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Resumo
Esta dissetação tem como objetivo estudar um tipo de Rede Neural Artificial (RNA),
conhecido como Reservoir Computing, mais especificamente as Echo State Networks (ESNs).
ESNs são redes neurais recorrentes (RNNs), que fazem o mapeamento de entrada-saída
através de projeções não-lineares de alta dimensão, chamada de reservoir. No modelo
clássico da ESN, a matriz das conexões internas do reservatório é usualmente uma rede
aleatória Erdös-Rényi. Estudos recentes investigaram o uso de redes com clusters dentro
do reservatório de uma ESN, as Clustered ESNs (CESNs), sendo que essa nova rede do
reservatório apresenta uma topologia com clusters. Ambos tipos de ESNs foram aplicadas
ao problema de predição de séries temporais. Neste trabalho, são propostas uma ESN
com redes Barabási-Albert em cada cluster (Barabási-Albert CESN ), e uma deep ESN
em que cada camada dessa rede contém uma rede com clusters (Deep CESNs). Além
disso, foi proposto a aplicação de ESNs e suas extensões em dois novos problemas: o
filtro de frequências e a remoção de ruídos de séries temporais. Uma comparação foi
feita entre o modelo clássico da ESN e suas extensões. Experimentos númericos mostram
que os modelos propostos de ESNs (Barabási-Albert CESN and Deep CESNs) superam o
desempenho do modelo clássico da ESN, indicando que a organização dos reservatórios em
clusters ou em camadas melhoram o desempenho da rede.

Palavras-chave: Redes Neurais Artificiais. Echo State Networks. Redes com Clusters.
Reservoir Computing. Redes Complexas.



Abstract
This dissertation aims to study a type of Artificial Neural Networks (ANNs), known as
Reservoir Computing, specifically, the Echo State Networks (ESNs). ESNs are Recurrent
Neural Networks (RNNs), which make input-output mapping through a high dimensional
nonlinear projection, called reservoir. In a classic ESN, the internal connection matrix
of the reservoir usually is formed by an Erdös-Rényi random graph. Recent studies have
also investigated Clustered ESNs (CESNs), which replaces the random network inside the
reservoir by a clustered network. Both types of ESNs have been applied to time series
prediction problems. In this work, an ESN with a clustered Barabási-Albert network
(Barabási-Albert CESN ), and a deep ESN with clustered reservoir layers (Deep CESNs) are
designed. Moreover, we propose to apply ESNs in two new different tasks: the frequency
filtering problem and the noise filtering problem of time series. We also compare the
performance of the classical ESN and its various extensions in these two tasks. Numerical
results show that the proposed ESNs (Barabási-Albert CESN and Deep CESNs) outperform
the classical ESN, indicating that the organization of reservoirs in clustered or layered
networks can improve the learning performance of ESNs.

Keywords: Artificial Neural Networks, Echo State Networks. Clustered Networks.
Reservoir Computing. Complex Networks.
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1
Introduction

1.1 Context

The brain is considered the main organ responsible for information processing in humans
and animals with a central nervous system. It can be seen as a signal processor that exploits
massive parallelism across billions of processing elements called neurons. These nerve
cells connect through chemical substances (neurotransmitters) forming neural synapses,
which allow the continuity of the electrical and/or the chemical signal that travels through
the cell. Synapses give the brain its capacity to store, process, recover, and, mainly, to
generalize information (learning) (TRAPPENBERG, 2002).

Inspired by the structure of the human brain, Artificial Neural Networks (ANNs) are
a simplistic computational approach that exploits the processing and memory mechanisms
present in biological neural systems. Even though the ANN is far from the human brain
comparing the processing power and the complexity, it is a parallel and distributed
processing system composed of processing units (artificial neurons), which are regularized
by certain non-linear mathematical functions, called activation function. Such units are
arranged in one or more layers interconnected by a large number of connections (synapses).
In most models of ANNs, connections are associated with weights, which are used to store
the knowledge acquired (HAYKIN, 1998). Like the biological brain, ANNs are capable
of learning through examples, generalizing the learned information, thereby becoming an
important tool in the field of data mining and machine learning.

Some ANN models are more similar to the biological neural system in some features
such as an associative memory (search for information based on part of it), and it contains
characteristics of a dynamic system (SKARDA; FREEMAN, 1987), the recurrent neural
networks, such as the Hopfield model (HAYKIN, 1998) and Reservoir Computing models
(Echo State Network, Liquid-State Machines) (JAEGER, 2001; CHATZIS; DEMIRIS, 2011;
HAZAN; MANEVIT, 2012; BOCCATO; ZUBEN, 2014; PONGHIRAN; SRINIVASAN;
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ROY, 2019). However, this and other “classic” ANN models are still a long way off to
offer the high learning and processing capabilities observed in the human brain, mainly
because they have an oversimplified topological structure when compared to a biological
neural network, which exhibits characteristics of a complex network (NEWMAN, 2004;
NEWMAN, 2010; LATORA; NICOSIA; RUSSO, 2017). Complex networks is the field that
studies graphs, such that the number of vertices and edges are large enough which cannot
be studied by the classical graph theory (BOCCALETTI et al., 2006; ZAMORA-LÓPEZ;
BRASSELET, 2019). For example, the Hopfield model has a complete network (fully
connected network) while the Echo State Network (ESN) has a random network reservoir.

One of the important features is that the brain has specialized areas to deal with
specific events (localized functional groups). Different activities are treated in different
portions of the cerebral cortex, either low or high topological organization. In other words,
neurons are organized into clusters in the brain (BERRY; TKACIK, 2020; CHEN et al.,
2018; MARTENS et al., 2017). This is the main inspiration for the present study.

Since the human (animal) brain is a high-dimensional complex dynamical system,
therefore, enormous effort has been paid to design the learning process of ANNs as
nonlinear dynamical systems. One of the successful approaches is the reservoir computing
(JAEGER, 2001), where the input-output mapping is learnt through a high-dimensional
recurrent projection, called reservoir. One type of reservoir computing, called Echo State
Network (ESN) triggered much attention. ESNs has been successfully applied to chaotic
signal prediction (LU et al., 2017; PATHAK et al., 2017), short term stock price prediction
(LIN; YANG; SONG, 2009), stock data mining (LIN; YANG; SONG, 2008), among other
studies (LACY; SMITH; LONES, 2018; SCHUBERT; GROS, 2020; Zheng et al., 2020).
The interesting point of the ESN is the integration of a dynamic system, machine learning,
and complex network studies. In classic ESN, denoted Random ESN here, the structure
of the reservoir is usually consisting of a large number of randomly connected nodes
(neurons) forming an Erdös-Rényi network (ERDÖS; RENYI, 1961).

As stated before, complex networks are large scale graph with nontrivial connection
patterns, which provides a powerful tool for modeling real complex systems by unifying
spatial, topological, functional, and evolutionary relationship among the constituted
elements (ALBERT; BARABÁSI, 2002; COHEN; HAVLIN, 2010; BREDE, 2012). One
of the salient features of complex networks is the presence of communities representing
the clustered structure. A community is a group of nodes that are densely connected
internally, while the connections between nodes from different communities are relatively
sparse. Such a clustered structure has long been found in the human (animal) brain.
Data on both anatomical and functional connectome has shown the small-world structure
with highly clustered modules at different scales (AKIKI; ABDALLAH, 2019; GLEISER;
SPOORMAKER, 2010; HAGMANN et al., 2008). These communities are known to
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represent subsystems of neurophysiological functions, e.g., the visual cortex. Moreover,
several psychiatric disorders have shown selective disruption in particular brain communities
(AKIKI; ABDALLAH, 2019).

