h ≥ 0.

Thus, it is sufficient to show that limh→0 ehA = I, which follows from

‖ehA − I‖=

∥∥∥∥∥ ∞

∑
k=1

hkAk

k!

∥∥∥∥∥≤ ∞

∑
k=0

|h|k‖A‖k

k!
= e|h|‖A‖−1.

Now, we state some properties of the exponential matrix function to conclude that they are the
only family of continuous functions satisfying (1.24)-(1.25).

Proposition 1.4.5 Let T (t) := etA for some A ∈Mn(C). Then, T : R+ →Mn(C) is differentiable
and satisfies the differential equation

d
dt

T (t) = AT (t), t ≥ 0 (1.26)

T (0) = I. (1.27)

Conversely, every differentiable function T : R+ → Mn(C) satisfying (1.26)-(1.27) is already of
the form T (t) = etA for some A ∈Mn(C). Finally, A = T ′(0).
Proof: Note that

T (t +h)−T (t)
h

=
T (h)− I

h
T (t), ∀t,h ∈ R+.

Thus, it is sufficient to show that limh→0
T (h)−I

h = A, indeed∥∥∥∥T (h)− I
h

−A
∥∥∥∥≤ ∞

∑
k=0

|h|k−1‖A‖k

k!
=

e|h|‖A‖−1
h

−‖A‖→ 0.

The remaining is proved as before.

Now, remembering that for t0 > 0 small enough such that ‖A(s)− s‖ < 1 for all |s| < t0, we
have A is invertible for all |s|< t0. Arguing as before, we have the next theorem.
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Theorem 1.4.6 Let T : R+ → Cn be a continuous function satisfying (1.24)-(1.25). Then there
exists A ∈Mn(C) such that T (t) = etA, t ≥ 0.

Finally, we present some concrete examples of matrices semigroups.

■ Example 1.2 i) Given a diagonal matrix A = diag(a1, . . . ,an), the semigroup generated by A
is

(etA)t≥0 =


eta1 0 · · · 0
0 eta2 · · · 0
...

... . . . ...
0 0 · · · etan


t≥0

. (1.28)

ii) Let A be a k× k Jordan block

A =


λ 1 0 · · · 0

0 λ 1 · · · ...
... . . . . . . . . . 0
... . . . . . . 1
0 . . . . . . 0 λ


k×k

(1.29)

with eingenvalue λ ∈C. Decomponding A into A = D+N, where D = λ I and N is nilpotent,
we have

(etN)t≥0 =



1 t t2

2 · · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!
... . . . . . . . . . ...
... . . . . . . t
0 . . . . . . 0 1


t≥0

. (1.30)

Then, (etA)t≥0 = (et(D+N))t≥0.
For arbitrary matrices A ∈Mn(C), compute etA could be very difficult. But, using the Jordan
normal form, there exists an invertible matrix S ∈Mn(C) such that A = S−1BS, where B is a
Jordan block composition and (etA)t≥0 = (S−1etBS)t≥0.

iii) For some special 2 × 2 matrices, the semigroup generated is easily computed using the
method above. For example, if

A =

(
0 1
−1 0

)
, (1.31)

the semigroup generated is

(etA)t≥0 =

(
cos(t) sin(t)
−sin(t) cos(t)

)
t≥0

. (1.32)

More generally, if

A =

(
a b
c d

)
, (1.33)

defining δ = ad −bc, τ = a+d and γ2 = 1
4(τ

2 +4δ ) we have

(etA)t≥0 =

{
(et τ

2 (1
γ sinh(tγ)A+(cosh(tγ)− 2τ

γ )I))t≥0, γ 6= 0
(et τ

2 (tA+(1− tτ
2 )I))t≥0, γ = 0

. (1.34)

■
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1.5 Differentiable and analytic semigroups
In this section, the classes of differentiable and analytic semigroups are presented. To begin,

we introduce the differentiable semigroups and some results.

1.5.1 Differentiable semigroups
Definition 1.5.1 Let (T (t))t≥0 be a C0-semigroup on a Banach space X . (T (t))t≥0 is called
differentiable for t > t0 if for every x ∈ X , the function t 7→ T (t)x is differentiable for t > t0.
The semigroup (T (t))t≥0 is called differentiable if it is differentiable for all t > 0.

In the next lemma, we present some properties of differentiable semigroups.

Lemma 1.5.1 Let (T (t))t≥0 be a C0-semigroup which is differentiable for t > t0 and let A be its
infinitesimal generator. Then,

i) for t > nt0, n = 1,2, . . . , T (t)(X)⊂ D(An), T (n)(t) = AnT (t) and T (n)(t) is a bounded linear
operator.

ii) For t > nt0, n = 1,2, . . . , the function t 7→ T (n−1)(t) is continuous in the uniform operator
topology.

Proof: We start with n = 1. Given t > t0 and x ∈ X , by assumption, s 7→ T (s)x is differentiable for
s > t0. Then,

lim
h↓0

(
T (h)− I

h

)
T (t)x = lim

h↓0

T (t +h)x−T (t)x
h

= T ′(t)x.

This implies that T (t)x ∈ D(A) and AT (t)x = T ′(t)x, for t > t0 and x ∈ X , which implies that AT (t)
is well-defined on X . Therefore, noting that A is closed, T (t) is continuous, and AT (t) is closed,
from the Closed Graph Theorem (see Theorem A.0.10), we obtain that AT (t) = T ′(t) is a bounded
linear operator.

Suppose now that (i) is true for n > 1. Next, we show that it is true for n+1. Let t > (n+1)t0
and s > nt0 such that t − s > t0, for y ∈ X , we have that AT (k)y = T (k)Ay and

T (n)(t)x = A(n)T (t)x = A(n)T (t − s)T (s)x = T (t − s)A(n)T (s)x, x ∈ X .

From above, we infer that T (n)(t)x is differentiable, once T (t − s)AnT (s)x is differentiable for
t − s > t0. Moreover,

T (n+1)(t)x = AT (t − s)AnT (s)x = An+1T (t)x, ∀t > (n+1)t0, ∀x ∈ X

and, like the case n = 1, using that A is closed and AnT (t) is continuous, T (n+1)(t) = An+1T (t) is
closed, therefore, bounded for all t > (n+1)t0. This concludes the proof of (i).

To prove (ii), let ‖T (t)‖ ≤ Meωt , for T > 0 and t ∈ [0,T ]. Thus, for n ∈ N and nt0 < t1 ≤ t2 ≤
t1 +T , using the part (i), if s ∈ [t1, t1 +T ] then

T (n)(s)x = AnT (s)x = T (s− t1)AnT (t1)x, x ∈ X .

This proves that s 7→ T (n)(s)x is continuous in [t1, t2], once s 7→ T (s− t1)x is continuous for all
x ∈ X . This implies that∥∥∥T (n−1)(t2)x−T (n−1)(t1)x

∥∥∥ =

∥∥∥∥∫ t2

t1

d
ds

T (n+1)(s)xds
∥∥∥∥

=

∥∥∥∥∫ t2

t1
T (n)(s)x

∥∥∥∥
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≤
∫ t2

t1
‖T (s− t1)AnT (t1)x‖ds

≤ ‖AnT (t1)‖‖x‖
∫ t2

t1
‖T (s− t1)‖ds

≤ MeωT‖AnT (t1)‖x‖(t2 − t1).

In other words,

‖T (n−1)(t2)x−T (n−1)(t1)x‖ ≤ MeωT‖AnT (t1)‖x‖(t2 − t1).

Therefore, limt2→t1 ‖T (n−1)(t2)x−T (n−1)(t1)x‖ = 0, that is, t 7→ T (n−1)(t) is continuous in t = t1.
Consequently, for all t > nt0 and n ∈ N the function t 7→ T (n−1)(t) is continuous in the uniform
operator topology.

Corollary 1.5.2 Let (T (t))t≥0 be a C0-semigroup differentiable for t > t0. If t > (n+1)t0, then
t 7→ (T (t))t≥0is n-times differentiable in the uniform operator topology.

Proof: From part (ii) of Lemma 1.5.1, it follows that the function t 7→ AkT (t) is continuous in the
uniform operator topology, for t > (n+ 1)t0 and k ∈ [1,n]. Furthermore, for h > 0, t > (n+ 1)t0
such that t ±h > 0 and 1 ≤ k ≤ n,

T (k−1)(t)−T (k−1)(t −h) =−
∫ t−h

t
AkT (s)ds

and

T (k−1)(t +h)−T (k−1)(t) =
∫ t+h

t
AkT (s)ds.

Therefore,

lim
h→0

T (k−1)(t +h)−T (k−1)(t)
h

= AkT (t),

that is, T (k+1) is differentiable in the uniform operator topology for 1 ≤ k ≤ n and t > (n+ 1)t0.
Thus (T (t))t≥0 is n-times differentiable in the uniform operator topology.

Corollary 1.5.3 If (T (t))t≥0 is a differentiable C0-semigroup and A is its infinitesimal generator
then the next properties are true

i) For all t > 0, (T (t))t≥0 is differentiable infinitely many times in the uniform operator
topology.

ii) For n ≥ 1, T (n)(t) = (AT ( t
n))

n = (T ′( t
n))

n

Proof: The first item follows directly from Corollary 1.5.2 using that (T (t))t≥0 is differentiable
for t > 0 = n ·0, for all n ∈ N.

From Lemma 1.5.1, T (n)(t)x = AnT (t)x and T (t)(X) ⊂ D(An), for all t > 0 and n ≥ 1. Thus,
for n ≥ 1 and x ∈ X , once (T ( t

n))x ∈ D(A),

T (n)(t)x = (AT (
t
n
)x)n = (T ′(

t
n
))n.
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1.5.2 Analytic semigroups
So far, we have just considered semigroups whose domain was the non-negative real line. In

this section, we consider semigroups defined on open regions of the complex plane. Next, we
restrict ourselves to semigroups defined on regions of the form

∆(α) = {z ∈ C : z 6= 0, |arg(z)|< α,α ∈ (0,
π
2
]}.

Definition 1.5.2 A family of bounded linear operators (T (z))z∈∆(α)∪{0}, is an analytic semi-
group if

i) T (0) = I,
ii) T (z1 + z2) = T (z1)T (z2), for all z1,z2 ∈ ∆(α),

iii) limz→0 T (z)x = x for all x ∈ X and z ∈ ∆(α),
iv) z 7→ T (z) is analytic on ∆(α).

Our basic interest is to study conditions under which a semigroup (T (t))t≥0 is the restriction of
an analytic semigroup. For convenience, in the remainder of this section, we assume that 0 ∈ ρ(A).
To begin, we consider the next lemma.

Lemma 1.5.4 Let A be a closed and densely defined linear operator in X satisfying the following
conditions:

i) For some 0 < α < π
2 , Σα = {λ : |argλ |< π

2 +α}∪{0} ⊂ ρ(A).
ii) There exists M > 0 such that ‖R(λ : A)‖ ≤ M

|λ | for all non-zero λ ∈ Σα .
Then, A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 satisying ‖T (t)‖ ≤ C for

some constant C. Moreover,

T (t) =
1

2πi

∫
Γ

eλ tR(λ : A)dλ , (1.35)

where Γ is a smooth curve contained in Σα , running from −∞e−iϑ to ∞eiϑ , for some π
2 <ϑ < π

2 +α .
In addition, the integral (1.35) converges for t > 0 in the uniform operator topology.
Proof: For t ≥ 0, we define the map

U(t) =
1

2πi

∫
Γ

eµtR(µ : A)dµ,

and consider the path Γ̃ = {reiϑ : r ≥ 0}︸ ︷︷ ︸
Γ1

∪{−re−iϑ : r ≥ 0}︸ ︷︷ ︸
Γ2

, see Figure 1.1. Using that µ 7→ eµt

and R(µ : A) are analytic functions we can write∫
Γ̃

eµtR(µ : A)dµ =
∫

Γ1

eµtR(µ : A)dµ +
∫

Γ2

eµtR(µ : A)dµ.

Using the conditions in (ii), for r1 > 0 there exist C > 0 such that ‖R(λ : A)‖<C for all λ ∈ Γ1
with |λ | ≤ r1. From the above, for t > 0 we note that

∥∥∥∥∫Γ1

eµtR(µ : A)dµ
∥∥∥∥ ≤

∫ r1

0
|eµt |‖R(µ : A)‖dµ +

∫ ∞

r1

|eµt |‖R(µ : A)‖dµ

≤
∫ r1

0
|etreiϑ

|Ceiϑ dr+
∫ ∞

r1

|etreiϑ
| M
|reiϑ |

eiϑ dr

≤ C
∫ r1

0
er Re(eiϑ )tdr+

M
r1

∫ ∞

r1

er Re(eiϑ )tdr
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reiϑ

−re−iϑ

Figure 1.1: The path Γ̃ (own figure)

= C

(
er1 Re(eiϑ )t −1

Re(eiϑ )t

)
+

M
r1

(
er1 Re(eiϑ )−1

Re(eiϑ )t

)
.

From the above,
∫

Γ1
eµtR(µ : A)dµ is well-defined, because Re(eiϑ ) < 0. Similarly, taking Γ2,

the path Γ2 oriented counterclockwise, we can prove that
∫

Γ2
eµtR(µ : A)dµ is also well-defined.

Thereby,
∫

Γ̃ eµtR(µ : A)dµ is well-defined for all t ≥ 0.
Let γ1(r) = reiϑ be a parametrization of Γ̃ and γ2(·) be a smooth path Γ running from −∞e−iϑ

to ∞eiϑ in Σα , where π
2 < ϑ < π

2 +α , such that

lim
r→∞

|γ1(r)− γ2(r)|= 0.

reiϑ

−re−iϑ

Γ

γ3

γ4

Figure 1.2: The path ϒ (own figure)

For ϒ = Γ̃∪γ3∪Γ∪γ4 as in the Figure 1.2, with γ3 connecting Γ̃ to Γ at r0eiϑ for r0 big enough
and γ4 connecting Γ to Γ̃ at r0e−iϑ , using the analyticity of the function µ 7→ eµtR(µ : A), we have
that

∫
ϒ eµtR(µ : A)dµ = 0.
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If µ ∈ γ3 and |µ|> 1, we note that∥∥∥∥∫γ3

eµtR(µ : A)dµ
∥∥∥∥≤ ∫γ3

|eµt | M
|µ|

dµ ≤ M
∫

γ3

dµ = M|γ3|,

where |γ3| denotes the length of γ3. Using now that limr→∞ |γ1(r)− γ2(r)| = 0, we have that
|γ3| → 0 as r → ∞, which implies that

∫
γ3

eµtR(µ : A)dµ → 0 as r → ∞. Similarly, we can show
that

∫
γ4

eµtR(µ : A)dµ → 0.
From the above, it follows that∫

Γ
eµtR(µ : A)dµ =

∫
Γ̃

eµtR(µ : A)dµ.

Considering the above, we cand define the path Γt = Γ1 ∪Γ2 ∪Γ3, where Γ1 = {−re−iϑ : 1
t <

r < ∞}, Γ2 = {1
t e−iϕ : −ϑ < ϕ < ϑ} and Γ3 = {reiϑ : 1

t < r < ∞}, see Figure 1.3.

Figure 1.3: The path Γt (own figure)

In this case, for t > 0 we have that∥∥∥∥ 1
2πi

∫
Γ1

eµtR(µ : A)dµ
∥∥∥∥ ≤ 1

2π

∫ ∞

1
t

‖e−re−iϑ tR(−re−iϑ : A)e−iϑ‖dr

≤ 1
2π

∫ ∞

1
t

|e−re−iϑ t | M
|re−iϑ |

|e−iϑ |dr

≤ 1
2π

∫ ∞

1
t

|e−re−iϑ t |M
r

dr

=
M
2π

∫ ∞

1
t

|e−r(cosϑ+isinϑ)t |1
r

dr

≤ M
2π

∫ ∞

1
t

|e−r(cosϑ+isinϑ)t |11
t

dr

≤ Mt
2π

∫ ∞

1
t

e−r sinϑ tdr

= −Mt
2π

e−sinϑ

t sinϑ
=C1.

We also note that,∥∥∥∥ 1
2πi

∫
Γ2

eµtR(µ : A)dµ
∥∥∥∥ ≤ 1

2π

∫ ϑ

−ϑ
|e

1
t e−iϕ t |

∥∥∥∥R
(

1
t

e−iϕ : A
)∥∥∥∥ |e−iϕ

t
||dϕ |



28 Chapter 1. Semigroups of linear operators

≤ 1
2π

∫ ϑ

−ϑ
|ee−iϕ

| M

| e−iϕ
t |

|e
−iϕ

t
||dϕ |

≤ M
2π

∫ ϑ

−ϑ
ecosϕ |dϕ |

≤ M
2π

sup
φ∈(−ϑ ,ϑ)

ecosφ2ϑ =C2.

Moreover, proceeding as above, we can show that ‖
∫

Γ3
eµtR(µ : A)dµ‖ ≤C3 for some C3 > 0

which does not depends of t. From the above, there exists C > 0 such that ‖U(t)‖ ≤C for all t > 0.
Next, we show that

R(λ : A) =
∫ ∞

0
e−λ tU(t)dt, for all λ > 0. (1.36)

To this end, for T > 0, we note that∫ T

0
e−λ tU(t)dt =

∫ T

0
e−λ t

(
1

2πi

∫
Γ

eµtR(µ : A)dµ
)

dt

=
1

2πi

∫ T

0

∫
Γ

e(µ−λ )tR(µ : A)dµdt

=
1

2πi

∫
Γ

∫ T

0
e(µ−λ )tR(µ : A)dtdµ

=
1

2πi

∫
Γ
(
et(µ−λ )

µ −λ
R(µ : A))

∣∣∣∣T
0

dµ

=
1

2πi

∫
Γ

(
eT (µ−λ )R(µ : A)

µ −λ
− R(µ : A)

µ −λ

)
dµ

=
1

2πi

∫
Γ

eT (µ−λ )R(µ : A)
µ −λ

dµ +
1

2πi

∫
Γ

R(µ : A)
λ −µ

dµ.

Using now that

R(λ : A) =
1

2πi

∫
Γ

R(µ : A)
λ −µ

dµ (see Theorem A.0.15),

we have that ∫ T

0
e−λ tU(t)dt =

1
2πi

∫
Γ

eT (µ−λ )R(µ : A)
µ −λ

dµ +R(λ : A).

On the other hand,

‖
∫

Γ

eT (µ−λ )R(µ : A)
µ −λ

dµ‖ ≤
∫

Γ

|eT (µ−λ )|
|µ −λ |

‖R(µ : A)‖dµ

≤
∫

Γ

|eT (µ−λ )|
|µ −λ |

M
|µ|

dµ

≤ M
eT λ

∫
Γ

|eT µ |
|µ||λ −µ|

dµ

≤ M
eT λ

∫
Γ

dµ
|µ|(|µ|−λ )

−→ 0 as T −→ 0.

From the previous estimates, we obtain the identity (1.36).
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Noting that ‖U(t)‖ ≤C, we have that

d
dλ

R(λ : A)x =
d

dλ

(∫ ∞

0
e−λ tU(t)dt

)
=
∫ ∞

0

d
dλ

(e−λ tU(t))dt =
∫ ∞

0
−te−λ tU(t)dt,

and
d2

dλ 2 R(λ : A)x =
∫ ∞

0

d
dλ

(−te−λ tU(t))dt =
∫ ∞

0
t2e−λ tU(t)dt.

Thereby,

dn−1

dλ n−1 R(λ : A)x = (−1)n−1
∫ ∞

0
tn−1e−λ tU(t)dt, for all n ∈ N and λ > 0.

Moreover, from [Pazy, 2012] (Equation 5.22), we know that dn

dλ n R(λ : A) = (−1)nn!R(λ : A)n+1,
which allows to infer that

dn−1

dλ n−1 R(λ : A) = (−1)n−1(n−1)!R(λ : A)n.

Hence,

‖R(λ : A)n‖ =

∥∥∥∥ 1
(n−1)!

∫ ∞

0
tn−1e−λ tU(t)dt

∥∥∥∥
≤ C

(n−1)!

∫ ∞

0

tn−1

eλ t
dt

=
C
λ n .

From the above and using Theorem A.0.16, we note that A is the infinitesimal generator of a
C0-semigroup such that ‖T (t)‖ ≤C for all t > 0.

To finish, we prove the formula (1.35). Let x ∈ D(A2). From Corollary A.0.2, we see that

T (t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλ tR(λ : A)xdλ .

Using the contour Γ as before and arguing as above, for r0 > 0 we consider two straight lines
connecting Γ to γ+ iθ at r0eiϑ and γ− i∞ at −r0eiϑ . Specifically, using the lines λ1(t)= (t,r0 sinθ)
and λ2(t) = (t,−r0 sinθ), see Figure 1.4.

From the above, we see that∣∣∣∣∫ γ

r0 cosθ
eλ tR(λ : A)dλ

∣∣∣∣ =

∣∣∣∣∫ γ

r0 cosθ
et(s+ir0 sinθ)R(s+ ir0 sinθ : A)ds

∣∣∣∣
≤

∫ γ

r0 cosθ
est M

|s+ ir0 sinθ |
ds

≤ M
∫ γ

r0 cosθ

est

r2
0

ds

≤ est

tr2
0

∣∣∣∣γ
r0 cosθ

=
er0 cosθ − eγθ

tr2
0

r0 −→ ∞ as r0 −→ ∞.
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γ

γ + i∞

γ − i∞

r0eiϑ

−r0eiϑ

Γ

λ1

λ2

γ̃

Figure 1.4: The path Γ∪λ1 ∪ @̃g∪λ2 (own figure)

From this estimate, it is easy to infer that∫ γ+i∞

γ−i∞
eλ tR(λ : A)xdλ =

∫
Γ

eλ tR(λ : A)xdλ ,

which in turn implies that

T (t)x =
1

2πi

∫
Γ

eλ tR(λ : A)xdλ

for every x ∈ D(A2). Moreover, using that D(A2) is dense in X and
∫

Γ eλ tR(λ : A)xdλ converges
uniformly, if (xn)n is a sequence in D(A2) such that xn → x, we get

T (t)x = lim
n

T (t)xn = lim
n

1
2πi

∫
Γ

eλ tR(λ : A)xndλ =
1

2πi

∫
Γ

eλ tR(λ : A)xdλ .

