UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO DEPARTAMENTO DE COMPUTAÇÃO E MATEMÁTICA

CLAUDIO BOLDORINI JÚNIOR

Indução de falhas críticas em redes sem escala

Ribeirão Preto–SP

2020

CLAUDIO BOLDORINI JÚNIOR

Indução de falhas críticas em redes sem escala

Versão Revisada

Versão original encontra-se na FFCLRP/USP.

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) da Universidade de São Paulo (USP), como parte das exigências para a obtenção do título de Mestre em Ciências.

Área de Concentração: Computação Aplicada.

Orientador: Alexandre Souto Martinez

Ribeirão Preto–SP

2020

Claudio Boldorini Júnior Indução de falhas críticas em redes sem escala. Ribeirão Preto–SP, 2020. 198p. : il.; 30 cm.

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras da USP Ribeirão Preto, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Computação Aplicada. Orientador: Alexandre Souto Martinez

1. Redes sem escala. 2. Aprendizado de máquina. 3. Redes complexas. 4. Princípio de Pareto

Claudio Boldorini Júnior

Indução de falhas críticas em redes sem escala

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Computação Aplicada.

Trabalho aprovado. Ribeirão Preto-SP, 11 de fevereiro de 2022:

Orientador: Alexandre Souto Martinez

Professor Odemir Martinez Bruno

> **Professor** Roberto da Silva

> > **Professor** Zhao Liang

Ribeirão Preto–SP 2020

Este trabalho é dedicado à todos os meus, que acreditaram em mim e me deram asas quando eu já não me lembrava se podia voar.

Agradecimentos

Agradeço aos meus pais, que desde cedo me incentivaram e aguçaram a minha curiosidade com livros, música e muito amor e foram meu pilar por todos esses anos de caminhada. À minha Luciana, meu porto seguro que sempre me apoiou e me deu forças quando fraquejei, ânimo quando desanimei e iluminou meu caminho quando estava escuro, sem você esse trabalho não seria possível. Aos meus sogros, Sandra e João por todo apoio e por ser minha segunda família e uma das rochas onde pude me segurar. Ao meu orientador Alexandre, por ter acreditado em mim e ter me dado uma chance de realizar esse sonho após tanto tempo longe do caminho acadêmico. À todos os colegas do programa, sempre prontos a ajudar e compartilhar as experiências. E por último, mas não menos importante, aos colegas de laboratório pelas conversas esclarecedoras, paciência e companheirismo.

"Try not. Do... or do not. There is no try." (George Lucas, "The Empire Strikes Back")

Resumo

Uma das razões da robustez das redes sem escala é sua alta tolerância a falhas aleatórias devido a baixa quantidade de vértices concentrando grande parte das arestas que a mantém conectada. Por outro lado, esse aspecto apresenta uma fraqueza a ser explorada: a remoção coordenada desses vértices. A formação dessas redes tem seu viés baseado na priorização de vértices com maior número de arestas para novas conexões, fazendo com que poucos deles concentrem a maior parte das arestas, gerando os *concentradores* — o termo encontrado amplamente na literatura para esse tipo de vértice é hub. Pode-se dizer então que dificilmente uma série de falhas aleatórias conseguiria atingir uma quantidade relevante desses vértices para induzir um colapso em redes com essa característica, porém um ataque direcionado aos concentradores pode causar dano considerável na mesma com poucas remoções. Para alcançarmos esse objetivo, apresentamos uma grandeza de simples compreensão e com baixo tempo de execução até mesmo para redes com um número elevado de vértices e arestas. Notou-se que após a aplicação dessa grandeza em grafos sintéticos e em algumas redes reais mapeadas que não há necessidade de excluir muitos vértices para que emerja uma escala cujo primeiro momento estatístico é relevante e, o que é mais importante, obter o segundo momento convergente.

Palavras-chave: Redes sem escala. Redes complexas. Colapso em redes sem escala.

Abstract

One of the reasons for the robustness of free scale networks is their high tolerance to random faults due to the low number of nodes concentrating most of the links that keep them connected. On the other hand, this aspect has a weakness to be exploited: the coordinated removal of these nodes. The formation of these networks has its bias based on prioritizing nodes with a greater number of links for new connections, causing few of them to concentrate most of them, generating *concentrators* — the term found widely in the literature for this type of nodes is *hub*. It can be said then that a series of random failures would hardly be able to reach a relevant amount of these nodes to induce a collapse in networks with this characteristic, but an attack aimed at concentrators can cause considerable damage to it with few removals. To achieve this goal, we present a magnitude that is simple to understand and with low execution time even for networks with a high number of nodes and links. It was noticed that after applying this quantity in synthetic graphs and in some real networks mapped that there is no need to exclude many nodes so that a scale emerges whose first statistical moment is relevant and, what is more important, obtain a convergent second moment.

Palavras-chave: Free-scale network, complex networks, Free-scale network collapse.

Lista de Figuras

Evolução do interesse global em ciência de redes de $01/01/2004$ a $22/07/2020$. Origem de dados: Google Trends (www.google.com/trends), em $22/07/2020$	37
Demonstração do interesse em ciência de redes pelo mundo de 01/01/2004 a 22/07/2020. Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020	, 37
Demonstração do interesse em ciência de redes pelo mundo de 01/01/2004 a 22/07/2020 Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020	38
Mapa de Königsberg datado do ano de 1652. A disposição das pontes representada nessa gravura foi a utilizada por Euler em seus estudos.	42
Disposição das pontes de Königsberg em relação às porçoes de terra e ilhas que compõem a cidade. A Figura (a) destaca essa disposição de acordo com o mapa referenciado na Figura 4. Já a Figura (b) demonstra a sua representação em forma de grafo, nota-se que nesse desenho abstraíram-se os rios, porções de terra e pontes, formando um desenho de fácil compreensão que ilustra com clareza as conexões que as pontes faziam.	43
Representação em forma de grafo de uma rede aleatória — gerada pelo algoritmo Érdös-Rényi — com 1024 vértices e 210143 arestas. A análise de um grafo muito grande por sua representação gráfica é impossível de ser feita, sendo necessária o uso de grandezas matemáticas para que haja maior compreensão do sistema considerado	44
Representação do grafo \mathcal{G} não-ponderado e não-direcionado \mathcal{G} — con- tendo 5 vértices e 5 arestas. Percebe-se que ao analisarmos um grafo pequeno o mesmo pode ser feito pela observação dessa representação, apesar de não ser uma prática comum, visto que existem medidas que facilitam essa análise	44
Representação de um grafo \mathscr{G} direcionado. As arestas são desenhadas com setas (arcos) que indicam o sentido do fluxo no qual a "informação" trafega. Neste caso, as adjacências são dependentes da direção em que as arestas estão apontadas. A palavra informação aqui tem um sentido muito abstrato visto que um grafo pode representar diversos sistemas diferentes.	46
	Evolução do interesse global em ciência de redes de 01/01/2004 a 22/07/2020. Origem de dados: Google Trends (www.google.com/trends), em 22/07/2020. Origem de dados: Google Trends (www.google.com/trends). em 22/07/2020. Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020. Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020. Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020 Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020 Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020

Figura 9 –	Representação de um grafo \mathscr{G} ponderado. Neste caso, representação as arestas têm espessuras diferentes que identificam seus pesos. Esses pesos estão relacionados à quantidade de informação que pode trafegar simultaneamente nessa rota	47
Figura 10 –	Dada a regularidade dos graus dos vértices de um grafo reticulado <i>re-</i> <i>gular</i> como o demonstrado na Figura acima, a distribuição de graus de grafos com essa característica pode ser calculado pela simples observa- ção da mesma.	49
Figura 11 –	Mapa de parte da estrutura viária do centro de Ribeirão Preto, com- provando que os grafos reticulados existem em diversas estruturas do nosso dia a dia	49
Figura 12 –	Grafo aleatório gerado com 50 vértices e uma probabilidade de conexão de 0,3. Isso significa que cada novo vértice adicionado na rede tem uma probabilidade de 30% de conexão a cada um dos outros já presentes na estrutura.	50
Figura 13 –	Apresentação da diferença entre a distribuição de graus de um grafo reticulado e de um aleatório. Através dos gráficos pode-se notar que para um grafo quadrático a distribuição de graus é uma constante ao passo que um grafo aleatório tem sua curva aproximada de um sino, demonstrando uma variação nos graus dos vértices	51
Figura 14 –	Demonstração de como um histograma é apresentado baseado na dis- tribuição de graus de um grafo. Os histogramas são bastante utilizados para essa finalidade devido à sua fluidez entre os intervalos, evidenci- ando os intervalos e seus saltos	52
Figura 15 –	Um clique é apresentado por um grafo totalmente conectado, onde todos os vértices estão interconectados. Aqui, apresenta-se um grafo demonstrando um clique, sendo que $k_{\mathcal{G}} = 6$ e $\rho_{\mathcal{G}} = 1. \ldots \ldots$	53
Figura 16 –	Grafo \mathscr{G} utilizado no cálculo do coeficiente de aglomeração demonstrado na Equação 2.7	54
Figura 17 –	Representação gráfica da rede utilizada em um dos principais estudos sobre segmentação de grafos em comunidade, a "Rede de Karatê de Zachary" com seus vértices já distribuídos em grupos	55
Figura 18 –	Gráfico e Rede representando a mesma estrutura. Pode-se notar que a figura de uma rede (mostrada na Figura 18b é pouco representativa analiticamente, ao passo que o gráfico da distribuição de graus repre- sentado pela Figura 18a é de fácil interpretação	60

Figura 19 –	Demonstração da evolução de uma rede com $v = 20$ e $k = 4$, iniciando com uma rede anel (normalidade) até uma rede totalmente randômica	
	(caos). Pode-se notar que ao passo que $\beta \rightarrow 1$, a rede passa a apresentar	
	uma aleatoriedade típica do modelo <i>ER</i> .	62
Figura 20 –	Rede ER criada para comparação com a rede WS com $\beta = 1$. Nota-se	
0	aqui uma enorme semelhança entre ambos os modelos	62
Figura 21 –	Comparação da distribuição de graus entre uma rede $WS \operatorname{com} \beta = 1$ e	
0	uma rede ER através de seus histogramas	63
Figura 22 –	Grafo e gráfico de distribuição de graus de uma rede WS. A rede aqui	
0	representada foi gerada com 1000 vértices e 2000 arestas	63
Figura 23 –	Gráfico de distribuição de graus e demonstração gráfica de uma rede	
0	sem escala gerada a partir do algoritmo proposto por Barabási	66
Figura 24 –	Demonstração do comportamento desejado das redes analisadas sobre a exe-	
0	cução do algoritmo desenvolvido.	70
Figura 25 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
0	vértices (e arestas) das redes 1 a 5 do Conjunto A utilizando o método I	
	(verificar Anexo B para mais informações sobre as redes)	78
Figura 26 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
-	vértices (e arestas) das redes 1 a 5 do Conjunto B utilizando o método I.	
	Aqui nota-se que para essa abordagem, redes com quantidade de vértices	
	um pouco maiores, esse método mostra-se ineficaz sendo que a distribuição	
	de graus da rede continua apresentando características da lei da potência. $% \left({{{\left({{{{\left({{{{}}}}}} \right)}}}}\right.$	79
Figura 27 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 5 do Conjunto C utilizando o método I.	
	O mesmo apresenta características ainda mais acentuadas da não alteração	
	na distribuição de graus se comparado com o gráfico da Fig. 26. Assim	
	sendo, nota-se que quanto maior a quantidade de vértices e arestas da rede	
	analisada, menor é a eficácia desse método	80
Figura 28 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vér-	
	tices (e arestas) das redes 1 a 5 do Conjunto A com a medida obtida pelo	
	método II. Pode-se notar que algumas redes tiveram seus vértices removidos	
	quase totalmente para redes de tamanho pequeno. Esse é um comporta-	
	mento não desejado e foi corrigido no método III 3.3	82
Figura 29 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 5 do Conjunto B com a medida obtida	
	pelo método II. Fica clara a melhora de desempenho em relação ao método	
	I visto que a distribuição de graus passa a ter um comportamento mais	
	aproximado da distribuição normal, sendo se o grau médio da rede passa a	
	ser relevante.	83

Figura 30 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 5 do Conjunto C com a medida obtida pelo	
	método II	84
Figura 31 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 3 do Conjunto D com a medida obtida pelo	
	método II	85
Figura 32 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 5 do Conjunto A com a medida obtida	
	pelo método III. Nota-se que o resultado obtido foi bastante parecido com	
	o método I, e não houve remoção de redes.	86
Figura 33 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
	vértices (e arestas) das redes 1 a 5 do Conjunto B com a medida obtida pelo	
	método III	87
Figura 34 –	Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos	
-	vértices (e arestas) das redes 1 a 5 do Conjunto C com a medida obtida pelo	
	método III. Nesse gráfico está representada a similaridade e consistência do	
	algoritmo independente da quantidade de vértices ou arestas nela existentes.	88
Figura 35 –	Demonstração da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção	
0	dos vértices (e arestas) das redes 1 a 3 do Conjunto D com a medida obtida	
	pelo método III. Ressalta-se que esse método foi o único que conseguiu	
	efetuar os cálculos de todas as 30 redes contidas nesse conjunto.	89
Figura 36 –	Distribuição de graus da rede de corrupção na política brasileira mapeada	
0	por Haroldo V. Ribeiro, Luiz G. A. Alves, Alvaro F. Martins, Ervin K. Lenzi	
	e Matiaž Perce.	90
Figura 37 –	Distribuição de graus da rede WormNet — o projeto WormNet utiliza gera-	
i igaia oi	cão de redes de maneira hipotética utilizando os maneamentos já conhecidos	
	da bactéria C. Elegans, que é amplamente utilizada em estudos de Bedes	
	Complexas	91
Figura 38 –	Distribuição de graus após remoção dos nós	92
Figura 30 –	Bepresentação da rede de corrupção Rede 1 em forma de grafo antes	02
riguia 55	de aplicação do coeficiente α	02
Figure 40	Representação do rodo do corrupção Rodo 1 om forma do grafo após a	52
r igura 40	aplicação do cooficiento a	02
Figure 11	Comparação entre as redes entes o enés o enliquesto do coeficiente $dhha$	52
Figura 41 –	(método III) no rodo do comunição monorado o numerodo como Podo 1	02
D:	(inetodo III) na rede de corrupção inapeada e numerada como Rede I	92
rıgura 42 –	de aplicação da confisiente a	0.5
D'	ua aplicação do coefficiente α	93
Figura 43 –	Representação da rede de corrupção Rede 27 em forma de grafo após	0.0
	a aplicação do coeficiente α	93

Figura 44 –	Comparação entre as redes antes e após a aplicação do coeficiente <i>alpha</i> (método III) na rede de corrupção mapeada e numerada como Rede 1 9	3
Figura 45 –	Logotipo da linguagem Java. Disponível em <https: upload.wikimedia.<br="">org/wikipedia/en/3/30/Java_programming_language_logo.svg>. Úl- timo acesso em 13/10/2020</https:>	2
Figura 46 –	Logotipo da linguagem Python. Disponível em <https: commons.<br="">wikimedia.org/wiki/File:Python_logo_and_wordmark.svg>. Último acesso em 12/10/2020</https:>	3
Figura 47 –	Logotipo da biblioteca NetworkX, biblioteca Python utilizada para análise de redes complexas. Disponível em <https: networkx.github.io="">. Último acesso em 12/10/2020. Criada por NetworkX developers 10</https:>	3
Figura 48 –	Logotipo da biblioteca Python Matplotlib, amplamente utilizada para demonstração de resultados em forma de gráficos e histogramas. Dispo- nível em <https: commons.wikimedia.org="" file:created_with_<br="" wiki="">Matplotlib-logo.svg>. Último acesso em 12/10/2020 10</https:>	4
Figura 49 –	Logotipo da biblioteca Numpy, uma das mais utilizadas por cientistas de dados para manipulação de conjunto de dados. Disponível em <https: commons.wikimedia.org="" file:numpy_logo_2020.svg="" wiki="">. Último acesso em 12/10/2020. Criada por <i>Isabela Presedo-Floyd.</i> 10</https:>	5
Figura 50 –	Logotipo da IDE Spyder, utilizada para desenvolver todos os scripts Python do presente estudo e bastante utilizado por cientistas de da- dos dados os recursos que a mesma oferece. Disponível em https://commons.wikimedia.org/wiki/File:Spyder_logo.svg . Último acesso em 15/10/2020	6
Figura 51 –	Captura da tela da IDE Spyder em sua versão 4	6
Figura 52 –	Logotipo do aplicativo WEKA, utilizado na primeira etapa da pesquisa para aplicar o modelo Multicamadas Perceptron nos conjunto de dados criados a partir da análise das redes geradas	7
Figura 53 –	Logotipo do aplicativo de análise e representação de redes e grafos Gephi. Disponível em <https: <br="" en="" upload.wikimedia.org="" wikipedia="">0/04/Gephi-logo.png> e acessado em 12/10/2020</https:>	8
Figura 54 –	Rede criada e desenhada a partir de um script Python utilizando so- mente a biblioteca NetworkX	8
Figura 55 –	Rede criada e salva em um arquivo tipo GML a partir de um script Python. Para a plotagem da rede, utilizou-se o Gephi colorindo os vértices baseado no grau médio da rede	9

Figura 56 –	Logotipo do projeto Jupyter que desenvolve ferramentas open-source
	para escrita e execução de programas de diversas linguagens. O am-
	biente Jupiter Notebook desenvolvido por esse projeto foi bastante
	utilizado tanto localmente quanto através da plataforma Google Co-
	laboratory. Disponível em <https: projeto_<="" pt.wikipedia.org="" td="" wiki=""></https:>
	Jupyter#/media/Ficheiro:Jupyter_logo.svg> e acessado em 21/10/2020.110

Figura 57	7 —	Captura	de tela	do Jupyte	r Notebo	ok sendo	executa	do local	lmente.	Nota-se	
		agui a fag	cilidade	de visualiz	zacão dos	resultado	os das lin	has de o	código	executadas	.110

- Figura 58 Logotipo do ambiente Google Colaboratory, utilizado para criar e executar diversos scripts Python que foram fundamentais para o atual estudo. 111
- Figura 60 Logotipo do ambiente Google Cloud, utilizado para criar e processar as redes na primeira etapa da pesquisa para aplicar o modelo Multicamadas Perceptron nos conjunto de dados criados a partir da análise das redes geradas.111

Lista de Tabelas

Tabela 1 –	Matriz de adjacência ${\mathscr A}$ para grafo ${\mathscr G}$ representado na Figura 7. As	
	linhas e colunas são as representações dos vértices, enquanto os valores	
	inseridos nas células da matriz representam a conexão ou não entre	
	esses vértices.	45
Tabela 2 –	Matriz de adjacência \mathscr{A} para grafo \mathscr{G} representado na Figura 8. Nessa	
	representação pode-se notar que a matriz perdeu a sua simetria, visto	
	que em um grafo direcionado o vértice a pode ser adjacente a b mas	
	b não é adjacente a a . Isso acontece dada a direção do tráfego que a	
	informação segue	46
Tabela 3 –	Matriz de adjacência \mathscr{A} para grafo \mathscr{G} representado na Figura 9. Pode-	
	se notar que para cada aresta existe um valor que condiz com o peso	
	da mesma. Esse valor pode representar o preço para utilização dessa	
	via, ou a quantidade de informação de consegue trafegar por esse eixo	
	que depende exclusivamente da rede em análise	47
Tabela 4 –	Demonstração dos parâmetros utilizados para a criação das redes sem	
	escala sintéticas utilizadas para os testes de cada um dos métodos	
	desenvolvidos pelo estudo	71
Tabela 5 –	Conjunto de redes A com tamanho de 100 a 1000 vértices	117
Tabela 6 –	Conjunto de redes B com tamanho de 1000 a 10000 vértices	118
Tabela 7 $$ –	Conjunto de redes C com tamanho de 10000 a 100000 vértices	120
Tabela 8 –	Conjunto de redes D com tamanho de 100000 a 1000000 vértices	121
Tabela 9 –	Conjunto de redes reais C. Elegans e Rede de Corrupção brasileira	122
Tabela 10 –	Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I)	
	em cada uma das redes pertencentes ao conjunto A. $\ \ .$	124
Tabela 11 –	Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I)	
	em cada uma das redes pertencentes ao conjunto B	125
Tabela 12 –	Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I)	
	em cada uma das redes pertencentes ao conjunto B	125
Tabela 13 –	Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II)	
	em cada uma das redes pertencentes ao conjunto A. $\ \ .$	127
Tabela 14 –	Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II)	
	em cada uma das redes pertencentes ao conjunto B	128
Tabela 15 –	Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II)	
	em cada uma das redes pertencentes ao conjunto C. $\ \ .$	129
Tabela 16 –	Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II)	
	em cada uma das redes pertencentes ao conjunto D. \ldots	129

Tabela 17 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III)
em cada uma das redes pertencentes ao conjunto A. \ldots
Tabela 18 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III)
em cada uma das redes pertencentes ao conjunto B
Tabela 19 — Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III)
em cada uma das redes pertencentes ao conjunto C. \ldots
Tabela 20 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III)
em cada uma das redes pertencentes ao conjunto D. \ldots
Tabela 21 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III)
em cada uma das redes pertencentes ao conjunto de redes reais ($C.$ Elegans
e Rede mapeada da corrupção na política brasileira ((RIBEIRO et al., 2018))). 134 $$
Tabela 22 – Distribuição de graus do Conjunto A de rede s ${\rm sintéticas}$ geradas para
os experimentos. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 136
Tabela 23 – Distribuição de graus do Conjunto B de rede s ${\rm sintéticas}$ geradas para
os experimentos. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 138
Tabela 24 – Distribuição de graus do Conjunto C de redes sintéticas geradas para
os experimentos. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 139
Tabela 25 – Distribuição de graus do Conjunto D de redes sintéticas geradas para
os experimentos. \ldots 141
Tabela 26 – Gráficos demonstrando a distribuição de graus após a aplicação do
coeficiente ι (método I de indução de falhas) em todas as redes do
Conjunto A (Tabela 5). \ldots 146
Tabela 27 – Gráficos demonstrando a distribuição de graus após a aplicação do
coeficiente ι (método I de indução de falhas) em todas as redes do
Conjunto B (Tabela 6). \ldots 151
Tabela 28 – Gráficos demonstrando a distribuição de graus após a aplicação do coe-
ficiente ι (método I de indução de falhas) das redes 6 a 15 do Conjunto
em todas as redes do Conjunto C (Tabela 7) e na Rede 1 do Conjunto
$D(Tabela 8) \dots $
Tabela 29 – Gráficos demonstrando a distribuição de graus após a aplicação do
coeficiente Ω (metodo II de indução de falhas) em todas as redes do
$Conjunto A (Tabela 5). \dots \dots$
Tabela 30 – Graficos demonstrando a distribuição de graus apos a aplicação do α
coenciente Σ_2 (metodo 11 de indução de iainas) em todas as redes do Conjunto B (Tabela 6) 162
Tabele 21 Créfices demonstrande a distribuição de grana anés a anlicação de
rabeia 51 – Grancos demonstrando a distribuição de grads apos a aplicação do cooficiente Θ (mótodo II do inducão do falhas) em todos as redes do
Conjunto C (Tabela 7)
$\bigcirc (10000 + 1) \\ (10000 + 1) $

Tabela 32 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente Ω (método II de indução de falhas) parcialmente nas redes	
do Conjunto D (Tabela 8)	173
Tabela 33 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente α (método III de indução de falhas) em todas as redes do	
Conjunto A (Tabela 5).	178
Tabela 34 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente α (método III de indução de falhas) em todas as redes do	
Conjunto B (Tabela 6).	183
Tabela 35 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente α (método III de indução de falhas) em todas as redes do	
Conjunto C (Tabela 7).	188
Tabela 36 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente α (método III de indução de falhas) em todas as redes do	
Conjunto D (Tabela 8).	193
Tabela 37 – Gráficos demonstrando a distribuição de graus após a aplicação do	
coeficiente α (método III de indução de falhas) em todas as redes reais	
analisadas (Tabela 9)	198

Lista de abreviaturas e siglas

υ	Vértice
е	Aresta
Ν	Número de Vértices
L	Número de Arestas
G	Grafo
\mathcal{R}	Rede
MGD	Maior grau detectado
mGD	Menor grau detectado
d	Grau de um vértice
D.H.I.	Data/hora início da execução
D.H.T.	- Data/hora término da execução
T.E.	- Tempo de execução
Q.V.O.	- Quantidade de vértices originais da rede
Q.V.A.R.	- Quantidade de vértices restantes na rede após remoção causada pelo algoritmo
Q.A.O.	- Quantidade de arestas originais da rede
Q.A.A.R.	- Quantidade de arestas restantes após remoção causada pelo algoritmo

Sumário

1	INTRODUÇÃO	35
2	REFERENCIAL TEÓRICO	41
2.1	Grafos	41
2.1.1	Matriz de Adjacência	44
2.1.2	Medidas	47
2.1.2.1	Graus	48
2.1.2.2	Distribuição de Graus	48
2.1.2.3	Caminhadas, Distância e Diâmetro	51
2.1.2.4	Densidade e Coeficiente de Aglomeração	53
2.1.2.5	Comunidades e Centralidade	54
2.2	Redes	56
2.2.1	Redes Complexas	57
2.2.2	Redes Aleatórias	57
2.2.3	Redes de Pequeno Mundo	60
2.2.4	Redes Sem Escala	64
3	METODOLOGIA	69
3.1	Método I - Impacto na remoção (ι)	71
3.2	Método II - Classificação dos concentradores através do vértice	
	de maior grau (Ω)	72
3.3	Método III - Porcentagem sobre o menor grau encontrado (α)	74
4	RESULTADOS	77
4.1	Resultados Método I - Impacto na remoção (ι)	78
4.2	Método II - Limite na Remoção	81
4.3	Método III - Porcentagem sobre o menor grau	86
5	CONCLUSÃO	95
	Referências Bibliográficas	97
APÊND	DICE A RECURSOS 1	01
A.1	Linguagens de Programação	01
A.1.0.1	NetworkX	03
A.1.1	$Matplotlib \dots \dots$	04

A.1.2	NumPy
A.2	IDEs e Aplicativos
A.2.0.1	Sypder
A.2.0.2	Weka
A.2.0.3	Gephi
A.3	Plataformas
A.3.0.1	Jupyter Notebook
A.3.0.2	Google Colaboratory $\ldots \ldots \ldots$
A.3.0.3	Google Cloud
APÊND	ICE B TABELAS 115
B.1	Tabelas Conjunto 115
B.1.1	Tabelas Conjunto A - Redes de 100 a 1000 vértices
B.1.2	Tabelas Conjunto B - Redes de 1000 a 10000 vértices
B.1.3	Tabelas Conjunto C - Redes de 10000 a 100000 vértices
B.1.4	Tabelas Conjunto D - Redes de 100000 a 1000000 vértices
B.1.5	Redes Reais (C. Elegans e Rede Brasileira de Corrupção)
B.2	Tabelas Resultados Método I
B.3	Tabelas Resultados Método II
B.4	Tabelas Resultados Método III
APÊND	DICE C GRÁFICOS DAS REDES E SUBREDES GE- RADAS 135
C.1	Distribuição de Graus - Redes Originais
C.1.1	Conjunto A
C.1.2	Conjunto B
C.1.3	Conjunto C
C.1.4	Conjunto D
C.2	Distribuição de Graus - Método I
C.2.1	Conjunto A
C.2.2	Conjunto B
C.2.3	Conjunto C e D
C.3	Distribuição de Graus - Método II
C.3.1	Conjunto A
C.3.2	Conjunto B
C.3.3	Conjunto C
C.3.4	Conjunto D
C.4	Distribuição de Graus - Método III 173
$C \downarrow 1$	
0.4.1	Conjunto A

C.4.3	Conjunto C	83
C.4.4	Conjunto D	88
C.4.5	Redes reais	93

Introdução

Nosso dia-a-dia é composto por interações entre sistemas, sejam eles de fundo social, comunicação ou tecnológico. Independentemente do sistema que se analisa, todos compartilham uma característica comum: as suas estruturas são compostas por ligações entre elementos. Assim, estudar e compreender a maneira como os mesmos se interligam resulta na compreensão do funcionamento desses sistemas (BARABÁSI, 2003).

Essa multidisciplinaridade indica que o conhecimento geral do comportamento dessas ligações pode auxiliar em soluções de problemas independente da área de estudo sendo analisada até mesmo sem ter conhecimento profundo do problema mapeado. Uma vez detectada a estrutura das ligações entre os elementos do sistema, pode-se utilizar de técnicas diversas para conhecê-lo melhor e manipulá-lo, identificando falhas ou causando-as. A essa estrutura subjacente dá-se o nome de grafo e ele é composto basicamente por dois elementos: vértices \mathcal{V} e suas arestas \mathcal{E} (BOLLOBÁS, 1998).