Inspired by the neurophysiological findings, there is a growing interest in modeling
the reservoir as a complex network with community structure and small-world properties,
i.e., the average distance between nodes is short, such as in (KAWAI; PARK; ASADA,
2019) for example. In fact, various network topologies have been used inside the reservoir
in past works, some of them have used a clustered network inside the reservoir, such as in
(DENG; ZHANG, 2007) to approximate the model to the biological brain, in (LI et al.,
2015) that creates a clustered network based on the data, and in (YU; MIAO; JIA, 2011)
to reflect real learning mechanisms in the network.

Going towards the same direction, the Deep ESN proposed by (GALLICCHIO;
MICHELI, 2016) gives a model to split the reservoir into smaller networks forming
interconnected layers, analog to the different scales of brain structure. All these works
show that a better performance can be achieved using a clustered network rather than a
random network (DETTORI et al., 2020; CARMICHAEL; SYED; KUDITHIPUDI, 2019).
Therefore, in this work, we will explore the flexibility of the reservoir by replacing the
random network for a clustered network since previous works show that an improvement
in the performance can be achieved with these non-random network topologies.

Moreover, the signal denoising problem, which consists of removing noise, pertur-
bations and distortions from a signal, is widely studied in the literature. Some of the
techniques are the wavelet-based techniques (JAISWAL; UPADHYAY; SOMKUWAR,
2014), and the nonlinear filtering (LEE; KASSAM, 1985), Wiener filter (CHEN et al., 2006;
VASEGHI, 2001) for example. This task is particularly interesting because the output
signal might be difficult to recover knowing only the input signal without any information
about the type of noise.

1.2 Objective

This work aims the study of ANNs starting from the classical ESN model, and then
restructuring the neurons’ connections in the reservoir to create a topological structure of
a complex network that contains communities. It is intended to investigate, mainly the
relationship between the various topological structure of ESNs, and their performance in
signal separation and noise reduction problems.

In this work, two new types of clustered network will be introduced to replace the
random network in the reservoir, a scale-free clustered network, where each community
is a Barabási-Albert scale-free network (BARABÁSI; ALBERT, 1999), and a random
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clustered network, where each community is a random network (ERDÖS; RENYI, 1961).
Past works have used different clustered networks in the reservoir instead of the random
network, and they have achieved good results. The idea of our model is to create clustered
networks based on complex networks models with controlled features, and check whether
they can solve problems better than the classic ESN.

Here, these types of clustered ESNs are denoted by Barabási-Albert CESN and
Erdös-Rényi CESN. It is well known that both random and scale-free networks possess
small-world property. In this way, the reservoirs studied here contain both modular
structures and small-world features. Furthermore, a Deep ESN with clustered layers, called
Deep CESN, is also introduced in this work, where each layer of this deep network is a
clustered network. With these proposed changes to the network topology, it is expected a
performance improvement over the ESN, as it has occurred in previous work with other
network variations.

Traditionally, ESNs have been designed for solving time series prediction problems.
In this work, we propose to apply the ESN and its extensions, including the clustered ESN,
deep ESN, and deep ESN with clustered layers, in a novel approach, which is filtering
the noise from signals (VASEGHI, 2001). For this purpose, signals with various types of
noises have been considered, and the performance of the classic and modified ESNs has
been compared to the Wiener filters (CHEN et al., 2006; VASEGHI, 2001). Numerical
results show that the clustered ESNs, particularly Barabási-Albert CESN and Deep ESN,
present much superior performance than the classic Random ESNs and Wiener filters.

Our objective is to use the CESNs to solve the frequency filtering, and mainly the
noise filtering task. Even though there are classical approaches that solve these tasks,
the idea is to introduce the CESNs as a flexible approach. Another objective here is to
propose new clustered network models to replace the random network in the reservoir.
Worth mention this project only aims the study of artificial neural networks, specifically,
the study of ESNs, where the reservoirs are organized in a way that is inspired by the
modular feature of biological neural networks as studied in (LI et al., 2015; KAWAI; PARK;
ASADA, 2019).

1.3 Document Organization

The following chapters of this document is organized as follows: Chapter 2 presents relevant
concepts and models, specifically complex network models, Echo State Networks, and
Wiener filter for noise reduction. Chapter 3 presents the proposed ESNs. Chapter 4 shows
the obtained experimental results of various ESNs on signal separation and noise reduction
problems. Finally, Chapter 5 presents conclusions and future works.



2
Literature Review

2.1 Complex Networks

As the name suggests, complex networks refers to a graph that consists of a set of vertexes
and a set of edges, where the organization and the topology are not trivial. These
graphs can be used to represent and study several organizations, such as the internet,
social relations between individuals, biological neural networks, metabolic chains, food
chains, among others (COSTA F. A. RODRIGUES; BOAS, 2006; NEWMAN; BARABÁSI;
WATTS, 2006; NEWMAN, 2010; LATORA; NICOSIA; RUSSO, 2017).

The main property of such networks are (STROGATZ, 2001):

• Structural complexity – hard to visualize the network;

• The Evolution - constant changes in the network structure due to inclusion and
removal of vertexes and connections;

• Diversity of connections – The connections between the vertexes can have multiple
variations in their characteristics, such as capacity, the length, the width, and the
direction;

• Complex dynamic – beyond the structure, what affects in large scale in the state
of the network is its dynamic, which is the information flow, communication flaws,
epidemic, synchronization, and correlation between vertexes, and others.

The way the edges are correlated defines the type of the network. There are three
main categories of complex networks, which are:

• Random networks: It was the first type of complex network mathematically
studied. Proposed in (ERDÖS; RENYI, 1961), this model considers that edges are
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added randomly given a fixed number of vertexes N. The mean degree of each vertex
is given by the equation:

〈k〉 = p(N − 1) (2.1)

where (p) is the probability of a given vertex to connect with any other vertex
in the network, following a Poisson distribution. In this way, all the vertex have
approximately the same number of connections, as well as the same chance to receive
new connections. The Figure 1.a shows the structure of a possible random network.

• Scale-free networks: The main feature of this type of network is the more connec-
tions a node has, the more likely this node is to receive new connections. Proposed
by (BARABÁSI; ALBERT, 1999), the authors observed that such property is present
in several real-world networks, such as the internet, metabolic networks, biological
neural networks, article citation networks, and others. Therefore, the authors have
shown the degree distribution of several of these networks follows a power law, which
is given by the following equation:

P (k) ∼ k−λ (2.2)

where k is the number of connections of a given vertex and λ is the scale exponent.
This kind of network will have the majority of the vertexes with a low number
of connections, and just a few of them with a high number of connections (these
vertexes are known as hubs), as can be observed on the Figure 1.b.

• Small-world networks: In (STROGATZ, 1998), the authors proposed a model
where the vertexes create connections with nearest vertexes with higher probability,
as observed in social networks, for example. The majority of the vertexes create
connections with other vertexes throughout the shortest path (the minimum number
of edges between two nodes). The average length of the shortest path l between all
the pairs of vertexes in a graph with undirected connections is given by the following
equation:

l = 1
N(N+1)

2

×
∑
i≥j

d(i, j) (2.3)

where di,j is the geodesic distance between the vertexes i and j. An example of such
network can be seen on the Figure 1.c.