Which allows us to complete the proof.

Next, we prove the main theorem of this section. This result characterizes the C0-semigroups
which are the restriction to [0,∞) of an analytic semigroup.

Theorem 1.5.5 Let (T (t))t≥0 be an uniformly bounded C0-semigroup, A be the infinitesimal
generator of (T (t))t≥0 and assume that 0 ∈ ρ(A). The following conditions are equivalent

i) (T (t))t≥0 can be extend to an analytic semigroup in ∆(α) for some α and ‖T (z)‖ is
uniformly bounded in every closed subsector ∆(α ′), α ′ < α .

ii) There exists a constant C > 0 such that

‖R(σ + iτ : A)‖ ≤ C
|τ|

, for all σ > 0 and τ 6= 0. (1.37)

iii) There exists 0 < α < π
2 and M > 0 such that

Σ = {λ ∈ C : |argλ |< π
2
+α}∪{0} ⊂ ρ(A)

and
‖R(λ : A)‖ ≤ M

|λ |
, for λ ∈ Σ,λ 6= 0.
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iv) (T (t))t≥0 is differentiable and there is a constant C such that

‖AT (t)‖ ≤ C
t
, for all t > 0.

Proof: (i ⇒ ii) Let 0 < α ′ < α such that ‖T (z)‖ ≤ C1 for all z ∈ ∆(α ′). From Corollary A.0.16,
for x ∈ X and σ > 0, we have that

R(σ + iτ : A)x =
∫ ∞

0
e−(σ+iτ)tT (t)xdt.

Let λ = σ + iτ , whith τ > 0. For r > 0, we define the C1 piecewise path Λr = Λ1
r ∪Λ2

r ∪Λ3
r ,

where Λi
r are the paths Λ1

r = {ρeiα ′
: ρ ∈ [0,r]}, Λ2

r = {re−iϑ : ϑ ∈ [−α ′,0]} and Λ3
r = {t : t ∈ [0,r]}

oriented counterclockwise, see figure 1.5 bellow.

∆1
r

∆2
r

∆3
r

−α ′

Figure 1.5: Path Λr

From the analyticity of the function z 7→ T (z), we find that µ 7→ e−tµT (µ) is analytic and using
the Cauchy’s Theorem (see Theorem A.0.13), we see that

0 =
∫

Λ1
r

e−λ tT (t)xdt +
∫

Λ2
r

e−λ tT (t)xdt +
∫

Λ3
r

e−λ tT (t)xdt.

Moreover, noting that∥∥∥∥∫Λ2
r

e−(σ+iτ)tT (t)xdt
∥∥∥∥ ≤ C1‖x‖

∫ 0

−α ′
|re−(σ+iτ)reiϑ

|dϑ ,

re−(σ+iτ)reiϑ r→∞−−−→ 0 and that |re−(σ+iτ)reiϑ | is bounded, from the Lebesgue Dominated Conver-
gence Theorem (see Theorem A.0.12) we infer that∥∥∥∥∫Λ2

r

e−(σ+iτ)tT (t)xdt
∥∥∥∥→ 0 as r → ∞.

From the above, we infer that

lim
r→∞

∫
Λ3

r

e−λ tT (t)xdt =− lim
r→∞

∫
Λ1

r

e−λ tT (t)xdt.
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Which in turn implies that

R(σ + iτ : A)x =
∫ ∞

0
e−(σ+iτ)tT (t)xdt =

∫
Π+

α ′
e−(σ+iτ)tT (t)xdt, (1.38)

for all σ > 0 and x ∈ X , with Π+
α ′ = {ρeiα ′

: ρ ≥ 0} for 0 < α ′ < α .
From (1.38), for σ ,τ > 0 we have that

‖R(σ + iτ : A)‖ =

∥∥∥∥∥
∫

Π+
α ′

e−(σ+iτ)tT (t)dt

∥∥∥∥∥
≤

∫ ∞

0
e−ρ(σ cosα ′+τ sinα ′)‖T (ρ)‖dρ

≤
∫ ∞

0
e−ρ(σ cosα ′+τ sinα ′)C1dρ

≤ C1

σ cosα ′+ τ sinα ′

≤ C1

τ sinα ′

≤ C
τ
.

Similarly, for τ < 0, we consider the C1 piecewise path

ϒr = {ρe−iα ′
: ρ ∈ [0,r]}∪{reiϑ : ϑ ∈

[
0,α ′]}∪{t : t ∈ [0,r]},

illustrated on Figure 1.6.

ϒ1
r

ϒ2
r

ϒ3
r

−α ′

Figure 1.6: The path ϒr (own figure)

In this case, we have that

‖R(σ + iτ : A)‖=
∥∥∥∥∫ϒ1

e−(σ+iτ)tT (t)dt
∥∥∥∥≤ ∫ ∞

0
|e−(σ+iτ)ρe−iα

||e−iα |‖T (ρe−iα)‖dρ ≤ C
|τ|

.

Then,
R(σ + iτ : A) =

∫
Π−

α ′
e−(σ+iτ)tdt,
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for all σ > 0 and τ < 0, where Π−
α ′ = {ρe−iα ′

: ρ ≥ 0}. From the previous,

‖R(σ + iτ : A)‖ ≤ C
−τ

, for all σ > 0 and τ < 0.

From the above remarks, we obtain that

‖R(σ + iτ : A)‖ ≤ C
|τ|

, for all σ > 0 and τ ∈ R\{0}.

(ii ⇒ iii) Remarking that A is the infinitesimal generator of a C0-semigroup, from the Hille-Yosida
Theorem (see Theorem A.0.3), we have that ‖R(λ : A)‖ ≤ 1

Reλ for all λ ∈ C with Reλ > 0. In
addition from (1.37), we infer that there exists a constant C > 0 such that, for every Reλ > 0 and
| Imλ | 6= 0,

‖R(λ : A)‖ ≤ C
| Imλ |

.

Writing λ = σ + iτ we have |σ + iτ| ≤ |σ |+ |τ|. By using the above remarks,
• if |σ | ≥ |τ|, we have

1
|σ + iτ|

≥ 1
2|σ |

=
1
2

1
|σ |

≥ 1
2
‖R(σ + iτ : A)‖,

that is
‖R(λ : A)‖ ≤ 2

|λ |
.

• If |σ |< |τ|, we get

1
|σ + iτ|

≥ 1
2|τ|

=
1

2C
C
|τ|

≥ 1
2C

‖R(σ + iτ : A)‖.

Hence,

‖R(λ : A)‖ ≤ 2C
|λ |

.

From the above remarks, choosing C1 = max{2,2C}, we have ‖R(λ : A)‖ ≤ C1
|λ | for all λ 6= 0.

From the Taylor expansion of R(λ : A) for σ + iτ , with σ > 0 and τ 6= 0 we have that

R(λ : A) =
∞

∑
n=0

R(σ + iτ : A)(n)

n!
(σ + iτ −λ )n

=
∞

∑
n=0

|n!R(σ + iτ : A)(n+1)|
n!

(σ + iτ −λ )n

=
∞

∑
n=0

|R(σ + iτ : A)(n+1)|(σ + iτ −λ )n. (1.39)

We note that this series converges in B(X) for ‖R(σ + iτ : A)‖|σ + iτ −λ | ≤ k < 1. Choosing
λ = Reλ + iτ in (1.39) and using the hypothesis, we have that

‖R(σ + iτ : A)‖|σ + iτ −λ | = ‖R(σ + iτ : A)‖|σ +Reλ |

≤ C
|τ|

|σ +Reλ |

≤ k
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t ′ t

kt
eC

− kt
eC

Figure 1.7: Region in which ‖R(λ : A)‖ ≤ M
|λ | (own figure)

⇔ |σ +Reλ | ≤ k|τ|
C

.

From the above remarks, we have that the series on (1.39) converges uniformly in B(X) for
|σ +Reλ | ≤ k|τ|

C . Since both σ > 0 and k < 1 are arbitrary numbers, it follows that ρ(A) contains
the set of all complex numbers λ such that Reλ ≥ 0 satisfying |Reλ |

| Imλ | <
k
C . In particular,{

λ : |argλ | ≤ π
2
+α

}
⊂ ρ(A), where α = k arctan

(
1
c

)
, 0 < k < 1.

Moreover, in this region, illustrated on Figure 1.7, we note that

‖R(λ : A)‖ ≤
∞

∑
n=0

‖R(σ + iτ : A)n+1‖|(σ + iτ −λ )|n

≤ ‖R(σ + iτ)‖
∞

∑
n=0

(‖R(σ + iτ : A)‖|(σ + iτ −λ )|)n

≤ C
|τ|

∞

∑
n=0

kn

≤ C
1− k

1
|τ|

≤
√

C2 +1
(1− k)

1
|λ |

=
M
|λ |

,

where we use that

|λ |=
√

(Re(λ ))2 +(Im(λ ))2 ≤

√(
k
C

Im(λ )
)2

+(Im(λ ))2 ≤ |τ|

√(
1+

k2

C2

)
.

Since, by assumption, 0 ∈ ρ(A), A satisfies (iii).
(iii ⇒ iv) Suppose that (iii) is satisfied. Then, from Lemma 1.5.1, A is the infinitesimal generator
of a bounded C0-semigroup (T (t))t≥0 such that

T (t) =
1

2πi

∫
Γ

eλ tR(λ : A)dλ , (1.40)
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where Γ is the path composed of reiϑ and re−iϑ , 0 < r < ∞ and π
2 < ϑ < π

2 +α oriented so that
Imλ increases along Γ.

Deriving the expression in (1.40), we get

T ′(t) =
1

2πi

∫
Γ

λeλ tR(λ : A)dλ , for all t > 0.

Using now the definition of Γ, we get

‖T ′(t)‖ =

∥∥∥∥ 1
2πi

∫
Γ

λeλ tR(λ : A)dλ
∥∥∥∥

≤ 1
2πi

∫ ∞

0
|reiϑ etreiϑ

|‖R(reiϑ ) : A)‖dr

≤ 2M
2π

∫ ∞

0

retreiϑ

|λ |
dr

≤ M
π

∫ ∞

0

retr(cosϑ+isinϑ)

|λ |
dr

≤ M
|λ |π

∫ ∞

0
rert cosϑ dr

≤ M
π

(
ert cosϑ

t cosϑ

)∣∣∣∣∞
0

≤ M
π

1
t cosϑ

≤ C
t
. (1.41)

Thus, (T (t))t≥0 is differentiable and ‖AT (t)‖= ‖T ′(t)‖ ≤ C
t , for all t > 0.

(iv ⇒ i) Using that (T (t))t≥0 is differentiable for t > 0, from Corollary 1.5.3, we have that

‖T (n)(t)‖=
∥∥∥∥(T ′

( t
n

))n
∥∥∥∥≤ ∥∥∥T ′

( t
n

)∥∥∥n
.

In addition, from (1.41) and noting that n!en ≥ nn, we have

1
n!
‖T (n)(t)‖ ≤ 1

n!

∥∥∥T ′
( t

n

)∥∥∥n
≤ 1

n!

(
C
t

)n

≤
(

Ce
t

)n

.

Consider

T (z) = T (t)+
∞

∑
n=1

T (n)(t)
n!

(z− t)n, for t > 0 and T (0) = I. (1.42)

Using that ∥∥∥∥∥T (n)(t)
n!

∥∥∥∥∥ |z− t|n ≤ 1
n!

∥∥∥T ′
( t

n

)∥∥∥n
|z− t|n

≤ 1
n!

(
C
t

n
)n

|z− t|n

≤
(

eC
t
|z− t|

)n
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and (T (t))t≥0 is uniformly bounded, it is easy to see that the series defined in (1.42) uniformly
converges in B(X) for |z− t| ≤ k( t

eC) for every k < 1. Thus, T (·) is analytic in ∆ = {z ∈ C :
|argz|< arctan( 1

Ce)}. Moreover, observing that T (z) = T (t) for z ∈ [0,∞), we have that the family
(T (z))z∈∆ is an extension to ∆ of the C0-semigroup (T (t))t≥0.

We prove now that (T (z))z∈∆ is an analytic semigroup and that ‖T (z)‖ is uniformly bounded
in every closed subsector of ∆.

i) From analyticity of the function z 7→ T (z) it follows that t 7→ T (t) is analytic for all t ≥ 0.
ii) Fixed z1 ∈ ∆, define F : ∆ → L (X) by F(z) = T (z1)T (z)−T (z1 + z). Noting that F ≡ 0

on [0,∞), from analyticity of F we conclude that F ≡ 0 for all z ∈ ∆. Being z1 arbitrary,
T (z1 + z2) = T (z1)T (z2), for all z1,z2 ∈ ∆.

iii) Reducing the sector ∆ to the closed subsector ∆ε = {z : |argz| ≤ arctan( 1
Ce − ε)}, we note

that there exists k′ < k such that |z− t| ≤ k′( t
eC). Then,

‖T (z)‖ ≤

∥∥∥∥∥ ∞

∑
n=1

T (n)(t)
n!

(z− t)n

∥∥∥∥∥+‖T (t)‖

≤
∞

∑
n=1

(
eC
t
|z− t|

)n

+M

≤
∞

∑
n=1

(
eC
t

k′
( t

eC

))n

+M

≤
∞

∑
n=1

(k′)n +M

≤ k′

1− k′
+M,

which proves that T (·) is uniformly bounded on ∆ε .
To complete the proof, we show that T (z)x → x as z → 0. For ε > 0, we can select 0 < k′ < 1

such that

‖T (z)x− x‖ ≤ ‖T (t)x− x‖+
∞

∑
n=1

∥∥∥∥∥T (n)(Rez)
n!

(z−Rez)n

∥∥∥∥∥‖x‖

≤ ‖T (t)x− x‖+
∞

∑
n=1

(
Ce
Rez

|z−Rez|
)n

‖x‖

≤ ‖T (t)x− x‖+
∞

∑
n=1

(
Ce
Rez

k′
(

Rez
Ce

))n

‖x‖

≤ ‖T (t)x− x‖+
∞

∑
n=1

(k′)n‖x‖

≤ ε +
k′

1+ k′
‖x‖< ε

which allows us to end the proof.



2. Abstract Differential Equations

2.1 The abstract Cauchy problem
We start this chapter studying existence, uniqueness and regularity of solutions for the inhomo-

geneous initial value problem

u′(t) = Au(t)+ f (t), t > 0 (2.1)
u(0) = x ∈ X , (2.2)

where f : [0,a)→ X is a suitable function and A is the infinitesimal generator of a C0-semigroup
(T (t))t≥0 on a Banach space X . The main references for this chapter are [Pazy, 2012, Pierri, 2006,
Prokopczyk, 2005, Silva, 2017]

2.1.1 The inhomogeneous initial value problem
To begin we define the concepts of classical and mild solutions of (2.1)-(2.2). Then, we study

the existence of solutions to this problem. To finish this section, we study the strong solution of
(2.1)-(2.2) and make some remarks about it.

Definition 2.1.1 A function u : [0,a) → X is a classical solution of (2.1)-(2.2) on [0,a) if u(·)
is continuous on [0,a), continuously differentiable on (0,a), u(t) ∈ D(A) for all 0 < t < a and
(2.1)-(2.2) is satisfied on [0,a).

R We may refer to a “classical solution” as a “solution” if there is no ambiguity.

If u(·) is a classical solution of the problem (2.1)-(2.2), then the function g : [0,a)→ X defined
by g(s) = T (t − s)u(s) is differentiable on (0,a) and using the Chain Rule, we see that

g′(s) =
dT (t − s)

ds
u(s)+T (t − s)

du(s)
ds

= −AT (t − s)u(s)+T (t − s)
du(s)

ds
= −AT (t − s)u(s)+T (t − s)(Au(s)+ f (s))
= −AT (t − s)u(s)+AT (t − s)u(s)+T (t − s) f (s)
= T (t − s) f (s).

If f ∈ L1([0,a];X), the function s 7→ T (t − s) f (s) is integrable. From the above,

g(t)−g(0) =
∫ t

0
T (t − s) f (s)ds ⇔

T (0)u(t)−T (t)u(0) =
∫ t

0
T (t − s) f (s)ds ⇔

u(t)−T (t)x =
∫ t

0
T (t − s) f (s)ds.

Hence,

u(t) = T (t)x+
∫ t

0
T (t − s) f (s)ds. (2.3)

The above proves the next result.
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Corollary 2.1.1 If f ∈ L1([0,a];X), x ∈ X and u(·) is a solution of the problem (2.1)-(2.2) then,
this solution is unique and it is given by the formula (2.3).

Motivated by the Corollary 2.1.1, we introduce the next concept of solution.

Definition 2.1.2 Let x ∈ X and f ∈ L1([0,a];X). The function u ∈C([0,a];X), given by

u(t) = T (t)x+
∫ t

0
T (t − s) f (s)ds, 0 ≤ t < a,

is called a mild solution of the initial value problem (2.1)-(2.2) on [0,a].

The following example shows that a mild solution may not be a classical solution.

■ Example 2.1 Assume x ∈ X such that T (t)x /∈ D(A) for all t ≥ 0. Let the continuous function
f (s) = T (s)x and consider the initial value problem{

u′(t) = Au(t)+T (t)x, t > 0
u(0) = 0. (2.4)

The mild solution u(·) of the problem (2.4) is given by

u(t) = T (t)(0)+
∫ t

0
T (t − s)T (s)xds =

∫ t

0
T (t − s+ s)xds =

∫ t

0
T (t)xds = tT (t)x.

Noting that the function t 7→ tT (t)x is not differentiable, we have that u(·) is not be a classical
solution of the problem (2.4).

■

At this point a natural question arises: “under which conditions a mild solution is a classical
one?”, the following studies answer this question.

The next theorem gives us a general criterion to ensure the existence of a classical solution for
the initial value problem (2.1)-(2.2).

Theorem 2.1.2 Assume x ∈ X , f ∈ L1([0,a];X)∩C((0,a]) and let the function ν : [0,a]→ X be
defined by

ν(t) =
∫ t

0
T (t − s) f (s)ds, 0 ≤ t ≤ a. (2.5)

The initial value problem (2.1)-(2.2) has a classical solution u : [0,a)→ X if x ∈ D(A), and one
of the following conditions is satisfied:

i) ν(·) is continuously differentiable on (0,a),
ii) ν(t) ∈ D(A) for 0 < t < a and Aν(·) is continuous on (0,a).

Reciprocally, if the initial value problem (2.1)-(2.2) has a solution on [0,T ) and x ∈ D(A), then
ν(·) satisfies both the conditions (i) and (ii).

Proof: Suppose x ∈ D(A) and that u(·) is a solution for the initial value problem (2.1)-(2.2). Then

u(t) = T (t)x+
∫ t

0
T (t − s) f (s)ds.

Consequently, ν(t) = u(t)−T (t)x is continuously differentiable on (0,a), which proves that condi-
tion (i) is satisfied. If x∈D(A), we conclude that T (t)x∈D(A) for all t ≥ 0. Therefore, ν(t)∈D(A)
and Aν(t) = Au(t)−AT (t)x = u′(t)− f (t)−T (t)Ax is continuous on (0,a). Thus, (ii) is also sat-
isfied.
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Assume that condition (i) is satisfied. For t,h ∈ (0,a) such that t +h ∈ (0,a), we have

T (h)− I
h

ν(t) =
1
h

[
T (h)

∫ t

0
T (t − s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

[∫ t

0
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

[∫ t+h

0
T (t +h− s) f (s)ds−

∫ t+h

t
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

[∫ t+h

0
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
−1

h

(∫ t+h

t
T (t +h− s) f (s)ds

)
=

ν(t +h)−ν(t)
h

− 1
h

(∫ t+h

t
T (t +h− s) f (s)ds

)
. (2.6)

Using that f (·) is continuous, from (2.6) we conclude that ν(t) ∈ D(A), Aν(t) = ν ′(t)− f (t) and
ν(0) = 0. This implies that the function u(t) = T (t)x+ ν(t) is a classical solution of the initial
value problem (2.1)-(2.2).

To finish, assume that ν(t) ∈ D(A) for 0 < t < a and that Aν(·) is continuous on (0,a). From
(2.6), we see that

lim
h→0

ν(t +h)−ν(t)
h

= Aν(t)+ f (t).

Using that Aν(·) is continuous on (0,T ) and that ν ′(t) = Aν(t)+ f (t), we infer that ν(·) is contin-
uously differentiable on (0,a) and ν(0) = 0. From the above, we conclude that u(t) = T (t)x+ν(t)
is a classical solution of the problem (2.1)-(2.2).

Next, we present two useful corollaries of Theorem 2.1.2, which establishes conditions on f (·)
under which the mild solution of (2.1)-(2.2) is a classical solution. The first one is related to the
differentiability of f (·).

Corollary 2.1.3 If x ∈ D(A) and f (·) is continuously differentiable on [0,a], then the mild solu-
tion of the problem (2.1)-(2.2) is a classical one.

Proof: From Theorem 2.1.2, it is sufficient to show that the function ν(·) defined on (2.5) is
continuously differentiable on (0,a).

For t,h ∈ (0,a) such that t +h ∈ (0,a), we see that

ν(t +h)−ν(t)
h

=
1
h

[∫ t+h

0
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

[∫ h

0
T (t +h− s) f (s)ds+

∫ t+h

h
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

[∫ h

0
T (t +h− s) f (s)ds+

∫ t

0
T (t − s) f (s+h)ds−

∫ t

0
T (t − s) f (s)ds

]
=

1
h

∫ h

0
T (t +h− s) f (s)ds+

∫ t

0
T (t − s)

(
f (s+h)− f (s)

h

)
ds.