Grafos podem ser classificados e manipulados de diversas maneiras. Nesse estudo utilizou-se da quantidade de arestas que é adjacente a um dado vértice denominada como grau do vértice. A distribuição de graus de um grafo é uma importante medida que nos permite predizer a maneira como as informações fluem no sistema.

O primeiro registro de estudo de grafos que se tem conhecimento foi conduzido pelo matemático Leonard Euler ao analisar as pontes de Königsberg[(EULER, 1736)] — traduzido em [(LOPES; TÁBOAS, 2015)]. Deu-se, então, início à Teoria dos Grafos, que desempenha papel importantíssimo na ciência, devido às grandezas descobertas ao longo dos quase 3 séculos de sua evolução. Pode-se dizer que o conceito de grafo é abstrato e muito amplo, podendo ser aplicado em diversas situações. Assim sendo, para o estreitar e aplicar este conceito na área de interesse, utilizou-se o conceito de redes que são mais comumente utilizadas em aplicações práticas de sistemas reais, tais como redes sociais e metabólicas.

O conceito de grafo é muito amplo dada a sua não caracterização, ou seja, inde-

pendente da estrutura estudada sua representação é idêntica havendo alterações apenas em suas características. Logo, essa "transição" de grafos para redes se fez necessária para que, ao classificar a rede de maneira precisa as particularidades que as diferem fiquem claras sem ao menos a necessidade de conhecê-las a fundo¹.

Três momentos enfatizaram a ciência das redes. O primeiro deles foi a descoberta e estudo das **redes aleatórias** no fim dos anos 1950 e início da década de 1960 [(GILBERT, 1959)]. Essas redes foram propostas pelos matemáticos Paul Erdős e Alfréd Rényi em uma série de artigos que se iniciou em (ERDÖS; RÉNYI, 1959). O segundo momento foi a descoberta das **redes de pequeno mundo**, registrada em um artigo datado de 1967 escrito por Stanley Milgram [(MILGRAM, 1967)]. Essa construção de rede é muito comum em redes sociais e teve um episódio bastante popular na década de 1990: um site demonstrava o grau de separação entre o ator de Hollywood Kevin Bacon e outro ator qualquer, baseado nas obras dos atores². Um outro exemplo que demonstra o grau de separação é o *número Érdos*. Através de seus artigos publicados, um cientista tem um valor numérico (chamado número Érdos) a ele atribuído relativo à rede de ligação entre seus coautores que o conectam ao famoso matemático. Logo, quanto menor o número, mais próximo de Érdos o cientista está.

Outro grande avanço para as redes de pequeno mundo ocorreu em 1998 quando Duncan J. Watts e Steven H. Strogatz [(WATTS; STROGATZ, 1998)] apresentaram um modelo de construção bastante utilizado para essas redes. O terceiro momento foi a publicação do artigo (ALBERT; BARABÁSI, 1999) em que Barabási e seus colaboradores apresentaram o modelo de redes sem escala. Até o ano 2000, acreditava-se que os sistemas reais tinham sua estrutura de ligação, ou seja, a maneira como seus elementos se interligavam baseados nos modelos até então conhecidos, tais como as redes aleatórias ou de pequeno mundo. Ao mapear a Internet, Barabási e seus colaboradores notaram que sua estrutura era totalmente diferente e seguiam uma distribuição de graus regida por uma lei da potência, com seu expoente menor que 3. Essa descoberta somente foi possível devido ao crescente poder de processamento dos computadores modernos, que permitiu um mapeamento mais apurado das redes, além do aumento constante do conhecimento dos sistemas estudados, que apontaram diferenças extremas entre a distribuição de graus das redes reais e a proposta pelos modelos de redes aleatórias e redes de pequeno mundo. Esse último momento é o mais relevante para o presente estudo, visto que o mesmo explora a grande vulnerabilidade que esse tipo de rede contém: o ataque coordenado aos seus principais vértices.

Convém salientar que as redes descritas no parágrafo anterior têm um caráter aleatório. Enquanto nas redes de Erdöes e Rényi e nas de pequeno mundo têm-se uma

 $^{^1~}$ As diferentes redes estudadas no presente trabalho estão descritas e exemplificadas no Capítulo2 - Seção 2.2~

² Esse site existe até hoje e pode ser acessado pela URL <https://oracleofbacon.org/>
distribuição de graus aproximadamente normal (parametrizada pela média μ e variância σ^2) onde a maioria dos vértices está conectada com um número de vizinhos no intervalo $[\mu - \sigma, \mu + \sigma]$, as redes sem escala tem a sua distribuição regida pela lei de potência, com variância infinita, $\sigma^2 \rightarrow \infty$ e a maioria dos vértices têm menos vizinhos e alguns poucos tem um número muito grande de ligações, os *centralizadores* que são vértices detentores de um grau muito maior do que a grande maioria dos outros vértices de uma rede.

O estudo das redes complexas — subjacente a cada sistema complexo há uma intricada rede que demonstra a interação entre seus componentes (BARABÁSI, 2016) — está difundido por grande parte das áreas acadêmicas e ganhou bastante destaque nos meados dos anos 2000 e continua sendo bastante utilizada em pesquisas em várias regiões do mundo conforme demonstrado nas Figuras 1 e 2 obtidas pelo *Google Trends*, uma ferramenta que permite verificar os termos mais pesquisados em um dado intervalo de tempo.

Figura 1 – Evolução do interesse global em ciência de redes de 01/01/2004 a 22/07/2020. Origem de dados: Google Trends (www.google.com/trends), em 22/07/2020.

Figura 2 – Demonstração do interesse em ciência de redes pelo mundo de 01/01/2004 a 22/07/2020. Origem de dados: Google Trends (www.google.com/trends), em 22/07/2020.

A escala utilizada no gráfico da Figura 1 mede a popularidade do termo ao longo do tempo sendo o valor de 100 extremamente popular e o valor 0 significando informações insuficientes sobre ele. Já no mapa da Figura 2, as regiões mais escuras são as que o termo em questão (ciência de redes) é mais pesquisado. Não participaram do cálculo, países que pesquisaram pouco sobre o termo e a correlação do termo de pesquisa e sua popularidade considera a quantidade de habitantes da região. Também é importante ressaltar que os dados começaram a ser coletados pelo Google no ano de 2004. Não é o objetivo aqui discorrer sobre as estatísticas utilizadas pelo Google para fazer esses gráficos, para mais informações visite https://support.google.com/trends/answer/4355212.

Apesar do gráfico demonstrar uma queda na pesquisa sobre Ciência de Dados, a sua relevância não diminuiu sendo amplamente estudada em Sociologia, Biologia, Medicina, Tecnologia da Informação e Matemática (para citar somente algumas das disciplinas que utilizam seus conceitos). Mapear uma célula e interligar suas proteínas e seus compostos, ligar pessoas de um círculo de amizades ou verificar as conexões em uma placa de computador são alguns exemplos que pode-se dar para exaltar a importância do estudo de redes. A Figura 2 mostra que a China é um país que consome muito essa ciência como podemos notar dada a quantidade de artigos produzidos na região.

Entre 23/07/2019 e 22/07/2020, houve novamente um aumento na pesquisa do termo demonstrado na Figura 3. Entre novembro e dezembro de 2019 chegou a marca de 75 ao passo que em abril de 2020 chegou a 100, registando um pico de interesse no assunto. Fazendo um paralelo com os acontecimentos do mundo pode-se especular que ambos os picos coincidem com a época do pico do Coronavírus na China e na Europa respectivamente.

Figura 3 – Demonstração do interesse em ciência de redes pelo mundo de 01/01/2004 a 22/07/2020 Origem de dados: Google Trends (www.google.com/trends) em 22/07/2020.

O objetivo desta Dissertação é identificar e quantificar corretamente os concentradores, a fim de causar um colapso na rede alvo removendo a menor quantidade possível de vértices e arestas. Durante o estudo, foram geradas três novas medidas, cuja uma se destacou pela simplicidade e acurácia além de ter um baixo custo de processamento.

A dissertação está organizada como segue: no Capítulo 2 apresentamos as principais teorias e grandezas utilizadas no estudo, tais como Teoria dos Grafos abordando a sua origem e suas principais grandezas. Além disso, nesse capítulo também contém os conceitos de redes aleatórias, redes de pequeno mundo e redes sem escala — sendo esse último o alvo do nosso estudo. As redes de pequeno mundo e aleatórias são importantes dada as medidas que foram criadas para estudá-las e que foram utilizadas até chegarmos ao resultado desse estudo.

O Capítulo 3 demonstra as técnicas e conjunto de dados utilizados para os experimentos e um breve histórico sobre as ideias que deram forma às três grandezas que foram criadas pelo estudo.

O Capítulo 4 demonstra os resultados obtidos após a aplicação das grandezas em redes sintéticas geradas e algumas redes reais. A metodologia apresenta três métodos que geraram grandezas diferentes e entre elas a nomeada como Porcentagem sobre o menor grau (α) obteve o melhor índice e performance sobre as redes analisadas. Essa medida consiste na aplicação de uma porcentagem — baseada na teoria do "Rich get richer" — sobre o valor do menor grau — quantidade de arestas conectadas a um vértice — encontrada nessa rede. As porcentagens e cálculos referentes estão nas Seções 4.1, 4.2 e 4.3.

Nos apêndices, estão relacionadas as tecnologias utilizadas para o desenvolvimento das medidas, as medidas das redes sintéticas e o restante dos gráficos que demonstram os resultados obtidos durante os estudos. Os códigos que foram desenvolvidos estão disponíveis no GitHub pelo link https://github.com/boldorini/colapso>.

Concluindo, o estudo proposto tem como objetivo ser utilizado nas mais diversas áreas de estudo uma vez que seja possível mapear o problema proposto em formato de rede, aplicando o coeficiente α detecção dos centralizadores, desde que o sistema mapeado tenha a sua distribuição de graus aproximada pela lei da potência, caracterizando uma rede sem escala.

Referencial Teórico

Teoria: Conhecimento sistemático, fundamentado em observações empíricas e/ou postulados racionais, voltado para a formulação de leis e categorias gerais que permitam a ordenação, a classificação minuciosa e, eventualmente, a transformação dos fatos e das realidades da natureza. (OXFORD, 2015)

Nas próximas seções serão apresentados os conceitos, grandezas e teorias que foram necessárias e utilizadas direta ou indiretamente durante todo o processo de confecção do estudo aqui apresentado. A primeira sessão se concentra na Teoria dos Grafos e introduz as principais medidas e conceitos, passando desde sua interessante história de descoberta até aspectos mais profundos como detecção de comunidades, coeficiente de aglomeração, caminhadas. Apresenta-se aqui também a principal medida utilizada por esse trabalho: a distribuição de graus. A segunda parte discorre sobre o real alvo de todo o estudo: as estruturas englobando as redes aleatórias, redes de pequeno-mundo e as redes sem escala, essa última sendo o objetivo principal do nosso estudo. Os conceitos por trás da formação desses tipos de redes estão também explanados nessa sessão.

2.1 Grafos

O estudo dos grafos teve início em 1736 na proeminente cidade de Königsberg (atualmente Kalinigrado) que entre 1457 a 1701 era centro comercial, cultural e também capital da Prússia, situada no extremo nordeste do império alemão. Composta por duas porções de terra e duas grandes ilhas margeadas pelo rio Prególia.

A Figura 4 demostra Königsberg retratado em 1651 onde se percebe que as porções de terra e as ilhas eram interligadas por sete pontes que geraram um desfio entre os moradores da região: os mesmos queriam saber a possibilidade de sair e voltar de suas casas atravessando todas as pontes da cidade somente uma vez. Por muito tempo essa questão foi discutida como uma curiosidade do local chamando a atenção de Leonhard Euler que resolveu o problema de maneira até então inédita dando origem à **Teoria dos Grafos** [(DIESTEL, 2006),(CHARTRAND; ZHANG, 2012)].

Figura 4 – Mapa de Königsberg datado do ano de 1652. A disposição das pontes representada nessa gravura foi a utilizada por Euler em seus estudos. (Mapa desenhado por Merian-Erben - 1652)¹.

A solução proposta por Leonhard Euler foi publicada em 1736 no artigo "Solutio Problematis ad Geometriam Situs Pertinentis" [(EULER, 1736)] — traduzido em [(LO-PES; TÁBOAS, 2015)] e se utilizou de representações gráficas para resolver esse problema de maneira matemática, provando ser impossível partir e retornar a um ponto da cidade percorrendo somente uma vez cada uma dessas pontes. A abordagem pioneira utilizada para resolver o "enigma informal" originou os grafos, que até hoje são estudados e amplamente utilizados. As Figuras 5a e 5b representam a disposição das pontes originais (algumas delas foram reconstruídas e outras destruídas durante as 2 grandes guerras) de forma geográfica e desenhadas como grafos (Euler transformou as regiões em pequenos círculos e as pontes em linhas, interligando-os para representar sua forma original), respectivamente.

Das mais diversas definições de grafos que pode-se encontrar na literatura, seguem abaixo algumas delas. Béla Bollobás, um matemático húngaro famoso por sua abordagem não só em Teoria dos Grafos como também em outros campos, descreveu um grafo como "(...) um par ordenado dos conjuntos não relacionados (\mathcal{V}, \mathcal{E}), onde \mathcal{E} é um subconjunto $\mathcal{V}^{(2)}$ de pares não ordenados de \mathcal{V} ."[(BOLLOBÁS, 1998)] John Adrian Bondy, matemático britânico e U. S. R. Murty, matemático especialista em grafos, escreveram em seu livro Graph Theory que "Um grafo \mathcal{G} é um par ordenado ($\mathcal{V}(\mathcal{G}), \mathcal{E}(\mathcal{G})$) consistindo de um conjunto \mathcal{V} de vértices e um conjunto \mathcal{E} , retirados de $\mathcal{V}(\mathcal{G})$, de arestas, junto com uma função de incidência $\psi_{\mathcal{F}}$ que associa a cada aresta de \mathcal{G} um par não ordenado de (não necessariamente distintos) vértices de \mathcal{G} ." [(BONDY; MURTY, 2008)] No seu livro Introduction to Graph Theory, o autor Richard J. Trudeau disse que "Um grafo é

¹ Mapa desenhado por Merian-Erben - 1652. Figura retirada do site https://commons.wikimedia.org/wiki/File:Image-Koenigsberg,_Map_by_Merian-Erben_1652.jpg>, no dia 16 de junho de 2020.

(a) Gravura que destaca as pontes de acordo com suas disposições originais do século XVIII.

Figura 5 – Disposição das pontes de Königsberg em relação às porçoes de terra e ilhas que compõem a cidade. A Figura (a) destaca essa disposição de acordo com o mapa referenciado na Figura 4. Já a Figura (b) demonstra a sua representação em forma de grafo, nota-se que nesse desenho abstraíram-se os rios, porções de terra e pontes, formando um desenho de fácil compreensão que ilustra com clareza as conexões que as pontes faziam.

um objeto composto por dois conjuntos chamados de vértices e arestas. O conjunto de vértices é finito e não vazio. O conjunto de arestas pode ser vazio, mas caso contrário, seus elementos são subconjuntos pares do conjunto de vértices".[(TRUDEAU, 2015;2013)]

O conjunto $(\mathcal{V}, \mathcal{E})$ utilizado na criação de um grafo \mathcal{G} qualquer será sempre finito — um subconjunto retirado de um espaço amostral infinito. Para futura referência — e para compatibilidade com a maioria da literatura encontrada atualmente, adotou-se a simbologia padrão — a letra \mathcal{G} representa um grafo, \mathcal{V} o conjunto de vértices e \mathcal{E} representa o conjunto de arestas sendo que elementos de \mathcal{E} são compostos por pares de elementos do conjunto \mathcal{V} . Logo \mathcal{V} representa a **quantidade de vértices** e \mathcal{E} a **quantidade de arestas** contidas em \mathcal{G} . Graficamente, pequenos círculos representam os vértices ve linhas representam as arestas \mathcal{E}^2 . As arestas são mais comumente representadas na literatura por (a, e), demonstrando que a aresta que tem nas suas extremidades os vértices $a \in e$.

Não há intenção de se aprofundar em Teoria dos Grafos, porém as medidas posteriormente apresentadas e discutidas são originárias dessa área de estudo e fundamentais para a criação e compreensão dos resultados obtidos.

² Pode-se notar que a representação \mathcal{V} e \mathcal{E} referem-se aos conjuntos de vértices e arestas respectivamente ao passo que $v \in e$ minúsculos serão utilizados na representação de **um e somente um** vértice ou aresta, sendo que $v \in \mathcal{V}$ e $e \in \mathcal{E}$.

2.1.1 Matriz de Adjacência

Um grafo tem fácil e intuitiva compreensão quando a estrutura analisada é pequena, vide Figura 5b. Ao aumentar a quantidade de vértices ou de arestas sua interpretação fica comprometida devido ao excesso de informações demonstradas, conforme ilustrado na Figura 6.

Figura 6 – Representação em forma de grafo de uma rede aleatória — gerada pelo algoritmo Érdös-Rényi — com 1024 vértices e 210143 arestas. A análise de um grafo muito grande por sua representação gráfica é impossível de ser feita, sendo necessária o uso de grandezas matemáticas para que haja maior compreensão do sistema considerado.

Existe outra maneira de representar um grafo e suas conexões que o detalha com uma certa clareza, simplificando a sua interpretação e análise. Utilizando como exemplo o grafo pequeno com os vértices $\mathscr{V} = a, b, c, d, e$ e cinco arestas $\mathscr{E} = \{(a, c), (c, e), (c, d), (d, e), (d, b)\}$. Disse-se que os vértices $a \in c$ do grafo \mathscr{G} são adjacentes ou vizinhos e que a aresta (a, c) incide sobre ambos. O mesmo está ilustrado na Fig. 7.

Figura 7 – Representação do grafo \mathscr{G} não-ponderado e não-direcionado \mathscr{G} — contendo 5 vértices e 5 arestas. Percebe-se que ao analisarmos um grafo pequeno o mesmo pode ser feito pela observação dessa representação, apesar de não ser uma prática comum, visto que existem medidas que facilitam essa análise.

Uma maneira bastante comum para representação de grafos é pela matriz de adjacência [(BAPAT, 2014)], que demonstra de maneira literal a conectividade de um grafo e permite que informações importantes sobre suas arestas e vértices possam ser obtidas sistematicamente. A **matriz de adjacência** \mathscr{A} de um grafo \mathscr{G} é uma matriz quadrada de ordem N, sendo N o número de vértices existentes em \mathscr{G} (conforme Tabela 1). Seus valores são referentes a aresta entre os vértices $i \in j \in \mathscr{G}$, tal que:

 $\mathcal{A}_{ij} = \begin{cases} 1, \text{ se } i \in j \text{ estão conectados por uma aresta;} \\ 0, \text{ caso contrário,} \end{cases}$

logo, o grafo presente na Figura 7 tem a matriz de adjacência da ordem 5 e $\mathscr{A}_{ac} = 1$ e $\mathscr{A}_{ae} = 0$, conforme demonstrado na Tabela 1.

	А	В	С	D	Е
Α	0	0	1	0	0
В	0	0	0	1	0
С	1	0	0	1	1
D	0	1	1	0	1
E	0	0	1	1	0

Tabela 1 – Matriz de adjacência \mathscr{A} para grafo \mathscr{G} representado na Figura 7. As linhas e colunas são as representações dos vértices, enquanto os valores inseridos nas células da matriz representam a conexão ou não entre esses vértices.

Obtida a matriz de adjacência $\mathscr{A}A$ do grafo $\mathscr G$ pode-se observar algumas de suas características:

- seus vértices não tem auto referência, dado que a diagonal principal da matriz gerada tem o valor zero em toda sua extensão;
- não é direcionado, visto que a matriz é simétrica. Conclui-se então que se a →
 b ,então b → a (leia-se, se a é adjacente a ou incide em b então b também é adjacente a ou incide em a);
- as suas arestas não têm peso grafo não-ponderado sendo que os valores de suas arestas têm o valor 1. (No caso de arestas com peso, os valores na matriz são referentes ao mesmo. Ex: se uma aresta tem peso 5, seu valor na matriz será 5);
- ao somar uma linha ou coluna, tem-se o grau do vértice.

Em grafos direcionados — ou digrafos — as arestas têm sentido, influenciando diretamente a direção do fluxo entre os vértices. A Figura 8 demonstra esse grafo. As direção das arestas é representada por uma seta, indicando o vértice de entrada e o de saída. Neste caso as arestas são chamadas *arcos*.

A Tabela 2 mostra que ao retratar um grafo direcionado a matriz de adjacência pode perder sua simetria. As linhas da matriz representam os vértices de *saída* enquanto as colunas representam os de *entrada*.[(WEST, 2000)]

Figura 8 – Representação de um grafo *G* direcionado. As arestas são desenhadas com setas (arcos) que indicam o sentido do fluxo no qual a "*informação*" trafega. Neste caso, as adjacências são dependentes da direção em que as arestas estão apontadas. A palavra informação aqui tem um sentido muito abstrato visto que um grafo pode representar diversos sistemas diferentes.

	а	b	С	d	е	f	8
а	0	0	0	1	0	1	0
b	0	0	1	0	0	1	0
С	0	0	0	0	0	0	1
d	0	0	0	0	0	0	1
е	1	0	0	0	0	0	0
f	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0

Tabela 2 – Matriz de adjacência \mathscr{A} para grafo \mathscr{G} representado na Figura 8. Nessa representação pode-se notar que a matriz perdeu a sua simetria, visto que em um grafo direcionado o vértice a pode ser adjacente a b mas b não é adjacente a a. Isso acontece dada a direção do tráfego que a informação segue.

Em grafos ponderados, as arestas são normalmente representadas com maior ou menor espessura de acordo com o seu peso. O peso de uma aresta está referenciado à quantidade de informação que trafega entre os vértices por ela interligados e é de fundamental importância para a total compreensão dos resultados deste estudo. A Figura 9 demonstra sua representação gráfica.

A matriz de adjacência de grafos ponderados tem as informações não somente dos vértices que são vizinhos, como também o peso dessa conexão, vide Tabela 3.

Para o estudo atual, foram considerados somente os grafos não-direcionados e não-ponderados.

Figura 9 – Representação de um grafo \mathscr{G} ponderado. Neste caso, representação as arestas têm espessuras diferentes que identificam seus pesos. Esses pesos estão relacionados à quantidade de informação que pode trafegar simultaneamente nessa rota.

	А	В	С	D	Е	F	G
Α	0	0	0	3	1	1	0
В	0	0	1	0	0	1	0
С	0	1	0	0	0	0	3
D	3	0	0	0	0	0	5
Е	1	0	0	0	0	0	0
F	1	1	0	0	0	0	0
G	0	0	3	5	0	0	0

Tabela 3 – Matriz de adjacência \mathscr{A} para grafo \mathscr{G} representado na Figura 9. Pode-se notar que para cada aresta existe um valor que condiz com o peso da mesma. Esse valor pode representar o preço para utilização dessa via, ou a quantidade de informação de consegue trafegar por esse eixo que depende exclusivamente da rede em análise.

2.1.2 Medidas

Um grafo tem diversas características importantes que são difíceis de detectar através da análise de seu desenho ou matriz de adjacência. Quando existe a necessidade de aprofundar os conhecimentos sobre um sistema mapeado — que costumam gerar grafos de maior proporção (com um número maior de vértices e arestas) — se utiliza medidas bastante conhecidas no auxílio de sua classificação. Esta Seção demonstra e explica as que foram utilizadas direta ou indiretamente para alcançar os resultados que serão apresentadas no Capítulo 3 juntamente com a metodologia utilizada para alcançá-los.

2.1.2.1 Graus

O grau de um vértice v — representado por k_v — é o valor referente a quantidade de arestas que incidem sobre o mesmo. Essa medida relativamente simples é a base utilizada por quase todas as grandezas expostas posteriormente.

A Seção 2.1 mostra que analisar um grafo a partir da direção de suas arestas, pode-se classificá-lo em 2 tipos básicos: *não-direcionado* ou *direcionado*. Para grafos não-direcionados, o grau de um vértice é representado por k_v . Se direcionado, tem-se $k_{v_{sada}}$ se a aresta inicia em v, e $k_{v_{entrada}}$ quando chega em v. Por exemplo, o vértice a tem $k_a = 1$ na Figura 7 e $k_{a_{entrada}} = 1$ e $k_{a_{sada}} = 2$ na Figura 8, .

O grau de um grafo — visto que até então falou-se somente sobre o grau de um vértice — é obtido através da contabilização dos graus de todos os vértices que a ele pertencem. A maneira de obter esse total difere entre grafos não-direcionados:

$$k_{\mathscr{G}} = \frac{\sum_{v=1}^{N} k_v}{2} \tag{2.1}$$

e direcionados:

$$k_{G} = \sum_{v=1}^{N} k_{v_{entrada}} = \sum_{v=1}^{N} k_{v_{saida}} .$$
 (2.2)

Na equação 2.1 a divisão do total de arestas por 2 é efetuada devido a dupla contagem de cada aresta. Em um grafo direcionado, o número total de arestas de *entrada* é igual ao de $saída^3$.

O grau médio de um grafo auxilia a classificá-lo: utilizando esse coeficiente na comparação com os graus k_{min} e k_{max} (menor e maior grau de um vértice encontrado no grafo, respectivamente) consegue-se perceber sua variabilidade. Seu valor é obtido através da seguinte fórmula:

$$\langle k_{\mathscr{G}} \rangle = \frac{k_{\mathscr{G}}}{\mathscr{N}} \tag{2.3}$$

2.1.2.2 Distribuição de Graus

A distribuição de graus é uma das grandezas mais relevantes para este estudo visto que permite a classificação de grafos como Èrdös-Rényi, pequeno mundo, sem escala, reticulada, entre outras.

³ Os *dígrafos* foram citados dada sua importância e sua grande presença em redes reais mapeadas, porém os grafos analisados para obtenção dos resultados são os não direcionados.

Figura 10 – Dada a regularidade dos graus dos vértices de um grafo reticulado regular como o demonstrado na Figura acima, a distribuição de graus de grafos com essa característica pode ser calculado pela simples observação da mesma.

Considerando o grafo \mathscr{G}_r representado na Figura 10 com *condição periódica de contorno*, característica essa que interliga os vértices que se encontram nas extremidades de um grafo a seus respectivos opostos encontrados na mesma linha ou coluna, o mesmo é $Regular^4$, pois todos os seus vértices tem grau idêntico $k_v = 4 \forall v \in \mathscr{G}_r(v)$.

Dada sua "simplicidade", os grafos regulares tem pouca variação tornando-os relativamente fácil de análise. Estão presentes no dia-a-dia, sendo muito utilizados nos estudos de fluxo de trânsito das cidades (a maior parte das redes viárias das cidades é composta por grafos reticulados conforme pode-se comprovar na Figura 11), estruturas de rede elétrica, componentes eletrônicos, entre outros.

Figura 11 – Mapa de parte da estrutura viária do centro de Ribeirão Preto, comprovando que os grafos reticulados existem em diversas estruturas do nosso dia a dia.⁵

Frequentemente encontrados no "mundo real", os grafos reticulados não são os únicos que existem. A Figura 12 apresenta uma das estruturas mais estudadas pela Teoria do Grafos: as redes aleatórias. Algumas de suas características serão descritas com mais detalhes na Seção 2.2.2.

O grafo da Figura 12 comprova que selecionar três ou quatro vértices aleatoriamente traz a possibilidade dos mesmos apresentarem diferentes graus uns dos outros,

⁴ Grafos regulares também podem ser representados por *k-regular* – assim sendo o grafo representado na Figura 10 pode ser chamado de *4-regular*.

Figura 12 – Grafo aleatório gerado com 50 vértices e uma probabilidade de conexão de 0,3. Isso significa que cada novo vértice adicionado na rede tem uma probabilidade de 30% de conexão a cada um dos outros já presentes na estrutura.

diferindo do grafo reticulado (Figura 10). Para calcularmos a possibilidade de um vértice v ter um grau k, escrevemos:

$$p_k = \frac{v_k}{\mathscr{V}} \tag{2.4}$$

com, v_k representando a quantidade de vértices existentes no grafo com grau $k \in \mathcal{V}$ a quantidade total de vértices do grafo independente do seu grau. Essa grandeza permite estimar a probabilidade de encontrar um vértice com o grau desejado em um grafo.