Note that complex networks can have a clustered topology, where similar nodes are
connected and there are fewer connections between nodes of different clusters, as can be
observed on the World Wide Web, in article citation networks, in traffic networks, social
networks, and others (FORTUNATO, 2010).
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(a) Random network (b) Scale-free network (c) Small-world network
Figure 1 – Example of the different types of complex networks.

The Figure 2 shows an example of a complex clustered network. The clustering
(also known as community detection) is currently one of the biggest challenges in machine
learning, due to the high complexity of traditional algorithms when handling large amounts
of vertexes and edges. This fact makes this research area relevant and promising, as
indicated by the works (FORTUNATO, 2010; NEWMAN, 2004; NEWMAN; GIRVAN,
2004; QUILES et al., 2008; SILVA; ZHAO, 2012; SILVA; ZHAO, 2016), and others.

Figure 2 – Illustration of a clustered network, where the vertices with the same color
belong to the same cluster.

Therefore, the aim is to investigate how does the ESN behaves with the neurons in
the reservoir organized in clusters, where these clusters form a complex network, as it will
be discussed in the next sections.
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2.2 Echo State Networks

In this section, a quick review of various ESNs are presented, which is the main subject
studied in this work. These are the classic ESN with a random network as reservoir
(Random ESN ) and the deep ESN with a random reservoir divided into several layers
(Deep ESN ).

Echo State Networks (ESNs) provide an architecture and a mechanism for recurrent
neural networks for supervised learning. The main idea is to introduce a set of neurons
between the input layer and the output layer, called a reservoir. Such a reservoir is
composed of a network of neurons recurrently and randomly connected. Further details of
this network will be given in the section bellow.

2.2.1 Random ESN

The ESN was proposed by (JAEGER, 2001) introducing an algorithm to build recurrent
neural networks to recognize patterns. The main idea of the algorithm is to change only
the weights of the output layer in the learning process. This is what makes the learning
process of the ESN fast.

The general idea of the ESN is to provide an architecture of a recurrent neural
network to perform supervised learning. There is an input layer (u(t)), an output layer
(x(t)), and a hidden layer between them called reservoir (r(t)). The reservoir is a dynamical
system that forms a high-dimensional mapping to avoid the lineally non-separated problem.
The interesting point is that, with the reservoir projection, the learning process only occurs
at the output layer. Figure 3 illustrates a Random ESN with an input layer, a random
network in the reservoir, and the output layer. The training stage of these networks is
very fast compared to the training of other types of ANNs. The algorithm to build the
classic ESN follows the steps:

• A random network is created to be used as a reservoir. Then, connections are created
between all nodes in the input layer to all nodes inside the reservoir. And then,
connections are created between all nodes in the reservoir to all nodes in the output
layer. Initially, all connection weights are random real numbers between -1 and 1. In
general the matrix is an sparse matrix to ensure the echo property of the network,
which is controlled by a ESN parameter called spectral radius (ρ).

• Iterations are made in the states of the reservoir neurons without changing weights
of reservoir connections. Each neuron is a dynamic system, and its state evolves
throughout time.
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• The training phase is done by changing the connections weight between the reservoir
and the output layer, using the linear regression technique to minimize the error
between the network output and the expected output (expected outputs are provided
as part of the training data).

Going further in the algorithm, mathematically, the reservoir state x(t) changes
over time-based on the following equation:

x(t+ 1) = (1− α)x(t) + αf(Ax(t) +W inu(t) + γ1), (2.4)

where 0 < α ≤ 1 is a leakage rate, A ∈ RN×N is the adjacency matrix of the reservoir,
Win ∈ RMin×N contains input connections weights, u(t) ∈ RMin is the input vector, and
γ1 is a bias vector, where γ ∈ R is the bias and 1 ∈ RN denotes a vector containing ones.
Since all the input data used in this work only consists of one-dimensional data, then
throughout this work we use Min = 1.

The output of an ESN is given by the following equation:

s(t) = W outx(t) + c (2.5)

The key fact in the ESNs is that only the connections with the output layer are
trained. In this case, the aim is to find a good estimator (ŝ(t)) by configuring W out to fit
the input data. The ESN training algorithm was already described in (LU et al., 2017).
For the self-contained purpose, it is shortly described below.

Given an input signal U with the entries: u(1),u(2), . . . ,u(tmax), the reservoir state
will change according to the Equation 2.4. The reservoir has an initial state, x(0), and for
each entry u(t), the reservoir will generate the state x(t) based on the input values. Linear
regression can be used to find a good estimator (ŝ(t)), which aims to approximate the
expected output to the output given by the network. The first step to find this estimator
is calculating the mean x̄ of the states in the reservoir, and the mean s̄ of the expected
outputs, which are given by the equations:

x̄ = 1
tmax

tmax∑
t=1

x(t), (2.6)

s̄ = 1
tmax

tmax∑
t=1

s(t), (2.7)

where tmax is the number of training steps.
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Figure 3 – This drawing illustrates a Random ESN, where the nodes colored in white
on the left side are the input nodes, and the continuous arrows indicate a
connection between an input node and all the nodes inside the reservoir. The
nodes colored in black are the nodes inside the reservoir, and the continuous
arrows represent the connections between the nodes. On the right side of the
Figure, the nodes colored in white represent the output nodes, and the dashed
lines represent the connections between all nodes inside the reservoir to an
output node. All the connections inside the reservoir are drawn arbitrarily
forming a random network.

Let δX be a matrix with tmax columns, where the t-th column is the vector x(t)− x̄.
Analogously, let δS be a matrix with tmax columns, where the t-th column is the vector
s(t)− s̄. That is

δX =

x(0)− x̄ ... x(t)− x̄ ... x(tmax)− x̄,

 (2.8)

δS =

s(0)− s̄ ... s(t)− s̄ ... s(tmax)− s̄.

 (2.9)

Therefore, the output matrix Wout can be found using the equation

W out = δSδXT(δXδXT + βI)−1, (2.10)
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where I is the identity matrix, and β is a regression parameter. The variable c can be
found using the equation

c = −[W outx̄− s̄]. (2.11)

With this simple linear regression, the training part of the ESN is done. It is worth
mentioning that the only weights that are trained, are the ones in the output layer. The
weights in the input matrix and in the reservoir are drawn randomly in the beginning,
and they remain the same for all computations.

2.2.2 Deep ESN

A deep neural network is a network that is split into layers, where the aim of each layer is
to extract a meaningful amount of information from the input (DENG; YU, 2014). Using
this definition the deep ESN can be constructed using this principle. The aim is to receive
the data in the input and pass it through the network layer by layer until it reaches the
output layer. The idea behind the Deep Echo Networks (Deep ESNs) as illustrated in
Figure 4 is to split the network in the reservoir into smaller networks, such as each of
these small networks are called layers (GALLICCHIO; MICHELI, 2016).

Let a Deep ESN with a total number of N nodes and L layers (l1, l2, ..., lL), where
N is a multiple of L, each layer has N/L nodes. The algorithm to build the Deep ESN is
the same as the one described above, the only difference is the part to build the network
inside the reservoir. The algorithm to build the network is the following:

1. Given the network has N/L nodes and a mean degree D/L, build L random networks
using the Erdös-Rényi model.

2. Then, create the connections between the layers. Firstly, create the connections
between the input layer (W in) and the first layer (l1). Note that all nodes in the
input layer will be connected to all nodes inside the first layer of the deep ESN.
Secondly, create the connections between the layers, starting at the first layer (l1),
create the connections between the first layer and the second layer (l2). Then, create
the connections between the second layer, and the third, and so on until all the
layers are connected sub sequentially (i.e., the layer li is connected only to the layer
li+1.