Using that f (·) is continuously differentiable on [0,T ], we note that∥∥∥∥T (t − s)
(

f (s+h)− f (s)
h

)∥∥∥∥ ≤ ‖T (t − s)‖
∫ s+h

s
‖ f ′(τ)‖dτ
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≤ ‖T (t − s)‖
∫ t

0
‖ f ′(τ)‖dτ

≤ MeωaKa,

where K = sup0≤s≤T ‖ f ′(s)‖ and ‖T (·)‖ ≤ Meωa. From the above and the Lebesgue Dominated
Convergence Theorem (see Theorem A.0.12), we have that

ν ′(t) = lim
h→0

ν(t +h)−ν(t)
h

= T (t) f (0)+
∫ t

0
T (t − s) f ′(s)ds, 0 < t < T,

which proves that ν(·) is continuously differentiable on (0,a).

Next, we note conditions under which the condition (ii) on Theorem 2.1.2 is satisfied.

Corollary 2.1.4 If x ∈ D(A), f (t) ∈ D(A) for all t ∈ [0,a], f ∈ L1([0,a];X) is continuous on
(0,a) and A f (·) ∈ L1([0,a);X) then, the mild solution of the problem (2.1)-(2.2) is a classical
solution on [0,a).

Proof: Since f (s) ∈ D(A) for s > 0, we have that T (t − s) f (s) ∈ D(A) and that AT (t − s) f (s) =
T (t − s)A f (s) is integrable, because A f (·) ∈ L1([0,a];X). Thus, ν(t) =

∫ t
0 T (t − s) f (s)ds ∈ D(A)

and

Aν(t) = A
∫ t

0
T (t − s) f (s)ds =

∫ t

0
AT (t − s) f (s)ds

is continuous. Now, using Theorem 2.1.2, it follows that the mild solution of the problem (2.1)-
(2.2) is a classical solution on [0,a).

To finish this section, we note the concept of strong solutions to the problem (2.1)-(2.2) and
present some results about this class of solutions.

Definition 2.1.3 A function u(·) which is differentiable almost everywhere on [0,a] and u′ ∈
L1([0,a];X) is called a strong solution of the initial value problem (2.1)-(2.2) if u(0) = x and
u′(t) = Au(t)+ f (t) almost everywhere on [0,a].

■ Example 2.2 If A = 0 and f ∈ L1([0,T ];X), the initial value problem (2.1)-(2.2) has usually no
solutions unless f (·) is continuous. But it always has a stronger solution u(t) = u(0)+

∫ t
0 f (s)ds. ■

It is easy to see that a classical solution of the problem (2.1)-(2.2) is a strong solution and that
a strong solution is a mild solution of the problem (2.1)-(2.2). It is natural to ask when a mild
solution is a strong solution. The next theorem answer this.

Theorem 2.1.5 Assume x ∈ D(A), f ∈ L1([0,a];X) and let ν : [0,a]→ X be defined by

ν(t) =
∫ t

0
T (t − s) f (s)ds, 0 ≤ t ≤ a.

The initial value problem (2.1)-(2.2) has a strong solution u(·) on [0,a], if any of the following
conditions is satisfied:

i) ν(·) is differentiable almost everywhere on [0,a] and ν ′(t) ∈ L1([0,a];X);
ii) ν(t) ∈ D(A) almost everywhere for 0 ≤ t ≤ a and Aν(·) ∈ L1([0,a];X).

Reciprocally, if (2.1)-(2.2) has a strong solution u(·) on [0,a] and x ∈ D(A) then ν(·) satisfies (i)
and (ii).



2.1 The abstract Cauchy problem 41

The proof is similar to the proof of Theorem 2.1.2 and we omit it. We only note that the term

1
h

∫ t+h

t
T (t +h− s) f (s)ds −→ f (t) a.e on [0,a],

because f ∈ L1([0,a];X).
As a consequence of Theorem 2.1.5, we have the following corollary, which proof is similar to

the proof of Corollary 2.1.3.

Corollary 2.1.6 If x ∈ D(A), f (·) is differentiable a.e on [0,a] and f ∈ L1([0,a];X), then the
initial value problem (2.1)-(2.2) has a unique strong solution u(·) on [0,a].

2.1.2 Regularity of mild solutions for analytic semigroups
Consider the initial value problem

u′(t) = Au(t)+ f (t), t > 0 (2.7)
u(0) = x. (2.8)

Next, we study the regularity of the mild solution u(·) of the problem (2.7)-(2.8) in the case in
which A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on X .

To begin, we establish conditions under which the mild solution of the problem (2.7)-(2.8) is a
Hölder continuous (see bellow) classical solution.

Definition 2.1.4 Let I be an interval. A function f : I → X is Hölder continuous with exponent
0 < α < 1, on I if there is a constant L f such that

‖ f (t)− f (s)‖ ≤ L f |t − s|α , for all s, t ∈ I. (2.9)

In a similar way, f is locally Hölder continuous if, for each t ∈ I, there is a neighborhood such
that is Hölder continuous.

Notation: We denote the space of all Hölder continuous functions with expoent θ by Cθ (I;X).

Theorem 2.1.7 Assume f ∈ Lp([0,a];X) with 1 < p < ∞. If u(·) is the mild solution of the
problem (2.7)-(2.8) then, u(·) is Hölder continuous with expoent p−1

p on [ε,a] for every ε > 0.

In addition, if x ∈ D(A) then, u(·) is Hölder continuous with expoent p−1
p on [0,a].

Proof: Assume ‖T (t)‖ ≤ M on [0,a]. Using that (T (t))t≥0 is an analytic semigroup, there is
C1 ∈ R such that ‖AT (t)‖ ≤ C1

t for all t ∈ (0,a]. From the above, for x ∈ X and 0 < ε < s < t we
have

‖T (t)x−T (s)x‖ =

∥∥∥∥∫ t

s
AT (τ)xdτ

∥∥∥∥
≤

∫ t

s
‖AT (τ)x‖dτ

≤
∫ t

s

C1

τ
‖x‖dτ

≤
∫ t

s

C1

s
‖x‖dτ

=
C1‖x‖

s
|t − s| ≤ C1‖x‖

ε
|t − s|.
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This shows that the function t 7→ T (t)x is Lipschitz continuous on [ε,a]. In addition, if x ∈ D(A)
we have

‖T (t)x−T (s)x‖ ≤
∫ t

s
‖AT (τ)x‖dτ =

∫ t

s
‖T (τ)Ax‖dτ ≤

∫ t

s
‖T (τ)‖‖Ax‖dτ = M‖Ax‖|t − s|.

Hence, the function t 7→ T (t)x is Lipschitz continuous on [0,a].
From the above, to prove the assertion, it is sufficient to show that the function

ν(t) =
∫ t

0
T (t − s) f (s)ds

is Hölder continuous with exponent p−1
p on [0,a]. For t,h > 0 such that t +h ∈ [0,a), we have

ν(t +h)−ν(t) =
∫ t+h

0
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

=
∫ t+h

t
T (t +h− s) f (s)ds+

∫ t

0
T (t +h− s) f (s)ds−

∫ t

0
T (t − s) f (s)ds

=
∫ t+h

t
T (t +h− s) f (s)ds︸ ︷︷ ︸

I1

+
∫ t

0
(T (t +h− s)−T (t − s)) f (s)ds︸ ︷︷ ︸

I2

For I1, using the Hölder’s Inequality (see Theorem A.0.9), we see

‖I1‖ ≤
∫ t+h

t
‖T (t +h− s)‖‖ f (s)‖ds

≤
∫ t+h

t
M‖1 · f (s)‖ds

≤ M
(∫ t+h

t
‖ f (s)‖pds

) 1
p
(∫ t+h

t
‖1‖p′ds

) 1
p′

≤ M‖ f‖ph
1
p′ .

To estimate I2, note that ln(ρ +1)≤ ρα

α for all 0 < α < 1, and for h > 0,

‖T (t +h)−T (t)‖ ≤ ‖T (t +h)‖+‖T (t)‖ ≤ 2M.

From the above,

‖I2‖ ≤
∫ t

0
‖T (t +h− s)−T (t − s)‖‖ f (s)‖ds

≤
∫ t−h

0
‖T (t +h− s)−T (t − s)‖‖ f (s)‖ds+

∫ t

t−h
‖T (t +h− s)−T (t − s)‖‖ f (s)‖ds

≤
∫ t−h

0

∫ t+h−s

t−s
‖AT (τ)‖‖ f (s)‖dτds+

∫ t

t−h
2M‖ f (s)‖ds

≤
∫ t−h

0
C‖ f (s)‖

∫ t+h−s

t−s

1
τ

dτds+2M‖ f‖Lp([0,T ];X)h
1
p′

≤
∫ t−h

0
C‖ f (s)‖ ln(τ)

∣∣∣∣t+h−s

t−s
ds+2M‖ f‖Lp([0,T ];X)h

1
p′
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≤
∫ t−h

0
C‖ f (s)‖ ln

(
1+

h
t − s

)
ds+2M‖ f‖Lp([0,T ];X)h

1
p′

≤ 1
α

∫ t−h

0
C‖ f (s)‖

(
h

t − s

)α
ds+2M‖ f‖Lp([0,T ];X)h

1
p′

≤ C
α
‖ f‖Lp([0,T ];X)

(∫ t−h

0

hα p′

(t − s)α p′

) 1
p′

ds+2M‖ f‖Lp([0,T ];X)h
1
p′

≤ hα p′

α
C‖ f‖Lp([0,T ];X)

(
(t −h)1−α p′

1−α p′

) 1
p′

+2M‖ f‖Lp([0,T ];X)h
1
p′

≤ hα p′

α
C‖ f‖Lp([0,T ];X)

(
T 1−α p′

1−α p′

) 1
p′

+2M‖ f‖Lp([0,T ];X)h
1
p′ .

From the above, we obtain that

‖I2‖ ≤ ‖ f‖Lp([0,T ];X)

 CT
1
p′ +2M

α(1−α p′)
1
p′

h
1
p′

From the above estimates of I1 and I2, we obtain that

‖ν(t +h)−ν(t)‖ ≤ ‖I1‖+‖I2‖ ≤ ‖ f‖p

M+
CT

1
p′ +2M

α(1−α p′)
1
p′

h
p−1

p

which implies that ν(·) is Hölder continuous with expoent p−1
p .

Next, we present a condition that turns a mild solution into a classical and a strong solution of
(2.7)-(2.8). To prove the next result we use the following lemma:

Lemma 2.1.8 For x ∈ X , the homogeneous initial value problem

u′(t) = Au(t), u(0) = x, (2.10)

has a unique solution.
This lemma follows from the differentiability of the function t 7→ T (t)x given by the fact that

(T (t))t≥0 is an analytic semigroup.

Theorem 2.1.9 If x ∈ X , f ∈ C([0,a];X) and f is Lipschitz on [0,a] then, the mild solution of
(2.7)-(2.8) is a classical solution on [0,a].

Proof: Noting that (T (t))t≥0 is an analytic semigroup, we have that T (·)x is a classical solution of
the problem (2.10). From Theorem 2.1.2, it is sufficient to show that ν(t) =

∫ t
0 T (t − s) f (s)ds ∈

D(A), for all 0 < t < a and that Aν(·) is continuous on (0,a).
To begin, we note that

ν(t) =
∫ t

0
T (t − s) f (s)ds

=
∫ t

0
T (t − s)( f (s)− f (t))ds+

∫ t

0
T (t − s) f (t)ds
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= ν1(t)+ν2(t).

From Theorem 1.2.3 (ii), ν2(t) ∈ D(A) and Aν2(t) = (T (t)− I) f (t). Moreover, from the esti-
mate

‖Aν2(t +h)−Aν2(t)‖
≤ ‖T (t +h) f (t +h)−T (t +h) f (t)‖+‖T (t +h) f (t)−T (t) f (t)‖+‖ f (t +h)− f (t)‖
≤ ‖T (t +h)‖‖ f (t +h)− f (t)‖+‖T (t +h) f (t)−T (t) f (t)‖+‖ f (t +h)− f (t)‖
≤ ‖T (t +h)‖‖ f (t +h)− f (t)‖+‖T (t)‖‖(T (h)− I) f (t)‖+‖ f (t +h)− f (t)‖
≤ M‖ f (t +h)− f (t)‖+M‖(T (h)− I) f (t)‖+‖ f (t +h)− f (t)‖,

we infer that Aν2(·) is continuous on [0,a].
To prove that ν1(t) ∈ D(A) for t ∈ [0,a] and that Aν1(·) is continuous, for ε > 0 we define the

function

ν1,ε(t) =
{ ∫ t−ε

0 T (t − s)( f (s)− f (t))ds, for t > ε
0, for 0 < t ≤ ε.

Let ε > 0. If t > ε , we see that

‖ν1,ε(t)−ν1(t)‖ ≤
∫ t

t−ε
‖T (t − s)‖‖ f (s)− f (t)‖ds

≤ M
∫ t

t−ε
‖ f (s)− f (t)‖ds

≤ M
(∫ t

t−ε
‖ f (s)‖ds+‖ f (t)‖ε

)
.

For t ∈ [0,ε], we note that

‖ν1,ε(t)−ν1(t)‖ ≤
∫ t

0
‖T (t − s)‖‖ f (s)− f (t)‖ds

≤ M
(∫ ε

0
‖ f (s)‖+‖ f (t)‖ds

)
≤ M‖ f‖L1([0,ε])+M‖ f (t)‖ε.

From the above, ν1,ε → ν1 for all t ∈ [0,T ]. On the other hand, observe that

‖Aν1,ε(t)‖ ≤
∫ t−ε

0
‖AT (t − s)‖‖ f (s)− f (t)‖ds

≤
∫ t

0

C1

(t − s)
L f ,t(t − s)ds

≤ C1L f ,tT, (2.11)

where L f ,t is the Lipschitz constant of f on [t −ε, t] and that ‖Aν1,ε(t)‖= 0 for t ∈ [0,ε]. From the
previous, we infer that ν1,ε(t) ∈ D(A) for all t ∈ [0,a]. Moreover, from the estimative (2.11) we
infer that

Aν1,ε(t)−→
∫ t

0
AT (t − s)( f (s)− f (t))ds, as ε → 0.

From the above remarks, ν1(t) ∈ D(A) for all t ∈ [0,a] and

Aν1(t) =
∫ t

0
AT (t − s)( f (s)− f (t))ds, for t ∈ [0,a].
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To complete the proof, next we show that Aν1(·) is Hölder continuous on [0,a]. For 0 ≤ s ≤
t ≤ a, we have

Aν1(t)−Aν1(s) =
∫ t

0
AT (t − τ)( f (τ)− f (t))dτ −

∫ s

0
AT (s− τ)( f (τ)− f (s))dτ

=
∫ s

0
AT (t − τ)( f (τ)− f (t))dτ +

∫ t

s
AT (t − τ)( f (τ)− f (t))dτ

−
∫ s

0
AT (s− τ)( f (τ)− f (s))dτ

=
∫ s

0
AT (t − τ)( f (τ)− f (s))dτ +

∫ s

0
AT (t − τ)( f (s)− f (t))dτ

+
∫ t

s
AT (t − τ)( f (τ)− f (t))dτ −

∫ s

0
AT (s− τ)( f (τ)− f (s))dτ

=
∫ s

0
(AT (t − τ)−AT (s− τ))( f (τ)− f (s))dτ +(T (t)−T (t − s))( f (s)− f (t))

+
∫ t

s
AT (t − τ)( f (τ)− f (t))dτ (2.12)

=
∫ s

0

∫ t−τ

s−τ
A2T (θ)( f (τ)− f (s))dθdτ +(T (t)−T (t − s))( f (s)− f (t))

+
∫ t

s
AT (t − τ)( f (τ)− f (t))dτ.

Then,

‖Aν1(t)−Aν1(s)‖ ≤
∫ s

0

∫ t−τ

s−τ
‖A2T (θ)‖‖ f (τ)− f (s)‖dθdτ +‖T (t)−T (t − s))‖‖ f (s)− f (t)‖

+
∫ t

s
‖AT (t − τ)‖‖ f (τ)− f (t)‖dτ

≤
∫ s

0

∫ t−τ

s−τ

M2

θ 2 L f (s− τ)αdθdτ +2ML f |t − s|α +
∫ t

s

C
t − τ

L f (t − τ)αdτ

≤ M2L f

∫ s

0

∫ t−τ

s−τ
θ α−2dθdτ +2ML f |t − s|α +CL f

∫ t

s
(t − τ)α−1dτ

≤ M2L f

∫ s

0

(
(t − τ)α−1

α −1
− (s− τ)α−1

α −1

)
dτ +2ML f |t − s|α +CL f

|t − s|α

α

≤
M2L f

1−α

(
(t − s)α − tα − sα

α

)
+2ML f |t − s|α +CL f

|t − s|α

α

≤
(

M2L f

α(1−α)
+2ML f +

CL f

α

)
|t − s|α .

The main result of this section establishes the Hölder continuity of the solution u(·) of (2.7)-
(2.8).

Theorem 2.1.10 Assume f ∈ Cθ ([0,a];X) and let u ∈ C([0,a];X) be the mild solution of the
initial value problem (2.7)-(2.8). Then, u(·) is a classical solution and

i) for every δ > 0, Au ∈Cθ ([δ ,a];X) and u′ ∈Cθ ([δ ,a];X),
ii) If x ∈ D(A) then Au(·) and u′(·) are continous on [0,a].

iii) If x = 0 and f (0) = 0 then Au(·) and u′(·) belongs to Cθ ([0,a];X).

Proof: The fact that u(·) is a classical solution follows from Theorem 2.1.9. Next, considering ν1(·)
and ν2(·) the functions defined on the proof of the Theorem 2.1.9, we prove the other assertions.
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i) To begin, using that AT (·)x is Lipschitz continous on [δ ,a] it is sufficient to show that Aν(t)∈
Cθ ([δ ,a];X).

From the proof of Theorem 2.1.9, we know that Aν1(t) ∈Cθ ([0,a];X).
Next, we study the function Aν2(·). Using that Aν2(t) = (T (t)− I) f (t) and f ∈ Cθ ([0,a];X),

it is enough show that T (t) f (t) ∈Cθ ([δ ,a];X) for every δ > 0. For t ≥ δ and h > 0, we get

‖T (t +h) f (t +h)−T (t) f (t)‖
= ‖T (t +h) f (t +h)−T (t +h) f (t)+T (t +h) f (t)−T (t) f (t)‖
= ‖T (t +h)( f (t +h)− f (t))+ f (t)(T (t +h)−T (t))‖
≤ ‖T (t +h)‖‖ f (t +h)− f (t)‖+‖ f (t)‖‖T (t +h)−T (t)‖

≤ ML f hθ +‖ f (t)‖
∫ t+h

t
‖AT (τ)‖dτ

≤ ML f hθ +‖ f (t)‖C([0,T ];X)

∫ t+h

t

C
τ

dτ

≤ ML f hθ +‖ f (t)‖C([0,T ];X)C
h
t

≤ C1hθ , (2.13)

which proves that Aν2(·) is Hölder continous on [δ ,a]. From the above Au ∈ Cθ ([δ ,a];X) for all
δ > 0, which in turns implies taht u′ ∈Cθ ([δ ,a];X).

ii) From the proof of the Theorem 2.1.9, we only need to show the continuity of

Au(t) = AT (t)x+A
∫ T

0
T (t − s)( f (s)− f (t))ds+A

∫ t

0
T (t − s) f (t)ds.

For x ∈ D(A), we have AT (·)x ∈ C([0,a];X), because AT (t)x = T (t)Ax and the function t 7→
T (t)x is continuous and, from the proof of the Theorem 2.1.9, we know that Aν1(·) ∈Cθ ([0,a];X).
To finish, we study the continuity of Aν2(t) = (T (t)− I) f (t). From the previous, it is sufficient to
study the continuity at t = 0, we note that

‖T (t) f (t)−T (0) f (0)‖ = ‖T (t) f (t)−T (0) f (0)‖
= ‖T (t) f (t)−T (t) f (0)+T (t) f (0)−T (0) f (0)‖
≤ ‖T (t)‖‖ f (t)− f (0)‖+‖T (t) f (0)−T (0) f (0)‖
≤ M‖ f (t)− f (0)‖+‖T (t) f (0)−T (0) f (0)‖,

which implies that T (t) f (t) is continous at t = 0.
iii) Using a similar argument used above, we have only to show that T (·) f (·) ∈ Cθ ([0,a];X).

For t,h ∈ [0,a] with t +h ∈ [0,a], we get

‖T (t +h) f (t +h)−T (t) f (t)‖
= ‖T (t +h) f (t +h)−T (t +h) f (t)+T (t +h) f (t)−T (t) f (t)‖
≤ ‖T (t +h)‖‖ f (t +h)− f (t)‖+‖(T (t +h)−T (t)) f (t)‖

≤ ML f hθ +

∥∥∥∥∫ t+h

t
AT (τ) f (t)dτ

∥∥∥∥
≤ ML f hθ +

∫ t+h

t
‖AT (τ)( f (t)− f (0))‖dτ

≤ ML f hθ +
∫ t+h

t

C
τ

L f tθ dτ
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≤ ML f hθ +
∫ t+h

t

C
τ

L f τθ dτ

≤ ML f hθ +CL f

∫ t+h

t

dτ
τ1−θ

≤ L f

(
M+

C
θ

)
hθ .

2.2 Semilinear evolution equations
In this section, we are interested in the semilinear initial value problem

u′(t)+Au(t) = f (t,u(t)), t > t0 (2.14)
u(t0) = u0, (2.15)

where −A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X and f : [t0,a]×X → X
is continuous in t and satisfies a Lipschitz condition in the second variable.