Para demonstrar a distribuição de graus de um grafo, utiliza-se gráficos ao invés de matrizes de adjacência ou qualquer outro tipo de dado literal, assim sendo, citando Morettin et al. "(...) os métodos gráficos têm encontrado um uso cada vez maior devido ao seu forte apelo visual. Normalmente, é mais fácil para qualquer pessoa entender a mensagem de um gráfico do que aquela embutida em tabelas ou sumários numéricos. [(MORETTIN; BUSSAB, 2017)]".

Os gráficos da Figura 13 contém a distribuição de graus de um grafo reticulado e um aleatório. A Figura 13a mostra somente um ponto demonstrando a regularidade dos graus nesse grafo ao passo que na Figura 13b o gráfico toma uma forma totalmente diferente, demonstrando que existem vértices com valores de graus diferentes⁶. Através deles é possível obter o número de vértices com um determinado grau, qual o maior e menor grau de um grafo e a curva que essa distribuição faz.

Outra maneira comum de representar a distribuição de graus de um grafo é com histogramas. De acordo com Robert e John S. Witte em *Statistics* [(WITTE; WITTE, 2016)] "(...)Um gráfico de barras para dados quantitativos. As margens comuns entre as barras adjacentes enfatiza a continuidade dos dados, assim como variáveis contínuas(...)".

A Figura 14 demostra lado-a-lado um grafo e se histograma, onde se observa a

⁶ O gráfico demonstrado na Figura 13b não apresenta o formato normal de um gráfico randômico apesar de ter sido gerado por um algoritmo baseado no modelo E.R.. Isso se dá devida à baixa quantidade de vértices e arestas que foram utilizadas para gerar o mesmo.

(a) Gráfico que representa a distribuição de graus do(b) Gráfico da distribuição de graus do grafo aleatógrafo reticulado representado pela Fig. 10. Podese notar aqui que todos os vértices têm exatamente o mesmo grau dada a condição periódica de contorno.

rio representado pela Fig. 12. Nessa representação, nota-se que o gráfico apresenta valores diferentes de graus para os vértices que o compõem. Esse grafo tem 50 vértices e aproximadamente 700 vértices.

Figura 13 – Apresentação da diferença entre a distribuição de graus de um grafo reticulado e de um aleatório. Através dos gráficos pode-se notar que para um grafo quadrático a distribuição de graus é uma constante ao passo que um grafo aleatório tem sua curva aproximada de um sino, demonstrando uma variação nos graus dos vértices.

utilização do gráfico como facilitador para a compreensão e visualização da distribuição de graus de um determinado grafo.

Caminhadas, Distância e Diâmetro 2.1.2.3

A Teoria dos Grafos (Seção 2.1) surgiu devido a um desafio informal que consistia em percorrer um determinado caminho, obedecendo uma regra logo é correto afirmar que a origem do estudo em grafos teve como base o objetivo de mapear uma caminhada. Dado um par qualquer de vértices pertencentes a \mathcal{G} , define-se *caminho* como um subgrafo de \mathcal{G} — leia-se $\overline{\mathscr{G}}$ — composto pelos vértices visitados desde sua origem até seu destino. Para cada vértice diferente visitado é contabilizado e sua somatória é chamada distância entre os vértices.

Utilizando como exemplo o grafo \mathscr{G} — não-ponderado e não-direcionado⁷— da Figura 7 e os vértices $(a, e) \in \mathcal{G}$, um dos possíveis *caminhos* é definido pelos saltos $a \rightarrow c \rightarrow e$,

(a) Histograma de um grafo com 100 vértices e 3022 arestas.

- (b) Grafo que compõem o histograma representado na Fig. 14a
- Figura 14 Demonstração de como um histograma é apresentado baseado na distribuição de graus de um grafo. Os histogramas são bastante utilizados para essa finalidade devido à sua fluidez entre os intervalos, evidenciando os intervalos e seus saltos.

logo a distância (w) entre (a,e) de \mathscr{G} é 2 escrito também como $w_{(a,e)} = 2$. caminhada também gera $\overline{(\overline{\mathcal{V}},\overline{\mathcal{E}})}$ sendo $\overline{\mathcal{V}} = \{a,c,e\} \in \overline{\mathscr{E}} = \{(a,,)c,(c,e)\}^8$.

O caminho que gerou $\overline{\mathscr{G}}$ é chamado *caminho mínimo*⁹: o trajeto que requer a menor quantidade de saltos até alcançar o vértice desejado. Esse coeficiente é um dos mais explorados em Teoria dos Grafos tendo aplicações em Logística, Ciência da Computação, entre outros.

Tratando ainda de caminhadas¹⁰, a maior medida de caminho mínimo encontrado em um grafo pela análise de todos caminhos entre todos os vértices a ele pertencentes, representa seu **diâmetro** (*d*). Assim, para \mathscr{G} tem-se que $d_{\mathscr{G}} = 3$ e o subgrafo $\overline{\mathscr{G}} = (\overline{\mathscr{V}}, \overline{\mathscr{E}})$ gerado é composto pelos conjuntos $\overline{\mathscr{V}} = a, c, d, b$ e $\overline{\mathscr{E}} = (a, ,)c, (c, d), (d, b)$.

⁷ Quando o grafo analisado é direcionado, o caminho pode mudar, dado o sentido das arestas incidentes aos vértices da caminhada.

⁸ Observando-se \mathscr{G} sabe-se que o caminho percorrido demonstrado não é o único possível. Logo, não é incorreto afirmar que $w_{(a,e)} = 3$.

⁹ Na literatura é comum o uso do termo em inglês: *shortest path*.

¹⁰ O assunto "caminhada" é extensamente estudado em Teoria dos Grafos e não foi abordado profundamente, para mais informações verificar a seguintes Referências: (BOLLOBÁS, 1998; BONDY; MURTY, 2008; BARABÁSI, 2016).

2.1.2.4 Densidade e Coeficiente de Aglomeração

Um grafo \mathscr{G} pode ser analisado através da "aglutinação" de seus vértices, ou seja, o quão denso ele é. Os vértices de um grafo se conectam pelas arestas que incidem sobre ele (Seção 2.1.1) e a quantidade total de possíveis arestas em um grafo $(k_{total_{\mathscr{G}}})$ é dada por:

$$k_{total_{\mathscr{G}}} = \binom{\mathscr{N}}{2} = \frac{\mathscr{N}!}{2!(\mathscr{N} - 2)!}, \text{ para grafos não-direcionados e não-ponderados}$$
(2.5)

a **densidade** ρ (NEWMAN, 2008; NEWMAN, 2018) de \mathscr{G} é calculada pela razão do grau do grafo pela quantidade de possíveis vértices em \mathscr{G} , demonstrada na Equação 2.5:

$$\rho_{\mathscr{G}} = \frac{k_{\mathscr{G}}}{k_{total_{\mathscr{G}}}}.$$
(2.6)

Logo, $0 \le \rho_{\mathcal{G}} \le 1$ e \mathcal{G} é *denso* se $\rho_{\mathcal{G}} \to 1$ e *esparso* se $\rho_{\mathcal{G}} \to \infty$. Ainda \mathcal{G} é conectado se $\forall w = (v_1, ,)v_2$ em $\mathcal{G} > 0^{11}$ e desconectado, caso contrário. A Figura 15 contém um grafo totalmente conectado — quando $\rho_{\mathcal{G}} = 1$ ou $k_{total_{\mathcal{G}}} = k_{\mathcal{G}}$ — e chama-se *clique* comprovando as Equações 2.5 e 2.6.

Figura 15 – Um clique é apresentado por um grafo totalmente conectado, onde todos os vértices estão interconectados. Aqui, apresenta-se um grafo demonstrando um clique, sendo que $k_{\mathcal{G}} = 6$ e $\rho_{\mathcal{G}} = 1$.

Os grafos também são estudados através da **aglomeração** ou **transitividade** que indica a quantidade de triângulos ao mapear suas conexões (BOCCALETTI et al., 2006). Chamado de **coeficiente de aglomeração** (\mathscr{C}) de um vértice v (WATTS; STROGATZ, 1998; BARABÁSI, 2016; NEWMAN, 2008; NEWMAN, 2003), mostra a quantidade de vértices adjacentes que também estão conectados formando triângulos (que formam as chamadas *comunidades*). Amplamente utilizada em *redes sociais*, é obtida por:

$$\mathscr{C}_v = \frac{2 \times \mathscr{C}_v}{k_v (k_v - 1)} \tag{2.7}$$

onde $\mathscr{A}_{\mathscr{V}}$ é a quantidade de arestas que os vizinhos do vértice avaliado possuem.

¹¹ Onde w é um par de vértices $v_1 \in v_2 \in \mathcal{G}$.

Figura 16 – Grafo ${\mathscr G}$ utilizado no cálculo do coeficiente de aglomeração demonstrado na Equação 2.7.

O grafo \mathcal{G} da Figura 16, contem os conjuntos $\mathcal{V} = \{r, j, t, l, z\} \in \mathcal{E} = \{(r, j), (r, t), (r, l), (t, l)\}$. Aplicando 2.7 sobret, conclui-se que $\mathcal{A}_t = 1 \in k_t = 2$, obtendo:

$$\mathscr{C}_t = \frac{2 \times 1}{2(2-1)} = 1, \tag{2.8}$$

para o vértice $r \mathcal{A}_r = 1$ e $k_r = 3$, logo:

$$\mathscr{C}_r = \frac{2 \times 1}{3(3-1)} = \frac{1}{3}.$$
(2.9)

O valor do *coeficiente de aglomeração global* — quantidade total de triângulos contidos em \mathscr{G} — é alcançado pela equação 2.10:

$$\mathscr{C}_{\Delta} = \frac{3 \times \text{quantidade total de triângulos do grafo}}{\text{quantidade total de } w = 2}, \qquad (2.10)$$

logo, o grafo \mathcal{G} da Figura 16 tem $\mathcal{C}_{\mathcal{G}} = 0, 8$, conforme demonstrado na equação 2.11:

$$\mathscr{C}_{\mathscr{G}} = \frac{3 \times 1}{5} = 0, 8. \tag{2.11}$$

2.1.2.5 Comunidades e Centralidade

A detecção de comunidades em grafos é bastante estudada e utilizada — principalmente em $Análise de Redes Sociais^{12}$. É fácil imaginar a importância dessa grandeza se o grafo analisado simula uma rede social – tal como separar as pessoas por grau de afinidade tais como passatempos, atividades físicas praticadas, entre muitos outros seccionamentos possíveis.

¹² As primeiras definições de comunidades são provenientes dessa área de estudo.

A problemática desse coeficiente é não existir um conceito bem definido de margens de uma comunidade. Ela é um subgrafo (\mathscr{G}') de um grafo \mathscr{G} e que $k_{\overline{\mathscr{G}}}^{interno} > k_{\overline{\mathscr{G}}}^{externo}$ (WAS-SERMAN; FAUST, 1995; SCOTT, 2000; BARABÁSI, 2003)]. o desafio é como identificar o limite para $k_{\overline{\mathscr{G}}}^{interno}$? (NEWMAN, 2018; FORTUNATO; HRIC, 2016)

A primeira definição de comunidade foi publicada em 1949 por Duncan Luce e Albert D. Perry (LUCE; PERRY, 1949) propondo ser um subgrafo formado por um *clique* (Fig. 15). Atualmente é conhecido que quanto maior a quantidade de vértices \mathscr{V} , menor a probabilidade de existir um clique. Além disso um triângulo pode ser considerado um *clique* e não ser uma comunidade.

Existem diversas técnicas a ser utilizadas para segmentar um grafo em comunidades distintas (CORMEN et al., 2009; NEWMAN, 2010; SEDGEWICK; WAYNE, 2011; SILVA; ZHAO, 2016) e embora nenhuma delas possa garantir um resultado preciso, a maioria delas oferecem soluções aproximadas bastante satisfatórias.

Figura 17 – Representação gráfica da rede utilizada em um dos principais estudos sobre segmentação de grafos em comunidade, a "Rede de Karatê de Zachary" com seus vértices já distribuídos em grupos.

Na Figura 17, apresenta-se a separação em comunidades do clube de caratê (ZA-CHARY, 1977), mapeado por W. W. Zachary¹³. Existem ainda maneiras de medir a qualidade do seccionamento executado pelos algoritmos de particionamento. Uma delas é a **modularidade** (\mathcal{M}), quanto mais alto seu valor um melhor particionamento dos vértices ocorreu.

Nessa seção, apresentamos somente um esboço do conceito de comunidades e sua detecção. Embora essa medida não tenha sido diretamente utilizada pelo presente estudo, sua importância conceitual e uma possível futura utilização justificam a descrição.

A **centralidade** é uma métrica utilizada para demonstrar a relevância de um vértice ou de uma aresta em um grafo e é muito utilizada no estudo de *Análise de Redes Sociais* (FREEMAN, 1979; SCOTT, 2000) para mapear os indivíduos de maior influência em um grupo social.

¹³ Rede mapeada e retirada do site Network Data da Universidade de Michigan <http://www-personal. umich.edu/~mejn/netdata/karate.zip> (disponibilizado por Mark Newman).

Dado um grupo de pessoas conectadas pode surgir a necessidade de identificar qual ou quais os indivíduos influentes, a fim de apontar possíveis vetores de doenças ou os detentores de maior quantidade de informações.

As maneiras de medir a centralidade refletem diretamente nas abordagens para classificar os pontos mais importantes de um grafo sendo a utilizada para os resultados dos experimentos aqui presentes foi a **Centralidade de Grau** ou *degree centrality* que consiste em obter o grau de cada um dos vértices, separando os vértices de maior grau (NEWMAN, 2018).

2.2 Redes

Uma pesquisa rápida pelo Google sobre "**rede**" nos remete a uma série de páginas sobre as redes de computadores. Talvez isso se deva a larga utilização desse tipo de rede no nosso cotidiano. A Internet e as redes corporativas que dominam nosso dia-a-dia podem dar a falsa impressão que todas as redes são desse tipo.

Redes elétricas, ferroviárias e de telefonia são alguns dos exemplos simples de outros tipos de rede. De qualquer forma, todas elas têm uma característica em comum: a interligação entre elementos gerando uma estrutura, que foi e é estudada extensivamente. Diversos autores escreveram o conceito para *redes* e abaixo estão alguns deles:

"Uma rede é, em sua forma mais simples, uma coleção de pontos ligados em pares por linhas." (NEWMAN, 2010)

"Uma rede é um conjunto de itens, que nós chamaremos de vértices ou às vezes nós, com conexões entre eles, chamadas de arestas. Sistemas tomam a forma de redes (também chamados "grafos" em grande parte da literatura matemática) pelo mundo." (NEWMAN et al., 2006)

"Uma rede é um catálogo de componentes de um sistema comumente chamados de nós ou vértices e as interações incidentes entre eles, chamados de ligações ou arestas."¹⁴(BARABÁSI, 2014)

"Por um lado, nada poderia ser mais simples que uma rede. Totalmente despida, uma rede não é nada mais que uma coleção de objetos conectados uns aos outros de alguma maneira." (WATTS, 2003)

Todas as métricas utilizadas na análise de um grafo (inclusive as que foram apresentadas na Seção 2.1) são totalmente compatíveis com estudo de Redes. As subseções abaixo apresentarão algumas das estruturas mais estudadas no que vem a se chamar Ciência das Redes. Aqui serão discutidas, dentro de Redes Complexas as Redes Randômicas, Redes de Pequeno Mundo e Redes sem Escala.

 $^{^{14}\,}$ Retirado do site http://networksciencebook.com/ em05/09/2020 às 04:21hs.

2.2.1 Redes Complexas

No mês de julho do ano 2000, a revista Nature publicou o artigo "Error and attack tolerance of complex networks" de Albert László-Barabasi e seus co-autores (ALBERT et al., 2000). Esse artigo catapultou o interesse no estudo de redes complexas, antes estudada por algumas áreas da Sociologia.

As redes complexas são também compostas por duas partes: as ligações, que no nosso estudo serão chamadas *arestas* e serão continuarão sendo representadas pela letra \mathscr{E} e os elementos interligados nomeados de *vértices* ou simplesmente \mathscr{V} . Cada uma delas têm diversas características que serão exploradas nos próximos capítulos.

Pode-se afirmar que redes são compostas por elementos semelhantes e interligados. Vale ressaltar que o tipo dos elementos e a maneira como eles se conectam é importante para a classificação da rede e suas características.

A escalada no interesse dos estudos que deu origem teoria das redes foi possível devido a evolução das técnicas de mapeamento e maior conhecimento teórico das redes. Uma grande aliada desses estudos foi a tecnologia e seu avanço das últimas décadas sendo que atualmente, até mesmo um computador com configurações ligeiramente desatualizadas consegue mapear e analisar uma rede de forma eficaz. Não só fisicamente, diversas linguagens de programação estatísticas fornecem bibliotecas que facilitam a criação, leitura e análise de redes bastante complexas de forma facilitada.

2.2.2 Redes Aleatórias

Pode-se dizer que uma das Redes Complexas que mais foram estudadas e que são praticamente o fundamento de todas as outras que surgiram foram as **Redes Aleatórias**. O primeiro estudioso a se interessar por *redes aleatórias* foi Anatol Rapaport, que em 1951, publicou com R. Solomonoff o primeiro artigo sobre o assunto (SOLOMONOFF; RAPOPORT, 1951), demonstrando ser possível verificar o surgimento de um componente — que é um subgrafo com alto valor de densidade — gigante em uma rede praticamente desconectada simplesmente aumentando seu grau. Rapoport publicou vários outros estudos (RAPOPORT, 1951; RAPOPORT, 1977) e Edgar N. Gilbert (GILBERT, 1956; GILBERT, 1959) introduziu um modelo para construção de redes aleatórias baseadas na probabilidade de vértices se conectarem (chamado de *modelo Gilbert*, utilizado até os dias atuais). Mas somente após uma série de artigos publicados pela dupla de matemáticos Paul Érdös e Albert Rényi, entre 1950 e 1960 (ERDÖS; RÉNYI, 1959; ERDÖS; RÉNYI, 1960), entre outros, foi que as redes aleatórias foram consolidadas e passaram a ser estudadas extensivamente. Chama-se de **Rede aleatória** um conjunto de vértices \mathcal{V} interligados aleatoriamente por uma quantidade de arestas \mathcal{E} onde:

$$\mathscr{E}_{max} = \begin{pmatrix} v \\ 2 \end{pmatrix} = \frac{v * (v-1)}{2}$$
(2.12)

Durante esse período de 70 anos — desde as primeiras publicações até hoje — foram desenvolvidos diversos modelos de criação para essas redes. O mais relevante é chamado **modelo Érdos-Rényi** (dada a importância da contribuição dos dois para o estudo que moldou a compreensão desse tipo de rede). Pode-se dizer que as *redes alea-tórias* foram fundamentais para o entendimento e desenvolvimento de diversas métricas utilizadas até hoje, sendo que até recentemente acreditava-se que as ligações entre os componentes de diversos sistemas existentes no mundo real eram representadas por suas características.

O primeiro modelo apresentado por Erdös-Rényi no artigo "On Random Graphs" (ERDÖS; RÉNYI, 1959) para compor uma rede aleatória era simples. Segundo os matemáticos, estipula-se valores fixos para a quantidade de v (vértices) e e arestas — respeitando a Equação 2.12 — e conecta-se um par de v por uma aresta e). Uma instância dessa rede é um grafo, representado pela denotação $\mathscr{G}((v, a))$.

Logo após essa publicação de Erdös-Rényi, outro modelo foi apresentado por Edgar N. Gilbert — um matemático que trabalhava na empresa de telefonia Bell — no artigo "Random Graphs" (GILBERT, 1959). Aqui, Gilbert apresenta uma nova maneira de enxergar as representações dos grafos, dizendo que para um conjunto de vértices \mathscr{V} existem $\mathscr{V}(\mathscr{V} - 1)/2^{15}$ possíveis ligações entre eles, gerando assim: $2^{\mathscr{V}(\mathscr{V}-1)/2}$ possíveis grafos que podem ser gerados. Usando uma analogia com as redes telefônicas para ilustrar a randomização de possíveis caminhos para completar um ligação com probabilidade de uma certa aresta — neste caso, a aresta representava a ligação entre duas centrais telefônicas — e estar ocupada ou não, criou o modelo $\mathscr{G}(v, p)$, onde v é a quantidade de vértices na rede e p é a probabilidade de um par de vértices $(a, b) \in \mathscr{G}$ serem adjacentes.

Embora os primeiros estudos de redes aleatórias calculada pela probabilidade da conexão entre vértices, conhecida por $\mathscr{G}(n,p)$ sejam de Solomonoff e Rapoport(RAPOPORT, 1977), a associação mais comum às mesmas e aos matemáticos Paul Érdös e Albert Rényi dada a importância de uma série de artigos por eles publicados entre o fim dos anos 1950 até o fim dos anos 1960 (ERDÖS; RÉNYI, 1959; ERDÖS; RÉNYI, 1960; ERDÖS; RÉNYI, 1961; ERDÖS; RÉNYI, 1963; ERDÖS; RÉNYI, 1964; ERDÖS; RÉNYI, 1966; ERDÖS; RÉNYI, 1968). Estes deram grande contribuição na compreensão das redes aleatórias, e propuseram algumas medidas e modelos que facilitaram bastante a manipulação e geração desse tipo de rede. Esse modelo propõe a criação de grafos aleatórios baseado não em fixar a quantidade de arestas, mas sim na probabilidade dos vértices de se conectarem.

 $^{^{15}\,}$ Conforme demonstrado na Equação 2.12.

Sua denotação é $\mathcal{G}(n,p)$ onde n é a quantidade de vértices da rede e p a probabilidade de conexão entre um vértice e outro. De acordo com Mark Newman em (NEWMAN, 2010):

"(...) a definição técnica de grafos aleatórios não se refere a uma única rede, mas sim a uma junção, uma distribuição probabilística sobre todas as redes possíveis. Para ser específico, G(n, p) é o conjunto de redes com n vértices no qual cada grafo simples G aparece com uma probabilidade $\mathscr{P}(\mathscr{G}) = p^m (1-p)^{\binom{n}{2}-m}$ onde m é o número de arestas no grafo, e grafos complexos tem probabilidade zero."

Essa rede pode ser calculada por um distribuição de probabilidade $\mathscr{P}(\mathscr{G})$, tal que:

$$\mathscr{P}(\mathscr{G}) = p^m (1-p)^{\binom{n}{2}-m}$$
(2.13)

Uma das principais propriedades de uma *rede aleatória* é a sua distribuição de graus, dada por:

$$p_{k} = \binom{\mathcal{N} - 1}{k} p^{k} (1 - p)^{n - 1 - k}$$
(2.14)

Sabendo que as redes aleatórias são esparsas, seu grau médio é muito menor que todos as possíveis arestas existentes, e sua distribuição de graus pode ser aproximada pela distribuição de Poisson:

$$p_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!} \tag{2.15}$$

A vantagem adquirida ao utilizar-se a distribuição de Poisson para encontrar a distribuição de graus de uma rede aleatória é efetuar o cálculo sem conhecer o tamanho da rede, pois o único parâmetro necessário é o grau médio $\langle k \rangle$ desejado para encontrar a probabilidade.

Até pouco tempo atrás, os cientistas que estudavam mapeamento das mais diversas redes acreditavam que esse era o padrão de modelo de distribuição. Com o advento da tecnologia, a facilidade de acesso a computadores cada vez mais potentes e ao desenvolvimento de técnicas para mapear as redes, notou-se uma grande diferença na distribuição de graus para diversas estruturas mapeadas a partir do mundo real e a rede aleatória de Erdös e Rényi.

As Figuras 18a e 18b demonstram respectivamente o gráfico da distribuição de graus e a rede propriamente dita. Embora o desenho da rede não seja representativo, pelo gráfico é possível perceber que o grau médio da rede é uma métrica importante e a variância de graus entre os valores mínimo e máximo é simples de ser visualizada e calculada.

(a) Gráfico demonstrando a distribuição de graus de uma rede ER

(b) Rede ER com 1000 vértices e 125170 arestas

Figura 18 – Gráfico e Rede representando a mesma estrutura. Pode-se notar que a figura de uma rede (mostrada na Figura 18b é pouco representativa analiticamente, ao passo que o gráfico da distribuição de graus representado pela Figura 18a é de fácil interpretação.

2.2.3 Redes de Pequeno Mundo

Em Sociologia — que, conforme o dicionário Michaelis é a "Ciência que tem com objeto de estudo a organização e o funcionamento das sociedades humanas e as leis essenciais que regem as relações numa determinada sociedade, atendo-se à descrição sistemática e à análise de certos comportamentos sociais, no seu conjunto e na sua generalidade" (KNUTH, 2015) — existe um campo chamado **Análise das Redes Sociais** que obteve importantes resultados para o estudo de Redes.

Em 1.929, o escritor e poeta húngaro Frigyes Karinthy publicou um livro contendo 52 pequenas estórias intitulado "Minden másképpen van (Tudo está diferente)" (KA-RINTHY, 1929b) e embora não tenha sido campeão de vendas, ele continha uma estória chamada "Láncszemek" (Cadeias) (KARINTHY, 1929a) que esboçou pela primeira vez um conceito relativamente conhecido atualmente: os seis degraus de separação (BA-RABÁSI, 2003). Neste conto, Karinthy colocou alguns amigos reunidos quando uma brincadeira é proposta, um dos presentes diz que é possível ter acesso a qualquer pessoa do mundo, independente de ela ser famosa ou não, somente com sua rede de conhecidos e demonstra diversas vezes isso realmente ser possível. Um estudo conduzido pelo psicólogo e sociólogo Stanley Milgram na segunda metade da década de 1960 (quase 40 anos após a publicação do conto de Karinthy) apresentou o que ele mesmo chamou de **problema** de pequeno mundo (do inglês: small-world problem). Com o seguinte parágrafo, Milgram introduz a motivação de seu estudo:

> Quase todos nós já tivemos a experiência de encontrar alguém em um local distante de nossa casa, que, para nossa surpresa, compartilha uma pessoa conhecida conosco. Esse tipo de experiência ocorre com frequên

cia o suficiente que nosso idioma até nos oferece um ditado para ser utilizado no momento que descobrimos esse conhecido em comum. Nós dizemos. "Nossa, que mundo pequeno."" (MILGRAM, 1967)

O experimento — que até hoje é conhecido como método pequeno-mundo (WATTS, 2003) — consistiu em mapear o caminho percorrido por uma pasta a ser entregue de uma pessoa escolhida aleatoriamente (chamada pessoa A) para outra (pessoa Z). A principal regra desse experimento — de acordo com o próprio Milgram — era a que descrevia como a entrega da carta deveria ser feita. Caso a pessoa A não conhecesse a pessoa Z, ela deveria passar a carta para uma pessoa que fosse conhecida em "first-name basis", ou seja, alguém que a pessoa A conhecesse e chamasse pelo primeiro nome. Para cada salto dado pela correspondência era anotada em uma planilha o nome da pessoa pelo qual a carta passou.

Os resultados desse experimento mostraram que a previsão de Karinthy sobre o tamanho da cadeia de conhecidos necessária para alcançar qualquer pessoa no mundo não estava tão errada. Na verdade, não estava errada de maneira alguma. A média de saltos para as pastas alcançarem seu destino foi de 6, consolidando o termo *seis graus de separação*.

Após esse estudo, outro foi conduzido por Jeffrey Travers e Stanley Milgram, com alguns parâmetros alterados (quantidade de voluntários, alteração de cidades origem), mas mantendo a regra, confirmando os resultados obtidos na Ref. (MILGRAM, 1967).

Mark Buchanan — físico e autor americano — descreve ainda em seu livro *Nexus*(BUCHANAN, 2003) que outro importante trabalho publicado sobre esse assunto foi feito pelos matemáticos Duncan Watts e Steve Strogatz no final do século passado (WATTS; STROGATZ, 1998). Nesse estudo, os cientistas mesclaram o trabalho de Milgram e as teorias de *análise de redes sociais* que, de acordo com John P. Scott (Sociólogo inglês) em seu livro *Social Network Analysis* (SCOTT, 2000), diz que topologicamente uma rede social pode ser representada por um grafo onde as pessoas são representadas pelos vértices e as relações entre elas são as arestas que ligam o grafo. Assim sendo, foi possível traçar um modelo de construção de Redes de Pequeno-Mundo. O modelo proposto é amplamente utilizado e até hoje é referenciado como **modelo Watts-Strogatz**.

Esse modelo consiste em iniciar uma rede (ou grafo) em forma de anel com um conjunto de vértices $\mathscr{V} \in k$ vizinhos. Aplica-se então a probabilidade de redirecionamento de arestas $\beta \mid 0 \leq \beta \leq 1$ onde $\beta = 0$ representa a regularidade da rede e $\beta = 1$ a aleatoriedade total (rede Érdos-Rényi).