3. Then, connect the last layer (lL) to all nodes in the output layer (W out).

An example of a deep ESN with 3 layers can be observed in Figure 4. This network
model was designed to split the network into layers (i.e., each of the small layers is
connected to another layer sub sequentially), and not into clusters (i.e., each of the clusters
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Figure 4 – Illustration of a deep ESN, with 3 nodes in the input layer, 3 layers inside the
reservoir, and one node in the output layer.

can be connected to any other cluster). Note that the layer l1 is not connected to the layer
l3.

While in the classical model the input layer nodes are connected to all nodes in the
reservoir, in the Deep ESNs, they are only connected to the first layer (l1 ). The topology
of the reservoir is organized in such a way the nodes in the layer li are connected to the
nodes in the same layer (li), and the nodes in the subsequent layer (li+1 ). All nodes in
the reservoir are connected to the output layer. In the standard model for the Deep ESN,
each layer is a random network.

2.3 Noise Reduction and Wiener filter

Wiener filter was designed to recover a desired signal dk when it is corrupted by a noise
signal vk . It is considered that dk and vk are wide-sense stationary random processes, and
the Wiener filter produces the minimum mean-square error (MMSE) for the desired signal
(CORNELIS; MOONEN; WOUTERS, 2011). The minimum mean square error is given
below.

JMSE(w) = E{e2
k} = E{(dk − yk)2} = E{(dk − uT

k w)2} (2.12)
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where dk is the desired signal, yk is the filtered (predicted) signal, uk is the filter input, w
is the filter to be defined, and E{x} is the expected value of x.

The MSE equation can be written as

JMSE(w) = E{d2
k}+ wE{ukuk

T}wT − 2wTE{ukdk}w (2.13)

where Xuu = E{ukuk
T} is the autocorrelation matrix and Xdu = E{ukdk} is a cross

correlation vector.

The minimum of the cost function can be obtained by setting the gradient equal
to zero:

0 = ∂JMSE(w)
∂w

= 2Xuuw− 2Xdu (2.14)

Therefore, the Wiener filter is

w = X−1
uuXdu (2.15)

The Wiener filter aims to reduce/remove the noise from a signal. The good thing
about this filter is the fact the method does not need to know anything beforehand.



3
Proposed Models

In this chapter, we propose three new ESNs, where two are clustered ESNs, such that
each cluster in the reservoir is either a Barabási-Albert scale-free network (Barabási-
Albert CESN ) or a Erdös-Rényi network (er-Albert CESN ). Another is the deep ESN
with clustered layers (Deep CESN ) where each layer is a clustered network rather than
a random network. Still in this chapter, we present the materials and methods of the
numerical study.

3.1 CESN model

In this work, two types of networks will be created using the algorithm described below,
the Erdös-Rényi CESN and the Barabási-Albert CESN. Given a network with N nodes
and mean degree equals D, to build the clustered networks, some parameters need to be
defined first, which are:

• Number of clusters (C ): Positive integer number, and divisible by N, indicates the
number of clusters in the network. All the clusters contain the same number of
nodes N/C . The parameter C need to be divisible by N for simplicity since all the
nodes will have the same number of nodes in the experiments.

• Pin: Variable that indicates the percentage of connections between nodes of the
same clusters. The value 0 for this parameter indicates that there are no connections
between nodes of the same cluster, and 1 indicates a completely connected network.
Each cluster contains a number of connections equals N ∗ D ∗ Pin/C .

• Pout : The same as stated for Pin, but it defines the percentage of connections between
nodes of different clusters. Each network contains N ∗ D ∗ Pout connections between
nodes of different clusters.
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In this work, Pin + Pout = 1 to preserve the mean degree of the network.

In summary, the variable C defines the total number of clusters in the network,
and the Pin and Pout define whether the nodes inside the cluster are more connected or
whether there are more connections between nodes of different clusters. Depending on
the set of parameters used to create the clustered network, the resulting network might
not be connected (i.e., it is not possible to go from a node in the input layer to a node in
the output layer using the network edges). This issue can be solved with the following
algorithm:

1. Using the Depth-First Search (DFS), it is possible to find all components of the
network. As the network in the reservoir is a network with directed edges, the DFS
starts in nodes with input degree equals to zero. If there are no such vertexes, the
network is already connected.

2. Then, after finding all the components, all the starting nodes are kept in a list
(v0 , v1 , ..., vk−1 ). Then, a connection is made between the adjacent pairs that are in
the list, and the connection receives a random weight (i.e., a connection is created
between the nodes vi and vi−1 , for i ≥ 1).

These variables described here as well as the algorithm to make the network
connected, will be used to build both CESNs, the Erdös-Rényi CESN, and the Barabási-
Albert CESN. The process to build the networks is described bellow. Once the process is
finished, the network is prepared to be used in the reservoir.

3.2 Erdös-Rényi CESN

More complex networks can be used in the reservoir, as the clustered networks for example,
which is illustrated in Figure 5. In the Erdös-Rényi CESN, the reservoir is composed by a
clustered network, where each cluster is a random network (Erdös-Rényi network). The
idea is simple, create smaller random networks and then create connections between these
smaller networks, which will form a clustered network. The variables number of clusters
(C ) and mixture level (Pin,Pout) defined before are used to build the networks, and control
their properties. Given a network with N nodes and containing C clusters, each cluster
will have a total of M = N/C nodes, where N is divisible by C .

The mixture level is a combination of Pin and Pout, where Pin + Pout = 1 , that
defines how many connections will have between nodes inside the same cluster (Pin), and
how many connections exists between nodes of different clusters (Pout). Given that the net-
work contains N nodes, mean degree D, and C clusters, there will be K = Pin ∗ N ∗ D/C
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Figure 5 – The figure illustrates a CESN, which contains a clustered network in the
reservoir, where the colors differentiate the nodes from different clusters. The
continuous connections inside the reservoir denote connections between nodes
of the same cluster, and dashed connections represent connections between
nodes of different clusters.

connections inside each cluster, and a total of M = Pout ∗ N ∗ D connections between
nodes of different clusters.

1. Create a Erdös-Rényi random network with N/C nodes and K = Pin ∗ N ∗ D/C
edges.

2. Repeat the previous step C times.

3. Then, there are C random networks that are not connected to each other. The next
step is to connect them.

4. Think as each of the C clusters as big nodes to create the connections between nodes
of different clusters.

a) Select two clusters randomly (ci, cj).

b) Select one random node from the cluster ci (u), and one random node from the
cluster cj (v), then create an edge between these two nodes.

c) Repeat this process M = Pout ∗ N ∗ D times.

In summary, the network construction process begins with M nodes, and then K
pairs of nodes (ui , vi) are chosen randomly with the same probability without repetition
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(ERDÖS; RENYI, 1961). Then, for each of these pairs, a connection is made between
the nodes, choosing the connection weight randomly. This process is repeated C times,
and then a total of C clusters are created. To create the connections between nodes of
different clusters, M pairs of nodes (uj , vj) are chosen, such that uj and vj do not belong
to the same cluster. After generating the pairs, a connection is made between (uj, vj)
choosing a random weight for it. At the end of this process, a clustered network will be
created, such that, each cluster is a random network, and the connections between nodes
of different clusters are random networks.