Before the main result, we present the concept of classical solution of the problem (2.14)-
(2.15).

Definition 2.2.1 A function u : [t0,a]→ X is a classical solution of (2.14)-(2.15) if u(·) is con-
tinuous on [t0,a], continuously differentiable on (t0,a), u(t) ∈ D(−A) for all t0 < t < a, (2.14)
is satisfied on (t0,a) and u(t0) = u0.

Remember that if (2.14)-(2.15) has a solution u(·) then, proceeding as in the proof of the
Corollary 2.1.1, we have

u(t) = T (t − t0)u0 +
∫ t

t0
T (t − s) f (s,u(s))ds. (2.16)

Motivated by the above, we consider the concepts of mild and strong solutions.

Definition 2.2.2 A continuous solution u(·) of the integral equation (2.16) is called a mild solu-
tion of the initial value problem (2.14)-(2.15).

Definition 2.2.3 A function u ∈C([0,a];X) is called a strong solution of the initial value prob-
lem (2.14)-(2.15) if u(·) is differentiable almost everywhere on [t0,a], u′ ∈ L1([0,a];X), u(0) =
u0 and (2.14) is satisfied almost everywhere on [t0,a].

The following result concerns the existence and uniqueness of a mild solution to the prob-
lem (2.14)-(2.15). In the remainder of this section, we always assume that A is the infinitesimal
generator of C0-semigroup (T (t))t≥0.

Theorem 2.2.1 Assume that u0 ∈ X and that f : [t0,a]×X → X is continuous on the first variable
and uniformly Lipschitz continuous (with constant L) on the second variable. Then, the initial
value problem (2.14)-(2.15) has a unique mild solution u ∈ C([t0,a];X). Moreover, if u(·,x(·))
denotes the mild solution of the problem (2.14)-(2.15) then the map u0 7→ u(·,u0) is Lipschitz
continuous from X to C([t0,a];X).

Proof: We start defining the continuous map Γ : C([t0,a];X)→C([t0,a];X) by

(Γu)(t) = T (t − t0)u0 +
∫ t

t0
T (t − s) f (s,u(s))ds, t0 ≤ t ≤ a.
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Denoting by ‖ · ‖∞ the norm of C([t0,a];X), for u,v ∈C([t0,a];X) and t ∈ [t0,a], we have

‖Γu(t)−Γv(t)‖

=

∥∥∥∥T (t − t0)u0 +
∫ t

t0
T (t − s) f (s,u(s))ds−T (t − t0)u0 −

∫ t

t0
T (t − s) f (s,v(s))ds

∥∥∥∥
≤

∫ t

t0
‖T (t − s)‖‖ f (s,u(s))− f (s,v(s))‖ds

≤ ML
∫ t

t0
‖u(s)− v(s)‖ds

≤ ML‖u− v‖∞(t − t0), (2.17)

where we have assumed that ‖T (t)‖ ≤ M for all t ∈ [t0,a]. Moreover, using (2.17), we see that

‖Γ2u(t)−Γ2v(t)‖ =

∥∥∥∥∫ t

t0
T (t − s) f (s,Γ(u(s)))ds−

∫ t

t0
T (t − s) f (s,Γ(v(s)))ds

∥∥∥∥
≤

∫ t

t0
‖T (t − s)‖‖ f (s,Γ(u(s)))− f (s,Γ(v(s)))‖ds

≤ ML
∫ t

t0
‖Γ(u(s))−Γ(v(s))‖ds

≤ ML
∫ t

t0
ML‖u− v‖∞(s− t0)ds

≤ (ML(t − t0))2

2
‖u− v‖∞.

Continuing as above, it is easy to infer that

‖Γn(u(t))−Γn(v(t))‖ ≤ (ML(t − t0))n

n!
‖u− v‖∞, for all t ∈ [t0,a] and n ∈ N\{0},

which implies that

‖Γnu−Γnv‖∞ ≤ (MLT )n

n!
‖u− v‖∞.

For n large enough such that (MLT )n

n! < 1, we have that Γn is a contraction. From the contraction
mapping principle, Γn has a unique fixed point u(·) in C([t0,a];X). Noting that Γu = Γ(Γnu) =
Γn(Γu), we conclude that Γu is the fixed point of Γnu. Using the uniqueness of Γu(·) we obtain
that Γu = u. From the above, u(·) is the unique mild solution of the problem (2.14)-(2.15) on [t0,a].

Suppose now that v(·) = ν(·,v0) is a mild solution of (2.14) on [t0,a] with initial condition v0.
Then,

‖u(t)− v(t)‖ ≤ ‖T (t − t0)u0 −T (t − t0)v0‖

+
∫ t

t0
‖T (t − s)( f (s,u(s))− f (s,v(s)))‖ds

≤ ‖T (t − t0)‖‖u0 − v0‖+
∫ t

t0
‖T (t − s)‖‖ f (s,u(s))− f (s,v(s))‖ds

≤ M‖u0 − v0‖+ML
∫ t

t0
‖u(s)− v(s)‖ds

which implies, by Gronwall’s Inequality (see A.0.8), that

‖u(t)− v(t)‖ ≤ MeML(T−t0)‖u0 − v0‖.
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Hence,
‖u− v‖∞ ≤ MeML(T−t0)‖u0 − v0‖,

which proves that the map u0 7→ u(·,u0) is Lipschitz.

Arguing as in the proof of the Theorem 2.2.1, we obtain the next corollary.

Corollary 2.2.2 Let g ∈C([t0,a];X). Then, the integral equation

w(t) = g(t)+
∫ t

t0
T (t − s) f (s,w(s))ds

has a unique solution w ∈C([t0,a];X).

Next, we note that the previous results can be generalized. For all g ∈CLip([t0,a]×X ;X) there
exists a unique continuous solution of the integral problem

w(t) = g(t,w(t))+
∫ t

t0
T (t − s) f (s,w(s))ds.

The uniform Lipschitz condition on f (·,u(·)) implies the existence and uniqueness of a mild
solution of (2.14)-(2.15) on the whole interval [0,a]. In the following result, we study the case in
which f satisfies the next Lipschitz type condition. For t ′ ≥ 0 and c ≥ 0, there exists a constant
L(c, t ′)> 0 such that

‖ f (t,u)− f (t,v)‖ ≤ L(c, t ′)‖u− v‖,

for all u,v ∈ Bc(0,X) = {x ∈ X : ‖x‖ ≤ c} and every t ∈ [0, t ′].

Theorem 2.2.3 Assume that f : [0,∞)×X → X satisfies the above Lipschitz condition. Then,
for u0 ∈ X , there exists 0 < tmax ≤ ∞ such that the initial value problem

u′(t)+Au(t) = f (t,u(t)), t ≥ 0 (2.18)
u(0) = u0 (2.19)

has a unique mild solution u ∈C([0, tmax);X). Moreover, if tmax < ∞ then limt↑tmax ‖u(t)‖= ∞.

Proof: First we show that the initial value problem (2.18)-(2.19) has a unique mild solution on
a bounded interval. Let c > 0 and t ′ > 0. For 0 < t1 < t ′ such that ML(c, t ′)t1 < 1 and M‖u0‖+
M(L(c, t ′)c+‖ f (·,0)‖)t1 ≤ c we define the space

Λ = {x ∈C([0, t1];X) : ‖x(t)‖ ≤ c, t ∈ [0,b]}

endowed with the uniform norm denoted by ‖ · ‖∞ and let Γ : Λ → C([0, t ′];X) be the function
defined by

Γ(x)(t) = T (t)u0 +
∫ t

0
T (t − s) f (s,u(s))ds.

For s ∈ [0, t ′] and u,v ∈ Bc(0,Λ), we have

‖Γu(t)−Γv(t)‖ ≤
∫ t

0
‖T (t − s)‖‖ f (s,u(s))− f (s,v(s))‖ds

≤ ML(c, t ′)‖u− v‖t
≤ ML(c, t ′)t1‖u− v‖
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which implies that Γ(·) is Lipschitz. Moreover, for u ∈ Λ, we see that

‖(Γu)(t)‖ =

∥∥∥∥T (t − t0)u0 +
∫ t

t0
T (t − s) f (s,u(s))ds

∥∥∥∥
≤ ‖T (t − t0)‖‖u0‖+

∫ t

t0
‖T (t − s)‖(‖ f (s,u(s))− f (s,0)+ f (s,0)‖)ds

≤ M‖u0‖+
∫ t

0
M(L(c, t ′)‖u‖+ sup

t∈[0,b]
‖ f (t,0)‖)ds

≤ M‖u0‖+M(L(c, t ′)c+‖ f (·,0)‖)t1
≤ c,

hence Γ(Λ)⊂ Λ.
From the above, Γ(·) is a contraction on Λ, hence there exists a unique mild solution u ∈

C([0, t1];X) of (2.18)-(2.19).
We introduce now the set of functions

P = {u : D(u)⊂ [0, t1)→ X : u is a mild solution of (2.18)-(2.19) on D(u)}

and the relation u1 ≤ u2 if D(u1)⊂D(u2) and u1 = u2 on D(u1). It is easy to see that "≤” is a partial
order. By defining D(u) = ∪ν∈PD(ν) and u : D(u) → X by u(t) = ν(t) if t ∈ D(ν), we obtain a
mild solution of (2.18)-(2.19) on D(u) such that ν ≤ u for all ν ∈ Q ⊂ P. From the above and
Zorn’s Lemma, there exists a maximal solution u : D(u) → X of (2.18)-(2.19), which we denote
tmax = supD(u).

To finish, we prove that if tmax <∞ then, limt→tmax ‖u(t)‖=∞. Otherwise, there exist α > 0 and
a sequence (tn)n such that tn → tmax and ‖x(tn)‖ ≤ α, ∀n ∈ N. Arguing as above, we can conclude
that there exists t1 > 0 such that for each n ∈ N the initial value problem

w′(t)+Aw(t) = f (t,w(t)), t ∈ (tn, tn + t1),
w(tn) = wtn ,

has a unique mild solution wn ∈C([tn, tn + t1];X). Let n ∈ N large enough such that tn + t1 > tmax.
Defining now u : [0, tn + t1]→ X by u = u(t) for t ∈ [0, tn] and u = un(t) for t ∈ [tn, t1] we obtain
a mild solution of (2.18)-(2.19) such that u ≤ u, which is contrary to the maximality of u(·). This
completes the proof.

The next theorem gives us sufficient conditions to guarantee the existence of a classical solution
of the initial value problem (2.14)-(2.15).

Theorem 2.2.4 If f : [t0,a]×X → X is continuously differentiable and u0 ∈ D(A) then, the mild
solution of (2.14)-(2.15) on [0,a] is a classical solution.

Proof: Let u ∈C([t0,a];X) be the mild solution of (2.14)-(2.15). Using that f is a C1 function, for
s,h ∈ [t0,a] with s+h ∈ [t0,a], we note that

f (s+h,u(s+h))− f (s,u(s))

=
∫ 1

0
∂τ f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))dτ

=
∫ 1

0
∂τ f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))hdτ (2.20)
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+
∫ 1

0
∂x f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))(u(s+h)−u(s))dτ.

Hence

‖ f (s+h,u(s+h))− f (s,u(s))‖

≤
∫ 1

0
‖∂t f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))‖hdτ

+
∫ 1

0
‖∂x f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))‖‖u(s+h)−u(s)‖dτ

≤ Θ1h+Θ2‖u(s+h)−u(s)‖,

where

Θ1 = sup
{

∂t f (τ(t ′,x′)+(1− τ)(t,x)) : τ ∈ [0,1], t, t ′ ∈ [0,T ] and x,x′ ∈ X
}
,

and

Θ2 = sup
{

∂x f (τ(t ′,x′)+(1− τ)(t,x)) : τ ∈ [0,1], t, t ′ ∈ [0,T ] and x,x′ ∈ X
}
.

We also observe that

u(t +h)−u(t) = T (t +h− t0)u0 −T (t − t0)u0

+
∫ t+h

t0
T (t +h− s) f (s,u(s))ds−

∫ t

t0
T (t − s) f (s,u(s))ds

=
∫ t+h−t0

t−t0
AT (s)u0ds+

∫ t0+h

t0
T (t +h− s) f (s,u(s))ds

+
∫ t+h

t0+h
T (t +h− s) f (s,u(s))ds−

∫ t

t0
T (t − s) f (s,u(s))ds

=
∫ t+h−t0

t−t0
T (s)Au0ds+

∫ t0+h

t0
T (t +h− s) f (s,u(s))ds

+
∫ t

t0
T (t − s) f (s+h,u(s+h))ds−

∫ t

t0
T (t − s) f (s,u(s))ds

=
∫ t+h−t0

t−t0
T (s)Au0ds+

∫ t0+h

t0
T (t +h− s) f (s,u(s))ds

+
∫ t

t0
T (t − s)( f (s+h,u(s+h))− f (s,u(s)))ds. (2.21)

Using the inequalities above, we note that

‖u(t +h)−u(t)‖
h

≤ 1
h

∫ t+h−t0

t−t0
‖T (s)‖‖Au0‖ds+

1
h

∫ t0+h

t0
‖T (t +h− s)‖‖ f (s,u(s))‖ds

+
1
h

∫ t

t0
‖T (t − s)‖‖ f (s+h,u(s+h))− f (s,u(s))‖ds

≤ 1
h

∫ t+h−t0

t−t0
M‖Au0‖ds+

1
h

∫ t0+h

t0
M‖ f (·,u(·))‖C([t0,T ];X)ds

+
∫ t

t0
M(Θ1h+Θ2‖u(s+h)−u(s)‖)ds
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≤ M(‖Au0‖+‖ f‖+Θ1a)+
∫ t

t0
Θ2

‖u(s+h)−u(s)‖
h

ds.

From Gronwall’s Inequality (see Theorem A.0.8), we obtain

‖u(t +h)−u(t)‖
h

≤ M(‖Au0‖+‖ f‖+Θ1a)eΘ2a,

which implies that u(·) is Lipschitz continuous.
On the other hand, if u(·) is the classical solution, from (2.20) and (2.21) we have that

u′(t) = AT (t − t0)u0 +T (t − t0) f (t0,u(t0))+
∫ t

t0
T (t − s)∂s f (s,u(s))ds+

∫ t

t0
∂x f (s,u(s))u′(s)ds.

Motivated from the above, we define the function g : [t0,a]→ X by

g(t) = T (t − t0) f (t0,u(t0))+AT (t − t0)u0 +
∫ t

t0
T (t − s)∂x f (s,u(s))w(s)ds,

and study the abstract integral problem

w(t) = g(t)+
∫ t

t0
T (t − s)

∂
∂ s

f (s,u(s))ds, t ∈ [t0,a]. (2.22)

From Corollary 2.2.2 we know that the problem (2.22) has a unique solution w ∈C([t0,a];X).
Next, we prove that w = u′ on [t0,a].

Let t,h ∈ [t0,a] with t + h ∈ [t0,a]. Defining wh(t) =
u(t+h)−u(t)

h −w(t) and using (2.20) we
have that

wh(t) =
T (h)− I

h
T (t − t0)u0 −AT (t − t0)u0

+
1
h

∫ t0+h

t0
T (t +h− s) f (s,u(s))ds−T (t − t0) f (t0,u(t0))

+
1
h

∫ t

t0
T (t − s)

∫ 1

0
∂s f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))hdτds

−
∫ t

t0
T (t − s)∂s f (s,u(s))ds−

∫ t

t0
T (t − s)∂x f (s,u(s))w(s)ds

+
∫ t

t0
T (t − s)

∫ 1

0
∂x f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))

(
u(s+h)−u(s)

h

)
dτds.

Using that u0 ∈ D(A), from the definition of infinitesimal generator,

lim
h→0

T (t +h− t0)u0 −T (t − t0)u0

h
= AT (t − t0)u0.

From Theorem 1.2.3 (i) and the fact that f (·,u(·)) ∈C([t0,a];X), we also note that

lim
h→0

1
h

∫ t0+h

t0
T (t +h− s) f (s,u(s))ds = T (t − t0) f (t0,u(t0)).

Moreover, noting that f is a C1 function we see that

lim
h→0

∫ t

t0
T (t − s)

∫ 1

0
∂s f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))dτds =

∫ t

t0
T (t − s)∂s f (s,u(s))ds.
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We also note that,∫ t

t0
T (t − s)

(∫ 1

0
∂x f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))(

u(s+h)−u(s)
h

)

)
dτ −∂x f (s,u(s))w(s)ds

=
∫ t

t0
T (t − s)

∫ 1

0
(∂x f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))−∂x f (s,u(s)))

(
u(s+h)−u(s)

h

)
dτds

+
∫ t

t0
T (t − s)∂x f (s,u(s))

(
u(s+h)−u(s)

h
−w(s)

)
ds.

From the previous, the fact that θ 7→ ∂u f (θ ,u(θ)) is continuous and that u(s+h)−u(s)
h is uniformly

bounded for s,h,θ ∈ [t0,a] we infer that

lim
h→0

∫ t

t0
T (t − s)

∫ 1

0
(

∂
∂u

f (τ(s+h,u(s+h))+(1− τ)(s,u(s)))dτds =
∫ t

t0
T (t − s)

∂
∂u

f (s,u(s))).

From the above remarks, it follows that

‖wh(t)‖ ≤ ε(h)+Θ
∫ t

t0
‖wh(s)‖ds, (2.23)

where Θ > 0 is a constant indenpendent of s and h and ε(h)→ 0 as h → 0. From (2.23) and the
Gronwall’s Inequality (see Theorem A.0.8), we obtain that

‖wh(t)‖ ≤ ε(h)e(a−t0)M

which implies that ‖wh(t)‖→ 0 as h → 0, that u′ = w and that u is a C1 function on [t0,a].
Finally, using that u(·) and f (·) are continuously differentiable, we have that f (·,u(·)) is con-

tinuously differentiable on [t0,a], and from Corollary 2.1.3, we infer that the mild solution of

dν(t)
dt

+Aν(t) = f (t,u(t)), t > t0 (2.24)

ν(t0) = u0. (2.25)

is a classical solution.
To finish, remarking that u(·) is the unique solution of (2.24)-(2.25), from the above remarks

we infer that u(·) is a classical solution of the problem (2.14)-(2.15).

To establish the next result we need to include some remarks. Next, for x ∈ D(A), we define
the graph norm in D(A) by

|x|A := ‖x‖+‖Ax‖.
Let Y = D(A) endowed with the norm | · |A. We claim that Y is a Banach space. Let (xn)n be a

Cauchy sequence on Y . For ε > 0 there exists Nε ∈ N such that

|xn − xm|A = ‖xn − xm‖+‖Axn −Axm‖< ε, ∀n,m > Nε .

Thus, (xn)n and (Axn)n are Cauchy sequences on X and there are x,y ∈ X such that xn → x and
Axn → y. Using that A is a closed linear operator, we obtain that Ax = y, which implies that
|xn − x|A −→ 0 as n → ∞. Moreover, noting that Y ⊆ X and that T (t) : D(A)→ D(A), it follows
that (T (t))t≥0 is a C0-semigroup on Y . In fact, for x ∈ D(A), we have that

|T (t)x− x|A = ‖T (t)x− x‖+‖AT (t)x−Ax‖= ‖T (t)x− x‖+‖T (t)Ax−Ax‖ ≤ ε,

which impliest that limt↓0 |T (t)x− x|A = 0.
Next, we prove the existence of a classical solution for the initial value problem (2.14)-(2.15).
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Theorem 2.2.5 Assume that f : [t0,a]×Y → Y is uniformly Lipschitz in Y and that for all y ∈ Y
the function t 7→ f (t,y) is continuous from [t0,a] into Y . If u0 ∈ D(A), the initial value problem
(2.14)-(2.15) has a unique classical solution on [t0,a].

Proof: Applying Theorem 2.2.1 in Y , we obtain that there exists a mild solution u ∈C([t0,T ];Y )⊂
C([t0,a];X) of the problem, which is given by

u(t) = T
∣∣
Y (t − t0)u0 +

∫ t

t0
T
∣∣
Y (t − s) f (s,u(s))ds.

Let g(s) = f (s,u(s)). From the assumptions, g(s) ∈ D(A) for all s ∈ [t0,a] and the functions
g(·) and Ag(·) are continuous in X . Therefore, from Corollary 2.1.4, we infer that the initial value
problem

ν ′(t)+Aν(t) = g(t), t > t0
ν(t0) = u0,

has a unique classical solution ν ∈C([t0,a];Y ). Finally, noting that

ν(t) = T (t − t0)u0 +
∫ t

t0
T (t − s)g(s)ds

= T (t − t0)u0 +
∫ t

t0
T (t − s) f (s,u(s))ds = u(t),

we obtain that u(·) is a classical solution of (2.14)-(2.15) on [t0,a].



3. Evolution Abstract Problems with Lq,α-Hölder nonlinear terms

In this chapter, we introduce the class of Lp,α - Hölder functions and study the local and global
existence and uniqueness of solution for abstract differential equations described in the form

u′(t) = Au(t)+F(t,u(t)), t ∈ [0,a],
u(0) = x0 ∈ X ,

where A : D(A)⊂ X → X is the generator of an analytic C0-semigroup of bounded linear operators
(T (t))t≥0 on a Banach space (X ,‖ · ‖) and F : [0,a]×X → X is a Lp,α -Hölder function.

We note that a Lp,α -Hölder function is a function satisfying a type of Hölder condition de-
scribed using a Lp function (see Definition (3.1.1)) and that our current studies are motivated by
the concept of Lp

Lip-Lipschitz considered initially in [Hernandez et al., 2021]. It is important to
remark that each locally Lipschitz function and each locally Hölder function is a Lp,α -Hölder
function. Considering this fact, our main motivation is to extend some classic results about the
existence and regularity of mild solution for the case in which F(·) is Lispchtiz or α-Hölder, to the
more general case in which F(·) is a Lp,α -Hölder function.