Então redireciona-se ou não todas as arestas do vértice \mathcal{V}_a para todos os outros vértices do conjunto | $\forall \mathcal{V}_k \neq \mathcal{V}_a \in \mathcal{V}$ baseado na probabilidade β (sendo que, para observar o efeito pequeno mundo deve-se obedecer $0 < \beta < 1$). Dessa maneira, cria-se arestas que conectam vértices que estão mais distantes de sua vizinhança.

Esse modelo gera redes com alto *coeficiente de aglomeração* 2.1.2.4 e saltos entre seus vizinhos, gerando caminhadas mais curtas para alcançar vértices mais distantes na rede. As Figuras 19a, 19b, 19c, 19d, 19e e 19f comprovam a transição proposta pelo *modelo Watts-Strogatz*¹⁶.

(a) Rede anel gerada com $\beta = 0$ (b) Rede WS gerada com $\beta = 0.2$ (c) Rede WS gerada com $\beta = 0.4$

(d) Rede WS gerada com $\beta = 0.6$ (e) Rede WS gerada com $\beta = 0.8$ (f) Rede WS gerada com $\beta = 1.0$

Figura 19 – Demonstração da evolução de uma rede com v = 20 e k = 4, iniciando com uma rede anel (normalidade) até uma rede totalmente randômica (caos). Pode-se notar que ao passo que $\beta \rightarrow 1$, a rede passa a apresentar uma aleatoriedade típica do modelo ER.

Como já demonstrado, a Figura 19f se assemelha em suas propriedades com uma rede randômica proposta pelo modelo $\acute{Erdos}-R\acute{enyi}^{17}$. A Figura 20 demonstra a rede gerada pelo modelo ER com v = 20 e p = 0,25.

Figura 20 – Rede ER criada para comparação com a rede WS com $\beta = 1$. Nota-se aqui uma enorme semelhança entre ambos os modelos.

Como já citado anteriormente, a análise de uma rede é difícil de ser efetuada pelo seu desenho. Assim sendo, as Figuras 21a e 21b demonstram os histogramas da distri-

 $^{^{16}\,}$ A partir de agora, o modelo Watts-Strogatz será referenciado pela sigla $W\!S$

 $^{^{17}\,}$ A partir desse momento, esse modelo será referenciado pela siglaER

buição de graus das redes representadas nas Figuras 19f e 20, respectivamente. Nessas Figuras pode-se notar que a distribuição de graus entre ambas é muito parecida, não importando qual foi o modelo utilizado para as gerarem.

(a) Histograma da distribuição de graus da rede WS(b) Histograma da distribuição de graus da rede ER representada na Fig. 19f representada na Fig. 20

Figura 21 – Comparação da distribuição de graus entre uma rede $WS \mod \beta = 1$ e uma rede ER através de seus histogramas.

Comparando os histogramas apresentados nas Fig. 21a e 21b pode-se concluir então que o *efeito pequeno mundo* proposto pelo modelo WS só pode ser observado com o $0 < \beta < 1$ e que, quanto mais β se aproxima de 1 mais aleatórias ficam as ligações entre os vértices.

(b) Rede WS com 1000 vértices e 2000 arestas

Figura 22 – Grafo e gráfico de distribuição de graus de uma rede WS. A rede aqui representada foi gerada com 1000 vértices e 2000 arestas.

Nas Figuras 22a e 22b, nota-se que não há muita diferença entre as redes de modelo

ER,a não ser a variância dos graus mínimos e máximos em relação ao grau médio.

2.2.4 Redes Sem Escala

Com o avanço da tecnologia e a crescente melhoria nas técnicas de mapeamento de redes, obteve-se cada vez mais redes do mundo real para análise. No fim da década de 1.990, Albert Lászlo-Barabási – um físico húngaro-americano - e Réka Albert — cientista romanahúngara, publicaram o artigo *"Emergence of scaling in random networks"* (ALBERT; BARABÁSI, 1999), que apresentou um novo modelo na distribuição de graus: a **lei da potência** e chamou essas redes de *redes sem escala*.

Até então, acreditava-se que a distribuição de graus e o agrupamento de vértices de uma rede eram regidas pelos dois modelos conhecidos que eram os modelos ER e pequeno-mundo. Barabási e seus colaboradores mapearam então a estrutura de rede WWW (World Wide Web) com o algoritmo chamado "web crowler" — Katharine Jarmul e Richard Lawson descrevem em seu livro "Python Web Scraping" o seguinte conceito: "(...) um web crawler (...) é comumente utilizado para varrer a web, recolhendo informações pequenas e genéricas de várias páginas ou sites diferentes e seguindo seus links para outras páginas." (JARMUL; LAWSON, 2017) — escrito por Hawoong Jeong e notou-se que a distribuição de graus e a maneira como os vértices se interligavam não eram como os modelos anteriores propostos.

As duas diferenças mais importantes entre essas redes "recém-detectadas" e as já conhecidas eram que as redes reais não têm tamanho fixo, ou seja, estão em constante crescimento (ou diminuição) e a maneira como a rede se estrutura. Até então, para os modelos já existentes a probabilidade de um vértice se conectar ao outro era uniforme. Com o mapeamento citado, notou-se que ao adicionar um novo vértice na rede, a sua possível vizinhança (vértices com o qual ele será conectado) é proporcional ao grau de cada um dos vértices já existentes. Quanto maior o grau do vértice já existente, a probabilidade de conexão aumenta, configurando o chamado "efeito Matthew" ou como é mais conhecido "rich get richer" ou o "efeito do fundador". Esse fenômeno tem como resultado que os graus mais antigos da rede são os que têm mais conexões.

Ao estudar a WWW (World Wide Web) no final dos anos 90, Barabási e seus colaboradores notaram que a distribuição de graus não se aproximava da distribuição de Poisson e sim pela lei da potência:

$$p_k \sim k^{-\gamma} , \qquad (2.16)$$

sendo $1 < \gamma < 3$, fazendo com que seu segundo momento estatístico seja divergente. O grau médio dos vértices $\langle k \rangle$ deixa de ser a grandeza que caracteriza o sistema, como nas

redes ER.

Surgiu assim o conceito de redes sem escala. Os vértices mais antigos têm uma probabilidade maior de receber novas arestas conforme novos vértices são adicionados na rede existente. Existem algumas maneiras de representar melhor as redes reais, visto que pode-se observar que vértices mais novos podem se tornar centralizadores, acrescentando um grau de preferência para cada novo vértice acrescentado, fazendo com novos vértices adicionados eventualmente se desviem dos vértices mais antigos e se conectem a outros. Esses são os conceitos básicos para a construção de uma rede sem escala.

Ao passo que nas redes randômicas a distribuição de graus era Poissoniana e a grande maioria dos vértices tinham seu grau próximo à média com uma variância mínima e sem valores atípicos, nas redes sem escalas observamos uma distribuição de cauda pesada, sendo que a maior parte dos vértices têm poucas arestas enquanto uma pequena quantidade de vértices retêm a grande maioria das arestas da rede.

Devido a sua distribuição de graus, nas redes sem escala se nota a presença de **centralizadores**, que são vértices que contêm um grau muito alto. Percebe-se também que os *centralizadores* são detectados como número atípicos nessas redes.

A existência dos centralizadores ocasiona uma característica marcante das redes sem escala que é a sua robustez em falhas randômicas. Pode-se dizer que selecionando um vértice aleatório nessas redes, dificilmente ele será um concentrador visto que eles estão nelas presentes em muito menor quantidade. Diz-se também que, mesmo que algum vértice desse for encontrado, a estrutura consegue se readaptar e continuar sendo funcional.

Em contrapartida, quando essas falhas são direcionadas — o que pode ser chamado de ataque — ocorre exatamente o oposto. Se uma grande quantidade de centralizadores dessas redes forem metodicamente removidos, ela entra em colapso e se torna desconexa, quebrando a comunicação entre uma grande quantidade de vértices (ALBERT et al., 2000). Assim sendo, conclui-se que os denominados *centralizadores* têm fundamental importância no estudo que será conduzido, visto que são vitais no funcionamento de uma rede sem escala.

As Figuras 23a e 23b apresentam respectivamente um gráfico demonstrando a distribuição de graus de uma rede sem escala e a rede propriamente dita.

Pela Fig. 23, nota-se a diferença na distribuição de graus desse tipo de rede quando comparados com o gráfico apresentado nas Figuras 18 e 22a. Visto que as redes ER e WS não apresentam valores atípicos, seu gráfico de distribuição de graus tem a forma de sino ("bell-curve") típica de distribuições normais, onde o ponto médio é relevante e a sua variância não é muito grande. Já nas redes sem escala, pode-se perceber que os vértices estão bem espalhados e embora seja possível calcular o grau médio, ele de nada

 (a) Gráfico demonstrando a distribuição de uma rede sem escala

(b) Rede sem escala com 1000 vértices e 9900 arestas

Figura 23 – Gráfico de distribuição de graus e demonstração gráfica de uma rede sem escala gerada a partir do algoritmo proposto por Barabási.

serve dada a quantidade de valores atípicos muito grande, fazendo com que a média se afastando demais da distribuição real. Afirma-se então que todas as redes sem escala são **esparsas** (Del Genio et al., 2011).

Alguns estudos já comprovam que não somente os *centralizadores* são importantes na estrutura dessas redes, mas também o que os autores chamaram *influenciadores*, citados no artigo "*Influence Maximization in Complex Networks through Optimal Percolation*" (MORONE; MAKSE, 2015). Os *influenciadores* são vértices que tem grau muito menor que os centralizadores, mas estão cercados por eles. Utilizando técnicas de *percolação otimizada* (BOLLOBÁS, 2006), os autores criaram um algoritmo que possibilita a sua identificação. De acordo com o artigo, se ativados eles podem espalhar informações (Sociologia) ou se imunizados eles podem prevenir uma epidemia (Medicina).

As técnicas e medidas que envolvem ciência da rede (estudo que engloba redes complexas e consequentemente as redes sem escala) são utilizadas em diversas áreas e vêm ganhando força nas últimas décadas. Cada vez mais os cientistas percebem que essa área é de grande importância e devido à facilidade que se tem atualmente na manipulação e mapeamento de redes (uma parte devido à constante evolução computacional, que proporciona computadores cada vez mais potentes com preços acessíveis, bem como as técnicas de programação e linguagens, que estão cada vez mais simples e performáticas) e também no crescente conhecimento de técnicas e medidas que facilitam cada vez mais a compreensão e o manuseio dessas redes.

Os experimentos, que serão apresentados nesta dissertação, utilizaram-se do modelo *Barabási-Albert* implementado por uma biblioteca *Python* para a criação das redes "

sem escala, esse algoritmo é baseado nos estudos acima citados e suas características são:

- Crescimento: a cada medida de tempo t acrescenta-se um vértice v na rede \mathscr{R} com uma quantidade de arestas $a \leq v$ ligadas aleatoriamente aos vértices $v \in \mathscr{R}$;
- Ligação Preferencial: aqui, cita-se Barabási em Network Science [(BARABÁSI, 2016)]: "(...) a probabilidade Π_(k) de uma aresta de um novo vértice se conectar a um vértice v depende do grau k_i tal que

$$\Pi(k_i) = \frac{ki}{\sum_j k_j} \,. \tag{2.17}$$

Metodologia

O resultado esperado para o projeto apresentado é de gerar falha crítica em redes sem escala removendo seus vértices de graus mais elevados. A motivação principal para esse estudo é a enorme quantidade de redes reais cuja distribuição de graus é regida pela lei da potência com γ entre 2 e 3, o que causa a divergência do seu segundo momento estatístico — caracterizando as redes sem escala — podendo-se dizer que a utilização desse algoritmo tem um grande potencial em diversas áreas de estudo.

Sabe-se que a Medicina, a Sociologia e a Biologia — para citar algumas áreas — estão cada vez mais se utilizando de recursos de Ciência das Redes para compreender e solucionar os mais diversos dilemas.

Assim sendo, para alcançar o resultado desejado de forma viável — tempo de processamento aceitável, baixa quantidade de vértices removidos e a emergência de uma escala cujo segundo momento estatístico converge — foram necessários ajustes, e até mesmo uma total mudança de paradigma, desde o primeiro algoritmo pensado até o atual, que apresentou o melhor resultado.

Apesar da grande diferença na implementação dos métodos, todos eles seguem uma premissa que pode ser apresentada de forma breve, seguindo os seguintes passos:

- Passo 1: identificação dos vértices elegíveis de eliminação nesse caso, os vértices cujo grau estão entre os mais altos para cada uma das redes analisadas utilizando medidas provenientes da *Teoria dos Grafos*, já discutidas anteriormente no Capítulo 2;
- **Passo 2:** remoção dos vértices identificados como *centralizadores* no passo anterior bem como as arestas a ele conectadas;
- Passo 3: análise da sub-rede gerada após a remoção dos vértices para verificação da acurácia do algoritmo gerado. Nesse passo temos uma diferente abordagem no Método I cuja análise é feita após a remoção de cada um dos vértices para verificar

a alteração na densidade da sub-rede gerada após sua remoção. Os outros dois métodos simplesmente estipulam um limite e remove os vértices, analisando a sub-rede gerada somente uma vez.

A Figura 24 apresenta de forma bem sucinta o resultado esperado pelos algoritmos que foram desenvolvidos.

Figura 24 – Demonstração do comportamento desejado das redes analisadas sobre a execução do algoritmo desenvolvido.

A acurácia aqui foi baseada não somente na total desconexão da rede mas também em um fenômeno interessante encontrado durante as simulações: **a transição da distribuição de graus** das sub-redes geradas. Notou-se que após removidos os centralizadores, a sub-rede gerada passou a apresentar traços de uma rede que muito se assemelha as redes ER.

O resultado deste estudo foi obtido através de uma extensa análise de três métodos distintos. Para apresentar a metodologia, resolveu-se acrescentar os resultados para cada uma delas a fim de melhorar a compreensão e fluidez do texto.

Foram criados quatro conjuntos de redes sem escala sintéticas utilizando o modelo ligação preferencial de Barabási-Albert existente na biblioteca Networkx (HAGBERG et al., 2008) e que está brevemente aqui explicada no Apêncide A.

nx.barabasi_albert_graph(n,m)

Os dois parâmetros básicos para a geração da rede utilizando esse método são $n \in m$ que representam respectivamente a quantidade de vértices que existirão na rede e a quantidade de arestas que cada novo vértice incluso na mesma terá. Os vértices

Conjunto	Qtde. de vértices (n)	Qtde. de arestas (m)
А	100 a 1000	10 a 50
В	1000 a 10000	10 a 50
С	10000 a 100000	10 a 50
D	100000 a 1000000	10 a 30

Tabela 4 – Demonstração dos parâmetros utilizados para a criação das redes sem escala sintéticas utilizadas para os testes de cada um dos métodos desenvolvidos pelo estudo.

novos serão conectados aos já existentes na rede regidos pela ligação preferencial, onde os vértices com mais ligações têm maior probabilidade de receber cada vez mais vértices a ele ligados. Esses parâmetros foram gerado pseudo-aleatoriamente utilizando os intervalos demonstrados na Tabela 4.

Além das redes sintéticas geradas conforme descrito acima e que têm seus atributos demonstrados no Apêncide B, foram utilizadas também algumas redes reais mapeadas que estão disponíveis para download no site http://networkrepository.com (ROSSI; AHMED, 2015). Em especial, vamos usar a rede de corrupção da política nacional de 1991 a 2018 mapeada e estudada por (RIBEIRO et al., 2018). Nem todas as redes geradas ou citadas foram utilizadas em todos os experimentos. Isso se deve ao longo tempo computacional para processar os algoritmos. As representações dos resultados sempre trazem a referência do conjunto utilizado e a identificação das redes em sua descrição.

Somente as primeiras redes de cada conjunto — que estão agrupadas em um gráfico só — terão seus gráficos representando as distribuição de graus demonstradas no texto principal. Tomou-se essa decisão para não deixar o texto poluído com muitas figuras e o restante dos gráficos pode ser visto e analisado no Anexo C.

Ressalto aqui que todos os valores utilizados como limite foram obtidos de forma *empírica* através da comparação entre os mais diversos valores experimentados dentro do escopo de cada um dos métodos.

3.1 Método I - Impacto na remoção (ι)

Como já citado na Sessão 2.1.2.4, a densidade (ρ) é uma grandeza importante para analisar o quão aglutinados os vértices de uma rede estão. A métrica apresentada nessa Seção utiliza ρ para verificar o impacto na remoção de cada vértice de uma rede. Nomeada como *Impacto na Remoção (t)*, pode ser calculada a partir da recursão de quatro passos:

- 1. Calcula-se a densidade da rede \mathscr{R} em seu estado original, representada por ρ_R ;
- 2. aleatoriamente, exclui-se um vértice da rede e todas as arestas que estão a ele

conectados, gerando uma sub-rede $\overline{\mathscr{R}}$ de \mathscr{R} ;

- 3. calcula-se a densidade da sub-rede $\overline{\mathscr{R}}$, representada por $\rho_{\overline{\mathscr{R}}}$;
- 4. encontra-se o **impacto na remoção** do vértice removido subtraindo o valor 1 da razão entre $\rho_{\overline{\mathscr{R}}} \in \rho_{\mathscr{R}}$.

Pode ser dizer que:

$$\iota_{v} = 1 - \frac{\rho_{\overline{\mathscr{R}}}}{\rho_{\mathscr{R}}} \tag{3.1}$$

onde: $v \forall \mathcal{V} \in \mathcal{R}$.

A particularidade desse método — e consequentemente o que onera consideravelmente o desempenho — é que toda sub-rede $\overline{\mathscr{R}}$ criada após a aplicação da métrica em cada $v \in \mathscr{R}$ é descartada para que não haja interferência na obtenção de cada ι da rede \mathscr{R} analisada.

Inicialmente essa métrica foi desenvolvida como identificador (*label*) de conjunto de dados em um algoritmo de aprendizado de máquina, porém durante os experimentos percebeu-se um certo exagero na utilização de técnicas de aprendizado de máquina sendo que a classificação do vértices é inferida pela métrica ι .

Porém, após o experimento com redes neurais notou-se que a complexidade desse processo não é sua classificação, mas a obtenção do coeficiente ι necessário independente da técnica utilizada para a classificação dos vértices após seu valor ser adquirido. Esse método utilizou uma estrutura de decisão simples *se...então...* em relação a ι para remoção real de vértices de acordo com sua classificação. Utilizando os conjuntos referenciados pelas Tabelas A 5, B 6 e C 7 aplicamos o ι nos vértices removendo-os e as arestas a eles conectados quando seu ι subtraído de 1 for maior que 0,0014.

3.2 Método II - Classificação dos concentradores através do vértice de maior grau (Ω)

Conforme será demonstrado na sessão de resultados, obteve-se um resultado relativamente satisfatório com os cálculos do *impacto na remoção*, mas ao aumentar demais o tamanho da rede, seu desempenho não foi aceitável chegando a demorar 5 ou 6 dias somente para gerar o conjunto de dados. Notou-se também — e isso é muito importante citar — a **não** necessidade de utilização de modelos de aprendizado de máquina dada a simplicidade do modelo escolhido. Um simples algoritmo pode resolver a comparação necessária para a classificação entre vértices *centralizadores* e *não-centralizadores* economizando tempo e
consumo de recursos do computador a ser utilizado. Ressalta-se também que não está descartada a utilização de aprendizado de máquina em futuros estudos, principalmente os modelos de aprendizado não-supervisionado, que podem trazer diversas melhorias e maior agilidade para a resolução do problema proposto.

A partir dessa percepção, procurou-se então para novas grandezas e outras abordagens para o estudo e notou-se que, como disse Barabási et. al. em (ALBERT et al., 2000) o "calcanhar de Aquiles" das redes sem escala pode ser a remoção sistêmica de vértices causando uma falha crítica no sistema. Sabe-se então que nas redes sem escala poucos vértices detêm a maior parte das conexões, comprovando o que escreveu o sociólogo estadunedense Robert K. Merton em (MERTON, 1968), o chamado "*Efeito Matthew*" que diz que os mais ricos ficam cada vez mais ricos e os mais pobres cada vez mais pobres. Logo, aplicando o teorema de Pareto — que propôs que 80% da produção de um sistema qualquer é efetuada por 20% de seus elementos (essa lei é conhecida também como a lei dos 80/20 — sabe-se que há uma porcentagem de vértices que são os candidatos a centralizadores¹. Assim sendo, desenvolveu-se um fluxo que transcorre segundo as seguintes etapas:

- 1. encontra-se para a rede \mathscr{R} o vértice v que contém o grau mais alto e atribui-se esse valor a uma grandeza denominada Θ ;
- 2. sobre Θ , aplica-se uma porcentagem p baseada no *Princípio de Pareto* gerando um valor Ω , representando o valor efetivo utilizado para a secção da rede \mathscr{R} analisada, sendo que qualquer vértice que tiver o valor grau acima dessa métrica será removido;
- 3. após a remoção de todos os vértices, resta uma sub-rede $\overline{\mathscr{R}}$ de \mathscr{R} que espera-se que esteja desconectada ou sobrecarregada pelo fator de falha em cascata².

A Equação 3.2 demonstra o raciocínio utilizado para o cálculo do grau limite para remoção dos vértices. Utilizando como base a Lei de Pareto, chegou-se a um valor de porcentagem:

$$\Omega = \Theta * 0,5\% \tag{3.2}$$

, onde Θ é o vértice de maior grau da rede sendo analisada. Ressalta-se que o valor de 0,5% foi obtido de maneira empírica após extensas tentativas com valores menores e maiores podendo-se dizer que os melhores resultados possíveis foram obtidos com esse valor.

¹ Lembrando-se que os centralizadores são os "alvos" de todas as abordagens aqui descritas.

 $^{^2~}$ Essa possibilidade será estudada futuramente ao aplicarmos dinâmica nas sub-redes originadas após a aplicação do coeficiente.

3.3 Método III - Porcentagem sobre o menor grau encontrado (α)

O método II — que usou como base de manipulação para o valor de corte o grau do vértice com mais arestas a ele conectados — foi satisfatório com redes de tamanho grande, mas ao aplicar seu conceito em redes de menor quantidade de vértices, notou-se que algumas redes simplesmente deixavam de existir, ou seja, todos os seus vértices eram removidos. Como não é este o objetivo do estudo, e ainda aplicando o princípio de Pareto, o método aqui apresentado utilizou como base para a geração da grandeza de corte o grau do vértice que contém menos arestas a ela conectadas e utilizando como base a mesma técnica do método anterior, utilizou-se de um coeficiente de ajuste a esse valor, gerando a medida desejada. Logo temos os seguintes passos para alcançar essa medida que será representada por α :

- primeiramente, encontra-se θ que aqui representa o valor do grau do vértice menos conectado da rede \mathcal{R} analisada;
- sobre o valor de θ , aplica-se então um coeficiente δ para ajuste do limite, encontrando então o limite de remoção α ;
- com α calculado, utiliza-se esse valor como ponte de corte e remove-se os vértices de grau maior que o valor encontrado, gerando uma sub-rede $\overline{\mathscr{R}}$ de \mathscr{R} .

Nesta abordagem têm-se:

$$\alpha = \theta * \delta \tag{3.3}$$

De maneira empírica, com extensiva análise dos resultados que originaram várias sub-redes $\overline{\mathscr{R}}$ resultantes das remoções do vértices da rede original \mathscr{R} , até o presente momento notou-se que os valores de δ podem variar somente em um pequeno intervalo³ que fica entre 3/2 e 3, conforme demonstrado abaixo:

$$\delta = \begin{cases} 3 & \text{quando } \theta \leq 100, \\ 2 & \text{quando } \theta \leq 1000, \\ \frac{3}{2} & \text{caso contrário.} \end{cases}$$

As vantagens notadas nesse método em comparação com os outros dois anteriores (Sessões 3.1 e 3.2) foram:

³ Futuros estudos verificarão a acurácia dessa afirmação, sendo necessário estudos mais extensos com redes de tamanho maior e mais redes do mundo real.

- durante este processo, nenhuma rede foi excluída, dado que o limite se baseou pelo menor grau de vértice na rede;
- desempenho melhorado em relação aos métodos anteriores, dada a não remoção de redes inteiras e a não necessidade de restaurar a rede a cada vértice analisado.

Ao excluirmos todos os vértices que são maiores que o valor de limite encontrado por essa equação, notamos que todas as redes deixam de apresentar a sua característica principal, a distribuição de graus baseada na lei da potência. Abaixo está demonstrado a sua eficácia, comparando as redes antes e depois das exclusões.

4

Resultados

Nesse capítulo estão demonstrados os resultados de cada um dos 3 métodos desenvolvidos. Para melhorar a estrutura das sessões, apresentou-se somente os primeiros cinco resultados de cada um dos conjuntos para cada método sendo que o restante dos gráficos contendo os outros experimentos estão presentes nas Sessões C.2, C.3 e C.4, no Apêndice.

Os resultados estão demonstrados em forma de gráficos que expõem a distribuição de graus das sub-redes geradas após a remoção dos vértices e arestas para cada um dos métodos desenvolvidos pelo estudo.

Nos resultados apresentados, pode-se observar a emergência de uma escala que contém o primeiro momento estatístico relevante e o segundo momento definido, o que leva a deixarmos de ter uma rede sem escala e passamos a ter redes que podem ser quantificadas através de grandezas já bastante conhecida pelo estudo dos grafos.

As Sessões 4.1, 4.2 e 4.3 representam respectivamente os resultados para os métodos I, II e III apresentados no Capítulo 3 e foram obtidos de forma empírica, sendo comparado com vários outros valores dentro de cada um dos métodos. Os resultados aqui obtidos foram os obtidos pelos melhores coeficientes aplicados no cálculo da grandeza de cada experimento.

4.1 Resultados Método I - Impacto na remoção (*ι*)

O conjunto de redes A foi separado em 10 partes para melhor visualização do efeito da remoção dos vértices na distribuição de graus das mesmas. Os resultados também estão demonstrados e detalhados na Tabela 10. A Figura 25 representam os gráficos de distribuição de graus para cada uma das cinco primeiras redes analisadas, o padrão da distribuição ficou um pouco errático, mas já começa a apresentar traços de uma distribuição normal deixando de ser uma rede sem escala.

Figura 25 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto A utilizando o método I (verificar Anexo B para mais informações sobre as redes).

O resultado da aplicação do ι no conjunto de redes B pode ser examinado na Figura 26. A tabela de referência para esse experimento é a Tabela 11.

Para o conjunto C de dados (Tab. 7), o algoritmo conseguiu chegar efetivamente até a décima quinta rede. Após essa rede, a máquina escolhida para rodar o algoritmo não suportou a necessidade de memória requerida pelo NetworkX para processar as arestas, ocasionando seu travamento por diversas vezes. O resultado com tempo de execução e

Figura 26 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto B utilizando o método I. Aqui nota-se que para essa abordagem, redes com quantidade de vértices um pouco maiores, esse método mostra-se ineficaz sendo que a distribuição de graus da rede continua apresentando características da lei da potência.

quantidade de vértices e arestas removidas para as redes analisadas está apresentado na Tabela 12. Sua eficácia está demonstrada na Fig. 27.

Apesar dos resultados relativamente satisfatórios, é notável a necessidade do refinamento do valor limite para a remoção dos vértices. Esse ajuste se justificaria se o tempo de processamento para as redes não fosse tão longo, conforme demonstrado nas tabelas de detalhamento do resultado. Assim sendo, podemos concluir que mesmo sendo uma medida válida, futuros estudos para melhorar seu desempenho computacional e o valor limite se faz necessário para a sua utilização em larga escala.

Distribuição de graus - Método I - Conjunto C - Redes 1 a 5

Figura 27 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto C utilizando o método I. O mesmo apresenta características ainda mais acentuadas da não alteração na distribuição de graus se comparado com o gráfico da Fig. 26. Assim sendo, nota-se que quanto maior a quantidade de vértices e arestas da rede analisada, menor é a eficácia desse método.

4.2 Método II - Limite na Remoção

Apesar da medida *IR* ter um resultado relativamente satisfatório, após vários testes com diversos tamanhos de redes (arestas e vértices) notou-se que ela não foi obteve o êxito desejado quando a grandeza da rede em relação aos seus vértices é consideravelmente acrescida. Além disso, notou-se que o tempo de execução do algoritmo aumenta consideravelmente em relação à quantidade de vértices e arestas da rede analisada.