3.3 Barabási-Albert CESN

In a Barabási-Albert CESN, the reservoir is composed of a clustered network, where
each cluster is a scale-free network. The scale-free network model has been proposed by
(BARABÁSI; ALBERT, 1999), and it receives this name due to the degree distribution of
the nodes, which follows a power law.

In this model, the network begins with a small number of nodes n, where n << N .
All n nodes are connected, i.e., there is a directed connection between all pairs of nodes.
A total of N − n nodes are added one by one in this network. When a new node is added
to this network, a connection is created between the new node and a given node added
previously in the network. Since the reservoir must be a directed graph, the algorithm
proposed in (BOLLOBAS et al., 2003) was used to build the network.

1. Given that the network has N nodes, each cluster will have NC = N/C nodes, where
n << NC .

2. Create a directed complete network(i.e., all nodes are connected to each other)
with n nodes. Then, add NC − n nodes with zero connections to the other nodes,
and then add N ∗D ∗ Pin/C edges to this network using the scale-free model for
directed graphs (Nodes with more connections have a higher probability to make
new connections with other nodes).

3. Repeat the previous step C times.

4. At this point, we end up with a network that contains C scale-free networks that do
not have connections with other clusters. Now, each cluster will be treated as a big
node to create the connections between different clusters.

5. The complete network will start with only one big node, then, the other big nodes
are added one by one.

a) Let a network with C clusters, thus the network will have C nodes.
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(a) Clustered Erdös-Rényi Network (b) Clustered Barabási–Albert Network

Figure 6 – The image shows how is the final adjacency matrix for either the clustered
networks.

b) Start with a network with a single node, the first cluster in this case.

c) Add C − 1 nodes(C − 1 clusters) to this network, and then create N ∗D ∗ Pout
connections, and then choose the pair of big nodes to connect based on a
scale-free distribution. Once the two clusters are chosen(ci, cj), get one random
node from the ci and a random node from cj, and then make a connection
between them.

d) Repeat this process until the total number of connections is created in the
network.

In summary, the first step to build the scale-free clustered network is to generate C
scale-free networks using the algorithm stated above. Each of these C scale-free networks
has a mean degree equals K and starts with n initial nodes. Then, the next step is to
connect these small networks between them, such that the connections between nodes of
different clusters form a scale-free network. The same algorithm is applied to achieve this,
where the C clusters are the nodes in this case.

A total of N ∗ D ∗ Pout connections are created between the nodes of different
clusters. The network starts with c clusters, where c < C . Then C − c clusters are added
one by one. When a new cluster (ci) is added to the network, a connection is created
between a node of this cluster(u ∈ ci), and a node from a previously added cluster (v ∈ cj).
In Figure 6, it can be observed the difference between the two clustered CESNs, and how
it looks like the final configuration of the network.
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In the end, the degree distribution of the networks inside the cluster, and the degree
distribution of the clusters when connected to other clusters is a scale-free distribution.
This network will have a very different topology as can be observed in the Figure 6.

3.4 Deep CESN

In this work, an extension will be made for the deep ESN, such that each layer is a
clustered network. The model consists of keeping the layer structure of a Deep ESN
network, and use a clustered network in the layers rather than a random network. This
type of network will be denoted as Deep CESN. The idea behind this is to have a network
with both layered and clustered properties.

The parameters for the CESN will be the same as stated earlier, and the new
parameter for this network is the number of layers (L). The networks in the layers can be
an Erdös-Rényi CESN (see section 3.2 for more details) or a Barabási-Albert CESN (see
section 3.3 for more details). The algorithm to build this type of network is the same as
the deep ESN, and the only change in the algorithm is when creating the networks for
each layer.

The algorithm will work as follow, L clustered networks (l1 , l2 , ..., lL) are created,
where each network has the same size N/L. Then, N/L connections are created between
the layer i and the layer i + 1 if i < L.

3.5 Materials and Methods

The section below describes the tasks which the ESN and its extensions are submitted
to solve. There are three different tasks, the estimation of an unobserved variable of the
chaotic system, specifically, the Rössler system, the frequency filtering task, and the noise
filtering task.

3.5.1 Observer Problem

ESNs can be applied to observer problems, i.e., the estimation of an unobserved variable of
a dynamical system based on measurements of an observed variable. One example system
used by the authors is the chaotic Rössler system (LU et al., 2017), which is defined by
the following differential equations:
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dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c).

(3.1)

In this work, we will apply the CESNs to the observer problems using the Rössler
system. In the numerical studies described in the next section, the x-component of the
Rössler system is used as the observed variable, i.e., as the input signal for the CESN. The
y-component is used as the target signal which should be approximated by the CESN’s
output.

To obtain the trajectory of the Rössler system, the system is solved using the
4-th order Runge-Kutta method. The constants a, b and c, are set to 0.5, 2.0 and 4.0,
respectively. The initial conditions for the training, as well as for the test, are chosen
randomly from a uniform distribution on [0, 1]3.

3.5.2 Frequency Filtering

As a second task with comparison purposes, we use a sum of multiple sine signals with
different frequencies and phase shifts and variable amplitudes determined by random
envelope functions as the CESN’s input signal. One of these sine signals is the target
signal, i.e., the CESNs’ tasks are to let a certain frequency pass and filter out the others.

A disclaimer is that there are methods in the literature that excels to solve this
problem as the Fourier Transform. In this task, the aim is only to compare performance
between the ESNs and the CESNs.

Frequency filtering is an interesting task to evaluate the ability of the ESNs to
extract features from the data. Moreover, the task can become difficult depending on the
parameters to generate the data. In the simulations, the mixed input signal S, is a sum
of the signals s(1); s(2); ...; s(k). The aim is to identify these signal components, which
generate S. In our experiments, sinusoidal signals multiplied by a function called, an
envelope is used. Some parameters are required to generate the data.

The algorithm to generate the input signal is described below:

• Let steps be the total number of steps, ∆T a time interval and k the number of
frequencies generated, where freqi ∈ R, k sine functions are generated. Each sin
function has the following form:

si = seni(freqi × (x+ λ)), (3.2)
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Figure 7 – The red signal is the mixed signal of 3 component signals with the frequencies
(1; 2; 3). The blue color is the signal with frequency 1, which is the desired
signal as an output of the neural network.

where x is between [0; steps], and λ is an offset value chosen randomly in the range
[0; 2 π].

• Data points are generated randomly on the y-axis in the interval [y0; y1]. On the
x-axis, the data points are equally spaced between [0; steps], where the difference
between two points is ∆T , i.e., xi+1xi = ∆T . Subsequently, a cubic interpolation is
made between these points, and the resulting function is called envelope function.
in the end, there are k envelope functions, ef1, ef2, ..., efk.

• After that, each sine function (si) is multiplied by an envelope function (efi). And
finally, we get S, which is the sum of these multiplications, i.e.,

S = s1 × ef1 + s2 × ef2 + ...+ sk × efk. (3.3)

Figure 7 shows the shape of the data generated by the algorithm detailed above.
ESNs aims to extract a single component from the signal’s sum. In this case, the input
layer and the output layer of the neural network contain one neuron. Worth mentioning
that identifying more than one signal is similar to this process. The only modification
needed is in the output layer.
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After submitting the training phase to ESN with the data previously generated as
shown in Figure 7, the network is subjected to a test stage to evaluate the performance of
methods.