To conclude this introduction we note some notations used in the remainder of this work. Let
(Z,‖ · ‖Z) and (W,‖ · ‖W ), next we use the notation L (Z,W ) for the space of bounded linear
operators from Z into W endowed with the operator norm denoted by ‖ · ‖L (Z,W ) and Br(z,Z)
denotes the closed ball Br(z,Z) := {x ∈ Z : ‖x− z‖Z ≤ r}. For p > 1 we denote by p′ the number
defined by 1

p +
1
p′ = 1.

In the remainder of this chapter, A is the generator of an analytic C0-semigroup (T (t))t≥0 on X
and, for sake of simplicity, we assume that 0 ∈ ρ(A). For η > 0, we use the notations (−A)η and
Xη = D((−A)η) for the η-order fractional power of A and for the domain of (−A)η endowed with
the norm ‖ · ‖η defined by ‖x‖η = ‖(−A)ηx‖. We also assume that Ci,Cη (i ∈ N and η > 0) are
constants such that ‖AiT (t)‖ ≤ Ci

t i and ‖(−A)ηT (t)‖ ≤ Cη
tη for all t ∈ [0,a].

3.1 Lp,α-Hölder and Lp
Lip-Lipschitz functions

It is well-known the importance of Lipschitz and Hölder functions in the study of the existence
and uniqueness of solutions for ordinary differential equations. Considering this fact, the main
goal of this section is to present a generalization of these concepts.

For convenience, we note the next concepts. For X and Y Banach spaces, we say that a function
F : [0,a]×X → Y is Lipschitz if there exists LF > 0 such that

‖F(t,x)−F(s,y)‖Y ≤ LF(|t − s|+‖x− y‖X), ∀t,s ∈ [0,a] and ∀x,y ∈ X .

Similarly for α ∈ (0,1] we say that F is α-Hölder continuous if there exists L f > 0 such that

‖F(t,x)−F(s,y)‖Y ≤ LF(|t − s|α +‖x− y‖X), ∀t,s ∈ [0,a] and ∀x,y ∈ X ,

Next, (Yi,‖ · ‖Yi), i = 1,2, are Banach spaces and q ≥ 1.
Inspired by the concept of Lp

Lip-Lipschitz function introduced in [Hernandez et al., 2020] we
consider the following definition.

Definition 3.1.1 Let P : [c,d]×Y1 → Y2 be a function such that P(t, ·) : Y1 → Y2 is continuous
almost everywhere for t ∈ [0,a] and P(·,x) : [c,d] → Y2 is strongly measurable for all x ∈ Y1.
If there are α ∈ (0,1], an integrable function [P](·,·) : [c,d]× [c,d]→ R+ and a non-decreasing
function WP : R+ → R+ such that [P](·,·), [P](t,·) and [P](·,0) belongs to Lq([c, t];R+) for all
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t ∈ (c,d], and

‖P(t,x)−P(s,y)‖Y 2 ≤ WP(max{‖x‖Y1 ,‖y‖Y1})[P](t,s)(|t − s|α +‖x− y‖Y1),

for all x,y ∈ Y1 and c ≤ s ≤ t ≤ d, then we say that P(·) is a Lq,α -Hölder function if α ∈ (0,1)
and a Lq

Lip-function if α = 1.

R Next, we use the symbols Lq,α([c,d]×Y1;Y2) and Lq
Lip([c,d]×Y1;Y2) to denote the sets formed

by all the Lq,α -Hölder functions and all the Lq
Lip-Lipschitz functions defined from [0,a]×Y1

into Y2.

R The above concepts are defined in connection with the theory of abstract differential equations.
We remark that a weaker definition can be considered declining the continuity and the strong
measurability.

3.1.1 Examples
As pointed out, the Lq

Lip-Lipschitz functions were considered in [Hernandez et al., 2021]. How-
ever, only a unique example of this class was presented. Next, we build several examples concern-
ing the functions in the previous definition. In the next examples, we consider p > 1 and p′ their
conjugate.
1) Let f : [0,a] → R given by f (t) = p

√
t, see Figure 3.1. We claim that f ∈ Lq

Lip([0,a];R) if
q ∈ (1, p′).

Figure 3.1: The function f (t) = p
√

t (own figure)

In fact, from the Mean Value Theorem, for 0 < s ≤ t ≤ a, there is ξ ∈ (s, t) such that

| f (t)− f (s)|= f ′(ξ )|t − s|= 1
p

ξ
1
p−1|t − s| ≤ 1

p
s

1
p−1|t − s|,

we also note that
| f (t)− f (0)|= t

1
p ≤ t

1
p−1, t > 0.

From the above, defining [ f ](t,s) =
1
ps

1
p−1, [ f ](t,0) = t

1
p−1 and [ f ](0,0) = 0, we have∫ a

0
[ f ]q

(t,s)ds =
1
p

∫ a

0
|s

1
p−1|qds =

∫ a

0
sp′qds =

1
pq

a1−qp′

1−qp′

and noting that 1−qp′ > 0 for q ∈ (1, p′), we infer that f (·) is a Lq
Lip-Lipschitz function.
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2) Let f : [0,2]→R be given by f (t) = p
√

t for t ∈ [0,1] and f (t) = p
√

t −1 for t ∈ (1,2], see Figure
3.2.

Figure 3.2: The function f (t) = p
√

t for t ∈ [0,1] and f (t) = p
√

t −1 for t ∈ (1,2] (own figure)

Proceeding as above, we get
1. for t ∈ [1,2], s ∈ [0,1] and t −1 > s,

| f (t)− f (s)| ≤ p
√

t −1− p
√

s ≤ |t − s−1|

ps1− 1
p

≤ |t − s|

ps1− 1
p
,

2. for t ∈ [1,2] and s ∈ [0,1) with t −1 < s,

| f (t)− f (s)| ≤ p
√

s− p
√

t −1| ≤ |s− t +1|

p(t −1)1− 1
p
≤ 2|t − s|

p(t −1)1− 1
p |t − s|

,

3. for t,s ∈ (0,1] with s < t,

| f (t)− f (s)| ≤ p
√

t − p
√

s ≤ |t − s|

ps1− 1
p
,

4. for t,s ∈ (1,2] with s < t,

| f (t)− f (s)| ≤ p
√

t −1− p
√

s−1 ≤ |t − s|

p(s−1)1− 1
p
,

5. for t ∈ [0,1), | f (t)− f (0)| ≤ p
√

t = t

t−
1
p
,

6. for t ∈ (1,2], | f (t)− f (0)| ≤ p
√

t −1 ≤ (t−1)
1
p

t t.
From the above, we define

[ f ](t,s) =



0, t = s = 0,
1

ps1− 1
p
, t −1 > s,
2

p(t−1)1− 1
p |t−s|

, for t −1 < s,

1

ps1− 1
p
, for t,s ∈ [0,1),

1

p(s−1)1− 1
p
, for t,s ∈ (1,2],

1

t−
1
p
, for t ∈ [0,1],s = 0,

(t−1)
1
p

t , for t ∈ (1,2],s = 0.
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Now, observing that for t ∈ (1,2] we have∫ t

0
[ f ](t,τ)dτ =

∫ t−1

0

dτ

pτ1− 1
p
+
∫ 1

t−1

2dτ

p(t −1)1− 1
p (t − τ)

+
∫ t

1

dτ

p(τ −1)1− 1
p

=
1
p
(t −1)1− 1

p

1
p

+
2

p(t −1)1− 1
p

∫ 1

t−1

dτ
(t − τ)

+
1
p

∫ t

0
(τ −1)−(1− 1

p )dτ

= (t −1)
1
p +

2

p(t −1)1− 1
p

∫ 1

t−1

1
θ

dθ +
1
p

∫ t−1

0
θ−(1− 1

p )dθ

= (t −1)
1
p +

2

p(t −1)1− 1
p

ln(
1

t −1
)+(t −1)

1
p

∫ t

0
[ f ](τ,0)dτ =

∫ 1

0

dτ

τ−
1
p
+
∫ t

1

(τ −1)
1
p

τ
dτ

≤ τ
1
p

1
p

∣∣∣∣1
0
+
∫ t

1
(τ −1)

1
p dτ

= p+
(t −1)

1
p+1

1
p +1

,

we conclude that [ f ](t,·) and [ f ](·,0) are integrable on [0, t] for all t ∈ [1,2]. Similarly, for
t ∈ (0,1], we see that∫ t

0
[ f ](t,τ)dτ =

∫ t

0

dτ

pτ1− 1
p
=

1
p

∫ t

0
τ

1
p−1dτ =

1
p
(pτ

1
p )

∣∣∣∣t
0
= t

1
p

and ∫ t

0
[ f ](t,0)dτ =

∫ t

0

dτ

τ−
1
p
=

τ1+ 1
p

1+ 1
p

∣∣∣∣t
0
=

t1+ 1
p

1+ 1
p

,

which shows that [ f ](t,·) and [ f ](·,0) are integrable on [0,2]. From the previous remarks,
f ∈ Lq

Lip([0,2];R) for q ∈ [1, p′).
3) Let (ti)i∈N be a sequence in (0,1) such that ti < tk if k < i, (ti)i∈N → 0 as i → ∞ and the series

∑ j≥0(t j − t j+1)
1
p is convergent. Let f : [0,1]→ R be given by f (t) = p

√
t − ti for t ∈ (ti, ti−1]

and f (0) = 0. Arguing as in the previous examples, we note that
1. for t ∈ (tk, tk−1] and s ∈ (ti, ti−1], with i > k and t − tk > s− ti, we have that

| f (t)− f (s)| ≤ |t − s|

p(s− ti)
1− 1

p
,

2. for t ∈ (tk, tk−1] and s ∈ (ti, ti−1], with i > k and s− ti > t − tk,

| f (t)− f (s)| ≤ | p
√

s− ti − p
√

t − tk| ≤ 1 ≤ 1
(t − s)

|t − s|,

3. for t ∈ [tk, tk+1] and s ∈ [tk, t],

| f (t)− f (s)| ≤ | p
√

t − tk − p
√

s− tk| ≤
|t − s|

(s− tk)
1− 1

p
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4. for t ∈ (tk, tk−1],

| f (t)− f (0)| ≤ (t − tk)
1
p ≤ t

1
p .

Next, we show that f ∈ Lq
Lip([0,1];R) for q ∈ [1, p′). Let t ∈ (0,1] and k ∈ N such that

t ∈ (tk, tk−1]. Let i ∈ N be the first natural number such that t − tk > t j − t j−1 for all j ≥ i.
Then∫ t

0
[ f ]q

(t,τ)dτ =
∞

∑
j=i−1

∫ t j

t j+1

[ f ]q
(t,τ)dτ +

i−2

∑
j=k

∫ t j

t j+1

[ f ]q
(t,τ)dτ +

∫ t

tk
[ f ]q

(t,τ)dτ

≤
∞

∑
j=i−1

∫ t j

t j+1

dτ

(τ − t j+1)
(1− 1

p )q
+

i−2

∑
j=k

∫ t j

t j+1

[ f ]q
(t,τ)dτ +

∫ t

tk

dτ

(τ − tk)
(1− 1

p )q

≤
∞

∑
j=i−1

(t j − t j+1)
1−(1− 1

p )q

1− (1− 1
p)q

+
i−2

∑
j=k

∫ t j

t j+1

[ f ]q
(t,τ)dτ +

(t − tk)
1−(1− 1

p )q

1− (1− 1
p)q

.

In addition to the above, defining s j := sups∈[t j,t j−1]
{s− t j ≤ t − tk}, we also note that

i−2

∑
j=k

∫ t j

t j+1

[ f ]q
(t,τ)dτ ≤

i−2

∑
j=k

(∫ s j

t j+1

dτ

(τ − t j+1)
(1− 1

p )q
+
∫ t j

s j

dτ
(t − τ)q

)

≤
i−2

∑
j=k

(
(τ − t j+1)

1−(1− 1
p )q

1− (1− 1
p)q

+
∫ t j

s j

dτ
(t j − τ)q

)

≤
i−2

∑
j=k

(
(τ − t j+1)

1−(1− 1
p )q

1− (1− 1
p)q

+
t j − s j

(t − t j)q

)
,

which allows us to infer that [ f ](t,·) is integrable on [0, t]. In addition, we also have that

∫ t

0
[ f ]q

(τ,0)dτ ≤
∫ t

0

dτ

τ(1−
1
p )q

≤ t1−(1− 1
p )q

1− (1− 1
p)q

,

which proves that [ f ](·,0) is also integrable on [0, t]. From the above remarks we obtain that
f ∈ Lq

Lip([0,1];R) and, obviously, f ∈ Lq,θ ([0,1];R) for all θ ∈ (0,1).
4) Let f : [0,1]→R be the function defined by f (t) = t sin( 1

p√t ) for t > 0 and f (0) = 0, see Figure
3.3.

Figure 3.3: The function f (t) = t sin( 1
p√t ) (own figure)
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From the Mean Value Theorem, for < s < t ≤ 1 there exists ξ (t,s) ∈ (s, t) such that

| f (t)− f (s)| =

∣∣∣∣∣sin

(
1

p
√

ξ (t,s)

)
− cos

(
1

p
√

ξ (t,s)

)
ξ (t,s)

pξ 1+ 1
p (t,s)

∣∣∣∣∣ |t − s|

≤

(
1+

1

ps
1
p

)
|t − s|.

Moreover, noting that | f (t)− f (0)| ≤ t, we infer that f ∈ Lq
Lip([0,1];R) for all 1 < q < p.

5) Let f : [0,1]→ R be the function given by f (t) = t−
1
p and f (0) = 0 with p > 1, see Figure 3.4.

Figure 3.4: The function f (t) = t−
1
p on t ∈ (0,1] (own figure)

For 0 < s ≤ t ≤ 1, we get

| f (t)− f (s)|=
∣∣∣∣ 1

t
1
p
− 1

s
1
p

∣∣∣∣= |t
1
p − s

1
p |

(ts)
1
p

≤ |t − s|
1
p

(ts)
1
p

≤ |t − s|
1
p

s
2
p

,

and
| f (t)− f (0)| ≤ t−

1
p ≤ t−

2
p t

1
p ,

which allows us to infer that f ∈ Lq, 1
p ([0,1]) for p > 2q.

6) Let p> 2 and f : [0,2]→R be the function defined by f (t) = t−
1
p for t ∈ (0,1], f (t) = (t−1)−

1
p

for t ∈ (1,2] and f (0) = 0, see Figure 3.5.
Proceeding as usual, we note that

1. for t > 1 and s ∈ (0,1] with t −1 > s,

| f (t)− f (s)|=
∣∣∣∣ 1

p
√

t −1
− 1

p
√

s

∣∣∣∣= | p
√

t −1− p
√

s|
p
√

s(t −1)
≤ | p

√
t − p

√
s|

p
√

s(t −1)
≤ |t − s|

1
p

p
√

s(t −1)
,

2. for t > 1 and s ∈ (0,1] with t −1 < s,

| f (t)− f (s)|= | p
√

s− p
√

t −1|
p
√
(t −1)s

≤ 2
p
√

t − s p
√

(t −1)s
|t − s|

1
p ,

3. for s, t ∈ (0,1] with t > s,

| f (t)− f (s)|= | p
√

t − p
√

s|
p
√

ts
≤ |t − s|

1
p

p
√

st
,
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Figure 3.5: The function f (t) = t−
1
p for t ∈ (0,1], f (t) = (t −1)−

1
p for t ∈ (1,2] (own figure)

4. for s, t ∈ (1,2] with t > s,

| f (t)− f (s)| ≤ | p
√

t −1− p
√

s−1|
p
√
(t −1)(s−1)

≤ |t − s|
1
p

p
√
(t −1)(s−1)

,

5. for t ∈ (0,1] and s ∈ (1,2]

| f (t)− f (0)| ≤ t
1
p

t
2
p

and | f (s)− f (0)| ≤ s
1
p

p
√

s(s−1)
.

Considering the above, we define

[ f ](t,s) =



0, t = s = 0,
1

(s(t−1))
1
p
, t > 1, s ≤ 1 and t −1 > s,

2

((t−s)s(t−1))
1
p
, t > 1, s ∈ (0,1] and t −1 < s,

2

(st)
1
p
, s, t ∈ (0,1],

1

((t−1)(s−1))
1
p
, s, t ∈ (1,2],

1

t
2
p
, t ∈ [0,1],s = 0,

1

(t(t−1))
1
p
, t ∈ [1,2],s = 0.

From the above, for t > 1 we see that∫ t

0
[ f ](t,s)ds =

∫ t−1

0

ds

((t −1)s)
1
p
+
∫ t

t−1

2

((t − s)(t −1)s)
1
p

ds

=
1

(t −1)
1
p

∫ t−1

0

ds

s
1
p
+

2

(t −1)
2
p

∫ t

t−1

ds

(t − s)
1
p

=
1

(t −1)
1
p

(
(τ1− 1

p )

1− 1
p

)∣∣∣∣t−1

0
+

2

(t −1)
2
p

(
(t − τ)1− 1

p

1− 1
p

)∣∣∣∣1
t−1

≤ 2p
p−1

(
(t −1)1− 2

p +(t −1)−
2
p ((t −1)1− 1

p −1)
)
,∫ t

0
[ f ](s,0)ds ≤

∫ 1

0

ds

s
2
p
+
∫ t

1

ds

s
1
p (s−1)

1
p
≤ p

p−2
+

p
p−1

(t −1)1− 1
p .
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In addition, for t ∈ (0,1] we note that

∫ t

0
[ f ](t,s)ds =

∫ t

0

ds

(st)
1
p
=

1

t
1
p

s1− 1
p

1− 1
p

∣∣∣∣∣
t

0

=
pt1− 2

p

p−1
,

∫ t

0
[ f ](s,0)ds =

∫ t

0

ds

s
2
p
=

p
p−2

t1− 2
p .

From the above estimates we infer that f ∈ L1, 1
p ([0,2]).

7) Let p > 2 and (ti)i∈N be a sequence on the interval (0,1) such that ti < tk if k < i, (ti)i∈N → 0
as i → ∞ and the series ∑∞

j=1(t j − t j+1)
1− 1

p is convergent. Let the function f : [0,1]→ R be

given by f (t) = (t − ti)
− 1

p , for t ∈ (ti+1, ti] and f (0) = 0.
Arguing as in the previous examples,

1. for t ∈ (tk, tk−1],s ∈ (ti, ti−1] with i < k and t − tk > s− ti

| f (t)− f (s)| ≤ |s− t|
1
p

(t − tk)
1
p (s− ti)

1
p
,

2. for t,s ∈ (tk, tk−1] with t > s

| f (t)− f (s)| ≤ |s− t|
1
p

(t − tk)
1
p (s− tk)

1
p
,

3. for t ∈ (tk, tk−1] and s ∈ (ti, ti−1] with i < k and t − tk < s− ti

| f (t)− f (s)|= 1
p
√

t − tk

(
1−

p
√

t − tk
p
√

s− ti

)
≤ |t − s|

1
p

|t − s|
1
p (t − tk)

1
p
,

4. for t ∈ (tk, tk−1]

| f (t)− f (0)| ≤ t
1
p

t
1
p (t − tk)

1
p
.

In addition, For t ∈ (tk, tk−1] and i ∈ N such that t − tk > t j − t j+1 for all j ≥ i, we get

∫ t

0
[ f ](t,τ)dτ =

∞

∑
j=i−1

∫ t j

t j+1

[ f ](t,τ)dτ +
i−2

∑
j=k

∫ t j

t j+1

[ f ](t,τ)dτ +
∫ t

tk
[ f ](t,τ)dτ

≤
∞

∑
j=i−1

1

(t − tk)
1
p

∫ t j

t j+1

dτ

(τ − t j+1)
1
p
+

i−2

∑
j=k

∫ t j

t j+1

[ f ](t,τ)dτ +
1

(t − tk)
1
p

∫ t

tk

dτ

(τ − tk)
1
p

≤ p

(t − tk)
1
p (p−1)

∞

∑
j=i

(t j − t j+1)
1− 1

p +
i−2

∑
j=k

∫ t j

t j+1

[ f ](t,τ)dτ +
p

p−1
(t − tk)

1− 2
p .

Moreover, if s j := sups∈[t j,t j−1]
{s− t j ≤ t − tk}, we get

i−2

∑
j=k

∫ t j

t j+1

[ f ](t,τ)dτ ≤
i−2

∑
j=k

(∫ s j

t j+1

[ f ](t,τ)dτ +
∫ t j

s j

[ f ](t,τ)dτ
)
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≤
i−2

∑
j=k

(∫ s j

t j+1

dτ

(t − tk)
1
p (τ − t j+1)

1
p
+
∫ t j

s j

dτ

|t − τ|
1
p (t − tk)

1
p

)

≤
i−2

∑
j=k

(
p(t j − t j+1)

1− 1
p

(t − tk)
1
p (p−1)

+
p(t j − t j+1)

1− 1
p

(p−1)(t − tk)
2
p

)
,

which allows us to infer that f ∈ L1, 1
p ([0,1]).

8) Let f : [0,2]→R be given by f (t) = 1
p√t −1 for t ∈ (0,1] and f (t) = 1

p√2−t
−1 for t ∈ [1,2) and

f (0) = f (2) = 0, see Figure 3.6.

Figure 3.6: The function f (t) = 1
p√t −1 for t ∈ (0,1] and f (t) = 1

p√2−t
−1 for t ∈ [1,2) (own figure)

Then we have,
1. For t,s ∈ (0,1],

| f (t)− f (s)|=
∣∣∣∣ 1

p
√

t
−1− 1

p
√

s
+1
∣∣∣∣= ∣∣∣∣ 1

p
√

t
− 1

p
√

s

∣∣∣∣≤ p
√
|s− t|
p
√

st
,

2. for t,s ∈ [1,2),

| f (t)− f (s)| ≤
p
√

|s− t|
p
√

(2− s)(2− t)
,

3. for t ∈ (0,1) and s ∈ [1,2),

| f (t)− f (0)| ≤ tθ

t
1
p+θ

and | f (s)− f (0)| ≤ sθ

sθ (2− s)
1
p

4. for t ∈ [1,2] and s ∈ (0,1] with 2− t < s,

| f (s)− f (t)| ≤ |s
1
p − (2− t)

1
p |

s
1
p (2− t)

1
p

≤ (t − s)
1
p

2

(t − s)
1
p s

1
p (2− t)

1
p
.