Justifica-se então a necessidade de outra abordagem que tornasse possível a execução de redes maiores, visto que o objetivo do estudo é ser utilizado para analisar qualquer tipo de rede. É necessário dizer também que, quanto maior a rede melhor deve ser a configuração de *hardware* que a processa, porém, os próximos dois métodos apresentados conseguiram processar redes de grande proporção em uma estação de trabalho comum, sendo necessária a utilização de computadores de grande porte (Google Cloud) somente para as redes do conjunto D.

Na exclusão de todos os vértices que são maiores que o valor de limite encontrado por essa equação, notou-se que todas as redes deixam de apresentar a sua característica principal, a distribuição de graus baseada na lei da potência. Outra alteração realizada foi a não utilização de aprendizado de máquina visto que ela é normalmente empregada quando existe a necessidade de agilizar o processo. Notou-se que as massas de dados geradas para essa experiência teria somente um dado relevante, sendo facilmente substituída por um simples teste de lógica. As Figuras 28, 29, 30 e 31 contêm os gráficos de distribuição de graus após a remoção dos vértices apontados por essa abordagem.

O resultado da aplicação do Ω no conjunto de redes B pode ser examinado na Figura 29. A tabela de referência para esse experimento é a Tabela 11. Aqui nota-se também uma grande diferença nos resultados da remoção e também no desempenho do algoritmo.

Aqui enfatizamos a vantagem no desempenho do método em relação ao anterior. O conjunto C foi processado totalmente sem maiores problemas e o seu resultado foi mais satisfatório.

Para as redes do conjunto D (Tabela 8) o algoritmo conseguiu processar 12 redes, um aumento considerável em relação ao algoritmo do método I.

Embora ainda longe do ideal, o método II apresentou uma melhora considerável em relação ao método I em desempenho, conseguindo ser aplicado em mais redes e também em eficácia. Os ajustes finais para o resultado principal do estudo serão apresentados na próxima sessão.

Distribuição de graus - Método II - Conjunto A - Redes 1 a 5

Figura 28 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto A com a medida obtida pelo método II. Pode-se notar que algumas redes tiveram seus vértices removidos quase totalmente para redes de tamanho pequeno. Esse é um comportamento não desejado e foi corrigido no método III 3.3.

Distribuição de graus - Método II - Conjunto B - Redes 1 a 5

Figura 29 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto B com a medida obtida pelo método II. Fica clara a melhora de desempenho em relação ao método I visto que a distribuição de graus passa a ter um comportamento mais aproximado da distribuição normal, sendo se o grau médio da rede passa a ser relevante.

Figura 30 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto C com a medida obtida pelo método II.

Distribuição de graus - Método II - Conjunto D - Redes 1 a 3

Figura 31 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 3 do Conjunto D com a medida obtida pelo método II.

4.3 Método III - Porcentagem sobre o menor grau

O Experimento II foi satisfatório com redes de tamanho grande, mas ao aplicar seu conceito em redes de menor quantidade de vértices, notou-se que algumas redes simplesmente deixavam de existir, ou seja, todos os seus vértices eram removidos. Como esse não é o objetivo do estudo, e ainda aplicando o princípio de Pareto o terceiro experimento inverteu o seu valor de referência, acrescentando uma certa porcentagem ao vértice de menor grau de acordo com a quantidade de vértices na rede. O método foi discutido na sessão 3.3 com detalhes.

Através da Figura 32, que representa a distribuição de graus após a remoção dos vértices indicados por ι , nota-se o comportamento esperado, aproximando a distribuição de graus das redes de uma distribuição normal.

Figura 32 – Gráfico da distribuição de graus da rede *R* gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto A com a medida obtida pelo método III. Nota-se que o resultado obtido foi bastante parecido com o método I, e não houve remoção de redes.

Ao passo que as redes aumentam de tamanho, o resultado passa a ser mais claro e mais aproximado com o desejado. A Fig. 33 demonstra a distribuição de graus utilizando

o cálculo de α com redes entre 1.000 e 10.000 vértices.

Figura 33 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto B com a medida obtida pelo método III.

A Figura 34 demonstra uma certa uniformidade nos resultados, indiferente da quantidade de vértices ou arestas encontradas na rede. Como pode-se observar os gráficos contidos nas Figuras 32 e 33 são bastante similares.

E por fim, encerrando os experimentos com as pseudo-redes criadas utilizando a técnica Álbert-Barabási temos os experimentos com as redes entre 100.000 e 1.000.000 de vértices, e o único algoritmo que consegui processar todas as 30 redes geradas foi o gerado utilizando essa metodologia e com resultados que seguem o padrão das outras redes, conforme demonstrado no gráfico da Fig. 35.

Dado o seu melhor resultado nas redes estudadas, esse algoritmo foi selecionado para ser também aplicado em duas redes do mundo real retirado do website *Network Repository* e a rede de corrupção política brasileira, mapeada por Haroldo V. Ribeiro, Luiz G. A. Alves, Alvaro F. Martins, Ervin K. Lenzi e Matjaž Perce pelo estudo que originou o artigo *The dynamical structure of political corruption networks* publicado no renomado *Journal of Complex Networks* Figura 36.

Ao observar os resultados, notou-se que ao aplicar esse tipo de divisão em redes do mundo real, os resultados não foram em nada parecidos com as pseudo-redes criadas para o estudo, logo essa medida necessita de ajustes que serão efetuados na continuação desse trabalho.

Observando o gráfico representado na Figura 37, nota-se que existe uma grande diferença nessa rede para as redes antes analisadas: a quantidade de vértices com um grau elevado não é tão esparsa, assim sendo, o modelo apresentado perdeu a característica de aproximar a distribuição de graus de uma rede sem escala de uma distribuição normal.

Pode-se notar que todos os vértices de grau maior que 3 foram removidos e essa foi uma margem de erro que não apareceu nas pseudo-redes antes analisadas. Após a observação dos resultados e comparação entre as redes já estudadas notou-se que as pseudo-redes geradas pelo algoritmo da biblioteca NetworkX — que tem por base o modelo Barabási-Albert — não apresentava essa característica de uma rede com muitos vértices ter um grau base para o cálculo tão pequeno. Observou-se também que o gráfico representado pela Figura 37 tem o menor grau de um vértice de valor 1. Assim sendo, o algoritmo removeu um grande número de vértices sem que talvez houvesse necessidade.

Porém, ao analisar a rede de corrupção, pode-se notar algumas variações entre os resultados. Vale ressaltar que esse estudo possui 26 redes divididas por ano, assim

Figura 34 – Gráfico da distribuição de graus da rede $\overline{\mathscr{R}}$ gerada após a remoção dos vértices (e arestas) das redes 1 a 5 do Conjunto C com a medida obtida pelo método III. Nesse gráfico está representada a similaridade e consistência do algoritmo independente da quantidade de vértices ou arestas nela existentes.

Figura 35 – Demonstração da distribuição de graus da rede *R* gerada após a remoção dos vértices (e arestas) das redes 1 a 3 do Conjunto D com a medida obtida pelo método III. Ressalta-se que esse método foi o único que conseguiu efetuar os cálculos de todas as 30 redes contidas nesse conjunto.

sendo a quantidade de vértices e arestas aumenta ao logo do estudo. As Figuras 41 e 44 demonstram, em contrapartida a aplicação de *alpha* nas redes de corrupção estudadas. Nota-se aqui que, nesse caso – redes que contém os vértices com seus graus de valores aproximados – o algoritmo funciona corretamente¹.

Ao efetuar todas as análises e ponderar os resultados, notou-se que as abordagens sempre seguiram a quantidade de arestas de uma rede e sua relação com o seu tamanho em relação a vértices. Um horizonte a seguir é melhorar essa medida através de um refinamento nas grandezas que foram utilizadas ou até mesmo um novo paradigma.

¹ Futuramente, esse estudo será estendido e o corte para a grandeza *alpha* será ajustada corretamente para redes reais. O problema com as redes reais (pelo menos a rede C. Elegans é que a distribuição de graus é muito díspar, assim sendo, notou-se como já descrito uma remoção desnecessária de muitos vértices.

Figura 36 – Distribuição de graus da rede de corrupção na política brasileira mapeada por Haroldo V. Ribeiro, Luiz G. A. Alves, Alvaro F. Martins, Ervin K. Lenzi e Matjaž Perce.

Figura 37 – Distribuição de graus da rede WormNet — o projeto WormNet utiliza geração de redes de maneira hipotética utilizando os mapeamentos já conhecidos da bactéria C. Elegans, que é amplamente utilizada em estudos de Redes Complexas.

Figura 38 – Distribuição de graus após remoção dos nós

- Figura 39 Representação da rede de corrupção Rede 1 em forma de grafo antes da aplicação do coeficiente α .
- Figura 40 Representação da rede de corrupção Rede 1 em forma de grafo após a aplicação do coeficiente α .
- Figura 41 Comparação entre as redes antes e após a aplicação do coeficiente *alpha* (método III) na rede de corrupção mapeada e numerada como Rede 1.

- Figura 42 Representação da rede de corrupção Rede 27 em forma de grafo antes da aplicação do coeficiente α .
- Figura 43 Representação da rede de corrupção Rede 27 em forma de grafo após a aplicação do coeficiente α .
- Figura 44 Comparação entre as redes antes e após a aplicação do coeficiente *alpha* (método III) na rede de corrupção mapeada e numerada como Rede 1.

5

Conclusão

Estruturas que não apresentam uma escala característica são comuns em nosso dia-a-dia. Pode-se dizer ser fundamental que saibamos manipulá-la de maneira eficiente e ágil. O estudo aqui apresentado apresenta um coeficiente que demonstra um valor limite aplicado ao grau de cada vértice da rede analisada baseada na premissa que poucos vértices de uma rede sem escala detém a maior parte da conexão das arestas, deixando possível e performática a remoção desses vértices de modo a de gerar um ataque coordenado a essa rede, deixando-a desconexa. Vale ressaltar que a eficácia do resultado conta também com o efeito cascata, visto que ao removermos os principais vértices e suas respectivas arestas, toda a comunicação se concentrará em vértices menores que não comportam a quantidade de tráfego que a estrutura gerará.

Em termos práticos, estamos vivenciando a pandemia de COVID-19 que causou um colapso nos sistemas de saúde exatamente por ter um aumento enorme na demanda de leitos nas áreas de CTI nos hospitais. Ao removermos os principais vértices de uma rede, exatamente isso acontecerá, causando então uma sobrecarga no sistema, colapsando-o. Sabe-se dessa característica das redes sem escala há bastante tempo, mas aqui apresentamos uma medida que classifica os vértices de maneira rápida e eficaz.

Os métodos propostos foram testados com uma massa de dados de grafos sintéticos gerados pelo algoritmo baseado no modelo preferencial Barabási-Álbert implementado na biblioteca Python chamada NetworkX com parâmentros pseudo-aleatórios bem como com redes reais mapeadas por diversos estudiosos. Todas as redes sintéticas são sem escala, sem direcionamento e sem peso nas suas arestas.

É correto também dizer que sobre a estrutura de uma rede sem escala sempre existe uma sub-rede que tem sua distribuição de graus melhor equalizada, conforme demonstrado nos resultados ao removermos os vértices concentradores. Assim sendo, podemos afirmar que ao remover os vértices concentradores de uma rede sem escala, a sub-rede remanescente apresenta características muito próximas às redes ER, ou seja, sua distribuição de graus deixa de ser regida pela lei da potência e passa a ter características muito próximas a de uma distribuição normal.

Assim sendo, sem o efeito cascata, é correto também afirmar que dificilmente uma rede entra em colapso, pois haverá sempre uma maneira dos vértices se comunicarem. Para ilustrar o exemplo de colapso, podemos pensar no blecaute que houve em 1999 nos Estados Unidos, quando as principais linhas transmissora de energia caíram devido a um incêndio, as linhas secundárias entraram em colapso por não suportar toda a carga que trafegava nas principais. Como consequência, houve um grande desabastecimento de energia elétrica que deixou grande parte da costa leste dos EUA sem energia por dias.

Por outro lado, ao conseguir detectar todos os principais elementos em um esquema de corrupção, de uma organização terrorista ou até mesmo de uma célula cancerígena, podemos destruí-la, removendo uma pequena parte da sua estrutura e deixando que o sistema morra por si só, sem comunicação entre seus pontos. Esse estudo é exatamente sobre isso, mostrar uma maneira simples e eficaz de causar uma falha crítica em uma rede sem escala causando o menor dano possível a sua estrutura para que não haja um dano maior que o necessário no resto do sistema.

Ao encerrar os estudos para essa Dissertação, notou-se que em redes reais de grande proporção se faz necessário um ajuste no coeficiente θ , elegido o melhor entre os três métodos aplicados, para que a eficácia do algoritmo seja mais abrangente. Temos aqui então a motivação para futuros estudos e continuação no programa de pós-graduação. Por fim, ressaltamos novamente que todos os resultados, números e gráficos que comprovam a eficácia do acoeficientes encontrados estão contidos nos Anexos dessa Dissertação.

Referências Bibliográficas

ALBERT, R.; BARABÁSI, A.-L. Emergence of scaling in random networks. *Science*, v. 286, n. 5439, p. 509–512, 1999.

ALBERT, R.; JEONG, H.; BARABÁSI, A.-L. Error and attack tolerance of complex networks. *nature*, Nature Publishing Group, v. 406, n. 6794, p. 378–382, 2000.

BAPAT, R. B. *Graphs and Matrices*. Second. [S.l.: s.n.], 2014. (Universitext). ISBN 9781447165699 1447165691 1447165683 9781447165682.

BARABÁSI, A.-L. Linked: How Everything Is Connected to Everything Else and What It Means. [S.l.]: Plume, 2003. ISBN 0452284392.

BARABÁSI, A.-L. *Network Science*. 2014. Disponível em: http://networksciencebook.com/, último acesso em 10-09-2020.

BARABÁSI, A.-L. Network science. [S.l.]: Cambridge university press, 2016.

BOCCALETTI, S. et al. Complex networks : Structure and dynamics. *Phys. Rep.*, v. 424, n. 4-5, p. 175–308, Fervier 2006.

BOLLOBÁS, B. *Modern Graph Theory.* 1. ed. [S.l.]: Springer-Verlag New York, 1998. (Graduate Texts in Mathematics 184).

BOLLOBÁS, B. Percolation. [S.l.: s.n.], 2006.

BONDY, A.; MURTY, U. *Graph theory.* 3rd corrected printing. ed. [S.l.]: Springer, 2008. (Graduate texts in mathematics 244).

BUCHANAN, M. Nexus: Small Worlds and the Groundbreaking Theory of Networks. [S.l.]: W. W. Norton & Company, 2003.

CHARTRAND, G.; ZHANG, P. A First Course in Graph Theory. Dover Publications, 2012. (Dover books on mathematics). ISBN 9780486483689. Disponível em: https://books.google.com.br/books?id=ocIr0RHyI8oC>.

CORMEN, T. H. C. et al. Introduction to Algorithms. 3. ed. [S.I.]: MIT Press, 2009.

Del Genio, C. I.; GROSS, T.; BASSLER, K. E. All scale-free networks are sparse. *Phys. Rev. Lett.*, v. 107, 2011.

DIESTEL, R. *Graph theory.* 3rd. ed. [S.l.]: Springer, 2006. (Graduate Texts in Mathematics). ISBN 9783540261834,3540261834.

ERDÖS, P.; RÉNYI, A. On random graphs. *Publicationes Mathematicae*, v. 6, p. 290–297, 1959.

ERDÖS, P.; RÉNYI, A. On the evolution of random graphs. *Publication of Mathematics Institute of Hungian Academy of Sciences*, v. 5, p. 1761, 1960.

ERDÖS, P.; RÉNYI, A. On the strength of connectedness of random graphs. Acta Math. Acad. Sci. Hungar, v. 12, p. 261–267, 1961.

ERDÖS, P.; RÉNYI, A. Asymmetric graphs. *Acta Math. Acad. Sci. Hungar.*, v. 14, p. 295–315, 1963.

ERDÖS, P.; RÉNYI, A. On random matrices. *Publication of Mathematics Institute of Hungian Academy of Sciences*, v. 8, n. 455-461, p. 1964, 1964.

ERDÖS, P.; RÉNYI, A. On the existence of a factor of degree one of a connected random graph. *Acta Math. Acad. Sci. Hungar*, v. 17, p. 359–368, 1966.

ERDÖS, P.; RÉNYI, A. On random matrices ii. *Studia Sci. Math. Hungar*, p. 459–464, 1968.

EULER, L. Solutio problematis ad geometriam situs pertinentis. *Commentarii academiae scientiarum Petropolitanae*, v. 8, p. 128–140, 1736.

FORTUNATO, S.; HRIC, D. Community detection in networks: A user guide. *Physics reports*, Elsevier, v. 659, p. 1–44, 2016.

FREEMAN, L. Centrality in social networks: Conceptual clarification. *Social Networks*, v. 1, p. 215–239, 1979.

GILBERT, E. N. Enumeration of labelled graphs. *Canadian Journal of Mathematics*, Cambridge University Press, v. 8, p. 405–411, 1956.

GILBERT, E. N. Random graphs. Ann. Math. Statist., The Institute of Mathematical Statistics, p. 1141–1144, 1959. Disponível em: https://doi.org/10.1214/aoms/1177706098>.

HAGBERG, A. A.; SCHULT, D. A.; SWART, P. J. Exploring network structure, dynamics, and function using networkx. In: VAROQUAUX, G.; VAUGHT, T.; MILLMAN, J. (Ed.). *Proceedings of the 7th Python in Science Conference*. [S.l.: s.n.], 2008. Disponível em: https://networkx.github.io/documentation/stable/index.html, último acesso em 12-10-2020.

HALL, M. et al. The weka data mining software: An update. *SIGKDD Explor. Newsl.*, ACM, New York, NY, USA, v. 11, n. 1, p. 10–18, nov. 2009. ISSN 1931-0145. Disponível em: http://doi.acm.org/10.1145/1656274.1656278>.

HALL, M. et al. The WEKA Data Mining Software: An Update. 2009.

HARRIS, C. R. et al. Array programming with NumPy. *Nature*, Springer Science and Business Media LLC, v. 585, n. 7825, p. 357–362, set. 2020. Disponível em: ./ltimo.acesso">https://numpy.org/>./ltimo.acesso em 12/10/2020.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, IEEE COMPUTER SOC, v. 9, n. 3, p. 90–95, 2007. Disponível em: https://matplotlib.org/citing.html. Último acesso em 12/10/2020.

JARMUL, K.; LAWSON, R. *Python Web Scraping*. Packt Publishing, 2017. ISBN 9781786464293. Disponível em: ">https://books.google.com.br/books?id=jHc5DwAAQBAJ>.

KARINTHY, F. Lánczemek. 1929.

KARINTHY, F. Minden Másképpen Van. [S.l.: s.n.], 1929.

KNUTH, D. *Michaelis Dicionário Brasileiro da Língua Portuguesa*. 2015. Disponível em: <htp://michaelis.uol.com.br/busca?r=0&f=0&t=0&palavra=sociologia>, último acesso em 29-09-2020.

LOPES, F. J. A.; TÁBOAS, P. Z. Euler e as pontes de königsberg. *Revista Brasileira de História da Matemática*, v. 15, n. 15, 2015.

LUCE, R. D.; PERRY, A. D. A method of matrix analysis of group structure. *Prychometrika*, 1949.

MERTON, R. K. The matthew effect in science. Science, v. 159, 1968.

MILGRAM, S. The small world problem. *Psychology today*, New York, v. 2, n. 1, p. 60–67, 1967.

MORETTIN, P. A.; BUSSAB, W. O. *Estatística Básica*. [S.l.]: Saraiva Educação S.A., 2017.

MORONE, F.; MAKSE, H. A. Influence maximization in complex networks through optimal percolation. *Nature*, v. 524, n. 7563, p. 65–68, jul 2015.

NEWMAN, M. Networks: an introduction. [S.l.]: Oxford university press, 2010.

NEWMAN, M. Networks. 2. ed. [S.l.]: Oxford University Press, 2018. ISBN 0198805098, 978-0198805090.

NEWMAN, M.; BARABÁSI, A.-L.; WATTS, D. J. The Structure and Dynamics of Networks: (Princeton Studies in Complexity). USA: Princeton University Press, 2006. ISBN 0691113572.

NEWMAN, M. E. J. The structure and function of complex networks. *SIAM review*, v. 45, n. 2, p. 167–256, 2003. ISSN 0036-1445.

NEWMAN, M. E. J. The mathematics of networks. *The new palgrave encyclopedia of economics*, Citeseer, v. 2, n. 2008, p. 1–12, 2008.

OXFORD. Oxford Languages. 2015. Disponível em: <a href="https://www.google.com.br/search?q=linguagem&hl=pt-BR&sxsrf=ALeKk02u2lY3UvjFkb6SfLqGvkpL9BnLng:1602533968765&source=lnms&sa=X&ved=0ahUKEwiMhcuf8K_

sAhXMJrkGHVXVC48Q_AUICigA&biw=1440&bih=828&dpr=1>, último acesso em 12-10-2020.

PAIVA, S. Introdução à programação: do algoritmo às linguagens atuais. [S.l.]: Ciência Moderna, 2008.

RAPOPORT, A. Nets with distance bias. v. 13, 1951.

RAPOPORT, A. Contribution to the theory of random and biased nets. Academic Press, p. 389 – 409, 1977.

RIBEIRO, H. V. et al. The dynamical structure of political corruption networks. *Journal of Complex Networks*, v. 6, n. 6, p. 989–1003, 01 2018. ISSN 2051-1329. Disponível em: https://doi.org/10.1093/comnet/cny002>.

ROSSI, R. A.; AHMED, N. K. The Network Data Repository with Interactive Graph Analytics and Visualization. 2015. Disponível em: http://networkrepository.com>.

SCOTT, J. Social Network Analysis: A Handbook. 2. ed. [S.I.]: Sage Publications, 2000.

SEDGEWICK, R.; WAYNE, K. *Algorithms.* 4. ed. [S.l.]: Addison-Wesley Professional, 2011. ISBN 032157351X,9780321573513.

SILVA, T. C.; ZHAO, L. *Machine Learning in Complex Networks*. 1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2016. ISBN 3319172891, 9783319172897.

SOLOMONOFF, R.; RAPOPORT, A. Connectivity of random nets. v. 13, 1951.

TRUDEAU, R. J. Introduction to Graph Theory. Repr. [S.l.]: Dover Publications, 2015;2013. (Dover Books on Advanced Mathematics).

WASSERMAN, S.; FAUST, K. Social Network Analysis. [S.l.: s.n.], 1995.

WATTS, D. J. Six Degrees The Science of a Connected Age. [S.I.]: W. W. Norton, 2003.

WATTS, D. J.; STROGATZ, S. H. Collective dynamics of 'small-world' networks. *Nature*, Nature Publishing Group, v. 393, n. 6684, p. 440–442, jun. 1998.

WEST, D. B. Introduction to graph theory. 2. ed. [S.l.]: Prentice Hall, 2000. ISBN 9780130144003,0130144002,8178088304.

WITTE, R. S.; WITTE, J. S. Statistics. [S.l.]: Wiley, 2016.

ZACHARY, W. An information flow model for conflict and fission in small groups. *Journal of Anthropological Research*, v. 33, p. 452–473, 1977.

ZINOVIEV, D. Complex Network Analysis in Python: Recognize - Construct - Visualize - Analyze - Interpret. 1st. ed. [S.l.]: Pragmatic Bookshelf, 2018. ISBN 1680502697, 9781680502695.

A

Recursos

Esse projeto tem como objetivo desenvolver um algoritmo que dada uma rede sem escala detecta quais vértices deverão ser eliminados para que a mesma se torne desconexa. É importante ressaltar que ao remover um vértice, todas as arestas que estão conectadas a ele também são removidas.

Nessa seção, serão apresentados os recursos utilizados durante todas as etapas deste estudo. Aqui serão especificadas as linguagens de programação utilizadas direta ou indiretamente para a produção dos resultados que serão apresentados, as IDEs – Integrated Development Environment (Ambiente Integrado de Desenvolvimento) — e todas as outras ferramentas utilizadas e também os recursos externos que foram necessários para a execução de alguns dos algoritmos desenvolvidos.

A.1 Linguagens de Programação

Recorrendo novamente ao dicionário da Língua Portuguesa, a busca da palavra *linguagem* retorna o seguinte:

"(...)qualquer meio sistemático de comunicar ideias ou sentimentos através de signos convencionais, sonoros, gráficos, gestuais etc." (OXFORD, 2015)

Sabe-se que os computadores modernos convencionais executam as suas operações pela passagem e não-passagem de corrente elétrica — representados pelos bits $0 e 1 - \log o$ pode-se dizer que é de extrema dificuldade para um ser humano a comunicação direta (leia-se linguagem de *baixo nível*) com os computadores.

Assim dito, existem então as **linguagens de programação** que são estruturas de códigos muito parecidos como a linguagem humana — chamadas *linguagem de alto nível* — que são então "traduzidas" para a linguagem de baixo nível. As maneiras de "tradução"

da linguagem de alto nível para a linguagem de baixo nível (linguagem de máquina) pode ser efetuada de duas maneiras: *compilação* e *interpretação*. (PAIVA, 2008)

Embora existam diversas linguagens de alto nível para serem utilizadas, no presente trabalho foram utilizadas apenas duas: o **Java** e o **Python**. Ambas as linguagens são gratuitas para utilização e amplamente utilizada no mundo da Informática.

A linguagem de programação Java foi criada em 1995 pela hoje extinta Sun Microsystems¹ para ser uma linguagem de fácil portabilidade e seu primeiro objetivo era ser utilizada em eletrodomésticos. Após uma primeira tentativa (e falha²), foi migrada para sistemas de grande porte e está consolidada no mercado e atualmente é amplamente utilizada no mercado.

Para o presente estudo ela foi importante por ser utilizada pelo aplicativo de *aprendizado de máquina* **WEKA**, onde todos os modelos nele disponíveis foram escritos nessa linguagem.

Figura 45 – Logotipo da linguagem Java. Disponível em <https://upload.wikimedia. org/wikipedia/en/3/30/Java_programming_language_logo.svg>. Último acesso em 13/10/2020.

A segunda linguagem de alto nível utilizada foi o Python em conjunto com algumas bibliotecas para a criação, manipulação e análise das redes estudadas.

O Python tem uma curva de aprendizado pouco acentuada e têm se mostrado muito produtiva e poderosa, sendo amplamente utilizada nas áreas de *ciência de dados* e *análise de redes*. Ela contém uma série de bibliotecas específicas bastante poderosas que podem ser utilizadas gratuitamente. Além de ser simples de aprender e rápida para escrita, essa linguagem permite acoplamento de outros módulos escritos em linguagens como C++ e Java o que melhora seu desempenho e escalabilidade.

¹ A Sun Microsystems e todos os seus produtos foram adquiridos pela gigante da TI Oracle Corporation em 2009. Informação retirada do site https://economia.estadao.com.br/noticias/geral, oracle-surpreende-e-compra-sun-por-us-7-4-bilhoes, 357995>, acessado em 15/10/2020.

² A falha se deu dada a dificuldade de ser obrigatória uma placa em cada um dos eletrodomésticos com essa tecnologia para o processamento das instruções Java.

Figura 46 – Logotipo da linguagem Python. Disponível em <https://commons. wikimedia.org/wiki/File:Python_logo_and_wordmark.svg>. Último acesso em 12/10/2020.

Bibliotecas são módulos desenvolvidos separadamente — normalmente por empresas que não participaram do projeto do desenvolvimento da linguagem propriamente dita — do núcleo da linguagem³ que podem ser utilizadas com a linguagem escolhida para o desenvolvimento quando necessário. Aqui foram utilizadas as bibliotecas **NetworkX**, **Matplotlib** e **NumPy**, além de outras que fazem parte do núcleo da linguagem.

A.1.0.1 NetworkX

Figura 47 – Logotipo da biblioteca NetworkX, biblioteca Python utilizada para análise de redes complexas. Disponível em <https://networkx.github.io/>. Último acesso em 12/10/2020. Criada por NetworkX developers.

A biblioteca que foi mais utilizada no trabalho foi a NetworkX (HAGBERG et al., 2008) dada a facilidade que ela propicia para criação e manipulação de redes das mais diversas estruturas (sociais, biológicas, entre outras). Como os próprios criadores da biblioteca dizem no site NetworkX:

"Com NetworkX você pode carregar e armazenar redes em formatos de dados padronizados ou não-padronizados, gerar vários tipos de redes aleatórias ou clássicas, analisar a estrutura das redes, construir modelos de redes, produzir algoritmos de novas redes, desenhar redes, e muito mais.