3.5.3 Denoising task datasets

The denoising problem can be described as follow: A signal with noise is given as input
and the aim is to give as an answer the filtered signal. For the artificial types of noise,
a signal will be generated as described in the section 3.5.2, then the noise will be added
to the raw signal using the methods below. For the ECG dataset, which is a real-world
signal, the dataset was collected by (GOLDBERGER et al., 2000; A.P., 2005).

We study the performance of the ESN methods described above using three different
tasks. For the first two tasks, we add Gaussian noise and impulse noise to a randomly
generated wave signal consisting of multiple sin signals with random phases and frequencies
and fluctuating amplitudes determined by randomly generated envelope functions. Then
we apply the ESNs to denoise the signal and reconstruct the original wave signal. As a
third task, we use the ECG dataset, which contains a set of electrocardiograms records of
different persons (GOLDBERGER et al., 2000; A.P., 2005).

3.5.3.1 Gaussian Noise

The Wiener filter is a well-known method, which was made to remove specifically this
type of noise. Let x be a signal without any type of noise, the idea is to add noise to this
signal following a Gaussian distribution, which is given by the following equation:

pG(x) = 1
σ
√

2π
e− (x−µ)2

2σ2 , (3.4)

where the µ is equals to 0 and the σ is chosen arbitrarily.

3.5.3.2 Impulse Noise

Given a signal x, a noise level δ, and ndp noisy data points chosen randomly from x, each
of these data points will be updated according to the equation:

x(i) = x(i) + r, (3.5)

where r is a value between [-δ, δ]. The main idea of the impulse noise is to add different
perturbations along the signal, and try to remove them. This kind of task is a bit different
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from the previous one (Gaussian noise) since the noise is not spread onto the signal
according to a probability distribution.

3.5.3.3 Electrocardiogram dataset

An electrocardiogram is a signal which measures the electrical activity of the heart. The
ECG dataset used in this work consists of a set of recordings collected from 90 different
persons. Each of these recordings is divided into two different signals, a raw signal, which
contains noise, and a filtered signal, where the noise was removed.

For the numerical studies, due to computational and hardware limitations, we
split the dataset into a training set consisting of records from 50 persons and a test set
consisting of records from 20 persons. The dataset contains multiple records for each
person, but we restrict ourselves to use only one record per person. To obtain one training
signal and one test signal for the ESN, we merge the individual records in the training
and test phases.

3.5.3.4 Timesteps delay in dataset

In order to make use of non-causal relationships between input and target data, we
introduce the delay parameter d. Then, the input signal will be shifted by d time steps
relative to the target signal. With this strategy, the ESN methods can take into account d
input data points ahead of the target signal.
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Experimental Results

In this section, each of the experiments is divided into sections, and each of them describes
the results obtained. The main goal is to compare the performance between the ESNs
and its extensions. To better evaluate the performance of the methods, a numerical
analysis will be made to find the best set of parameters for the networks that yields the
best performance, and then compare these results. To measure the performance, the
Normalized Root Mean Square Error (NRMSE) will be used. In the charts, the average
NRMSE will be plotted with the standard deviation.

4.1 The Observer Problem

While evaluating a particular variable, some default values will be set to the other
parameters as stated in the Table 1. The parameters in this table are the same as used in
(LU et al., 2017). In this task, for each set of parameters, the ESNs and the CESNs were
submitted to 100 executions to generate the results, and then the overall performance
will be the average of the executions.

The first task is to give as input to the ESNs, the x component of the Rössler

Table 1 – This Table lists the ESN and CESN variable’s default values.
Variable Default value
Nodes (N) 512

Mean Degree (D) 20
Activation function (f) tanh(x)

∆T 0.01
α 0.22

Bias (γ) 0.1
Learning rate (β) 2× 10−7

Spectral Radius (ρ) 1
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Figure 8 – The X component, colored in purple, is the input of the network, and the Y
and Z components, colored in blue, are the expected outputs of the network.

System, and get as output the components y and z, as the Figure 8 shows. The ESNs can
solve this problem with high precision, as shown in (LU et al., 2017), but the goal here is
to compare the performance of the ESNs with a random network in the reservoir and the
CESNs.

In the observer problem with Rössler System, the train steps and test steps were
set to 20k and 10k respectively, since the convergence is fast in this case. To find the
optimal number of clusters, the mixture level was fixed (Pin = 0.75, therefore pout = 0.25).
Moreover, for the Barabási clustered network, the number of initial vertices in each
cluster was set to 1 for simplicity. Note that the Figures 9 and 10 shows only the results
for the component y. The results for the component z were omitted since the results are
quite similar for both components.

The very first step is to find the optimal value for the number of clusters, which
is different for each CESN as Figure 9 shows. Note that the Erdös-Rényi CESN model
with only one cluster is not the same as the random ESN in the number of connections if,
and only if Pin < 1, which in this case is different because Pin = 0.75. After finding the
number of clusters that yield the best performance, new simulations are performed fixing
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Figure 9 – The performance of the CESNs over different values for the number of clusters.

the number of clusters (C) and varying the mixture level parameter (Pin and Pout).

As the Figure 10 shows, the CESNs can achieve better results compared to the
ESN. Even though this is an easy task for the ESNs in general, with the correct set of
parameters, the CESNs can achieve better results compared to the ESN. Worth mentioning
that the CESN with Barabási-Albert clusters has a slight advantage over the other two
other methods.

Although the NRMSE given by all the methods are small, in a qualitative observa-
tion, as the Figure 11 shows, all the methods tested here have good results in this task,
and they can predict the trajectory with a small error rate (NRMSE less than 10−3). The
plots for the z-component were omitted since they are similar for the y-component.

Despite the fact the NRMSE is small for all methods, these results shed a light on
how CESNs can improve the performance compared to the ESN. Moreover, these results
demonstrate the implementation of the CESNs is correct, as it can solve the problem with
similar and even better results compared to the ones found in (LU et al., 2017) with the
classical ESN model. In the section bellow, more complex tasks will be used to test this
hypothesis.
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Figure 10 – The performance of the CESNs over different values for the Pin parameter.
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Figure 11 – The blue line is the expected output, and the dashed line in red is the output
given by the networks.
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Figure 12 – The performance of the CESNs as the number of clusters changes.

4.2 Frequency Filtering Task

The second task to be tested is the frequency filtering. At first, a signal that is a sum of
two other signals with frequencies equals 1 and 2 will be used. The input data and the
training data will be generated as explained in section 3.5.2. The idea is the same as in the
previous experiment, which is to find the set of parameters that gives better performance.

Comparing the results in Figure 12, the CESNs also perform better than the random
networks in the reservoir, by only changing the number of clusters. Interesting to note
that as the number of clusters increases, the network adjacency matrix will become less
sparse and more centered around the diagonal, and that can explain why the performance
get worst when the number of clusters is too high. As we can observe in the figures, the
number of clusters indeed has an impact on the CESNs performance.

The Figure 13 shows the performance of the clustered networks as the mixture
level changes. The CESNs improves the performance as the Pin increases, which means
that the networks with a high number of connections inside the clusters, and sparse
connections between nodes of different clusters results in a better performance. Using
the optimal values for the parameters C and Pin, the CESNs can achieve an expressive
gain in performance over the ESNs. Using CESNs one can achieve a (30 to 40) percent
smaller NRMSE compared to the random ESN. While the parameters C and the Pin are
important in the overall performance, the number of initial nodes in the Barabási-Albert
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Figure 13 – The performance of the CESNs as the parameter Pin changes.

networks does not decrease the NRMSE, as the Figure 14 shows.