5. for t ∈ [1,2] and s ∈ (0,1] with 2− t < s,

| f (t)− f (s)| ≤ (2− t)
1
p − s

1
p

s
1
p (2− t)

1
p

≤ (2− (t + s))
1
p

s
1
p (2− t)

1
p

≤ (2t −2s)
1
p

s
1
p (2− t)

1
p
≤ 2

1
p (t − s)

1
p

s
1
p (2− t)

1
p
.



64 Chapter 3. Evolution Abstract Problems with Lq,α -Hölder nonlinear terms

Considering the above estimates, we define

[ f ](t,s) =



0, t = s = 0,
2

s
1
p (2− t)

1
p (t − s)

1
p
, s ∈ (0,1], t ∈ [1,2),2− t < s

2
1
p

s
1
p (2− t)

1
p
, s ∈ (0,1], t ∈ [1,2),2− t < s

1

(st)
1
p
, s, t ∈ (0,1],

1

((2− t)(2− s))
1
p
, s, t ∈ [1,2),

tθ

t
1
p+θ

, t ∈ (0,1], s = 0,

tθ

tθ (2− t)
1
p
, t ∈ [1,2),s = 0.

From the above, for t ∈ [0,1],

∫ t

0
[ f ](t,τ)dτ =

∫ t

0

1
p
√

tτ
dτ =−(tτ)1− 1

p

1− 1
p

,

∫ t

0
[ f ](τ,0)dτ =

∫ t

0

τθ

τ
1
p+θ

dτ =
t1− 1

p

1− 1
p

and for t ∈ [1,2) we have that

∫ t

0
[ f ](t,s)ds ≤

∫ 2−t

0

2
1
p ds

s
1
p (2− t)

1
p
+
∫ 1

2−t

ds

s
1
p (2− t)

1
p
+
∫ t

1

ds

(2− s)
1
p (2− t)

1
p

≤ 1

(2− t)
1
p

(
2

1
p

∫ 2−t

0
s−

1
p ds+

∫ 1

2−t
s−

1
p ds+

∫ t

1
(2− s)−

1
p ds
)

≤ 2
1
p (2− t)1− 2

p ,∫ t

0
[ f ](s,0)ds ≤

∫ 1

0

ds

s
1
p+θ

+
∫ t

1

ds

sθ (2− s)
1
p
≤ 1

1− ( 1
p +θ)

+
p

p−1
(2− t)1− 1

p ,

which allows us to infer that the functions [ f ](t,·) and [ f ](·,0) are integrable on [0,2]. From the

above we have that f ∈ L1,min{θ , 1
p}([0,2]). Moreover, from the above estimates, it is simple

to see that f ∈ Lq,min{θ , 1
p}([0,2]) for q > 1 and θ ∈ (0,1) such that q( 1

p +θ)< 1.
9) Assume f ∈ Lq,α([a,b]) and that G ∈C(X ;X) is locally Lipschitz in the following sense: for all

r > 0 there exists LG(r)> 0 such that ‖G(x)−G(y)‖ ≤ LG(r)‖x− y‖, for all x,y ∈ Br(0,X).
Then the function H(t,x) = f (t)G(x) belongs to Lq,α([a,b]×X ;X). In fact, for t,s ∈ [a,b]
and x,y ∈ Br(0,X) we have

‖H(t,x)−H(s,y)‖
= ‖ f (t)G(x)− f (s)G(y)‖
= ‖ f (t)G(x)− f (s)G(x)+ f (s)G(x)− f (s)G(y)‖
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≤ | f (t)− f (s)|‖G(x)‖+ | f (s)|‖G(x)−G(y)‖
≤ [ f ](t,s)|t − s|α‖G(x)‖+ | f (s)|LG(r)‖x− y‖
≤ [ f ](t,s)|t − s|α(‖G(x)−G(0)‖+‖G(0)‖)+ | f (s)|LG(r)‖x− y‖
≤ [ f ](t,s)|t − s|α(LG(r)‖x‖+‖G(0)‖)+‖ f‖C([a,b])‖LG(r)‖x− y‖
≤ ([ f ](t,s)(LG(r)r+‖G(0)‖)+‖ f‖C([a,b])‖LG(r))(|t − s|α +‖x− y‖).

Moreover, if f ∈ Lq
Lip([a,b]), then H = f G ∈ Lq

Lip([a,b]×X ;X).
10) Assume F(t,x) = ζ (t)G(t,x), where G(·) is locally Lipchitz and ζ ∈C([0,a];R). In addition,

suppose that ζ (·) is differentiable almost everywhere on [0,a] and there is a function ξ :
[0,a]× [0,a] → R+ such that |ζ (t)− ζ (s)| ≤ ζ ′(ξ(t,s))|t − s| and s ≤ ξ(s,t) ≤ t for all 0 <
s ≤ t < a and that there exists q > 1 such that the functions [ζ ](t,·) = ζ ′(ξ(t,·)) and [ζ ](t,0) =
ζ ′(ξ(t,0)) belongs to Lq([0, t]) for all t ∈ [0,a].
Under the above conditions, we see that

‖F(t,x)−F(s,y)‖
= ‖ζ (t)G(t,x)−ζ (t)G(s,y)+ζ (t)G(s,y)−ζ (s)G(s,y)‖
≤ |ζ (t)|‖G(t,x)−G(s,y)‖+ |ζ (t)−ζ (s)|‖G(s,y)‖
≤ ‖ζ‖C([0,a];R)[G]Lip(|t − s|+‖x− y‖)

+ζ ′(ξ )|t − s|(‖G(s,y)−G(0,0)‖+‖G(0,0)‖)
≤ ([G]Lip(1+a+ r)+‖G(0,0)‖+‖ζ‖C([0,a];R))[ζ ](t,s)(|t − s|+‖x− y‖).

Using that [ζ ](t,s) ∈ Lq([0,a];X) and ([G]Lip(1+ a+ r)+ ‖G(0,0)‖+ ‖ζ‖C([0,a];R)) is non-
decreasing we conclude that F ∈ Lq

Lip([0,a]×X ;X).
11) Let F(t,x) = ζ (t)G(t,x), with G ∈ Lq,α([0,a]×X ;X) and ζ ∈ Lp,α([0,a];R) with 1

p +
1
q ≤ 1.

Then,

‖F(t,x)−F(s,y)‖
≤ |ζ (t)|‖G(t,x)−G(s,y)‖+ |ζ (t)−ζ (s)|(‖G(s,y)−G(0,0)‖+‖G(0,0)‖)
≤ ‖ζ‖C([0,a];R)WG[G](t,s)(|t − s|α +‖x− y‖)

+[ζ ](t,s)|t − s|α(WG[G](t,s)(|s|+‖y‖)+‖G(0,0)‖)
≤ (WG(‖ζ‖+a+ r)+‖G(0,0)‖)[G](t,s)(1+[ζ ](t,s))(|t − s|α +‖x− y‖)

hence, F ∈ Lk,α([0,a]×X ;X), with k such that 1
k = 1

p +
1
q .

We finish this section proving a important property of the Lq,α - Hölder functions.

Proposition 3.1.1 Lq,α([c,d]×X ;Y ) is vectorial space.
Proof: In fact, let f ,g ∈ Lq,α([a,b]×X ;Y ) and β ∈ C, for x,y ∈ BR(0) we have

‖( f +βg)(t,x)− ( f +βg)(s,y)‖ ≤ ‖ f (t,x)− f (s,y)‖+ |β |‖g(t,x)−g(s,y)‖
≤ W f (R)[ f ](t,s)(|t − s|α +‖x− y‖X)

+|β |Wg(R)[g](t,s)(|t − s|α +‖x− y‖X)

≤
(
W f (R)+ |β |Wg(R)

)(
[ f ](t,s)+[g](t,s))(|t − s|α +‖x− y‖X

)
,

hence, ( f +αg) ∈ Lq,α([c,d]×X ;Y ). This proves our claim.
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3.2 Existence, uniqueness and regularity of mild solutions
In this section, we study the existence of mild, classical, strong and strict solutions for the

problem

u′(t) = Au(t)+F(t,u(t)), t ∈ [0,a] (3.1)
u(0) = x0 ∈ X (3.2)

where A is the generator of an analytic C0-semigroup (T (t))t≥0 on X and F is a Lq
Lip-Lipschitz or

a Lq,α -Hölder function.
To begin we study the inhomogeneous case.

3.2.1 The inhomogeneous Cauchy problem
Consider the non-homogeneous abstract initial value problem (IVP)

u′(t) = Au(t)+ f (t), t ∈ [0,a], (3.3)
u(0) = x0 ∈ X . (3.4)

We remember that for p > 1 we use the notation p′ for the conjugate of p, the number defined
by 1

p +
1
p′ = 1 and remark that the concepts of classical, mild and strong solutions for the problem

(3.3)-(3.4) are defined in Definition 2.1.1, Definition 2.1.2 and Definition 2.1.3, respectively. In
addition, we remark the concept of a strict solution to the referred problem below.

Definition 3.2.1 Let u : [0,a] → X be a function. If u ∈ C([0,a];X)∩C1([0,a];X) satisfies the
IVP (3.3)-(3.4) on [0,a], we say that u(·) is a strict solution to (3.3)-(3.4) on [0,a].

If f ∈ Lq,α([0,a];Y ), from the estimative∫ a

0
‖ f (t)‖dt ≤

∫ a

0
‖ f (t)− f (0)‖dt +

∫ a

0
‖ f (0)‖dt ≤

∫ a

0
[ f ](t)t

αdt +‖ f (0)‖a,

we infer that f (·) is integrable, therefore there exists a unique mild solution for the problem (3.3)-
(3.4). Arguing as above we conclude that the same holds for f ∈ Lq

Lip([0,a];X).
The next result establishes conditions under which a mild solution of the IVP (3.3)-(3.4) is a

classical solution in the case where f is a Lq-Lipschitz function.

Proposition 3.2.1 Suppose f ∈ Lq
Lip([0,a];X), Λ f := supθ∈[0,a] ‖[ f ](θ ,·)‖Lq([0,θ ]) < ∞ and that f (·)

is continuous. Let u∈C([0,a];X) be the mild solution of (3.3)-(3.4). If x0 ∈Xβ for some 1< β < 2,
then

i) u(·) is a classical solution,
ii) Au(·) ∈ Lq,ν([0,a];X) for all ν < min{γ,β −1} and

iii) u′(·) ∈ Lq,ν([0,a];X) for all ν < min{γ,β −1}.
Proof: To prove the result, we introduce the decomposition u(·) = u1(·)+u2(·) where

u1(t) = T (t)x0 +
∫ t

0
T (t − τ) f (t)dτ and u2(t) =

∫ t

0
T (t − τ)( f (τ)− f (t))dτ.

From semigroups properties (see Theorem 1.2.3) we note that

Au1(t) = AT (t)x0 +(T (t)− I) f (t),
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which implies that Au1 is continuous on [0,a]. In addition, noting that

‖Au2(t)‖ ≤
∫ t

0
‖AT (t − τ)‖‖ f (τ)− f (t)‖dτ

≤
∫ t

0

C1

(t − τ)
[ f ](t,τ)(t − τ)dτ

≤ C1‖[ f ](t,·)‖L1([0,a];X),

we conclude that u2(t) ∈ D(A) for all t ∈ [0,a]. Now, remarking that ln(1+ρ) < ρα

α for all α ∈
(0,1) and arguing as in (2.12), for s < t in [0,a] and γ < 1

q′ , we get

‖Au2(t)−Au2(s)‖ ≤
∫ s

0
‖(AT (t − τ)−AT (s− τ))( f (τ)− f (s))‖dτ

+
∫ s

0
‖AT (s− τ)(( f (τ)− f (t))− ( f (τ)− f (s)))‖dτ

+
∫ t

s
‖AT (t − τ)( f (τ)− f (t))‖dτ

≤
∫ s

0

∫ t−τ

s−τ
‖A2T (ξ )‖[ f ](s,τ)(s− τ)dξ dτ +‖(T (s)− I)( f (s)− f (t))‖

+
∫ t

s

C
(t − τ)

[ f ](t,τ)(t − τ)dτ

≤
∫ s

0

∫ t−τ

s−τ

C2

ξ 2 [ f ](s,τ)ξ dξ dτ +(C0 +1)‖ f (t)− f (s)‖+
∫ t

s
C[ f ](t,τ)dτ

≤
∫ s

0
C2[ f ](s,τ) ln

(
t − τ
s− τ

)
dτ +(C0 +1)‖ f (t)− f (s)‖

+C
(∫ t

s
[ f ]q

(t,τ)dτ
) 1

q
(∫ t

s
1q′dτ

) 1
q′

≤
∫ s

0
C2[ f ](s,t) ln

(
1+

t − s
s− τ

)
dτ +(C0 +1)‖ f (t)− f (s)‖

+C‖[ f ](t,·)‖Lq([0,a];X)(t − s)
1
q′

≤ C2

γ
(t − s)γ

∫ s

0

[ f ](s,τ)
(s− τ)γ dτ +(C0 +1)‖ f (t)− f (s)‖

+C‖[ f ](t,·)‖Lq([0,a];X)(t − s)
1
q′ ,

hence, we have

‖Au2(t)−Au2(s)‖

≤
C2Λ f b

1
q′−γ

γ(1−q′γ)
1
q′
(t − s)γ +(C0 +1)‖ f (t)− f (s)‖+C‖[ f ](t,·)‖Lq([0,a];X)(t − s)

1
q′

≤
C2Λ f b

1
q′−γ

γ(1−q′γ)
1
q′
(t − s)γ +(C0 +1)[ f ](t,s)(t − s)+C‖[ f ](t,·)‖Lq([0,a];X)(t − s)

1
q′

from which we conclude that Au2(·) ∈ C([0,a];X)∩ Lq,γ([0,a];X). This implies that u(·) is a
classical solution of the problem (3.3)-(3.4) on [0,a] (see Theorem 2.1.2).
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On the other hand, for 0 ≤ s < t ≤ a and ξ ∈ (0,1), we get

‖Au1(t)−Au1(s)‖
≤ ‖AT (t)x0 −AT (s)x0‖+‖(T (t)− I) f (t)− (T (s)− I) f (s)‖

≤
∫ t

s
‖A2−β T (θ)x0‖dθ +‖(T (t)−T (s)) f (t)‖+‖(T (s)− I)( f (t)− f (s))‖

≤
C2−β‖Aβ x0‖

β −1
(t − s)β−1 +

∫ t

s

C1

θ
‖ f (t)‖dθ +(C0 +1)[ f ](t,s)(t − s)

≤
C2−β‖Aβ x0‖

β −1
(t − s)β−1 +

∫ t

s

C
θ ξ θ 1−ξ ‖ f‖C([0,a])dθ +(C0 +1)[ f ](t,s)(t − s)

≤
C2−β‖Aβ x0‖

β −1
(t − s)β−1 +

C
ξ sξ ‖ f‖C([0,a];X)(t − s)ξ +(C0 +1)[ f ](t,s)(t − s),

which implies that Au1 ∈ Lq,β−1([0,a];X). Therefore, Au∈ Lq,ν([0,a];X) for all ν <min{γ,β −1}.
Consequently,

‖u′(t)−u′(s)‖ ≤ ‖Au(t)−Au(s)‖+‖ f (t)− f (s)‖ ≤
(
[Au](t,s)

sβ−1 +[ f ](t,s)

)
(t − s)ν

hence u′ ∈ Lq,ν([0,a];X).

Next, we study the regularity of the mild solution of (3.3)-(3.4) with f ∈ Lq,α([0,a];X). In the
following, for t ∈ [0,a], Ut is the set

Ut = {(s,τ);0 < τ < s < t},

Θt,α denotes the function Θt,α : Ut 7→ R defined by

Θt,α(s,τ) =
1

(s− τ)1−α − 1
(t − τ)1−α ,

and for a Lq,α -Hölder function H we write ΛH = sups∈[0,a] ‖[H](s,0)‖Lq([0,a];X).

Proposition 3.2.2 Let f ∈ Lq,α([0,a];X) and u(·) be the mild solution of (3.3)-(3.4) on [0,a].

i) If x0 ∈ X and supt∈[0,a] ‖
[ f ](t,·)

(t−·)1−α ‖L1([0,t]) is finite. Then u(·) is a strong solution and u′(·) ∈
Lq([0,a];X). In particular, the assertion hold if ν = (1− (1−α)q′)> 0 and Λ f < ∞.

In addition to the above conditions in (i), if f ∈C([0,a];X), ν = (1− (1−α)q′′)> 0 and Λ f
is finite. Then,

ii) If ‖[ f ](s,·)Θt(s, ·)‖L1([0,s];R) → 0 as s → t, then u(·) is a classical solution.
iii) If ν = (1− (1−α)q′) > 0, then u(·) is a classical solution. In addition, if x0 ∈ D(A), then

u(·) is a strict solution on [0,a] and

‖u′‖C([0,a];X) ≤C0‖Ax0‖+2C0‖ f‖C([0,a];X)+C1Λ f
a

1
q′−α

(1−αq′)
1
q′

iv) If µ = (1−2(1−α)q′)> 0, x0 ∈ D(A) and AT (·)x0 ∈Cβ ([0,a];X) for some β ∈ (0,1), then
u(·) is a strict solution and u′ ∈ Lp,min{β ,α,1−α, ν

q′ }([0,a];X) for all 1 < p < min{ 1
α ,

1
β } and

[u′](t,s) ≤ [AT (·)x0]Cβ ([0,a];X)a
β−σ +

C1

smin{ 1
α , 1

β }
‖ f‖C([0,a];X)
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+(3C0 +1)[ f ](t,s)a
α−σ +Λ f

(
C2

µ
1
q′

a1−α−σ+ µ
q′ +

C1

ν
1
q′

a
ν
q′−σ

)
,

where σ = min{α,β ,1−α, ν
q′}.

v) If µ = (1− (1−α)q′) > 0, x0 ∈ D(A) and (Ax0 + f (0)) ∈ Xβ for some β ∈ (0,1), then

u(·) is a strict solution on [0,a] and u′ ∈ Lq,min{β ,α,1−α, ν
q′ }([0,a];X). In particular, u′ ∈

Lq,min{α,1−α, ν
q′ }([0,a];X) if (Ax0 + f (0)) ∈ Xα and for ρ = min{α,1−α, ν

q′},

[u′](t,s) ≤ ‖(−A)α(Ax0 + f (0))‖C1−α
bα−ρ

α
+bα−ρ

(
[ f ](t,0)

α
+(3C0 +1)[ f ](t,s)

)
+Λ f

(
C2

b1−α− µ
q′−ρ

µ
1
q′

+C1
b

ν
q′−ρ

ν
1
q′

)
, for all t ∈ [0,a].

Proof: Consider the decomposition u(·) = u1(·)+u2(·) where

u1(t) = T (t)x0 +
∫ t

0
T (t − τ) f (t)dτ and u2(t) =

∫ t

0
T (t − τ)( f (τ)− f (t))dτ.

If the conditions in (i) hold, by noting that

Au1(t) = AT (t)x0 +(T (t)− I) f (t), for all t ∈ [0,a]. (3.5)

‖Au2(t)‖ ≤
∫ t

0
‖AT (t − τ)( f (τ)− f (t))‖dτ

≤
∫ t

0

C1

(t − τ)
[ f ](t,τ)(t − τ)αdτ

≤ C1

∥∥∥∥ [ f ](t,·)
(t −·)1−α

∥∥∥∥
L1([0,t])

, (3.6)

we infer that ui(·), i = 1,2 are D(A)-valued functions and that A(u(·)− T (·)x0) ∈ Lq([0,a];X),
which implies, see Theorem 2.1.5, that u(·) is a strong solution. We can also conclude that u′ ∈
Lq([0,a];X) noting that, by hypothesis, f (·) ∈ Lq([0,a];X) and from (3.6)

∫ a

0
‖Au2(t)‖qdt ≤

∫ a

0

(
C1‖

[ f ](t,·)
(t −·)1−α ‖L1([0,t])

)q

dt ≤Cq
1 sup

∥∥∥∥ [ f ](t,·)
(t −·)1−α

∥∥∥∥q

L1
a.

In order to study the regularity of u(·), next we study the functions Aui(·), i = 1,2 assuming
that f ∈C([0,a];X) and that Λ f is finite. To begin, for 0 < s ≤ t ≤ a we note that

‖Au2(t)−Au2(s)‖

≤
∫ s

0
‖(AT (t − τ)−AT (s− τ))( f (τ)− f (s))‖dτ

+‖A
∫ s

0
T (t − τ)(( f (τ)− f (t))− ( f (τ)− f (s))dτ‖

+
∫ t

s
‖AT (t − τ)( f (τ)− f (t))‖dτ

≤
∫ s

0

∫ t−τ

s−τ
‖A2T (ξ )‖[ f ](s,τ)(s− τ)αdξ dτ
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+‖(T (s)−T (t))( f (s)− f (t))‖+
∫ t

s

C1[ f ](t,τ)
(t − τ)1−α dτ

≤
∫ s

0

∫ t−τ

s−τ
‖A2T (ξ )‖[ f ](s,τ)(s− τ)αdξ dτ

+2C0‖( f (s)− f (t))‖+C1

(∫ t

s
[ f ]q

(t,τ)dτ
) 1

q
(∫ t

s
(t − τ)−(1−α)q′dτ

) 1
q′

≤
∫ s

0

∫ t−τ

s−τ

C2

ξ 2−α [ f ](s,τ)dξ dτ +2C0‖ f (s)− f (t)‖+
C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ C2

(1−α)

∫ s

0
[ f ](s,τ)

[
1

(s− τ)1−α − 1
(t − τ)1−α

]
dτ +2C0‖ f (s)− f (t)‖+

C1Λ f

ν
1
q′

(t − s)
ν
q′ .