Essa biblioteca foi muito útil para a criação das redes modelo Barabási-Albert que foram utilizadas nos estudos. Além da criação, foi fundamental para toda a parte de manipulação necessária para os resultados, conforme serão demonstrados e apresentados.

Figura 48 – Logotipo da biblioteca Python Matplotlib, amplamente utilizada para demonstração de resultados em forma de gráficos e histogramas. Disponível em <https://commons.wikimedia.org/wiki/File:Created_with_ Matplotlib-logo.svg>. Último acesso em 12/10/2020.

A.1.1 Matplotlib

Matplotlib é a biblioteca Phyton mais utilizada para plotagem de gráficos, histogramas, figuras, entre outros. Criada por John Hunter, conjuntamente com vários apoiadores, foi amplamente utilizada no estudo para plotar os gráficos e histogramas que foram e serão aqui apresentados. Com uma ampla documentação disponível em Matplotlib é de fácil compreensão e oferece plotagem de gráficos e desenhos complexos de maneiras simples. De acordo com o próprio *site*:

"Matplotlib é uma biblioteca de fácil compreensão para criação de visualizações estáticas, animadas e interativas em Python.(...) Matplotlib faz coisas fáceis facilmente e coisas difíceis serem possíveis." (HUNTER, 2007)

A.1.2 NumPy

NumPy foi a biblioteca utilizada para montar os conjuntos de dados para o primeiro experimento apresentado nos resultados. Essa poderosa biblioteca é amplamente utilizada para manipulação de vetores e matrizes, e fornece diversos recursos para facilitar operações a elas relacionadas. Como *Matplotlib* e *NetworkX* possui uma farta documentação na Internet, mas o próprio site NumPy contém apostilas e cursos que ajudam a sua familiarização.

³ O núcleo da linguagem é normalmente referenciada como **core**.

Figura 49 – Logotipo da biblioteca Numpy, uma das mais utilizadas por cientistas de dados para manipulação de conjunto de dados. Disponível em <https:// commons.wikimedia.org/wiki/File:NumPy_logo_2020.svg>. Último acesso em 12/10/2020. Criada por Isabela Presedo-Floyd.

> "NumPy é o pacote fundamental para computação científica em Python. É uma biblioteca Python que disponibiliza um objeto vetor multidimensional, vários objetos derivados (tais como vetores e matrizes mascaradas), e uma série de rotinas para operações rápidas nesses objetos, incluindo operações matemáticas, lógicas, de manipulação de formato, ordenação, seleção, entrada/saída, transformadas Fourier discretas, algebra linear básica, operações estatísticas básicas, simulações aleatórias e muito mais." (HARRIS et al., 2020)

Pode-se observar pela citação acima que essa é uma biblioteca poderosíssima, e aliada a outras bibliotecas tais como SciPy e Matplotlib se torna um grande aliado aos cientistas de dados. Aqui, no nosso trabalho, apenas arranhamos a superfície dessa biblioteca, utilizando-a somente para separar e ordenar nosso conjunto de dados.

Apesar das citações colocadas exaltarem cada uma das bibliotecas, essas três ferramentas são amplamente utilizadas no mundo Python para Ciência de Dados devido aos recursos que elas oferecem e sua relativa facilidade de aprendizagem e compreensão.

A.2 IDEs e Aplicativos

Nessa sessão serão demonstrados os aplicativos e a IDE que foram utilizados de alguma maneira para demonstrar ou gerar os resultados obtidos.

A.2.0.1 Sypder

"Spyder é um ambiente científico poderoso escrito em Python, para Python, e produzido por e para cientistas, engenheiros e analistas de dados. Ele oferece uma combinação única de edição avançada, análise, depuração, e funcionalidade de perfil em uma ferramenta de desenvolvimento de fácil compreensão com explorador de dados, execução interativa, inspeção profunda e uma bela capacidade de visualização de um pacote científico".

Figura 50 – Logotipo da IDE Spyder, utilizada para desenvolver todos os scripts Python do presente estudo e bastante utilizado por cientistas de dados dados os recursos que a mesma oferece. Disponível em <https://commons.wikimedia. org/wiki/File:Spyder_logo.svg>. Último acesso em 15/10/2020.

Uma IDE (Integrated Development Environment, ou Ambiente Integrado de Desenvolvimento) é uma ferramenta que auxilia programadores em diversos aspectos, contendo vários recursos como auto-completar, painéis mostrando em tempo real o valor das variáveis utilizadas e os gráficos desenhados, entre outros.

O algoritmos em Pyhton foram desenvolvidos na IDE chamada **Spyder** instalada automaticamente pelo pacote científico **Anaconda**. Esta plataforma foi escolhida devido a grande facilidade e produtividade que proporciona. A Figura 51 mostra a grande quantidade de painéis e abas que a mesma oferece, auxiliando no desenvolvimento e análise do programa conforme ele vai sendo escrito.

Figura 51 – Captura da tela da IDE Spyder em sua versão 4.

A.2.0.2 Weka

Figura 52 – Logotipo do aplicativo WEKA, utilizado na primeira etapa da pesquisa para aplicar o modelo Multicamadas Perceptron nos conjunto de dados criados a partir da análise das redes geradas.

> "Weka é um software livre de aprendizado de máquina que pode ser acessado através de uma interface gráfica de usuário (GUI), aplicações padrão de terminal ou através de uma API Java. É amplamente utilizada para ensino, pesquisa e aplicações industriais, contém uma grande variedade de ferramentas para tarefas padrão de aprendizado de máquina e adicionalmente fornece acesso facilitado para ferramentas conhecidas tais como scikit-learn, R e Deeplearning4j." (HALL et al., 2009a; HALL et al., 2009b) Disponível em <https://www.cs.waikato.ac.nz/ml/weka/ >. Último acesso em 13/10/2020.

Weka é uma plataforma visual que contém implementações de diversos modelos de aprendizado de máquina na linguagem de programação Java. Distribuído como software livre, essa aplicação permite a integração dos códigos com ele distribuídos em qualquer aplicação que seja também distribuída sobre a licença GNU. A grande vantagem de utilizar o Weka é a economia de tempo e a não necessidade de testar o modelo escrito, visto que essa ferramenta — que foi desenvolvida pela Universidade de Waikato, Nova Zelândia é amplamente utilizada pela comunidade científica, validando seus algoritmos.

A.2.0.3 Gephi

"Gephi é uma ferramenta para análise de dados e para cientistas ávidos para explorar e compreender grafos. Como o PhotoshopTM para grafos, o usuário interage com suas representações, manipula as estruturas, formas e cores para revelar padrões ocultos.⁴"

A biblioteca Python NetworkX fornece recursos para criar redes e as armazenar em arquivos. Mas geralmente, ao utilizar o NetworkX ou o Matplotlib para plotar essas redes, a sua representação não fica esteticamente agradável conforme pode-se verificar na Figura 54.

Ao utilizar a ferramenta Gephi, obtem-se uma melhor visualização da rede, além de o aplicativo fornecer certas ferramentas que permite ao analista da rede colorir o grafo

⁴ Disponível em <https://gephi.org/features/> e acessado em 15/10/2020.

Figura 53 – Logotipo do aplicativo de análise e representação de redes e grafos Gephi. Disponível em <https://upload.wikimedia.org/wikipedia/en/0/04/Gephi-logo.png> e acessado em 12/10/2020.

Figura 54 – Rede criada e desenhada a partir de um script Python utilizando somente a biblioteca NetworkX.

e ajustar o grafo como quiser, deixando sua representação mais clara, como pode ser observado na Figura 55.

A maioria das gravuras onde existem representações de redes ou grafos no presente trabalho foram feitas conforme a Figura 55. Utilizou-se o NetworkX para gerar ou efetuar a leitura da rede a ser plotada, ainda com essa biblioteca, gerou-se um arquivo tipo GML^5 . Abriu-se esse arquivo gerado no *Gephi* e aplicaram-se as configurações desejadas para a visualização.

A.3 Plataformas

Pode-se dizer que duas plataformas *online* foram fundamentais para a apresentação dos resultados e também para a criação e execução dos mais variados algoritmos que foram escritos no decorrer do trabalho. As plataformas que foram aqui utilizadas oferecem recursos computacionais que normalmente não temos nos nossos computadores caseiros. Abaixo estão descritas brevemente as plataformas: **Jupyter Notebook**, **Google Colaboratory** e **Google Cloud**.

⁵ Geographic Markup Language, baseado nos arquivos XML que permitem representações gráficas de vetores, redes, pontos, entre outros.

Figura 55 – Rede criada e salva em um arquivo tipo GML a partir de um script Python. Para a plotagem da rede, utilizou-se o Gephi colorindo os vértices baseado no grau médio da rede.

A.3.0.1 Jupyter Notebook

"O Jupyter Notebook é uma software livre de aplicação web que permite a criação e compartilhamento de documentos contendo linhas de código, equações, visualizações e texto narrativo. Seu uso inclui: limpéza e transformação de dados, simulação numérica, modelagem estatística, visualização de dados, aprendizado de máquina e muito mais." *Retirado* de < https://jupyter.org/>, acessado em 21/10/2020.

Como citado, o **Jupyter Notebook** transforma seu navegador em uma poderosa ferramenta de execução e visualização de dados. Com suas células, essa plataforma permite a execução de um script Python linha a linha, com a resposta de seus comandos de maneira imediata, conforme pode ser visto na Figura 57.

A.3.0.2 Google Colaboratory

O Colaboratory ou "Colab" permite escrever código Python no seu navegador, com:

- Nenhuma configuração necessária;
- Acesso gratuito a GPUs;
- Compartilhamento fácil.

Você pode ser um estudante, um cientista de dados ou um pesquisador de IA, o Colab pode facilitar seu trabalho. *Disponível em <https://colab.*

Figura 56 – Logotipo do projeto Jupyter que desenvolve ferramentas open-source para escrita e execução de programas de diversas linguagens. O ambiente Jupiter Notebook desenvolvido por esse projeto foi bastante utilizado tanto localmente quanto através da plataforma Google Colaboratory. Disponível em <https://pt.wikipedia.org/wiki/Projeto_Jupyter#/media/Ficheiro: Jupyter_logo.svg> e acessado em 21/10/2020.

Figura 57 – Captura de tela do Jupyter Notebook sendo executado localmente. Nota-se aqui a facilidade de visualização dos resultados das linhas de código executadas.

 $research.google.com/notebooks/intro.ipynb\#scrollTo=5fCEDCU_qrC0>. Acessado em 20/10/2020.$

Como a própria descrição contida na página principal do **Google Colaboratory** diz, essa plataforma é muito simples de utilizar, dispensando qualquer tipo de instalação em seu computador — basta um navegador — e disponibiliza uma série de recursos que podem ser utilizados para rodar *scripts* Python relativamente complexos de forma gratuita. Vale ressaltar aqui que o *Colab* — como é mais conhecido — se utiliza de uma plataforma muito similar ao Jupyter Notebook, conforme pode-se observar nas Figuras 57 e 59

Figura 58 – Logotipo do ambiente Google Colaboratory, utilizado para criar e executar diversos scripts Python que foram fundamentais para o atual estudo.

÷	→ C a colab.research.google.com/drive/1eZCBpAP51n9_3C-TLfmVuWXH4ejDqqEK
Q	● AplotFreeScaleNetwork.ipynb ☆ Arquivo Editar Ver Inserir Ambiente de execução Ferramentas Ajuda <u>Ultima edicão em 13 de aposto</u>
:=	+ Código + Texto
d ≎ ⊡	[] for node, in 0. mode(i):
	<pre>[] lists = sorted(c.items())</pre>
	<pre>[] x, y = zip(*lists)</pre>
	plt.plot(x,y)
	C (example at the lines, Line 2D at 6x7(c338535864))

Figura 59 – Utilização do ambiente Google Colab para visualizar um gráfico de distribuição de graus de uma rede BA.

A.3.0.3 Google Cloud

Figura 60 – Logotipo do ambiente Google Cloud, utilizado para criar e processar as redes na primeira etapa da pesquisa para aplicar o modelo Multicamadas Perceptron nos conjunto de dados criados a partir da análise das redes geradas.

"O Google Cloud consiste em um conjunto de recursos físicos (computadores e unidades de disco rígido) e recursos virtuais, como máquinas virtuais (VMs), localizados nos data centers do Google por todo o mundo. (...) Essa distribuição de recursos oferece diversas vantagens, inclusive redundância em caso de falha e latência reduzida localizando recursos mais próximos dos clientes. Essa distribuição também introduz regras sobre como recursos podem ser usados juntos." Disponível em <<u>https://cloud.</u> google.com/docs/overview?hl=pt-br>. Último acesso em 15/10/2020.

O **Google Cloud** é um recurso de computação nas nuvens (comumente chamado *Cloud Computing*) que disponibiliza recursos tais como *máquinas virtuais* robustas, armazenamento de dados remoto, entre outros vários recursos que atualmente são bastante utilizados por empresas de TI e cientista de dados.

Esse recurso é utilizado pelos cientistas de dados quando há necessidade de processar conjuntos de dados muito grandes, que acabam consumindo bastante memória e processamento dos computadores. Os *PCs* "normais" — computadores que temos em casa, notebooks ou até mesmo uma estação de trabalho um pouco mais poderosa — nem sempre têm os recursos físicos (memória, processador, disco) necessários para executar algoritmos complexos de processamento de informações. Assim sendo, frequentemente se faz necessária a utilização desse tipo de recurso.

Diferente do *Google Colab*, essa ferramenta permite que criem-se máquinas virtuais que podem ser acessadas pelos navegadores ou outras ferramentas, com a configuração necessária para a aplicação a ser utilizada. Muitas empresas estão migrando os seus "data centers" para a computação nas nuvens, dada sua disponibilidade de acesso (um site de compras como Amazon.com ou Submarino.com ficar fora do ar por uma hora causa um prejuízo enorme), relativamente baixo custo e robustez das máquinas. São disponibilizadas máquinas com o sistema operacional Linux em uma instalação limpa e sem interface gráfica, assim sendo, instala-se todos os recursos necessários para a aplicação desejada possa ser utilizada.

Aqui utilizou-se o *Google Cloud* para gerar e aplicar os algoritmos em redes criadas com mais de 1.000.000 de vértices. A biblioteca *NetworkX* utiliza bastante memória para processar os vértices e arestas das redes. Assim sendo, quanto maior a rede, mais recursos da máquina ela utiliza. Criou-se então uma V.M.⁶ com as configurações demonstradas na Figura 61.

Nota-se aqui uma característica interessante da biblioteca NetworkX, não foram necessários muitos processadores (aqui, utilizou-se somente quatro, sendo que as máquinas que temos em casa normalmente têm oito (os chamados *octacores*)) mas a memória necessária para conseguir processar a rede foi de 400 Gigabytes (o que seria impossível em um computador "caseiro").

⁶ V.M. significa Virtual Machine — Máquina Virtual — é esse termo é bastante utilizado na linguagem do mundo de T.I..

Registros

ID da instância 4036070401875086133

Tipo de máquina

custom (4 vCPUs, 400 GB de memória)

Figura 61 – Captura de tela da interface do Google Cloud demonstrando a configuração da VM que foi criada para processar as redes com mais de um milhão de vértices.

Um livro que foi fundamental para o auxílio e compreensão das bibliotecas e aplicativos utilizados — principalmente biblioteca Pyhton NetworkX e manipulação do Gephi foi "Complex Network Analysis in Python: Recognize - Construct - Visualize - Analyze - Interpret" (ZINOVIEV, 2018) de Dmitry Zinoviev, professor de ciência computacional na Universidade de Suffolk.

Vale citar aqui que para a instalação das bibliotecas e aplicativos relacionados à utilização do **Python**, foi utilizado um "mega pacote" chamado **Anaconda**, que instala de forma automatizada todas as bibliotecas que foram citadas nessa sessão — além de muitas outras que são utilizadas em ciência de dados e aprendizado de máquina. O download do pacote e mais informações sobre o mesmo podem ser encontradas no site <https://www.anaconda.com/products/individual>.

Todos os códigos gerados estão disponíveis em um repositório Github, que pode ser acessado pelo link https://github.com/boldorini/colapso.git e também explicitado no Apêndice A.

В

Tabelas

Esse Capítulo demonstra as informações sobre as redes sintéticas estudadas bem como as estatísticas da execução de cada um dos métodos. Os nomes dos arquivos contidos nas Tabelas 5, 6, 7, 8 têm os parâmetros passados para o método de criação Barabási-Albert da biblioteca Python Networkx utilizados para a criação de cada uma das pseudo-redes nas linhas representadas.

B.1 Tabelas Conjunto

B.1.1 Tabelas Conjunto A - Redes de 100 a 1000 vértices

Conjunto A - Redes de 100 a 1000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
1	111_39.gml	111	2808
2	119_28.gml	119	2548
3	121_33.gml	121	2904
4	146_25.gml	146	3025
5	176_39.gml	176	5343
6	$185_50.\mathrm{gml}$	185	6750
7	195_17.gml	195	3026
8	212_46.gml	212	7636
9	275_32.gml	275	7776
10	278_45.gml	278	10485
11	298_38.gml	298	9880

Conju	nto A - F	Redes de 10	00 a 1000 vé	rtices
Id. Rede	Nome	Arquivo	Vértices	Arestas
12	306_	_44.gml	306	11528
13	318_	_36.gml	318	10152
14	325_	_23.gml	325	6946
15	340_	_28.gml	340	8736
16	382_	_24.gml	382	8592
17	400_	$_{25.\mathrm{gml}}$	400	9375
18	403_	_34.gml	403	12546
19	407_	_44.gml	407	15972
20	427_	$_{13.\mathrm{gml}}$	427	5382
21	432_	_41.gml	432	16031
22	460_	_39.gml	460	16419
23	476_	_20.gml	476	9120
24	542_	_30.gml	542	15360
25	556_	_20.gml	556	10720
26	563_	_33.gml	563	17490
27	575_	_37.gml	575	19906
28	585_	_28.gml	585	15596
29	589_	_29.gml	589	16240
30	641_	_10.gml	641	6310
31	680_	_35.gml	680	22575
32	681_	_47.gml	681	29798
33	682_	$_{17.\mathrm{gml}}$	682	11305
34	744_	_22.gml	744	15884
35	765_	_18.gml	765	13446
36	790_	$_{49.\mathrm{gml}}$	790	36309
37	815_	_23.gml	815	18216
38	816_	$_{15.\mathrm{gml}}$	816	12015
39	837_	_33.gml	837	26532
40	850_	_29.gml	850	23809
41	855_	_39.gml	855	31824
42	866_	_16.gml	866	13600
43	876_	_41.gml	876	34235
44	896_	_41.gml	896	35055
45	909_	_34.gml	909	29750
46	916_	_33.gml	916	29139
47	923_	_45.gml	923	39510

Conjunto A - Redes de 100 a 1000 vértices				
Id. Rede	Nome Arquivo	Vértices	Arestas	
48	941_33.gml	941	29964	
49	953_46.gml	953	41722	
50	978_24.gml	978	22896	

Tabela 5 – Conjunto de redes A com tamanho de 100 a 1000 vértices

B.1.2 Tabelas Conjunto B - Redes de 1000 a 10000 vértices

Conjunto B - Redes de 1000 a 10000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
1	1104_34.gml	1104	36380
2	1132_19.gml	1132	21147
3	1273_45.gml	1273	55260
4	1315_30.gml	1315	38550
5	1363_13.gml	1363	17550
6	1383_29.gml	1383	39266
7	$1565_{29.gml}$	1565	44544
8	2302_40.gml	2302	90480
9	2541_42.gml	2541	104958
10	2609_11.gml	2609	28578
11	3094_43.gml	3094	131193
12	3171_21.gml	3171	66150
13	3393_15.gml	3393	50670
14	3529_44.gml	3529	153340
15	3639_46.gml	3639	165278
16	3689_31.gml	3689	113398
17	3963_49.gml	3963	191786
18	4160_33.gml	4160	136191
19	4192_18.gml	4192	75132
20	4242_43.gml	4242	180557
21	4782_23.gml	4782	109457
22	5151_44.gml	5151	224708
23	5823_32.gml	5823	185312
24	5834_33.gml	5834	191433

Conjunto B - Redes de 1000 a 10000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
25	$5904_25.\mathrm{gml}$	5904	146975
26	6362_44.gml	6362	277992
27	6462_20.gml	6462	128840
28	6513_34.gml	6513	220286
29	6643_19.gml	6643	125856
30	6676_30.gml	6676	199380
31	6865_48.gml	6865	327216
32	6939_27.gml	6939	186624
33	6972_46.gml	6972	318596
34	7186_49.gml	7186	349713
35	7225_48.gml	7225	344496
36	7335_40.gml	7335	291800
37	7364_48.gml	7364	351168
38	7734_20.gml	7734	154280
39	7797_26.gml	7797	202046
40	7857_13.gml	7857	101972
41	7979_16.gml	7979	127408
42	7980_34.gml	7980	270164
43	8273_24.gml	8273	197976
44	8524_48.gml	8524	406848
45	$8527_23.gml$	8527	195592
46	8592_41.gml	8592	350591
47	$8657_18.gml$	8657	155502
48	8750_13.gml	8750	113581
49	$8987_20.\mathrm{gml}$	8987	179340
50	9622_26.gml	9622	249496

Tabela 6 – Conjunto de redes B com tamanho de 1000 a 10000 vértices

B.1.3 Tabelas Conjunto C - Redes de 10000 a 100000 vértices

Conjunto C - Redes de 10000 a 100000 vértices				
Id. Rede	Nome Arquivo	Vértices	Arestas	
1	$10629_28.gml$	10629	296828	

Conjunto C - Redes de 10000 a 100000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
2	$10852_34.\mathrm{gml}$	10852	367812
3	$11450_38.gml$	11450	433656
4	$12237_33.gml$	12237	402732
5	$14467_{11.gml}$	14467	159016
6	$15061_46.\mathrm{gml}$	15061	690690
7	$20732_34.\mathrm{gml}$	20732	703732
8	$23080_43.\mathrm{gml}$	23080	990591
9	$23905_26.\mathrm{gml}$	23905	620854
10	$23977_48.gml$	23977	1148592
11	$25711_34.gml$	25711	873018
12	$26786_32.\mathrm{gml}$	26786	856128
13	$31108_14.gml$	31108	435316
14	$32703_23.\mathrm{gml}$	32703	751640
15	$41844_14.gml$	41844	585620
16	$44023_48.gml$	44023	2110800
17	$47081_21.\mathrm{gml}$	47081	988260
18	47388_34.gml	47388	1610036
19	$48287_18.\mathrm{gml}$	48287	868842
20	$49473_16.gml$	49473	791312
21	$50143_42.\mathrm{gml}$	50143	2104242
22	$52406_37.gml$	52406	1937653
23	$52603_31.gml$	52603	1629732
24	$56786_15.\mathrm{gml}$	56786	851565
25	$58578_40.\mathrm{gml}$	58578	2341520
26	$58940_47.\mathrm{gml}$	58940	2767971
27	$59761_48.\mathrm{gml}$	59761	2866224
28	$61256_28.gml$	61256	1714384
29	$63789_19.\mathrm{gml}$	63789	1211630
30	64209_31.gml	64209	1989518
31	$64244_18.gml$	64244	1156068
32	64470_21.gml	64470	1353429
33	65720_11.gml	65720	722799
34	$65860_36.\mathrm{gml}$	65860	2369664
35	67162_18.gml	67162	1208592
36	$69700_43.\mathrm{gml}$	69700	2995251
37	70192_11.gml	70192	771991

Conjunto C - Redes de 10000 a 100000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
38	74499_38.gml	74499	2829518
39	$74955_36.\mathrm{gml}$	74955	2697084
40	$79940_16.\mathrm{gml}$	79940	1278784
41	82435_49.gml	82435	4036914
42	84723_11.gml	84723	931832
43	$84767_24.\mathrm{gml}$	84767	2033832
44	$86315_34.gml$	86315	2933554
45	$88991_27.gml$	88991	2402028
46	89042_28.gml	89042	2492392
47	91026_33.gml	91026	3002769
48	91229_49.gml	91229	4467820
49	98969_42.gml	98969	4154934
50	$99680_13.\mathrm{gml}$	99680	1295671

Tabela 7 – Conjunto de redes C com tamanho de 10000 a 100000 vértices

B.1.4 Tabelas Conjunto D - Redes de 100000 a 1000000 vértices

Conjunto D - Redes de 100000 a 1000000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
1	132581_11.gml	132581	1458270
2	134891_21.gml	134891	2832270
3	228247_10.gml	228247	2282370
4	268009_10.gml	268009	2679990
5	299295_16.gml	299295	4788464
6	300160_21.gml	300160	6302919
7	321251_22.gml	321251	7067038
8	321488_11.gml	321488	3536247
9	382434_17.gml	382434	6501089
10	384738_22.gml	384738	8463752
11	387234_17.gml	387234	6582689
12	408336_13.gml	408336	5308199
13	433083_13.gml	433083	5629910
14	457119_24.gml	457119	10970280

Conjunto D - Redes de 100000 a 1000000 vértices			
Id. Rede	Nome Arquivo	Vértices	Arestas
15	499282_19.gml	499282	9485997
16	$504354_16.gml$	504354	8069408
17	513508_12.gml	513508	6161952
18	519132_13.gml	519132	6748547
19	593691_25.gml	593691	14841650
20	602827_19.gml	602827	11453352
21	610719_23.gml	610719	14046008
22	642516_14.gml	642516	8995028
23	$675366_20.\mathrm{gml}$	675366	13506920
24	722726_22.gml	722726	15899488
25	735374_18.gml	735374	13236408
26	768087_24.gml	768087	18433512
27	822929_15.gml	822929	12343710
28	895001_19.gml	895001	17004658
29	903179_13.gml	903179	11741158
30	919233_21.gml	919233	19303452

Tabela 8 – Conjunto de redes D com tamanho de 100000 a 1000000 vértices

B.1.5 Redes Reais (C. Elegans e Rede Brasileira de Corrupção)

Redes Reais (C. Elegans e Rede Brasileira de Corrupção)				
Id. Rede	Nome Arquivo	Vértices	Arestas	
1	WormNet.v3.edges	329521	77777027	
2	rede-01.gml	7	7	
3	rede-02.gml	7	7	
4	rede-03.gml	7	7	
5	rede-04.gml	9	9	
6	rede-05.gml	19	19	
7	rede-06.gml	25	25	
8	rede-07.gml	26	26	
9	rede-08.gml	28	26	
10	rede-09.gml	28	26	
11	rede-10.gml	47	47	

Redes Reai	s (C. Elegans e Rede	Brasileira de	e Corrupção)
Id. Rede	Nome Arquivo	Vértices	Arestas
12	rede-11.gml	60	60
13	rede-12.gml	65	65
14	rede-13.gml	71	71
15	rede-14.gml	82	82
16	rede-15.gml	96	96
17	rede-16.gml	116	116
18	rede-17.gml	126	126
19	rede-18.gml	181	181
20	rede-19.gml	224	224
21	rede-20.gml	231	231
22	rede-21.gml	242	242
23	rede-22.gml	270	270
24	rede-23.gml	284	284
25	rede-24.gml	299	299
26	rede-25.gml	321	321
27	rede-26.gml	332	332
28	rede-27.gml	360	360

Tabela 9 – Conjunto de redes reais C. Elegans e Rede de Corrupção brasileira

B.2 Tabelas Resultados Método I

Resultados método I - conjunto de redes A									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	21/10/2020 21:32:06	21/10/2020 21:32:07	1.19	111	31	2808	19		
2	21/10/2020 21:32:07	21/10/2020 21:32:08	1.20	119	52	2548	201		
3	21/10/2020 21:32:08	21/10/2020 21:32:10	1.39	121	51	2904	206		
4	21/10/2020 21:32:10	21/10/2020 21:32:12	1.73	146	99	3025	797		
5	21/10/2020 21:32:12	21/10/2020 21:32:15	3.48	176	137	5343	2102		
6	21/10/2020 21:32:15	21/10/2020 21:32:20	4.64	185	147	6750	2889		
7	21/10/2020 21:32:20	21/10/2020 21:32:22	2.17	195	157	3026	1134		
8	21/10/2020 21:32:22	21/10/2020 21:32:28	5.90	212	182	7636	4124		
9	21/10/2020 21:32:28	21/10/2020 21:32:36	8.11	275	254	7776	5338		
10	21/10/2020 21:32:36	21/10/2020 21:32:47	10.93	278	264	10485	8264		
11	21/10/2020 21:32:47	21/10/2020 21:32:58	11.11	298	282	9880	7559		
12	21/10/2020 21:32:58	21/10/2020 21:33:11	13.02	306	295	11528	9655		
13	21/10/2020 21:33:11	21/10/2020 21:33:23	11.78	318	302	10152	7799		
14	21/10/2020 21:33:23	21/10/2020 21:33:31	8.43	325	309	6946	5203		
15	21/10/2020 21:33:31	21/10/2020 21:33:42	10.96	340	326	8736	6886		
16	21/10/2020 21:33:42	21/10/2020 21:33:54	12.13	382	370	8592	6981		
17	21/10/2020 21:33:54	21/10/2020 21:34:09	14.51	400	388	9375	7647		
18	21/10/2020 21:34:09	21/10/2020 21:34:27	18.45	403	399	12546	11815		
19	21/10/2020 21:34:27	21/10/2020 21:34:51	23.61	407	407	15972	15972		
20	21/10/2020 21:34:51	21/10/2020 21:35:00	8.92	427	417	5382	4451		
21	21/10/2020 21:35:00	21/10/2020 21:35:25	24.87	432	432	16031	16031		
22	21/10/2020 21:35:25	21/10/2020 21:35:53	27.99	460	460	16419	16419		
23	21/10/2020 21:35:53	21/10/2020 21:36:11	17.95	476	469	9120	8024		
24	21/10/2020 21:36:11	21/10/2020 21:36:45	34.10	542	542	15360	15360		
25	21/10/2020 21:36:45	21/10/2020 21:37:08	22.93	556	550	10720	9728		
26	21/10/2020 21:37:08	21/10/2020 21:37:45	37.04	563	562	17490	17242		
27	21/10/2020 21:37:45	21/10/2020 21:38:28	42.89	575	575	19906	19906		
28	21/10/2020 21:38:28	21/10/2020 21:39:05	37.48	585	585	15596	15596		
29	21/10/2020 21:39:05	21/10/2020 21:39:47	41.63	589	589	16240	16240		
30	21/10/2020 21:39:47	21/10/2020 21:40:05	18.07	641	630	6310	5115		
31	21/10/2020 21:40:05	21/10/2020 21:41:12	67.015	680	680	22575	22575		
32	21/10/2020 21:41:12	21/10/2020 21:42:36	83.77	681	681	29798	29798		
33	21/10/2020 21:42:36	21/10/2020 21:43:09	33.13	682	677	11305	10484		
34	21/10/2020 21:43:09	21/10/2020 21:43:59	50.21	744	744	15884	15884		
35	21/10/2020 21:43:59	21/10/2020 21:44:43	43.91	765	763	13446	13052		
36	21/10/2020 21:44:43	21/10/2020 21:46:36	113.02	790	790	36309	36309		
37	21/10/2020 21:46:36	21/10/2020 21:47:36	59.71	815	815	18216	18216		
38	21/10/2020 21:47:36	21/10/2020 21:48:16	40.55	816	811	12015	11140		
39	21/10/2020 21:48:16	21/10/2020 21:49:46	89.36	837	837	26532	26532		
40	21/10/2020 21:49:46	21/10/2020 21:51:12	86.87	850	850	23809	23809		
41	21/10/2020 21:51:12	21/10/2020 21:53:05	112.46	855	855	31824	31824		
42	21/10/2020 21:53:05	21/10/2020 21:53:55	49.61	866	865	13600	13409		
43	21/10/2020 21:53:55	21/10/2020 21:55:51	115.99	876	876	34235	34235		
44	21/10/2020 21:55:51	21/10/2020 21:57:56	125.83	896	896	35055	35055		
45	21/10/2020 21:57:56	21/10/2020 21:59:53	116.87	909	909	29750	29750		
46	21/10/2020 21:59:53	21/10/2020 22:01:47	113.76	916	916	29139	29139		
47	21/10/2020 22:01:47	21/10/2020 22:04:18	150.77	923	923	39510	39510		
48	21/10/2020 22:04:18	21/10/2020 22:06:17	119.40	941	941	29964	29964		

Resultados método I - conjunto de redes A									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
49	21/10/2020 22:06:17	21/10/2020 22:08:51	153.72	953	953	41722	41722		
50	21/10/2020 22:08:51	21/10/2020 22:10:30	99.06	978	978	22896	22896		

Tabela 10 – Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I) em cada uma das redes pertencentes ao conjunto A.