These results shows that when the network is split into clusters that can indicate a
substantial gain in performance over the random networks. The idea of having a network
with different number of clusters is due to the fact the input signal is a linear combination
of other signals each with different frequencies. This might be due to the fact that different
clusters can "capture" different types of frequencies present in the input signal, but this
needs to be further investigated.

So far, the ESNs have been submitted to only a signal with two frequencies. To
make the task harder, a test was made to check whether the number of frequencies reflects
in the performance of the ESNs. The ESNs will be tested with signals with more than two
frequencies. That is, the input will be the sum of k signals, where the frequency of the
signal si is i, for i = 1, ..., k. For each signal, the parameters of the CESNs will be optimized,
but tested in a smaller set of values for the parameters C ∈ [1, 2, 4, 8, 16, 32, 64, 128] and
Pin ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

The performance of the methods seem to follow the same trend as stated in Figure
15, oscillating in some cases. Since the set of parameters tested is smaller in this case,
there might be some room for improvement. Note that the three methods follow the same
trend, and there is an advantage for the CESNs over the ESN in all the cases. Moreover,
the performance of the CESNs is more stable with smaller error bars than the ESN.
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Figure 14 – The NRMSE over different values for the initial nodes parameter in the
Barabási-Albert CESN, which does affect the performance.

Figure 15 – The performance(NRMSE) of the CESNs as the parameter number of frequen-
cies changes.
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4.3 Denoising task

In this task, the aim is to find a solution for filtering the noise from a given signal using
ESNs and its extensions. Moreover, three different types of noise will be added to the
signals, the impulse noise, the Gaussian noise, and real-world noise in an ECG dataset.
Going towards the same direction as the results observed in the previous section, as the
ESNs can distinct different frequencies, it also may detect the noise from the signals,
remove it, and give as output the filtered signal. These experiments will try to prove this
hypothesis.

The general idea is to feed the model with a noisy signal and get the filtered signal
as output. To compare the results, the Wiener filter method will be used as a baseline. To
find the best parameters for the Wiener filter, a grid search is performed. The parameters
to be optimized in the Wiener filter are the window size and the noise-power. For the
ESNs, some default parameters are fixed as shown in Table 2, while others, specifically, α,
number of clusters (C), cluster mixing level (Pin), number of layers (L) are left as free
parameters to be studied. Note that some values in Table 2 are not the same from the
ones in Table 1. All the results presented here are averaged over 8 executions due to an
increase in the complexity of the experiments.

Table 2 – This table lists the ESN and CESN parameters default values in the denoising
task.

Parameter Default value
Nodes (N) 1050

Average Degree (D) 20
Learning rate (β) 2× 10−7

Training steps 5× 104

Test steps 3× 104

The idea is to find the best parameters in the artificial datasets, the impulse
noise and the Gaussian noise, and then try to use the set of parameters in a real-world
application, which is to filter the noise from ECG signals in this case.

Firstly, the best parameter value of α and the delay parameter (d) are determined.
After that, for the CESNs, the parameters number of clusters (C) and the mixture level
(Pin, Pout) are optimized.

4.3.1 Impulse noise reduction

An illustrative example is shown in Figure 16, which presents a noisy signal and the filtered
signals by Wiener filter and by the ESNs methods. In this specific case, the desired signal
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Figure 16 – A specific noisy signal and the filtered signals by Wiener filter and various
ESNs.

without noise, marked as "Expected" in the Figure is known, because the noise is added to
the original signal. Qualitatively, all the methods generate reasonable results.

Before presenting the performance of various ESNs on impulse noise reduction, the
effect of the parameter α is analyzed, which is a common parameter that controls the
memory in the reservoir, and it appears in all ESNs versions. The variable α is directly
affected by how many steps are delayed in the input signal. To find the best combination
of these two parameters, a grid search is performed using only the Deep ESN method
as a baseline. The results are presented in Figure 17. The heat-map shows as the delay
increases, the performance of the Deep ESN improves, and for larger values of α, the
performance gets better. This is reasonable because if the delay increases, the window of
the ESN gets larger, therefore, less memory is required to remember past states.

Now, the performance of ESNs varying α parameter can be investigated by fixing
the time-steps delayed in the input signal. The Figure 18 shows that the impulse noise
reduction’s NRMSE of the Barabási-Albert CESN, the Erdös-Rényi CESN, and the Deep
ESN are larger when α is small, while those get much better results than Wiener filter
when α ≥ 0.6 and a stable performance is observed when α ≥ 0.7. However, the classic
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Figure 17 – Heat-map of the performance(NRMSE) over different values for α and the
timesteps delay d parameter.

random ESN presents much worse performance than Wiener filter for small values of α
until α = 0, 95. When α > 0.95, random ESN has similar performance to Wiener filter.
Therefore, for the next experiments, the delay will be fixed in 4 timesteps and the α = 0.95.

Now checking the effect by varying the number of clusters in the reservoir. In this
case, it is convenient to study only CESNs. Figure 19 shows that, for both Barabási-Albert
CESN and Erdös-Rényi CESN, good performance can be achieved when the reservoir has
a large number of communities. From the same Figure, note that Barabási-Albert CESN
is much stable than Erdös-Rényi CESN.

The choice of the mixture level parameter in the CESNs does not impact the
performance of the Barabási-Albert CESN, but it has a huge impact on the Erdös-Rényi
CESN as it can be observed on Figure 20. As the Pin becomes closer to 1, the NRMSE
decreases. Interesting behavior of the CESN methods that repeats in this task.

For the Deep ESN and the Deep CESNs, their performance is evaluated by varying
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Figure 18 – NRMSE (Normalized Rooted Mean Squared Error) as a function of parameter
α.
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Figure 19 – NRMSE over different number of clusters, where the number of clusters tested
is the following set: C = 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 25, 30, 35, 42, 50.
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Figure 20 – NRMSE over different values for the Pin in Impulse noise reduction.

the number of layers(L). Basically, all the Deep ESN and Deep CESN under study present
stable and much better performance than the Wiener filter as Figure 21 shows. Still in
this Figure, note that the performance of Deep CESNs is qualitatively similar to Deep
ESN when L > 2.

The next step is to observe the performance of ESNs and the Wiener filter with
different noise levels. Figure 22 shows that all the methods, except the classic Random
ESN, get much better results than the Wiener filter as the noise level increases. At the
same time, Random ESN and Wiener filter present similar performance for all noise levels
studied here.

Note that the parameters used in this experiment were the ones found when δ = 1.0,
therefore it might have some room for improvement, since in this case, the parameters are
not optimized for each noise level.

The results in this section show that ESNs with clustered or layered reservoirs can
improve the performance on the impulse noise reduction task. Moreover, the ESN and its
extensions are capable to detect the noise in the signal, even though the pattern of the
noise is not well defined, and it produces excellent results.



48

1 2 3 5 6 7 10 15 21
Layers (L)

0.040

0.045

0.050

0.055

NR
M

SE
Impulse noise (steps=2500, delay = 4)

Wiener Filter
Deep Erdös-Rényi CESN
Deep Barabási-Albert CESN
Deep ESN

Figure 21 – NRMSE of the deep ESN and deep CESN as a function of the number of
layers.
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Figure 22 – NRMSE over different values for the noise level δ.
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Figure 23 – Heat-map of the performance(NRMSE) over different values for α and the
time steps delay d parameter.