Using this inequality and the notations ν = (1− (1−α)q′) and µ = (1−2(1−α)q′), we get

‖Au2(t)−Au2(s)‖ ≤ C2‖[ f ](s,·)Θt,α(s, ·)‖L1([0,s];R)+2C0‖ f (t)− f (s)‖+
C1Λ f

ν
1
q′

(t − s)
ν
q′ ,

‖Au2(t)−Au2(s)‖ ≤ C2

(1−α)
Λ f

(∫ s

0
Θt,α(s,τ)q′dτ

) 1
q′

2C0‖ f (t)− f (s)‖+
C1Λ f

ν
1
q′

(t − s)
ν
q′ ,

‖Au2(t)−Au2(s)‖ =
∫ s

0
C2

[ f ](s,τ)
1−α

(
(t − τ)1−α − (s− τ)1−α

(s− τ)1−α(t − τ)1−α

)
dτ

+2C0‖ f (t)− f (s)‖+C1Λ f
(t − s)

ν
q′

ν
1
q′

≤ C2(t − s)1−α

(1−α)

∫ s

0

[ f ](s,τ)
(s− τ)2(1−α)

dτ

+2C0‖ f (t)− f (s)‖+C1Λ f
(t − s)

ν
q′

ν
1
q′

≤ C2(t − s)1−αΛ f
s

µ
q′

µ
1
q′
+2C0‖ f (t)− f (s)‖+

C1Λ f

ν
1
q′

(t − s)
ν
q′ (3.7)

If the conditions in (ii), (iii), or (iv) are satisfied we can infer that Au2 ∈ C([0,a];X). In partic-
ular, we note that the continuity of Au2(·) in (ii) and (iii) follows from the Lebesgue Dominated
Convergence Theorem (see Theorem A.0.12).

From the previous remarks we conclude that Au(·) is continuous, therefore u(·) is a classical
solution, see Theorem 2.1.2. Moreover, if x0 ∈ D(A), from Equations (3.5) and (3.7), it is easy to
see that u(·) is a strict solution and that

‖u′‖C([0,b];X) ≤ ‖AT (t)x0‖+‖A
∫ t

0
T (t − τ) f (t)dτ‖+‖A

∫ t

0
T (t − τ)( f (τ)− f (t))dτ‖

≤ C0‖Ax0‖+‖(T (t)− I) f (t)‖+‖
∫ t

0
AT (t − τ)( f (τ)− f (t))dτ‖

≤ C0‖Ax0‖+(C0 +1)‖ f (t)‖C([0,a];X)+
∫ t

0

C1

(t − τ)
[ f ](t,τ)(t − τ)αdτ

≤ C0‖Ax0‖+(C0 +1)‖ f‖C([0,a];X)+C1Λ f
a

1
q′−α

[1−αq′]
1
q′
.
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We prove now the assertions in (iv). Assume AT (·)x0 ∈Cβ ([0,a];X). Using (3.5), for ρ ∈ (0,1)
and 0 < s ≤ t ≤ a we see that

‖Au1(t)−Au1(s)‖
≤ ‖AT (t)x0 −AT (s)x0‖+‖(T (t)−T (s)) f (t)‖+‖(T (s)− I)( f (t)− f (s))‖

≤ [AT (·)x0]Cβ ([0,a];X)(t − s)β +
∫ t

s
‖AT (τ) f (t)‖dτ +(C0 +1)‖ f (t)− f (s)‖

≤ [AT (·)x0]Cβ ([0,a];X)(t − s)β +‖ f‖C([0,a];X)

∫ t

s

C1

sρτ1−ρ dτ +(C0 +1)‖ f (t)− f (s)‖

≤ [AT (·)x0]Cβ ([0,a];X)(t − s)β +C1‖ f‖C([0,a];X)
(t − s)ρ

sρρ
+(C0 +1)‖ f (t)− f (s)‖ (3.8)

≤ [AT (·)x0]Cβ ([0,a];X)(t − s)β +C1‖ f‖C([0,a];X)
(t − s)ρ

sρρ
+(C0 +1)[ f ](t,s)(t − s)α (3.9)

which implies from (3.8) and (3.9) that Au1 ∈ C([0,a];X)∩Lp,min{α,β}([0,a];X) for all 1 < p <
min{ 1

α ,
1
β } because q > 1

α . Moreover, using the notation σ = min{α,β ,1−α, ν
q′}, from (3.9) and

(3.7) we obtain that u′ ∈ Lp,σ ([0,a];X) for all 1 < p < min{ 1
α ,

1
β } and noting that

‖Au(t)−Au(s)‖ ≤ ‖Au1(t)−Au1(s)‖+‖Au2(t)−Au2(s)‖
≤ [AT (·)x0]Cβ ([0,a];X)(t − s)β

+C1‖ f‖C([0,a];X)
(t − s)ρ

sρρ
+(C0 +1)[ f ](t,s)(t − s)α

+C2(t − s)1−αΛ f
s

µ
q′

µ
1
q′
+2C0[ f ](t,s)(t − s)α +

C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ (t − s)σ
(
[AT (·)x0]Cβ ([0,a];X)(t − s)β−σ +C1

‖ f‖C([0,a];X)(t − s)ρ−σ

sρρ

+(C0 +1)[ f ](t,s)(t − s)α−σ +C2(t − s)1−α−σ Λ f
s

µ
q′

µ
1
q′

+2C0[ f ](t,s)(t − s)α−σ +
C1Λ f

ν
1
q′

(t − s)
ν
q′−σ

)
≤ (t − s)σ

(
[AT (·)x0]Cβ ([0,a];X)a

β−σ +C1
‖ f‖C([0,a];X)aρ−σ

sρρ

+[ f ](t,s)(3C0 +1)aα−σ +Λ f (C2
a1−α−σ+ µ

q′

µ
1
q′

+
C1

ν
1
q′

a
ν
q′−σ

)

)

we get

[u′](t,s) ≤ [AT (·)x0]Cβ ([0,a];X)a
β−σ +

C1

smin{ 1
α , 1

β }min{ 1
α ,

1
β }

‖ f‖C([0,a];X)

+(3C0 +1)[ f ](t,s)a
α−σ +Λ f

(
C2

µ
1
q′

a1−α−σ+ µ
q′ +

C1

ν
1
q′

a
ν
q′−σ

)
,

which completes the proof of the assertions in (iv).
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To finish, suppose that the conditions in (v) hold, proceeding as above, we get

‖Au1(t)−Au1(s)‖
≤ ‖(T (t)−T (s))(Ax0 + f (0))‖+‖(T (t)−T (s))( f (s)− f (0))‖

+‖(T (t)− I)( f (t)− f (s))‖

≤
∫ t

s
‖AT (τ)(Ax0 + f (0))‖dτ +

∫ t

s
‖AT (τ)( f (s)− f (0))‖dτ

+(C0 +1)[ f ](t,s)(t − s)α

≤
∫ t

s
‖(−A)1−β T (τ)(−A)β (Ax0 + f (0))‖dτ +

∫ t

s

C1[ f ](s,0)
τ

sαdτ

+(C0 +1)[ f ](t,s)(t − s)α

≤ ‖(−A)β (Ax0 + f (0))‖
∫ t

s

C1−β

τ1−β dτ +C1[ f ](s,0)
∫ t

s
τα−1dτ

+(C0 +1)[ f ](t,s)(t − s)α

≤ ‖(−A)β (Ax0 + f (0))‖C1−β
(t − s)β

β
+C1[ f ](s,0)

(t − s)α

α
+(C0 +1)[ f ](t,s)(t − s)α , (3.10)

which implies that Au1 ∈ Lq,min{β ,α}([0,a];X) and u′ ∈ Lq,min{β ,α,1−α, ν
q′ }([0,a];X), see (3.7).

If (Ax0 + f (0)) ∈ Xα , we note that∫ t

s
‖AT (τ)(Ax0 + f (0))‖dτ =

∫ t

s
‖(−A)1−αT (τ)(−A)α(Ax0 + f (0))‖dτ

≤ ‖(−A)α(Ax0 + f (0))‖
∫ t

s

C1−α
τ1−α dτ

≤ ‖(−A)α(Ax0 + f (0))‖C1−α
(t − s)α

α
.

Moreover, arguing as in (3.10), we obtain that u′ ∈ Lq,min{α,1−α, ν
q′ } and

‖Au(t)−Au(s)‖ ≤ ‖(−A)α(Ax0 + f (0))‖C1−α
(t − s)α

α
+C1[ f ](s,0)

(t − s)α

α

+(C0 +1)[ f ](t,s)(t − s)α +C2(t − s)1−αΛ f
s

µ
q′

µ
1
q′

+2C0[ f ](t,s)(t − s)α +
C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ (t − s)ρ
[

bα−ρ
(
‖(−A)α(Ax0 + f (0))‖C1−α

α
+

C1[ f ](s,0)
α

+(3C0 +1)[ f ](t,s)

)
+Λ f

(
C2b1−α+ µ

q′−ρ

µ
1
q′

+
C1

ν
1
q′

b
ν
q′−ρ

)]
.

Which allows us to end the proof.

Arguing as before, next we study the case in which max{α,1−α}< 1
q′ .
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Proposition 3.2.3 Assume f ∈ Lq,α([0,a];X)∩C([0,a];X), Λ f finite, max{α,1 − α} < 1
q′ and

ρ ∈ (max{α,1−α}, 1
q′ ). If u(·) is the mild solution of (3.3)-(3.4) on [0,a], then u(·) is a classical

solution. In addition to above, if ν = 1− (1−αq′)> 0 and
i) x0 ∈ D(A) and AT (·)x0 ∈ Cβ ([0,a];X), then u(·) is a strict solution of (3.3)-(3.4) and u′ ∈

Lp,min{β ,ρ−(1−α)}([0,a];X) for all 1 < p < min{ 1
α ,

1
β }. In particular, the assertion hold if

x0 ∈ Xβ+1,
ii) x0 ∈ D(A) and Ax0+ f (0) ∈ Xβ for some β ∈ (0,1), then u(·) is a strict solution on [0,a] and

u′ ∈ Lq,min{β ,ρ−(1−α)}([0,a];X). In particular, u′ ∈ Lq,ρ−(1−α)([0,a];X) if Ax0 + f (0) ∈ Xα .
Proof: Let ui(·), i = 1,2, be the functions in the proof of Proposition 3.2.2.

Note that for 0 ≤ s ≤ t ≤ a we have

‖Au2(t)−Au2(s)‖

≤
∫ s

0

∫ t−τ

s−τ

C2

ξ 2−α [ f ](s,τ)dξ dτ +2C0‖ f (τ)− f (t)‖+
C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ C2

∫ s

0

[ f ](s,τ)
(s− τ)ρ

∫ t−τ

s−τ

dξ
ξ 2−α−ρ dτ +2C0‖ f (τ)− f (t)‖+

C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ C2
(t − s)ρ−(1−α)

ρ − (1−α)

∫ s

0

[ f ](s,τ)
(s− τ)ρ dτ +2C0‖ f (τ)− f (t)‖+

C1Λ f

ν
1
q′

(t − s)
ν
q′

≤ C2
(t − s)ρ−(1−α)

ρ − (1−α)
Λ f

b(1−ρq′) 1
q′

[1−ρq′]
1
q′
+2C0‖ f (τ)− f (t)‖+

C1Λ f

ν
1
q′

(t − s)
ν
q′ (3.11)

≤ C2
(t − s)ρ−(1−α)

ρ − (1−α)
Λ f

b(1−ρq′) 1
q′

[1−ρq′]
1
q′
+2C0[ f ](t,s)(t − s)α +

C1Λ f

ν
1
q′

(t − s)
ν
q′ , (3.12)

which allows us to infer that Au2 ∈ C([0,a];X) ∩ Lq,ρ−(1−α)([0,a];X) because ρ − (1 − α) <
min{α, ν

q′}.
Assume that the conditions in (i) hold. Noting that the estimates (3.8) and (3.9) hold and that

q > 1
α , we have that

Au1 ∈C([0,a];X)∩Lp,min{α,β}([0,a];X) Au2 ∈C([0,a];X)∩Lq,ρ−(1−α)([0,a];X)

for all 1 < p < min{ 1
α ,

1
β }, which implies that u(·) is a strict solution of the problem (3.3)-(3.4)

on [0,a] and u′ ∈ Lp,min{β ,ρ−(1−α)}([0,a];X) for all 1 < p < min{ 1
α ,

1
β }. Similarly, if the con-

ditions in (ii) hold, then the estimate (3.10) is satisfied, Au1 ∈ Lq,min{β ,α}([0,a];X) and Au2 ∈
C([0,a];X)∩ Lq,ρ−(1−α)([0,a];X), which allows us to infer that u(·) is a strict solution and that
u′ ∈ Lq,min{β ,ρ−(1−α)}([0,a];X). This completes the proof.

3.2.2 The semilinear case
We consider now the semilinear abstract initial value problem

u′(t) = Au(t)+F(t,u(t)), t ∈ [0,a] (3.13)
u(0) = x0 ∈ X , (3.14)

where A is the generator on an analytic C0-semigroup and F is a suitable function to be especified
later.
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The concepts of mild, classical and strong solution to (3.13)-(3.14) follows from Definition
(2.2.1), Definition (2.2.2) and Definition (2.2.3), respectively. We avoid additional details. In
addition, we include the concept of strict solution.

Definition 3.2.2 Let u : [0,a] → X be a function. If u ∈ C([0,a];X)∩C1([0,a];X) satisfies the
IVP, we say that u(·) is a strict solution to (3.13)-(3.14) on [0,a].

In the following, for α ∈ (0,1) and q > 1 we use the notations

µ = 1− (1−α)q′ and ν = 1−2(1−α)q′.

Next, we study the existence and uniqueness of a mild, classical and strict solution for the
problem (3.13)-(3.14).

Theorem 3.2.4 Let θ ,γ ∈ (0,1). Assume F ∈ Lq,θ ([0,a]×Xγ ;X), x0 ∈ Xγ and δ = 1− γq′ > 0.
Then there exists a unique mild solution u ∈ C([0,b];Xγ) of (3.13)-(3.14) on [0,b] for some
b ∈ (0,a]. Moreover, if T (·)x0 ∈ Cη([0,a];Xγ), µ > 0 and ϑ = 1− 2γq′ > 0, then u(·) is a

classical solution and u ∈Cmin{η ,γ, δ
q′ }([0,b];Xγ).

In addition to the above conditions, assume that F ∈C([0,a]×Xγ ;X), T (·)x0 ∈Cη([0,a];Xγ),
x0 ∈ D(A), ϑ > 0 and that ΛF = sups∈[0,a] ‖[F ](s,·)‖Lq([0,s]) is finite and let σ = min{β ,α,1−
α, ν

q′}, then we have:

i) Let α = min{η ,θ ,γ}. If AT (·)x0 ∈ Cβ ([0,a];X) and µ > 0, then u(·) is a strict solution
and u′ ∈ Lp,σ ([0,b];X) for all 1 < p < min{ 1

α ,
1
β }.

ii) Let α = min{η ,θ ,γ,1−γ}. If µ > 0 and Ax0+F(0,x0)∈ Xβ , then u(·) is a strict solution
on [0,b] and u′ ∈ Lq,σ ([0,b];X).

Proof: Let R > ‖x0‖ and let 0 < b ≤ a small enough such that

‖T (·)x0 − x0‖C([0,b];Xγ )+
b1−γ

1− γ
Cγ‖F(0,x0)‖+CγWF(2R)ΛF

bθ+ δ
q′

δ
1
q′

+
Rb

δ
q′

δ
1
q′

 ≤ R,(3.15)

CγWF(2R)‖[F ](·,·)‖Lq([0,b])
b

δ
q′

δ
1
q′

< 1,(3.16)

where ΛF = ‖[F ](·,0)‖Lq([0,b]). Let Z (b,R) be the space

Z (b,R) :=
{

u ∈C([0,b];Xγ) : u(0) = x0, ‖u− x0‖C([0,b];Xγ ) ≤ R
}

endowed with the metric d(u,v) = ‖u− v‖C([0,b];Xγ ) and Γ : Z (b,R)→C([0,b];X) the map given
by

Γu(t) = T (t)x0 +
∫ t

0
T (t − s)F(s,u(s))ds, t ∈ [0,b]. (3.17)

Let u ∈ Z (b,R) and t ∈ [0,b]. Noting that

‖u‖C([0,b];Xγ ) ≤ ‖u− x0‖C([0,b];Xγ )+‖x0‖C([0,b];Xγ ) ≤ 2R,

we see that

‖Γu(t)− x0‖γ ≤ ‖T (t)x0 − x0‖γ +‖
∫ t

0
T (t − s)F(s,u(s))ds‖γ
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≤ ‖T (·)x0 − x0‖C([0,b];Xγ )+
∫ t

0
‖(−A)γT (t − s)F(s,u(s))(−F(0,x0)+F(0,x0))‖ds

≤ ‖T (·)x0 − x0‖C([0,b];Xγ )+
∫ t

0
‖(−A)γT (t − s)F(0,x0)‖ds

+
∫ t

0
‖(−A)γT (t − s)‖‖F(s,u(s))−F(0,x0)‖ds

≤ ‖T (·)x0 − x0‖C([0,b];Xγ )+
∫ t

0

Cγ

(t − s)γ ‖F(0,x0)‖ds

+
∫ t

0

Cγ

(t − s)γ WF(max{‖u(s)‖,‖x0‖})[F ](s,0)(s
θ +‖u(s)− x0‖γ)ds

≤ ‖T (·)x0 − x0‖C([0,b];Xγ )+
b1−γ

1− γ
Cγ‖F(0,x0)‖

+CγWF(2R)‖[F ](·,0)‖Lq([0,b])

bθ+ δ
q′

δ
1
q′

+
Rb

δ
q′

δ
1
q′


≤ R.

Which implies that Γu is well defined and that Γ(Z (b,R)) ⊂ Z (b,R). Moreover, for u,v ∈
Z (b,R) and t ∈ [0,b] we get

‖Γu(t)−Γv(t)‖γ ≤ ‖T (t)x0 −T (t)x0‖γ +
∫ t

0
‖(−A)γT (t − s)(F(s,u(s))−F(s,v(s)))‖ds

≤
∫ t

0

Cγ

(t − s)γ WF(2R)[F ](s,s)‖u(s)− v(s)‖γ ds

≤ CγWF(2R)‖[F ](·,·)‖Lq([0,b])
t

δ
q′

δ
1
q′
‖u− v‖C([0,b];Xγ )

≤ CγWF(2R)‖[F ](·,·)‖Lq([0,b])
b

δ
q′

δ
1
q′
‖u− v‖C([0,b];Xγ ),

hence, Γ(·) is a contraction (see (3.16)). From the above and Banach’s Fixed Point Theorem (see
A.0.11), there exists a unique mild solution u ∈ Z (b,R) of (3.13)-(3.14) on [0,b].

Noting that

g(s) := ‖F(s,u(s))‖ ≤ ‖F(s,u(s))−F(0,x0)‖+‖F(0,x0)‖
≤ WF(2R)[F ](s,s)(s

θ +R)+‖F(0,x0)‖
≤ WF(2R)[F ](s,s)(a

θ +R)+‖F(0,x0)‖, (3.18)

we have g(·) = ‖F(·,u(·))‖ ∈ Lq([0,a];X). Assuming T (·)x0 ∈Cη([0,a];Xγ), for t,h ∈ (0,b] with
t +h ∈ [0,b] we have

‖u(t +h)−u(t)‖γ

≤ ‖T (t +h)x0 −T (t)x0‖γ +
∫ t

0
‖(−A)γ(T (t +h− s)−T (t − s))F(s,u(s))‖ds

+
∫ t+h

t
‖(−A)γT (t +h− s)‖‖F(s,u(s))‖ds

≤ [T (·)x0]Cη ([0,b];Xγ )h
η
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+
∫ t

0

∫ t+h−s

t−s
‖(−A)1+γT (ξ )F(s,u(s))‖dξ ds+

∫ t+h

t

Cγg(s)
(t +h− s)γ ds (3.19)

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

∫ t

0

∫ t+h−s

t−s

C1+γg(s)
ξ 1+γ dξ ds

+Cγ‖g‖Lq([t,t+h];X)

(∫ t+h

t
(t +h− s)−γq′ds

) 1
q′

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

C1+γ

γ

∫ t

0

(t +h− s)γ − (t − s)γ

(t +h− s)γ(t − s)γ g(s)ds+Cγ‖g‖Lq([t,t+h])
h

δ
q′

δ
1
q′

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

C1+γ

γ
hγ
∫ t

0

g(s)ds
(t − s)2γ +Cγ‖g‖Lq([t,t+h])

h
δ
q′

δ
1
q′
,

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

C1+γ

γ
hγ‖g‖Lq([0,t];X)

(∫ t

0

ds
(t − s)2γq′

) 1
q′
+Cγ‖g‖Lq([t,t+h])

h
δ
q′

δ
1
q′
,

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

C1+γ

γ
hγ‖g‖Lq([0,t];X)

t
ϑ
q′

ϑ
1
q′
+Cγ‖g‖Lq([t,t+h])

h
δ
q′

δ
1
q′
,

(3.20)

that is

‖u(t +h)−u(t)‖γ ≤ [T (·)x0]Cη ([0,b];Xγ )h
η +‖g‖Lq([0,b])

C1+γb
ϑ
q′

γϑ
1
q′

hγ +
Cγ

δ
1
q′

h
δ
q′

 , (3.21)

which implies that u(·) ∈Cmin{η ,γ, δ
q′ }([0,b];Xγ).

