• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.59.2020.tde-29062020-171001
Documento
Autor
Nombre completo
Émerson Yoshiaki Okano
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Ribeirão Preto, 2020
Director
Tribunal
Ruiz, Evandro Eduardo Seron (Presidente)
Ribeiro, Evandro Marcos Saidel
Vale, Oto Araujo
Título en portugués
Análise e caracterização de textos intencionalmente enganosos escritos em português usando métodos de processamento de textos
Palabras clave en portugués
Fake news
Fake reviews
Textos enganosos
Resumen en portugués
Atualmente a web é um ambiente em que pessoas postam e buscam informações sobre os mais diversos tópicos. No entanto, nem sempre uma informação encontrada na web é verdadeira já que alguns usuários maliciosos usam a web para disseminar informações falsas com o intuito de manipular ou enganar pessoas. Uma das maneiras de detectar estas informações falsas é através de processamento de textos. Atualmente há trabalhos direcionados à língua inglesa para identificação de textos enganosos, mas poucos trabalhos são voltados para a língua portuguesa. Neste trabalho, inicialmente foi criado um corpus paralelo de reviews de livros enganosos e foi feito um trabalho inicial de classificação automático do mesmo. Foi feito um estudo utilizando as research questions propostas por Hauch et al. para fazer uma análise psicolinguística do corpus de notícias falsas Fake.Br com o intuito de verificar as características mais relevantes para a classificação de fake news. Ainda utilizando o corpus Fake.Br treinamos algoritmos de aprendizagem de máquina supervisionados para fazer a classificação automática de fake news e utilizamos também um algoritmo de deep learning chamado Hierarchical attention network para verificar sua performance na detecção de fake news.
Título en inglés
Analysis and characterization of intentionally deceptive texts written in Portuguese using text processing methods
Palabras clave en inglés
Deceptive texts
Fake news
Fake reviews
Resumen en inglés
The web is an environment where people post and search any type of information on the most diverse topics. However, the information found on the web is not always truthful. There are malicious users who post deceptive information intending to manipulate or deceive people. One of the ways to detect false information is using text processing. Nowadays there are studies directed to the English language to identify deceptive texts, but there are few related works concerning the Portuguese language. In this work, initially, we created a parallel corpus of deceptive book reviews and used some machine learning algorithms to classify deceptive and truthful reviews. A study was made using the research questions proposed by Hauch et al. to do a psycholinguistic analysis of the fake news corpus Fake.Br to verify the most relevant features for fake news classification. Still using the Fake.Br corpus we trained supervised machine learning algorithms to automatically classify fake news and we also use a deep learning algorithm called Hierarchical attention network to verify its performance in fake news detection.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-07-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.