Resultados método I - conjunto de redes B									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	21/10/2020 21:19:46	21/10/2020 21:22:06	140.59	1104	1104	36380	36380		
2	21/10/2020 21:22:06	21/10/2020 21:23:34	87.35	1132	1132	21147	21147		
3	21/10/2020 21:23:34	21/10/2020 21:27:28	234.71	1273	1273	55260	55260		
4	21/10/2020 21:27:28	21/10/2020 21:30:17	168.14	1315	1315	38550	38550		
5	21/10/2020 21:30:17	21/10/2020 21:31:48	90.90	1363	1363	17550	17550		
6	21/10/2020 21:31:48	21/10/2020 21:35:14	206.61	1383	1383	39266	39266		
7	21/10/2020 21:35:14	21/10/2020 21:40:03	288.43	1565	1565	44544	44544		
8	21/10/2020 21:40:03	21/10/2020 21:55:06	903.08	2302	2302	90480	90480		
9	21/10/2020 21:55:06	21/10/2020 22:14:17	1151.71	2541	2541	104958	104958		
10	21/10/2020 22:14:17	21/10/2020 22:19:38	320.63	2609	2609	28578	28578		
11	21/10/2020 22:19:38	21/10/2020 22:47:01	1642.92	3094	3094	131193	131193		
12	21/10/2020 22:47:01	21/10/2020 23:03:30	989.51	3171	3171	66150	66150		
13	21/10/2020 23:03:30	21/10/2020 23:17:53	862.86	3393	3393	50670	50670		
14	21/10/2020 23:17:53	21/10/2020 23:53:44	2150.57	3529	3529	153340	153340		
15	21/10/2020 23:53:44	22/10/2020 00:32:55	2350.86	3639	3639	165278	165278		
16	22/10/2020 00:32:55	22/10/2020 01:00:27	1652.30	3689	3689	113398	113398		
17	22/10/2020 01:00:27	22/10/2020 01:48:20	2872.50	3963	3963	191786	191786		
18	22/10/2020 01:48:20	22/10/2020 02:21:18	1978.45	4160	4160	136191	136191		
19	22/10/2020 02:21:18	22/10/2020 02:40:13	1134.85	4192	4192	75132	75132		
20	22/10/2020 02:40:13	22/10/2020 03:24:36	2663.50	4242	4242	180557	180557		
21	22/10/2020 03:24:36	22/10/2020 03:55:55	1878.73	4782	4782	109457	109457		
22	22/10/2020 03:55:55	22/10/2020 05:04:06	4090.31	5151	5151	224708	224708		
23	22/10/2020 05:04:06	22/10/2020 06:09:46	3940.89	5823	5823	185312	185312		
24	22/10/2020 06:09:46	22/10/2020 07:17:34	4067.21	5834	5834	191433	191433		
25	22/10/2020 07:17:34	22/10/2020 08:11:34	3240.22	5904	5904	146975	146975		
26	22/10/2020 08:11:34	22/10/2020 09:58:55	6440.83	6362	6362	277992	277992		
27	22/10/2020 09:58:55	22/10/2020 10:51:46	3171.54	6462	6462	128840	128840		
28	22/10/2020 10:51:46	22/10/2020 12:21:44	5397.48	6513	6513	220286	220286		
29	22/10/2020 12:21:44	22/10/2020 13:15:18	3214.19	6643	6643	125856	125856		
30	22/10/2020 13:15:18	22/10/2020 14:39:43	5065.13	6676	6676	199380	199380		
31	22/10/2020 14:39:43	22/10/2020 17:05:04	8721.32	6865	6865	327216	327216		
32	22/10/2020 17:05:04	22/10/2020 18:29:00	5035.20	6939	6939	186624	186624		
33	22/10/2020 18:29:00	22/10/2020 20:48:38	8378.76	6972	6972	318596	318596		
34	22/10/2020 20:48:38	22/10/2020 23:28:06	9567.22	7186	7186	349713	349713		
35	22/10/2020 23:28:06	23/10/2020 02:03:34	9328.07	7225	7225	344496	344496		
36	23/10/2020 02:03:34	23/10/2020 04:14:40	7866.69	7335	7335	291800	291800		
37	23/10/2020 04:14:40	23/10/2020 06:51:46	9425.20	7364	7364	351168	351168		
38	23/10/2020 06:51:46	23/10/2020 08:06:06	4460.46	7734	7734	154280	154280		
39	23/10/2020 08:06:06	23/10/2020 09:43:05	5819.32	7797	7797	202046	202046		
40	23/10/2020 09:43:05	23/10/2020 10:35:02	3116.40	7857	7857	101972	101972		
41	23/10/2020 10:35:02	23/10/2020 11:39:30	3868.14	7979	7979	127408	127408		
42	23/10/2020 11:39:30	23/10/2020 13:53:01	8010.59	7980	7980	270164	270164		
43	23/10/2020 13:53:01	23/10/2020 15:38:35	6334.31	8273	8273	197976	197976		
44	23/10/2020 15:38:35	23/10/2020 19:19:23	13248.38	8524	8524	406848	406848		

Resultados método I - conjunto de redes B										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
45	23/10/2020 19:19:23	23/10/2020 21:07:55	6511.50	8527	8527	195592	195592			
46	23/10/2020 21:07:55	24/10/2020 00:15:53	11278.49	8592	8592	350591	350591			
47	24/10/2020 00:15:53	24/10/2020 01:41:30	5136.74	8657	8657	155502	155502			
48	24/10/2020 01:41:30	24/10/2020 02:45:43	3853.12	8750	8750	113581	113581			
49	24/10/2020 02:45:43	24/10/2020 04:25:53	6009.41	8987	8987	179340	179340			
50	24/10/2020 04:25:53	24/10/2020 06:52:51	8818.22	9622	9622	249496	249496			

Tabela 11 – Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I) em cada uma das redes pertencentes ao conjunto B.

		Resultados método l	[- conjunto	de redes	С		
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.
1	13/01/2021 19:59:09	13/01/2021 23:24:46	12337.36	10629	10629	296828	10629
2	13/01/2021 23:24:46	14/01/2021 03:45:47	15661.04	10852	10852	367812	10852
3	14/01/2021 03:45:47	14/01/2021 09:10:28	19481.06	11450	11450	433656	11450
4	14/01/2021 09:10:28	14/01/2021 14:43:50	20002.07	12237	12237	402732	12237
5	14/01/2021 14:43:50	14/01/2021 17:35:24	10293.77	14467	14467	159016	14467
6	14/01/2021 17:35:24	15/01/2021 05:22:36	42431.78	15061	15061	690690	15061
7	15/01/2021 05:22:36	15/01/2021 23:03:03	63627.41	20732	20732	703732	20732
8	15/01/2021 23:03:03	17/01/2021 02:01:40	97116.23	23080	23080	990591	23080
9	17/01/2021 02:01:40	17/01/2021 20:45:20	67420.82	23905	23905	620854	23905
10	17/01/2021 20:45:20	19/01/2021 07:10:24	123903.46	23977	23977	1148592	23977
11	19/01/2021 07:10:24	20/01/2021 12:44:59	106475.41	25711	25711	873018	25711
12	20/01/2021 12:44:59	21/01/2021 19:00:49	108949.41	26786	26786	856128	26786
13	21/01/2021 19:00:49	22/01/2021 14:35:34	70484.64	31108	31108	435316	31108
14	22/01/2021 14:35:34	23/01/2021 23:20:19	117885.30	32703	32703	751640	32703
15	23/01/2021 23:20:19	25/01/2021 09:30:01	122981.92	41844	41844	585620	41844

Tabela 12 – Demonstração dos resultados obtidos ao aplicar o coeficiente ι (método I) em cada uma das redes pertencentes ao conjunto B.

B.3 Tabelas Resultados Método II

Id. D.H.I. D.H.T. T.E. Q.V.O. Q.V.A.R. Q.A.A.R. 1 21/10/2020 22:1651 21/10/2020 22:1652 0.19 119 62 2488 0 3 21/10/2020 22:1652 21/10/2020 22:1652 0.22 121 9 2004 0 4 21/10/2020 22:1652 21/10/2020 22:1652 0.33 146 31 3025 38 5 21/10/2020 22:1652 21/10/2020 22:1653 0.49 185 10 6750 0 7 21/10/2020 22:1653 21/10/2020 22:1654 0.33 155 122 3026 4455 8 21/10/2020 22:1654 21/10/2020 22:1656 0.74 278 81 10485 332 11 21/10/2020 22:1655 21/10/2020 22:1656 0.77 318 1152 1035 975 12 21/10/2020 22:1657 21/10/2020 22:1658 0.55 340 208 8736 1491 12 21/10/2020 22:1657 21/10/2020 22:1657 0.77		Resultados método II - conjunto de redes A						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.
2 21/10/2020 22:16:51 21/10/2020 22:16:52 0.12 9 2948 0 3 21/10/2020 22:16:52 21/10/2020 22:16:52 0.23 146 31 3025 38 5 21/10/2020 22:16:52 21/10/2020 22:16:52 0.30 176 9 5343 0 6 21/10/2020 22:16:53 21/10/2020 22:16:53 0.43 155 10 6750 0 7 21/10/2020 22:16:54 21/10/2020 22:16:54 0.44 212 38 7636 63 9 21/10/2020 22:16:54 21/10/2020 22:16:55 0.74 278 81 10485 332 11 21/10/2020 22:16:57 21/10/2020 22:16:57 0.77 318 152 10152 975 14 21/10/2020 22:16:57 21/10/2020 22:16:58 0.53 325 226 6046 16:56 15 21/10/2020 22:16:58 21/10/2020 22:17:00 0.71 406 286 9375 2436 16 21/10/2020 22:17:01 11/10/2020 22:17:00	1	21/10/2020 22:16:51	21/10/2020 22:16:51	0.28	111	12	2808	0
3 21/10/2020 22:1652 21/10/2020 22:1652 0.23 146 31 3025 38 5 21/10/2020 22:1652 0.21 146 31 3025 38 6 21/10/2020 22:1652 0.10/2020 22:1652 0.39 176 9 5043 7 21/10/2020 22:1653 0.10/2020 22:1654 0.56 0.23 105 122 3026 63 9 21/10/2020 22:1653 21/10/2020 22:1657 0.66 275 150 7776 1035 10 21/10/2020 22:1657 21/10/2020 22:1657 0.70 298 117 9880 571 12 21/10/2020 22:1657 21/10/2020 22:1657 0.77 318 152 1052 975 14 21/10/2020 22:1657 0.71 318 152 1052 975 14 21/10/2020 22:1657 0.71 318 121	2	21/10/2020 22:16:51	21/10/2020 22:16:52	0.19	119	6	2548	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	21/10/2020 22:16:52	21/10/2020 22:16:52	0.22	121	9	2904	0
5 21/10/2020 22:1652 21/10/2020 22:1652 0.30 176 9 5543 0 6 21/10/2020 22:1653 21/10/2020 22:1653 0.10 6750 0 7 21/10/2020 22:1653 21/10/2020 22:1654 21/10/2020 22:1654 21/10/2020 22:1655 0.74 218 81 10485 332 10 21/10/2020 22:1655 21/10/2020 22:1655 0.74 278 81 10485 332 11 21/10/2020 22:1655 21/10/2020 22:1657 0.77 318 152 10152 975 13 21/10/2020 22:1658 11/10/2020 22:1658 10/10/202 22:165 10.10 1191 16 21/10/2020 22:1658 11/10/2020 22:1658 10/10/202 22:170 1.10 2407 266 9375 2436 17 21/10/2020 22:1658 11/10/202 22:1701 1.24 403	4	21/10/2020 22:16:52	21/10/2020 22:16:52	0.23	146	31	3025	38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	21/10/2020 22:16:52	21/10/2020 22:16:52	0.39	176	9	5343	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	21/10/2020 22:16:52	21/10/2020 22:16:53	0.49	185	10	6750	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	21/10/2020 22:16:53	21/10/2020 22:16:53	0.23	195	122	3026	495
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	21/10/2020 22:16:53	21/10/2020 22:16:54	0.54	212	38	7636	63
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	21/10/2020 22:16:54	21/10/2020 22:16:54	0.56	275	150	7776	1035
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	21/10/2020 22:16:54	21/10/2020 22:16:55	0.74	278	81	10485	332
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	21/10/2020 22:16:55	21/10/2020 22:16:56	0.70	298	117	9880	571
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	21/10/2020 22:16:56	21/10/2020 22:16:57	0.82	306	113	11528	670
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	21/10/2020 22:16:57	21/10/2020 22:16:57	0.77	318	152	10152	975
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	21/10/2020 22:16:57	21/10/2020 22:16:58	0.53	325	226	6946	1656
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	21/10/2020 22:16:58	21/10/2020 22:16:58	0.65	340	208	8736	1491
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	21/10/2020 22:16:58	21/10/2020 22:16:59	0.66	382	267	8592	2067
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	21/10/2020 22:16:59	21/10/2020 22:17:00	0.71	400	286	9375	2436
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	21/10/2020 22:17:00	21/10/2020 22:17:01	1.22	403	244	12546	2112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	21/10/2020 22:17:01	21/10/2020 22:17:02	1.19	407	200	15972	1654
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	21/10/2020 22:17:02	21/10/2020 22:17:03	0.41	427	367	5382	2379
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	21/10/2020 22:17:03	21/10/2020 22:17:04	1.24	432	241	16031	2287
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	21/10/2020 22:17:04	21/10/2020 22:17:05	1.22	460	268	16419	2440
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	21/10/2020 22:17:05	21/10/2020 22:17:06	0.71	476	391	9120	3469
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	21/10/2020 22:17:06	21/10/2020 22:17:07	1.19	542	388	15360	3821
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	21/10/2020 22:17:07	21/10/2020 22:17:08	0.85	556	471	10720	4445
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26	21/10/2020 22:17:08	21/10/2020 22:17:09	1.38	563	433	17490	5695
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	21/10/2020 22:17:09	21/10/2020 22:17:11	1.53	575	421	19906	5577
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	21/10/2020 22:17:11	21/10/2020 22:17:12	1.18	585	453	15596	4983
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	21/10/2020 22:17:12	21/10/2020 22:17:13	1.21	589	434	16240	4373
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	21/10/2020 22:17:13	21/10/2020 22:17:14	0.52	641	598	6310	3607
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	21/10/2020 22:17:14	21/10/2020 22:17:16	1.73	680	526	22575	7229
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	21/10/2020 22:17:16	21/10/2020 22:17:18	2.22	681	476	29798	7336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	21/10/2020 22:17:18	21/10/2020 22:17:19	0.90	682	600	11305	5228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	21/10/2020 $22:17:10$	21/10/2020 22:17:20	1.50	744	633	15884	6573
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	21/10/2020 22:17:20	21/10/2020 22:17:21	1.28	765	681	13446	6522
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	21/10/2020 22:17:21	21/10/2020 22:17:25	3.37	790	569	36309	9768
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	21/10/2020 22:17:25	21/10/2020 22:17:26	1.44	815	699	18216	7920
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	21/10/2020 22:17:26	21/10/2020 22:17:27	1.18	816	750	12015	6577
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39	21/10/2020 22:17:27	21/10/2020 22:17:30	2.17	837	681	26532	9770
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40	21/10/2020 22:17:20	21/10/2020 $22.17.3021/10/2020$ $22.17.32$	1.94	850	707	23809	9348
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	21/10/2020 22:17:30	21/10/2020 22:17:32	2 70	855	679	31824	10956
43 21/10/2020 22:17:35 21/10/2020 22:17:38 2.78 876 685 34235 11241 44 21/10/2020 22:17:38 21/10/2020 22:17:41 2.89 896 679 35055 10408 45 21/10/2020 22:17:41 21/10/2020 22:17:44 2.56 909 730 29750 10480 46 21/10/2020 22:17:44 21/10/2020 22:17:46 2.53 916 759 29139 11286 47 21/10/2020 22:17:46 21/10/2020 22:17:49 3.30 923 703 39510 12091 48 21/10/2020 22:17:49 21/10/2020 22:17:52 2.70 941 784 29964 11943	42	21/10/2020 $22.17.3221/10/2020$ $22.17.34$	21/10/2020 $22.17.3121/10/2020$ $22.17.35$	1.13	866	779	13600	6734
10 11/10/2020 22:17:38 21/10/2020 22:17:41 2.89 896 679 35055 10408 44 21/10/2020 22:17:38 21/10/2020 22:17:41 2.89 896 679 35055 10408 45 21/10/2020 22:17:41 21/10/2020 22:17:44 2.56 909 730 29750 10480 46 21/10/2020 22:17:44 21/10/2020 22:17:46 2.53 916 759 29139 11286 47 21/10/2020 22:17:46 21/10/2020 22:17:49 3.30 923 703 39510 12091 48 21/10/2020 22:17:49 21/10/2020 22:17:52 2.70 941 784 29964 11943	43	21/10/2020 22:17:35	21/10/2020 22:17:38	2.78	876	685	34235	11241
45 21/10/2020 22:17:41 21/10/2020 22:17:44 2.56 909 730 29750 10408 46 21/10/2020 22:17:44 21/10/2020 22:17:46 2.53 916 759 29139 11286 47 21/10/2020 22:17:46 21/10/2020 22:17:46 21/10/2020 22:17:49 3.30 923 703 39510 12091 48 21/10/2020 22:17:49 21/10/2020 22:17:52 2.70 941 784 29964 11943	44	21/10/2020 22:17:30	21/10/2020 $22.17.3021/10/2020$ $22.17.41$	2.89	896	679	35055	10408
46 21/10/2020 22:17:44 21/10/2020 22:17:46 2.53 916 759 29139 11286 47 21/10/2020 22:17:46 21/10/2020 22:17:49 3.30 923 703 39510 12091 48 21/10/2020 22:17:49 21/10/2020 22:17:52 2.70 941 784 29964 11943	45	21/10/2020 22:17:30	21/10/2020 22:17:41	2.55	909	730	29750	10480
47 21/10/2020 22:17:46 21/10/2020 22:17:49 3.30 923 703 39510 12091 48 21/10/2020 22:17:49 21/10/2020 22:17:52 2.70 941 784 29964 11943	46	21/10/2020 $22.17.4121/10/2020$ $22.17.41$	21/10/2020 22.17.44	2.50	916	759	20130	11286
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	21/10/2020 22:17:44	21/10/2020 22:17:40	3.30	923	703	39510	1200
	48	21/10/2020 22:17:49	21/10/2020 $22:17:52$	2.70	941	784	29964	11943

Resultados método II - conjunto de redes A									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
49	21/10/2020 22:17:52	21/10/2020 22:17:56	3.86	953	745	41722	14039		
50	21/10/2020 22:17:56	21/10/2020 22:17:58	1.74	978	887	22896	12297		

Tabela 13 – Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II) em cada uma das redes pertencentes ao conjunto A.

Resultados método II - conjunto de redes B								
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.	
1	21/10/2020 22:25:47	21/10/2020 22:25:50	2.73	1104	937	36380	15295	
2	21/10/2020 22:25:50	21/10/2020 22:25:52	1.60	1132	1030	21147	11078	
3	21/10/2020 22:25:52	21/10/2020 22:25:56	4.19	1273	1036	55260	20242	
4	21/10/2020 22:25:56	21/10/2020 22:25:59	2.91	1315	1177	38550	19513	
5	21/10/2020 22:25:59	21/10/2020 22:26:00	1.49	1363	1291	17550	10790	
6	21/10/2020 22:26:00	21/10/2020 22:26:03	2.96	1383	1225	39266	18822	
7	21/10/2020 22:26:03	21/10/2020 22:26:07	3.45	1565	1426	44544	23693	
8	21/10/2020 22:26:07	21/10/2020 22:26:14	6.98	2302	2105	90480	49179	
9	21/10/2020 22:26:14	21/10/2020 22:26:21	7.85	2541	2322	104958	56543	
10	21/10/2020 22:26:21	21/10/2020 22:26:24	2.38	2609	2539	28578	20251	
11	21/10/2020 22:26:24	21/10/2020 22:26:34	9.93	3094	2894	131193	79137	
12	21/10/2020 22:26:34	21/10/2020 22:26:39	5.28	3171	3068	66150	46148	
13	21/10/2020 22:26:39	21/10/2020 22:26:43	4.16	3393	3329	50670	39082	
14	21/10/2020 22:26:43	21/10/2020 22:26:55	11.67	3529	3309	153340	92178	
15	21/10/2020 22:26:55	21/10/2020 22:27:08	12.72	3639	3389	165278	96664	
16	21/10/2020 22:27:08	21/10/2020 22:27:16	8.67	3689	3545	113398	77405	
17	21/10/2020 22:27:16	21/10/2020 22:27:31	14.69	3963	3694	191786	112305	
18	21/10/2020 22:27:31	21/10/2020 22:27:42	11.02	4160	3987	136191	91067	
19	21/10/2020 22:27:42	21/10/2020 22:27:50	7.52	4192	4116	75132	58476	
20	21/10/2020 22:27:50	21/10/2020 22:28:04	14.56	4242	4041	180557	118019	
21	21/10/2020 22:28:04	21/10/2020 22:28:13	9.07	4782	4706	109457	87591	
22	21/10/2020 22:28:13	21/10/2020 22:28:31	17.89	5151	4909	224708	146015	
23	21/10/2020 22:28:31	21/10/2020 22:28:49	17.56	5823	5663	185312	134063	
24	21/10/2020 22:28:49	21/10/2020 22:29:07	18.00	5834	5690	191433	142282	
25	21/10/2020 22:29:07	21/10/2020 22:29:20	12.86	5904	5788	146975	112876	
26	21/10/2020 22:29:20	21/10/2020 22:29:45	25.68	6362	6119	277992	188470	
27	21/10/2020 22:29:45	21/10/2020 22:29:57	11.94	6462	6367	128840	102619	
28	21/10/2020 22:29:57	21/10/2020 22:30:17	19.45	6513	6351	220286	162194	
29	21/10/2020 22:30:17	21/10/2020 22:30:29	12.08	6643	6544	125856	99974	
30	21/10/2020 22:30:29	21/10/2020 22:30:46	17.74	6676	6535	199380	151636	
31	21/10/2020 22:30:46	21/10/2020 22:31:14	27.48	6865	6627	327216	228621	
32	21/10/2020 22:31:14	21/10/2020 22:31:32	18.41	6939	6803	186624	143152	
33	21/10/2020 22:31:32	21/10/2020 22:32:02	30.11	6972	6770	318596	231090	
34	21/10/2020 22:32:02	21/10/2020 22:32:33	30.10	7186	6957	349713	249425	
35	21/10/2020 22:32:33	21/10/2020 22:33:02	29.12	7225	6960	344496	236313	
36	21/10/2020 22:33:02	21/10/2020 22:33:27	24.97	7335	7166	291800	220202	
37	21/10/2020 22:33:27	21/10/2020 22:33:57	30.74	7364	7136	351168	250861	
38	21/10/2020 22:33:57	21/10/2020 22:34:12	14.16	7734	7606	154280	119520	
39	21/10/2020 22:34:12	21/10/2020 22:34:31	19.22	7797	7656	202046	155869	
40	21/10/2020 22:34:31	21/10/2020 22:34:41	9.93	7857	7782	101972	84313	
41	21/10/2020 22:34:41	21/10/2020 22:34:54	12.82	7979	7911	127408	107573	
42	21/10/2020 22:34:54	21/10/2020 22:35:17	23.51	7980	7834	270164	210231	
43	21/10/2020 22:35:17	21/10/2020 22:35:37	19.50	8273	8160	197976	159963	
44	21/10/2020 22:35:37	21/10/2020 22:36:14	37.68	8524	8279	406848	293549	

Resultados método II - conjunto de redes B										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
45	21/10/2020 22:36:14	21/10/2020 22:36:30	16.10	8527	8406	195592	156143			
46	21/10/2020 22:36:30	21/10/2020 22:37:01	30.44	8592	8406	350591	266198			
47	21/10/2020 22:37:01	21/10/2020 22:37:15	14.54	8657	8573	155502	129481			
48	21/10/2020 22:37:15	21/10/2020 22:37:28	12.26	8750	8690	113581	97243			
49	21/10/2020 22:37:28	21/10/2020 22:37:44	15.87	8987	8874	179340	144564			
50	21/10/2020 22:37:44	21/10/2020 22:38:07	23.63	9622	9499	249496	201321			

Tabela 14 – Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II) em cada uma das redes pertencentes ao conjunto B.