To prove the assertions in (i) and (ii), we note that if F is continuous, then F(·,u(·)) is bounded
on [0,a], which allows us to simplify the estimates above. To continue, assuming M > 0 such that
‖F(s,u(s))‖ ≤ M, for all s ∈ [0,b], and 1−2γ > 0, from estimate (3.19) we see that

‖u(t +h)−u(t)‖γ

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

∫ t

0

∫ t+h−s

t−s
‖(−A)1+γT (ξ )F(s,u(s))‖dξ ds

+
∫ t+h

t

Cγ‖F(s,u(s))‖
(t +h− s)γ ds

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +

∫ t

0

∫ t+h−s

t−s

C1+γM
ξ 1+γ dξ ds+

∫ t+h

t

CγM
(t +h− s)γ ds

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +M

C1+γ

γ

∫ t

0

(t +h− s)γ − (t − s)γ

(t +h− s)γ(t − s)γ ds+CγM
h1−γ

1− γ

≤ [T (·)x0]Cη ([0,b];Xγ )h
η +M

C1+γ

γ
b1−2γ

1−2γ
hγ +CγM

h1−γ

1− γ
,

and hence, u ∈Cmin{η ,γ,1−γ}([0,b];Xγ) which implies

‖F(t,u(t))−F(s,u(s))‖ ≤ WF(2R)[F ](t,s)((t − s)θ +‖u(t)−u(s)‖)

≤ WF(2R)[F ](t,s)((t − s)θ +(t − s)min{η ,γ,1−γ}),
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that is F(·,u(·)) ∈ Lq,min{θ ,η ,γ}([0,b];X), because γ < 1− γ .
To complete the proof, we only note that the assertions in (i) and (ii) follow from the assertions

in (iv) and (v) of Proposition 3.2.2 because u(·) is a mild solution, F(·,u(·)) ∈ Lq,α([0,b];X)∩
C([0,b];X), with α = min{θ ,η ,γ}, and by assumptions x0 ∈ D(A), T (·)x0 ∈Cη([0,a];Xγ), ϑ > 0
and ΛF < ∞.

On the last result, our argument follows from Proposition 3.2.2. By using Proposition 3.2.3 in
place of Proposition 3.2.2, we can prove the next result.

Proposition 3.2.5 Suppose, θ ,γ ∈ (0,1), F ∈ Lq,θ ([0,a]×Xγ ;X)∩C([0,a]×Xγ ;X), x0 ∈ Xγ , δ =
1 − γq′ > 0, 1 − 2γ > 0 and T (·)x0 ∈ Cη([0,a];Xγ). Then there exists a unique mild solution
u ∈ Cmin{η ,γ}([0,b];Xγ) of the problem (3.13)-(3.14) on [0,b]. Moreover, if F ∈ C([0,a]×Xγ ;X),
let α = min{η ,θ ,γ} and assume sups∈[0,a] ‖[F ](s,·)‖Lq([0,s]) < ∞ and max{α,1 − α} < 1

q′ . For
ρ ∈ (max{α,1−α}, 1

q′ ), we get:

i) If x0 ∈ D(A) and AT (·)x0 ∈ Cβ ([0,a];X), then u(·) is a strict solution on [0,b] and u′ ∈
Lp,min{β ,ρ−(1−α)}((0,a];X) for all 1 < p < min{ 1

α ,
1
β } In particular, the assertion hold if

x0 ∈ Xβ+1.
ii) If x0 ∈ D(A) and (Ax0 + f (0)) ∈ Xβ for some β ∈ (0,1), then u(·) is a strict solution on

[0,b] and u′ ∈ Lq,min{β ,ρ−(1−α)}([0,b];X). In particular, u′ ∈ Lq,ρ−(1−α)([0,b];X) if (Ax0 +
f (0)) ∈ Xα .

Using the ideas in the proof of Theorem 3.2.4, it is possible to establish a similar result for the
case in which F ∈C([0,a]×X ;X) and x0 ∈ X . In the next result, for δ ∈ (0,1) we use the notation
Cδ

δ ((0,a];X) for the space

Cδ
δ ((0,a];X) :=

{
u ∈ L∞((0,a];X) : sup

0<ε≤a
εδ [u]Cδ ([ε,a];X) < ∞

}
.

Proposition 3.2.6 Assume F ∈ Lq,θ ([0,a]×X ;X) for some θ ∈ (0,1). Then, there exists a unique
mild solution u ∈ C([0,b];X) of (3.13)-(3.14) on [0,b] for some 0 < b ≤ a. Moreover, for all
δ ∈ (0, 1

q′ ), u ∈Cmin{η ,δ}
δ ((0,b];X) and u ∈Cmin{η ,δ}([0,b];X) if T (·)x0 ∈Cη([0,a];X).

Suppose, in addition to the above conditions, F ∈ C([0,a]×X ;X), T (·)x0 ∈ Cη([0,a];X) and
sups∈[0,a] ‖[F ](s,·)‖Lq([0,s]) < ∞ and let α = min{η ,θ} and β ∈ (0,1).

i) If µ = (1−2(1−α)q′)> 0, x0 ∈ D(A), AT (·)x0 ∈Cβ ([0,a];X), then u(·) is a strict solution

and u′ ∈ Lp,min{β ,α,1−α, 1
q′ }([0,b];X) for all 1 < p < min{ 1

α ,
1
β }.

ii) If µ = (1−2(1−α)q′)> 0, x0 ∈ D(A) and (Ax0 +F(0,x0)) ∈ Xβ , for some β ∈ (0,1) then

u(·) is a strict solution on [0,b] and u′ ∈ Lq,min{β ,α,1−α, 1
q′ }([0,b];X).

Proof: Let R > ‖x0‖. Considering 0 < b ≤ a small enough such that

‖T (·)x0 − x0‖C([0,b])+C0WF(2R)(bθ +R)‖[F ](0,·)‖Lq([0,b])b
1
q′ +C0‖F(0,x0)‖b ≤ R,(3.22)

C0WF(2R)‖[F ](·,·)‖Lq([0,b])b
1
q′ < 1. (3.23)

Let Z (b,R) be the space

Z (b,R) :=
{

u ∈C([0,b];X) : u(0) = x0, ‖u− x0‖C([0,b];X) ≤ R
}
,

endowed with the metric d(u,v) = ‖u− v‖C([0,b];X) and Γ : Z (b,R)→C([0,b];X) be the function
defined by

Γu(t) = T (t)x0 +
∫ t

0
T (t − s)F(s,u(s))ds, t ∈ [0,b]. (3.24)
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Let u ∈ Z (b,R) and t ∈ [0,b].
Noting that ‖u‖C([0,b];X) ≤ 2R, we have that

‖Γu(t)− x0‖ ≤ ‖T (t)x0 − x0‖+
∫ t

0
‖T (t − s)F(0,x0)‖ds

+
∫ t

0
‖T (t − s)‖‖F(s,u(s))−F(0,x0)‖ds

≤ ‖T (·)x0 − x0‖+
∫ t

0
C0‖F(0,x0)‖ds

+
∫ t

0
C0WF(2R)[F ](s,0)(s

θ +‖u(s)− x0‖)ds

≤ ‖T (·)x0 − x0‖C([0,b])+C0WF(2R)(bθ +R)‖[F ](0,·)‖Lq([0,b])b
1
q′ +C0‖F(0,x0)‖b

≤ R,

which implies that Γ(Z (b,R)) ⊂ Z (b,R), once t 7→
∫ t

0 T (t − s)F(s,u(s))ds is continuous. More-
over, for u,v ∈ Z (b,R) and t ∈ [0,b] we see that

‖Γu(t)−Γv(t)‖ ≤
∫ t

0
‖T (t − s)‖‖(F(s,u(s))−F(s,v(s)))‖ds

≤
∫ t

0
C0WF(2R)[F ](s,s)‖u(s)− v(s)‖ds

≤ C0WF(2R)‖[F ](·,·)‖Lq([0,b])b
1
q′ ‖u− v‖C([0,b];X),

and hence, Γ(·) is a contraction and, from Banach’s Fixed Point Theorem, there exists a unique
mild solution u ∈ Z (b,R) for the IVP (3.13)-(3.14).

To show the assertions in (i) and (ii), we note that if F is continuous, there is M > 0 such that
‖F(s,u(s))‖ ≤ M for all s ∈ [0,b]. Using now that ln(1+ρ)≤ ρϑ

ϑ for all ρ > 0 and ϑ ∈ (0,1), for
δ ∈ (0,1) we get

‖u(t +h)−u(t)‖

≤ ‖T (t +h)x0 −T (t)x0‖+
∫ t

0
‖(T (t +h− s)−T (t − s))F(s,u(s))‖ds

+
∫ t+h

t
‖T (t +h− s)F(s,u(s))‖ds

≤ [T (·)x0]Cη ([0,b];X)h
η +

∫ t

0

∫ t+h−s

t−s
‖AT (ξ )F(s,u(s))‖dξ ds+

∫ t+h

t
C0Mds

≤ [T (·)x0]Cη ([0,b];X)h
η +

∫ t

0

∫ t+h−s

t−s

C1M
ξ

dξ ds+C0Mh

≤ [T (·)x0]Cη ([0,b];X)h
η +C1M

∫ t

0
ln
(

1+
h

t − s

)
ds+C0Mh

≤ [T (·)x0]Cη ([0,b];X)h
η +C1M

∫ t

0

hδ

δ (t − s)δ ds+C0Mh

≤ [T (·)x0]Cη ([0,b];X)h
η +C1

M
δ

b1−δ

1−δ
hδ +C0Mh,

which implies that u ∈Cη([0,b];X), and

‖F(t,u(t))−F(s,u(s))‖ ≤ WF(max{‖u(t)‖,‖u(s)‖})[F ](t,s)(|t − s|θ +‖u(t)−u(s)‖)
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≤ WF(R)[F ](t,s)(|t − s|θ +[u]Cη ([0,b];X)|t − s|η)
≤ WF(R)[F ](t,s)(b

µ−θ +[u]Cη ([0,b];X)b
µ−η)(t − s)µ

where µ = min{θ ,η}. The above implies that F(·,u(·)) ∈ Lq,min{θ ,η}([0,a];X)∩C([0,a]×X ;X).
Now, we can complete the proof using the assertion in (iv) and (v) of Proposition 3.2.2.

From the Theorem 3.2.4, we infer the next result on the existence of a solution defined on [0,a].

Corollary 3.2.7 (Solution on [0,a]) Assume θ ,γ ∈ (0,1), F ∈ Lq,θ ([0,a]×Xγ ;X), x0 ∈ Xγ and
δ = 1− γq′ > 0 and let Pa : [0,a] 7→ R be the map defined by

Pa(x) = ‖T (·)x0 − x0‖C([0,a];Xγ )+
a1−γ

1− γ
C0,γ‖F(0,x0)‖

+C0,γWF(2x)‖[F ](·,0)‖Lq([0,a])

aθ+ δ
q′

δ
1
q′

+
xa

δ
q′

δ
1
q′

− x

+C0,γWF(2x)x‖[F ](·,·)‖Lq([0,a])
a

δ
q′

δ
1
q′
. (3.25)

If there exists R> 0 such that Pa(R)< 0, then there exists a mild solution u(·) of the problem

(3.13)-(3.14) defined on [0,a] and u ∈Cmin{η ,γ, ϑ
q′ }([0,b];Xγ) if T (·)x0 ∈Cη([0,a];Xγ) and ϑ =

1−2γq′ > 0. Moreover, the assertions in (i) and (ii) of the Theorem 3.2.4 hold with a in place
of b.

Proof: The proof follows from the proof of Theorem 3.2.4 noting that the condition P(R) < 0,
implies that the inequalities (3.15) and (3.16) are satisfied.

Existence of solution on [0,∞).
We complete this section by studying the existence of a solution on the whole semi-axis [0,∞).

To this end, we use the next conditions.
HF There are θ ∈ (0,1], a measurable function [F ](·,·) : [0,∞)× [0,∞) 7→R+ and a non-decreasing

function WF : R+ → R+ such that [F ](·,·), [F ](t,·) and [F ](·,0) belongs to Lp([0,a];R+) for all
t ∈ [0,a] and a > 0 and

‖F(t,x)−F(s,y)‖ ≤ WF(max{‖x‖γ ,‖y‖γ})[F ](t,s)(|t − s|θ +‖x− y‖γ)

for all t,s ∈ [0,∞) and x,y ∈ Xγ .
HT There are positive constants ω and D0,γ such that

‖(−A)γT (t)‖ ≤ D0,γ
e−ωt

tγ , for all t > 0.

In the next result, for x ∈ X we use the notations:

Θ1(x) = WF(2x)sup
t>0

∫ t

0

e−ω(t−τ)

(t − τ)γ [F ](τ,0)(τθ + x)dτ,

Θ2(x) = WF(2x) sup
b>0,t∈[0,b]

∫ t

0

e−ω(t−τ)

(t − τ)γ [F ](τ,τ)dτ. (3.26)

The proof of Corollary 3.2.8, follows combining the ideas in the proof of Theorem 3.2.4 and
Corollary 3.2.7.
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Corollary 3.2.8 Assume θ ,γ ∈ (0,1), x0 ∈ Xγ , δ = 1− γq′ > 0 and that the conditions HF and
HT hold. Let P : [0,a] 7→ R be the map defined by

P(x) = ‖T (·)x0 − x0‖C([0,∞);Xγ )+D0,γ‖F(0,x0)‖
(

1
γ
+

1
ω

)
+D0,γ (Θ1(x)+Θ2(x))− x.

If P(R) < 0 for some R > 0, then there exists a mild solution u ∈ C([0,∞);Xγ) of the problem
(3.13)-(3.14) on [0,∞). Moreover, the assertions (i) and (ii) on the Theorem 3.2.4 are satisfied
on [0,a] for all a > 0.

Proof: Let a > 0. Proceeding as in the proof of the Corollary 3.2.7 with P(·) in place of Pa(·), we
can prove that there exists a unique mild solution ua ∈C([0,a];X) of the problem (3.13)-(3.14) on
[0,a]. Defining u : [0,∞) → X by u(t) = ua(t) if t ∈ [0,a] we obtain that u(·) is a mild solution
defined on [0,∞). Moreover, from the uniqueness of the solution ua it is easy to see that u(·) is the
unique mild solution of the problem (3.13)-(3.14) on [0,∞).

To finish, we note that the last assertions follow from Theorem 3.2.4, remarking that u
∣∣
[0,a] = ua

is the unique solution of problem (3.13)-(3.14) on [0,a] for all a > 0.



Bibliography

[Bartle, 2014] Bartle, R. G. (2014). The elements of integration and Lebesgue measure. John
Wiley & Sons.

[Brézis, 2011] Brézis, H. (2011). Functional analysis, Sobolev spaces and partial differential
equations, volume 2. Springer.

[Engel et al., 2000] Engel, K.-J., Nagel, R., and Brendle, S. (2000). One-parameter semigroups
for linear evolution equations, volume 194. Springer.

[Hernandez et al., 2021] Hernandez, E., Fernandes, D., and Wu, J. (2021). Existence and unique-
ness of solutions, well-posedness and global attractor for abstract differential equations with
state-dependent delay. Journal of Differential Equations, 302:753–806.

[Hernandez et al., 2020] Hernandez, E., Wu, J., and Chadha, A. (2020). Existence, uniqueness
and approximate controllability of abstract differential equations with state-dependent delay.
Journal of Differential Equations, 269(10):8701–8735.

[Kreyszig, 1978] Kreyszig, E. (1978). Introductory functional analysis with applications, vol-
ume 1. wiley New York.

[Lunardi, 1995] Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic
Problems. Birkhäuser Basel, 1 edition.

[Pazy, 2012] Pazy, A. (2012). Semigroups of linear operators and applications to partial differen-
tial equations, volume 44. Springer Science & Business Media.

[Pierri, 2006] Pierri, M. (2006). Teoria de semigrupos e controlabilidade de sistemas neutros.
Dissertação de Mestrado ICMC-USP, São Carlos.

[Prokopczyk, 2005] Prokopczyk, A. C. (2005). Teoria de semigrupos e aplicações à equações
diferenciais funcionais com retardamento dependendo do estado. Dissertaçao de Mestrado
ICMC-USP, São Carlos.

[Silva, 2017] Silva, D. F. (2017). Equações diferenciais abstratas do tipo neutro com retardo
dependendo do estado. Dissertação de mestrado Universidade Estadual Paulista (UNESP).





A. Appendix

Definition A.0.1 Let X and Y be normed spaces and T : D(T )⊂ X →Y be a linear operator. We
say that T is a closed linear operator if its graph G(T ) = {(x,y) : x ∈ D(T ) ⊂ X ,y = T x} is
closed in X ×Y .

Lemma A.0.1 Let J be some real interval and P,Q : J → L (X) two strongly continuous operator-
valued functions on J. Then, the product (PQ)(·)x : J → X , defined by (PQ)(t)(x) := P(t)Q(t)x,
is strongly continuous as well.

Corollary A.0.2 Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0 satisfying
‖T (t)‖ ≤ M. Let γ > max{0,ω}. If x ∈ D(A2), then

T (t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλ tR(λ : A)xdλ

and, for every δ > 0, the integral uniformly converges in t for t ∈ [
1
δ
,δ ].

Corollary A.0.3 Let A be the infinitesimal generator of a C0-semigroup of contractions. The
resolvent set of a A contains the open right half-plane, i.e, ρ(A) ⊇ {λ : Re(λ ) > 0} and, for
such λ ,

‖R(λ : A)‖ ≤ 1
Reλ

.

Proposition A.0.4 Let B be a bounded linear operator. If ‖I −B‖< 1 then B−1 = ∑∞
j=0(I −B) j.

Theorem A.0.5 — Bounded Inverse. A bounded linear operator T from a Banach space X onto
a Banach space Y is an opening mapping. Hence, if T is bijective, T−1 is continuous and thus
bounded.

Theorem A.0.6 — Uniform boundedness. Let (Tn)n be a sequence of bounded linear operators
Tn : X → Y from a Banach space X into a normed space Y such that (‖Tnx‖)n is bounded for
every x ∈ X , say,

‖Tnx‖ ≤ cx

where cx is a real positive number. Then, the sequence of the norms (‖Tn‖)n is bounded, that is,
there is a positive number c such that

‖Tn‖ ≤ c.

Theorem A.0.7 — Hahn-Banach. Let E be a real vector space and p : E → R be a function
satisfying

p(λx) = λ p(x), ∀x ∈ E and ∀λ > 0, (A.1)

p(x+ y)≤ p(x)+ p(y), ∀x,y ∈ E. (A.2)

Let G ⊂ E a linear subspace and g : G → R be a linear functional such that

g(x)≤ p(x), ∀x ∈ G. (A.3)

Under theses assumptions, there exists a linear functional f defined on E that extends g, i.e.,
g(x) = f (x), ∀x ∈ G. Moreover

f (x)≤ p(x), ∀x ∈ E. (A.4)
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Theorem A.0.8 — Gronwall’s inequality. Assume that f : [t0,a]→ R+ is a continuous function
such that

f (t)≤C+K
∫ t

t0
f (s)ds, ∀t ∈ [t0,a],

where C and K are positive constants. Then, f (t)≤C+K
∫ t

t0 eKt for all t ∈ [t0,a].

Theorem A.0.9 — Hölder’s Inequality. Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞ and
1
p +

1
p′ = 1. Then, f g ∈ L1 and ∫

| f g| ≤ ‖ f‖p‖g‖p′ .

Theorem A.0.10 — Closed Graph Theorem. Let E and F two Banach spaces, T be a linear
operator from E to F . If the graph of T is closed in E ×F . Then, T is continuous.

Theorem A.0.11 — Banach’s Fixed Poit Theorem. Let f be a contraction mapping from a closed
subset F of a Banach space E into F . Then, there exists a unique z ∈ F such that f (z) = z.

Theorem A.0.12 — Lebesgue Dominated Convergence Theorem. Let ( fn)n∈N be a sequence of
integrable functions that converges almost everywhere to a measurable function f . If there exists
an integrable function g such that | fn| ≤ g for all n ∈ N, then f is integrable and∫

f dµ = lim
∫

fndµ. (A.5)

Theorem A.0.13 — Cauchy’s Integral Theorem. Let ω ⊂ C be a simply connected open set and
let f : ω → C be a holomorphic function. If γ : [a,b]→ ω is a smooth closed curve then,∫

γ
f (z)dz = 0.

Theorem A.0.14 Let f : [0,a]→ R+ be an integrable function. If h → 0 then,∫ h

0
f (x)ds → 0.

Theorem A.0.15 — Cauchy’s Integral Formula. Let G be an open subset of the plane and f :
G → C an analytic function. If γ is a closed rectifiable curve in G such that n(γ;w) = 0 for all
w ∈ C\G, then for a ∈ G\{γ} we have

n(γ;a) f (a) =
1

2πi

∫
γ

f (z)
z−a

dz.
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Theorem A.0.16 — Characterization of infinitesimal generator of C0-semigroups. A linear opera-
tor A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤ M (M ≥ 1)
if, and only if,

1. A is closed and D(A) is dense in X .
2. The resolvent set ρ(A) of A contains R+ and

‖R(λ : A)n‖ ≤ M
λ n , λ > 0,n = 1,2, . . . .

Theorem A.0.17 Let (Aα) be the fractional power operator of A, with α > 0. Then,
i) Aα is a closed operator with domain D(Aα) = R(A−α).

ii) α ≥ β > 0 implies D(Aα)⊂ D(Aβ ).
iii) D(Aα) = X for all α ≥ 0.
iv) If α,β are real then

Aα+β x = AαAβ x

for every x ∈ D(Aγ) where γ = min{α,β ,α +β}.
v) For an analytic semigroup (T (t))t≥0 there exists Cα ∈ R+ such that ‖AT (t)‖ ≤ Cα

tα .
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