4.3.2 Gaussian noise reduction

Another task to test is the Gaussian noise filtering. This task is particularly interesting
because the Wiener filter is specially designed to solve this type of problem. Moreover,
apart from filtering impulse noise, filtering Gaussian noise from a signal is harder for the
ESNs since it contains more noisy data points.

Since it is a different task, another parameter optimization is required in this case.
To find such parameters, we can use the same approach used in the section above. For the
Gaussian noise, the required number of time-steps delayed in the dataset to achieve the
best performance is greater than in the previous task as the Figure 23 shows. It is a little
bit difficult to see by only looking at the heatmap, but the optimal value for the delay is
16, which is 4 times the value used for the Impulse noise task. This is due to the large
amount of noisy data points.

Fixing the time-steps delay, the performance of ESNs varying α parameter can be
studied. The Figure 24 shows that the Gaussian noise reduction errors of all the ESNs
are larger when α is small, while Barabási-Albert CESN, Erdös-Rényi CESN, and Deep
ESN get slightly better results than Wiener filter when α ≥ 0.7. The classic Random ESN
presents slightly better performance than Wiener filter only when α > 0.9.
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Figure 24 – NRMSE (Normalized Rooted Mean Squared Error) as a function of parameter
α.
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Figure 25 – NRMSE over number of clusters in Gaussian noise reduction.
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Figure 26 – NRMSE over different values for the Pin in Gaussian noise reduction.

The performance of the Erdös-Rényi CESN and the Barabási-Albert CESN can
be checked by varying the number of clusters (C). Note in Figure 25 the number of
clusters does not affect the performance for the Erdös-Rényi CESN, but it does for the
Barabási-Albert CESN when the number of clusters is small. For both methods, as the
number of clusters increases, the performance stabilizes, which is slightly better than the
Wiener filter. The mixture level parameter for the CESNs when removing Gaussian noise
from a signal does not impact the performance as the Figure 26 shows, therefore, this
parameter can be chosen arbitrarily.

Then, a comparison between Deep ESN, Deep Erdös-Rényi CESN, and Barabási-
Albert CESN is made on the Gaussian noise reduction task by varying the number of
layers. Note in Figure 27 that all the Deep ESNs get slightly better results than Wiener
filter and qualitative similar performance among themselves.

An analysis can be made on how different Gaussian noise levels affect the perfor-
mance of the ESNs. Figure 28 shows that all the ESNs methods have a qualitative similar
performance in this task, including the Wiener filter. Even though the difference between
the methods is relatively small in this case, still worth to use the ESN extension because
it offers a more flexible approach, and the NRMSE is smaller than the Wiener filter for
δ ≤ 2.5 in the experiments. Moreover, optimizations can be made by fixing the noise level
(δ), as it can be observed in the Figures 25 and 27.
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Figure 27 – NRMSE against number of layers in Gaussian noise reduction.
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Figure 28 – NRMSE over different noise levels in Gaussian noise reduction.
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4.3.3 ECG signal noise reduction

The ECG dataset is an opportunity to test the methods in real-world signals and check
whether the ESN methods outperform the Wiener filter. To test whether the knowledge
obtained in the previous experiments, the CESN’s parameters found earlier will be used in
this task. Since it is a harder task, the optimal parameters for the CESNs in the Gaussian
noise will be used in this task.

First, the ESN parameters are fixed with the values obtained from the previous
studies and vary the common parameter α for all types of ESNs. Figure 29 shows the
performance of the ESN and its extensions versus the parameter α. The CESN methods
and the deep ESN reach the best performance when α = 0.2, on the other hand, the random
ESN has the best performance for α = 0.4. Note the deep ESN and the Erdös-Rényi
CESN deliver more stable results when varying the α compared to the other methods.
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Figure 29 – NRMSE versus the parameter α.

This result is interesting because, for the Impulse noise and the Gaussian noise,
the performance gets better as the α increases fixing the time-steps delay, but in this type
of noise, smaller values of α yields better results. This means that when the network has
a larger memory, i.e., more weight is given to past states, smaller is the error. The reason
behind this is due to the different types of noise the signal contains.
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Figure 30 – The ECG signal with the noise and the filtered signals by Wiener filter and
various ESNs.

A qualitative comparison between the ESN methods, and the Wiener filter can be
observed in Figure 30. This Figure shows only a part of the output given by the methods.
Whereas the Wiener filter is almost unable to detect the noise and produce the clean
signal, the ESN and its extensions can filter the signal giving a good approximation of the
clean signal.

Using the ESN methods with the optimal set of parameters for each of them, the
NRMSE is decreased by more than half compared to the Wiener filter. This means that
noises in real-world signals can vary a lot, i.e., they are not always Gaussian noises or
impulse noises, which can be difficult for context-specific filters to remove these types of
noises. Therefore, ESNs, specially CESNs, and Deep ESNs gives a robust solution for
unknown noise reduction.
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Conclusion

Past works using different tasks as referenced before has also shown the organization of the
network in clusters improves the overall performance (APPELTANT et al., 2011; WEN;
LI; LI, 2015; MARTENS et al., 2017; KAWAI; PARK; ASADA, 2019). Throughout this
work several architectures of ESNs have been explored, starting with the most simple one,
which is an ESN with a random network inside the reservoir, and then expanding this
model to a little bit more sophisticated model that replaces the random network with a
clustered network built based on complex network models. The model was expanded even
more by using a deep ESN where each layer is a clustered network rather than a random
network. Moreover, this work proposed to submit the ESN and its extensions to three
different types of tasks to check if the performance given by the clustered network can be
noticed when solving different types of problems.

The results in the experiments presented here show the extensions proposed can
yield better performance than the random ESN. One key point to achieve good performance
with the extensions is the parameter optimization phase. After the optimization phase, a
good performance can be achieved using the ESN extensions, which are the CESNs, the
deep ESNs, and the deep CESNs.

In the observer problem, due to the low NRMSE that the ESN gives (around 10−4),
it is hard to measure whether the extensions are better than the classic model of the ESN.
Although, there is a small improvement of the CESNs over the ESNs in this task. In the
frequency filtering task, the difference in the performance between the ESNs extensions
and the classic model becomes larger. In this task, compared to the random ESN, one can
achieve (30 to 40) percent smaller NRMSE.

Moreover, in the novel approach for the ESNs, the noise filtering task, the ESN
and its extensions present a robust approach for signal noise reduction. The reason behind
this is that ESNs learn from the input-output of the data, then the performance depends
much less on the types of noise. The result given by this approach can shed a light on
how ESNs can be used to solve different types of problems providing good results. When
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submitted against real-world signals, the ESNs can be a good approach since it can learn
from different types of noise and remove them easily. Since the Wiener filter was designed
for a specific type of noise, it may have a bad performance for real-world signals, where
the types of noises are usually unknown.

In all tasks, a notable superiority of the Deep ESN and the CESNs over the classic
ESNs in general cases, indicating that the organization of reservoirs in clustered or layered
networks can improve the learning performance of ESNs. These improvements are probably
due to the selective nature of the clusters in the reservoir, where different clusters are
responsible to capture different signal properties.

This point deserves to be further investigated. Therefore, as future work, we will
analyze the collective dynamics of neurons in the reservoir, such as frequency synchro-
nization, phase synchronization, or generalized synchronization, and try to find out the
correlation between the performance of ESNs and the firing patterns of neurons in the
reservoir.
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