Resultados método II - conjunto de redes C									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	17/09/2020 07:13:01	17/09/2020 07:13:19	18.17	10629	10483	296828	10483		
2	17/09/2020 07:13:19	17/09/2020 07:13:40	21.18	10852	10671	367812	10671		
3	17/09/2020 07:13:40	17/09/2020 07:14:06	25.89	11450	11240	433656	11240		
4	17/09/2020 07:14:06	17/09/2020 07:14:30	23.89	12237	12079	402732	12079		
5	17/09/2020 07:14:30	17/09/2020 07:14:40	10.48	14467	14425	159016	14425		
6	17/09/2020 07:14:40	17/09/2020 07:15:22	41.98	15061	14820	690690	14820		
7	17/09/2020 07:15:22	17/09/2020 07:16:09	46.30	20732	20544	703732	20544		
8	17/09/2020 07:16:09	17/09/2020 07:17:12	62.76	23080	22845	990591	22845		
9	17/09/2020 07:17:12	17/09/2020 07:17:52	40.38	23905	23775	620854	23775		
10	17/09/2020 07:17:52	17/09/2020 07:19:02	70.51	23977	23709	1148592	23709		
11	17/09/2020 07:19:02	17/09/2020 07:20:02	59.77	25711	25510	873018	25510		
12	17/09/2020 07:20:02	17/09/2020 07:20:59	57.08	26786	26643	856128	26643		
13	17/09/2020 07:20:59	17/09/2020 07:21:30	31.08	31108	31049	435316	31049		
14	17/09/2020 07:21:30	17/09/2020 07:22:19	48.96	32703	32583	751640	32583		
15	17/09/2020 07:22:19	17/09/2020 07:22:59	39.36	41844	41763	585620	41763		
16	17/09/2020 07:22:59	17/09/2020 07:25:18	139.04	44023	43779	2110800	43779		
17	17/09/2020 07:25:18	17/09/2020 07:26:27	69.19	47081	46983	988260	46983		
18	17/09/2020 07:26:27	17/09/2020 07:28:14	106.7	47388	47247	1610036	47247		
19	17/09/2020 07:28:14	17/09/2020 07:29:15	61.71	48287	48199	868842	48199		
20	17/09/2020 07:29:16	17/09/2020 07:30:11	55.30	49473	49390	791312	49390		
21	17/09/2020 07:30:11	17/09/2020 07:32:24	132.98	50143	49903	2104242	49903		
22	17/09/2020 07:32:24	17/09/2020 07:34:28	124.09	52406	52217	1937653	52217		
23	17/09/2020 07:34:28	17/09/2020 07:36:13	105.28	52603	52459	1629732	52459		
24	17/09/2020 07:36:13	17/09/2020 07:37:13	59.96	56786	56707	851565	56707		
25	17/09/2020 07:37:13	17/09/2020 07:39:44	150.38	58578	58357	2341520	58357		
26	17/09/2020 07:39:44	17/09/2020 07:42:43	178.92	58940	58718	2767971	58718		
27	17/09/2020 07:42:43	17/09/2020 07:45:44	181.05	59761	59499	2866224	59499		
28	17/09/2020 07:45:44	17/09/2020 07:47:36	112.68	61256	61123	1714384	61123		
29	17/09/2020 07:47:36	17/09/2020 07:48:57	80.83	63789	63694	1211630	63694		
30	17/09/2020 07:48:57	17/09/2020 07:51:06	128.43	64209	64052	1989518	64052		
31	17/09/2020 07:51:06	17/09/2020 07:52:24	78.36	64244	64167	1156068	64167		
32	17/09/2020 07:52:24	17/09/2020 07:53:53	88.97	64470	64388	1353429	64388		
33	17/09/2020 07:53:53	17/09/2020 07:54:45	51.81	65720	65653	722799	65653		
34	17/09/2020 07:54:45	17/09/2020 07:57:13	148.50	65860	65694	2369664	65694		
35	17/09/2020 07:57:13	17/09/2020 07:58:37	83.24	67162	67101	1208592	67101		
36	17/09/2020 07:58:37	17/09/2020 08:01:45	188.24	69700	69435	2995251	69435		
37	17/09/2020 08:01:45	17/09/2020 08:02:43	58.32	70192	70142	771991	70142		
38	17/09/2020 08:02:43	17/09/2020 08:05:42	178.69	74499	74315	2829518	74315		
39	17/09/2020 08:05:42	$17/09/2020 \ 08:08:34$	172.39	74955	74800	2697084	74800		
40	17/09/2020 08:08:34	17/09/2020 08:10:03	88.14	79940	79879	1278784	79879		

	Resultados método II - conjunto de redes C										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.				
41	17/09/2020 08:10:03	17/09/2020 08:14:18	255.33	82435	82177	4036914	82177				
42	17/09/2020 08:14:18	17/09/2020 08:15:30	71.60	84723	84673	931832	84673				
43	17/09/2020 08:15:30	17/09/2020 08:17:44	134.29	84767	84666	2033832	84666				
44	17/09/2020 08:17:44	17/09/2020 08:20:56	191.69	86315	86127	2933554	86127				
45	17/09/2020 08:20:56	17/09/2020 08:23:33	157.36	88991	88843	2402028	88843				
46	17/09/2020 08:23:33	17/09/2020 08:26:17	164.12	89042	88915	2492392	88915				
47	17/09/2020 08:26:17	17/09/2020 08:29:31	193.45	91026	90850	3002769	90850				
48	17/09/2020 08:29:31	17/09/2020 08:34:19	288.39	91229	90960	4467820	90960				
49	17/09/2020 08:34:19	17/09/2020 08:38:47	267.69	98969	98745	4154934	98745				
50	17/09/2020 08:38:47	17/09/2020 08:40:23	96.20	99680	99613	1295671	99613				

Tabela 15 – Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II) em cada uma das redes pertencentes ao conjunto C.

Resultados método II - conjunto de redes D										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
1	19/02/2021 19:20:40	19/02/2021 19:22:44	124.45	132581	132538	1458270	1412138			
2	19/02/2021 19:22:44	19/02/2021 19:26:40	236.16	134891	134761	2832270	2675238			
3	19/02/2021 19:26:41	19/02/2021 19:30:27	226.33	228247	228155	2282370	2196469			
4	19/02/2021 19:30:27	19/02/2021 19:34:34	247.29	268009	267955	2679990	2611749			
5	19/02/2021 19:34:35	19/02/2021 19:42:56	501.36	299295	299220	4788464	4653831			
6	19/02/2021 19:42:56	19/02/2021 19:52:56	599.70	300160	300044	6302919	6080851			
7	19/02/2021 19:52:56	19/02/2021 20:03:03	606.66	321251	321151	7067038	6852161			
8	19/02/2021 20:03:03	19/02/2021 20:08:45	341.98	321488	321434	3536247	3456220			
9	19/02/2021 20:08:45	19/02/2021 20:18:41	596.05	382434	382329	6501089	6305874			
10	19/02/2021 20:18:42	19/02/2021 20:32:55	853.74	384738	384619	8463752	8197370			
11	19/02/2021 20:32:56	19/02/2021 20:41:56	539.99	387234	387176	6582689	6445049			
12	19/02/2021 20:41:56	19/02/2021 20:49:33	457.04	408336	408260	5308199	5175739			
13	19/02/2021 20:49:33	19/02/2021 20:58:06	512.63	433083	433016	5629910	5505551			
14	19/02/2021 20:58:06	19/02/2021 21:13:06	899.97	457119	457012	10970280	10681281			
15	19/02/2021 21:13:07	19/02/2021 21:25:17	730.85	499282	499187	9485997	9258848			
16	19/02/2021 21:25:18	19/02/2021 21:35:38	620.75	504354	504263	8069408	7871708			
17	19/02/2021 21:35:39	19/02/2021 21:43:45	485.87	513508	513429	6161952	6018477			
18	19/02/2021 21:43:45	19/02/2021 21:52:30	524.57	519132	519100	6748547	6664827			

Tabela 16 – Demonstração dos resultados obtidos ao aplicar o coeficiente Θ (método II) em cada uma das redes pertencentes ao conjunto D.

B.4 Tabelas Resultados Método III

Resultados método III - conjunto de redes A									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	21/10/2020 22:23:25	21/10/2020 22:23:25	0.20	111	65	2808	422		
2	21/10/2020 22:23:25	21/10/2020 22:23:25	0.19	119	1	2548	0		
3	21/10/2020 22:23:25	21/10/2020 22:23:25	0.22	121	91	2904	1038		
4	21/10/2020 22:23:25	21/10/2020 22:23:26	0.24	146	129	3025	1832		
5	21/10/2020 22:23:26	21/10/2020 22:23:26	0.54	176	4	5343	0		
6	21/10/2020 22:23:26	21/10/2020 22:23:27	0.86	185	134	6750	2130		
7	21/10/2020 22:23:27	21/10/2020 22:23:27	$0.40\ 51$	195	173	3026	1657		
8	21/10/2020 22:23:27	21/10/2020 22:23:28	0.79 102	212	178	7636	3809		
9	21/10/2020 22:23:28	21/10/2020 22:23:29	0.65	275	213	7776	2848		
10	21/10/2020 22:23:29	21/10/2020 22:23:30	0.85	278	181	10485	2433		
11	21/10/2020 22:23:30	21/10/2020 22:23:31	0.80	298	272	9880	6464		
12	21/10/2020 22:23:31	21/10/2020 22:23:31	0.87	306	272	11528	6854		
13	21/10/2020 22:23:31	21/10/2020 22:23:32	0.75	318	287	10152	6272		
14	21/10/2020 22:23:32	21/10/2020 22:23:33	0.52	325	280	6946	3441		
15	21/10/2020 22:23:33	21/10/2020 22:23:33	0.69	340	300	8736	4844		
16	21/10/2020 22:23:33	21/10/2020 22:23:34	0.86	382	333	8592	4363		
17	21/10/2020 22:23:34	21/10/2020 22:23:35	1.13	400	350	9375	4813		
18	21/10/2020 22:23:35	21/10/2020 22:23:37	1.72	403	359	12546	7157		
19	21/10/2020 22:23:37	21/10/2020 22:23:39	1.72	407	347	15972	7972		
20	21/10/2020 22:23:39	21/10/2020 22:23:39	0.45	427	362	5382	2244		
21	21/10/2020 22:23:39	21/10/2020 22:23:41	1.25	432	388	16031	9598		
22	21/10/2020 22:23:41	21/10/2020 22:23:42	1.26	460	409	16419	9384		
23	21/10/2020 22:23:42	21/10/2020 22:23:42	0.71	476	409	9120	4109		
24	21/10/2020 22:23:42	21/10/2020 22:23:44	1.17	542	471	15360	7406		
25	21/10/2020 22:23:44	21/10/2020 22:23:45	0.84	556	475	10720	4615		
26	21/10/2020 22:23:45	21/10/2020 22:23:46	1.34	563	490	17490	8819		
27	21/10/2020 22:23:46	21/10/2020 22:23:47	1.54	575	509	19906	10705		
28	21/10/2020 22:23:47	21/10/2020 22:23:49	1.27	585	508	15596	7501		
29	21/10/2020 22:23:49	21/10/2020 22:23:50	1.25	589	513	16240	7918		
30	21/10/2020 22:23:50	21/10/2020 22:23:50	0.50	641	554	6310	2524		
31	21/10/2020 22:23:50	21/10/2020 22:23:52	1.91	680	592	22575	11048		
32	21/10/2020 22:23:52	21/10/2020 22:23:55	2.27	681	595	29798	15379		
33	21/10/2020 22:23:55	21/10/2020 22:23:56	1.12	682	591	11305	4897		
34	21/10/2020 22:23:56	21/10/2020 22:23:57	1.47	744	635	15884	6664		
35	21/10/2020 22:23:57	21/10/2020 22:23:58	1.07	765	524	13446	2582		
36	21/10/2020 22:23:58	21/10/2020 22:24:01	2.85	790	692	36309	19011		
37	21/10/2020 22:24:01	21/10/2020 22:24:03	1.42	815	704	18216	8135		
38	21/10/2020 22:24:03	21/10/2020 22:24:04	0.99	816	707	12015	5018		
39	21/10/2020 22:24:04	21/10/2020 22:24:06	2.19	837	717	26532	11865		
40	21/10/2020 22:24:06	21/10/2020 22:24:08	1.81	850	707	23809	9348		
41	21/10/2020 22:24:08	21/10/2020 22:24:10	2.45	855	737	31824	14895		
42	21/10/2020 22:24:10	21/10/2020 22:24:11	1.26	866	756	13600	5874		
43	21/10/2020 22:24:11	21/10/2020 22:24:14	2.69	876	755	34235	15969		
44	21/10/2020 22:24:14	21/10/2020 22:24:17	2.70	896	769	35055	16298		
45	21/10/2020 22:24:17	21/10/2020 22:24:19	2.33	909	790	29750	13969		
46	21/10/2020 22:24:19	21/10/2020 22:24:21	2.22	916	788	29139	13058		
47	21/10/2020 22:24:21	21/10/2020 22:24:24	2.94	923	801	39510	19248		
48	21/10/2020 22:24:24	21/10/2020 22:24:27	2.33	941	815	29964	13835		

Resultados método III - conjunto de redes A										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
49	21/10/2020 22:24:27	21/10/2020 22:24:30	3.31	953	830	41722	20626			
50	21/10/2020 22:24:30	21/10/2020 22:24:32	1.75	978	842	22896	9844			

Tabela 17 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III) em cada uma das redes pertencentes ao conjunto A.

Resultados método III - conjunto de redes B								
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.	
1	21/10/2020 23:03:13	21/10/2020 23:03:16	3.44	1104	953	36380	16353	
2	21/10/2020 23:03:16	21/10/2020 23:03:19	2.32	1132	983	21147	9022	
3	21/10/2020 23:03:19	21/10/2020 23:03:23	4.79	1273	1094	55260	24887	
4	21/10/2020 23:03:23	21/10/2020 23:03:26	3.04	1315	1130	38550	16347	
5	21/10/2020 23:03:26	21/10/2020 23:03:28	1.50	1363	1196	17550	7374	
6	21/10/2020 23:03:28	21/10/2020 23:03:32	3.81	1383	1195	39266	16927	
7	21/10/2020 23:03:32	21/10/2020 23:03:36	4.05	1565	1363	44544	19424	
8	21/10/2020 23:03:36	21/10/2020 23:03:45	8.93	2302	2012	90480	40127	
9	21/10/2020 23:03:45	21/10/2020 23:03:54	9.01	2541	2207	104958	45281	
10	21/10/2020 23:03:54	21/10/2020 23:03:56	2.71	2609	2301	28578	11850	
11	21/10/2020 23:03:56	21/10/2020 23:04:08	11.21	3094	2703	131193	57576	
12	21/10/2020 23:04:08	21/10/2020 23:04:14	5.94	3171	2793	66150	28466	
13	21/10/2020 23:04:14	21/10/2020 23:04:18	4.67	3393	2972	50670	20890	
14	21/10/2020 23:04:18	21/10/2020 23:04:31	12.74	3529	3100	153340	68018	
15	21/10/2020 23:04:31	21/10/2020 23:04:48	16.48	3639	3173	165278	71642	
16	21/10/2020 23:04:48	21/10/2020 23:04:58	10.08	3689	3242	113398	49320	
17	21/10/2020 23:04:58	21/10/2020 23:05:14	16.49	3963	3471	191786	84731	
18	21/10/2020 23:05:14	21/10/2020 23:05:28	14.33	4160	3651	136191	58933	
19	21/10/2020 23:05:28	21/10/2020 23:05:36	7.09	4192	3694	75132	31876	
20	21/10/2020 23:05:36	21/10/2020 23:05:51	15.21	4242	3714	180557	78593	
21	21/10/2020 23:05:51	21/10/2020 23:06:00	9.06	4782	4210	109457	46284	
22	21/10/2020 23:06:00	21/10/2020 23:06:18	18 17	5151	4517	224708	97417	
23	21/10/2020 23:06:18	21/10/2020 23:06:33	14 73	5823	5132	185312	80084	
24	21/10/2020 23:06:33	21/10/2020 23:06:51	17.76	5834	5143	191433	83038	
25	21/10/2020 23:06:51	21/10/2020 23:07:04	13.74	5904	5197	146975	62424	
26	21/10/2020 23:07:04	21/10/2020 23:07:29	25.01	6362	5597	277992	121484	
23	21/10/2020 23:07:29	21/10/2020 23:07:41	11.97	6462	5722	128840	55434	
21	21/10/2020 23:07:41	21/10/2020 23:08:01	19.61	6513	5741	220286	95400	
20	21/10/2020 23:08:01	21/10/2020 23:08:12	11.01	6643	5864	125856	53555	
30	21/10/2020 23:08:12	21/10/2020 23:08:20	11.13 17.31	6676	5880	120000	85868	
31	21/10/2020 23:08:20	21/10/2020 23:08:57	27.04	6865	6058	397916	144736	
20	21/10/2020 23:08:57	21/10/2020 23.08.37 21/10/2020 23.00.14	17.00	6030	6110	186624	70556	
32	21/10/2020 23:08:57	21/10/2020 23:09:14	20.51	6072	6130	218506	138787	
24	21/10/2020 23:09:14	21/10/2020 23.09.45 21/10/2020 22.10.17	21.60	7186	6217	240712	152660	
	21/10/2020 23:09:45	21/10/2020 23:10:17	31.09	7100	6246	244406	132009	
30	21/10/2020 25:10:17	21/10/2020 23:10:31	34.13	7220	0340	001000	149202	
30	21/10/2020 23:10:51	21/10/2020 23:11:33	42.63	(335	0455	291800	126276	
37	21/10/2020 23:11:33	21/10/2020 23:12:27	53.89	7304	6474	351168	152372	
38	21/10/2020 23:12:27	21/10/2020 23:12:41	13.84	7734	6822	154280	65468	
39	21/10/2020 23:12:41	21/10/2020 23:13:02	21.08	7797	6883	202046	86780	
40	21/10/2020 23:13:02	21/10/2020 23:13:15	12.36	7857	6907	101972	41649	
41	21/10/2020 23:13:15	21/10/2020 23:13:28	13.64	7979	5993	127408	29586	
42	21/10/2020 23:13:28	21/10/2020 23:13:57	29.11	7980	7036	270164	116779	
43	21/10/2020 23:13:57	21/10/2020 23:14:20	22.47	8273	7295	197976	84603	
44	21/10/2020 23:14:20	21/10/2020 23:15:05	45.42	8524	7512	406848	177803	

Resultados método III - conjunto de redes B										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
45	21/10/2020 23:15:05	21/10/2020 23:15:27	21.23	8527	7523	195592	82839			
46	21/10/2020 23:15:27	21/10/2020 23:16:05	38.87	8592	7559	350591	150973			
47	21/10/2020 23:16:05	21/10/2020 23:16:20	14.07	8657	7635	155502	65701			
48	21/10/2020 23:16:20	21/10/2020 23:16:31	11.88	8750	7711	113581	46881			
49	21/10/2020 23:16:31	21/10/2020 23:16:50	18.27	8987	7930	179340	76058			
50	21/10/2020 23:16:50	21/10/2020 23:17:15	25.16	9622	8535	249496	108863			

Tabela 18 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III) em cada uma das redes pertencentes ao conjunto B.

Resultados método III - conjunto de redes C								
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.	
1	27/10/2020 18:41:08	27/10/2020 18:41:32	23.74	10629	9385	296828	128020	
2	27/10/2020 18:41:32	27/10/2020 18:42:02	29.33	10852	9575	367812	158139	
3	27/10/2020 18:42:02	27/10/2020 18:42:35	33.42	11450	10119	433656	188662	
4	27/10/2020 18:42:35	27/10/2020 18:43:07	32.18	12237	10801	402732	173626	
5	27/10/2020 18:43:07	27/10/2020 18:43:21	13.81	14467	12752	159016	64543	
6	27/10/2020 18:43:21	27/10/2020 18:44:16	54.59	15061	13318	690690	302673	
7	27/10/2020 18:44:16	27/10/2020 18:45:14	58.22	20732	18332	703732	304056	
8	27/10/2020 18:45:14	27/10/2020 18:46:38	84.55	23080	20425	990591	430314	
9	27/10/2020 18:46:38	27/10/2020 18:47:30	51.20	23905	21155	620854	266093	
10	27/10/2020 18:47:30	27/10/2020 18:49:03	93.57	23977	21202	1148592	498390	
11	27/10/2020 18:49:03	27/10/2020 18:50:13	69.57	25711	22777	873018	378418	
12	27/10/2020 18:50:13	27/10/2020 18:51:21	68.10	26786	23683	856128	367967	
13	27/10/2020 18:51:21	27/10/2020 18:51:58	37.50	31108	27527	435316	182437	
14	27/10/2020 18:51:58	27/10/2020 18:52:59	60.65	32703	28937	751640	321233	
15	27/10/2020 18:52:59	27/10/2020 18:53:53	54.07	41844	36929	585620	242131	
16	27/10/2020 18:53:53	27/10/2020 18:56:43	169.82	44023	38987	2110800	919217	
17	27/10/2020 18:56:43	27/10/2020 18:58:32	109.26	47081	41644	988260	419000	
18	27/10/2020 18:58:32	27/10/2020 19:01:00	147.22	47388	42016	1610036	697873	
19	27/10/2020 19:01:00	27/10/2020 19:02:18	78.84	48287	42681	868842	364114	
20	27/10/2020 19:02:19	27/10/2020 19:03:45	86.29	49473	43706	791312	330561	
21	27/10/2020 19:03:45	27/10/2020 19:07:09	204.22	50143	44367	2104242	909831	
22	27/10/2020 19:07:09	27/10/2020 19:09:59	169.85	52406	46419	1937653	837241	
23	27/10/2020 19:09:59	27/10/2020 19:12:22	142.82	52603	46634	1629732	705756	
24	27/10/2020 19:12:22	27/10/2020 19:13:40	77.66	56786	50188	851565	354289	
25	27/10/2020 19:13:40	27/10/2020 19:17:04	204.51	58578	51923	2341520	1016382	
26	27/10/2020 19:17:04	27/10/2020 19:20:57	232.80	58940	52271	2767971	1208489	
27	27/10/2020 19:20:57	27/10/2020 19:24:57	240.42	59761	52950	2866224	1247826	
28	27/10/2020 19:24:57	27/10/2020 19:27:34	156.25	61256	54254	1714384	736074	
29	27/10/2020 19:27:34	27/10/2020 19:29:17	103.29	63789	56445	1211630	512691	
30	27/10/2020 19:29:17	27/10/2020 19:31:58	161.01	64209	56906	1989518	859339	
31	27/10/2020 19:31:58	27/10/2020 19:33:39	100.77	64244	56792	1156068	485311	
32	27/10/2020 19:33:39	27/10/2020 19:35:32	112.73	64470	57015	1353429	573693	
33	27/10/2020 19:35:32	27/10/2020 19:36:37	64.77	65720	58009	722799	294827	
34	27/10/2020 19:36:37	27/10/2020 19:39:49	192.27	65860	58400	2369664	1029913	
35	27/10/2020 19:39:49	27/10/2020 19:41:35	106.45	67162	59384	1208592	508594	
36	27/10/2020 19:41:35	27/10/2020 19:45:30	235.08	69700	61743	2995251	1299230	
37	26/10/2020 19:45:31	27/10/2020 19:46:46	74.96	70192	61952	771991	315076	
38	27/10/2020 19:46:46	27/10/2020 19:50:31	225.86	74499	65961	2829518	1221526	
39	27/10/2020 19:50:31	27/10/2020 19:54:06	214.51	74955	66482	2697084	1171416	
40	27/10/2020 19:54:06	27/10/2020 19:55:55	109.28	79940	70594	1278784	533747	

Resultados método III - conjunto de redes C										
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.			
41	27/10/2020 19:55:55	27/10/2020 20:01:09	313.49	82435	73103	4036914	1761223			
42	27/10/2020 20:01:09	27/10/2020 20:02:38	89.04	84723	74703	931832	378748			
43	27/10/2020 20:02:38	27/10/2020 20:05:28	169.74	84767	74975	2033832	864200			
44	27/10/2020 20:05:28	27/10/2020 20:09:37	249.48	86315	76529	2933554	1269990			
45	27/10/2020 20:09:37	27/10/2020 20:12:55	197.59	88991	78901	2402028	1033515			
46	27/10/2020 20:12:55	27/10/2020 20:16:25	209.47	89042	78859	2492392	1068088			
47	27/10/2020 20:16:25	27/10/2020 20:20:21	236.44	91026	80683	3002769	1297766			
48	27/10/2020 20:20:21	27/10/2020 20:25:47	326.34	91229	80868	4467820	1942326			
49	27/10/2020 20:25:47	27/10/2020 20:30:45	297.98	98969	87757	4154934	1807226			
50	27/10/2020 20:30:46	27/10/2020 20:32:32	106.00	99680	88009	1295671	535195			

Tabela 19 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III) em cada uma das redes pertencentes ao conjunto C.

Resultados método III - conjunto de redes B									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	07/03/2021 18:43:20	07/03/2021 18:46:09	168.68	132581	117013	1458270	595175		
2	07/03/2021 18:46:09	07/03/2021 18:51:20	311.34	134891	119439	2832270	1203731		
3	07/03/2021 18:51:20	07/03/2021 18:55:46	265.85	228247	201187	2282370	921146		
4	07/03/2021 18:55:46	07/03/2021 19:00:54	307.84	268009	236192	2679990	1080294		
5	07/03/2021 19:00:54	07/03/2021 19:09:46	531.78	299295	264495	4788464	1998569		
6	07/03/2021 19:09:46	07/03/2021 19:21:19	692.85	300160	265818	6302919	2679282		
7	07/03/2021 19:21:20	07/03/2021 19:34:22	782.16	321251	284430	7067038	3005714		
8	07/03/2021 19:34:22	07/03/2021 19:41:20	418.38	321488	283636	3536247	1441311		
9	07/03/2021 19:41:21	07/03/2021 19:53:24	723.16	382434	338327	6501089	2732280		
10	07/03/2021 19:53:24	07/03/2021 20:09:07	942.65	384738	340605	8463752	3597231		
11	$07/03/2021 \ 20:09:07$	07/03/2021 20:21:31	743.83	387234	342473	6582689	2764547		
12	07/03/2021 20:21:31	07/03/2021 20:31:40	608.57	408336	360730	5308199	2190171		
13	07/03/2021 20:31:40	07/03/2021 20:42:22	641.50	433083	382521	5629910	2323819		
14	07/03/2021 20:42:22	07/03/2021 21:02:48	1226.28	457119	404936	10970280	4685886		
15	07/03/2021 21:02:49	07/03/2021 21:20:51	1082.45	499282	441939	9485997	4012996		
16	07/03/2021 21:20:52	07/03/2021 21:36:13	921.68	504354	445838	8069408	3371067		
17	07/03/2021 21:36:14	07/03/2021 21:48:16	722.56	513508	453153	6161952	2524642		
18	07/03/2021 21:48:17	07/03/2021 22:01:15	777.82	519132	458373	6748547	2781935		
19	07/03/2021 22:01:15	07/03/2021 22:29:28	1693.06	593691	525998	14841650	6349549		
20	07/03/2021 22:29:29	07/03/2021 22:51:35	1325.88	602827	533376	11453352	4834062		
21	07/03/2021 22:51:35	07/03/2021 23:18:27	1611.52	610719	540884	14046008	5984713		
22	07/03/2021 23:18:27	07/03/2021 23:36:24	1076.66	642516	567773	8995028	3730933		
23	07/03/2021 23:36:24	08/03/2021 00:02:27	1562.43	675366	597729	13506920	5716404		
24	08/03/2021 00:02:27	08/03/2021 00:33:34	1866.61	722726	640052	15899488	6765881		
25	08/03/2021 00:33:35	08/03/2021 00:59:33	1557.96	735374	650761	13236408	5580432		
26	08/03/2021 00:59:33	$08/03/2021 \ 01:35:17$	2144.00	768087	680259	18433512	7868725		
27	08/03/2021 01:35:18	$08/03/2021 \ 01:59:57$	1479.24	822929	727551	12343710	5145849		
28	08/03/2021 01:59:58	08/03/2021 02:33:05	1986.41	895001	792071	17004658	7183554		
29	08/03/2021 02:33:05	08/03/2021 02:56:36	1410.43	903179	797671	11741158	4843088		
30	08/03/2021 02:56:37	08/03/2021 03:33:55	2238.63	919233	813855	19303452	8194800		

Tabela 20 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III) em cada uma das redes pertencentes ao conjunto D.

Resultados método III - redes reais									
Id. Rede	D.H.I.	D.H.T.	T.E.	Q.V.O.	Q.V.A.R.	Q.A.O.	Q.A.A.R.		
1	24/03/2021 23:07:18	24/03/2021 23:19:08	710.53	329521	5657	77777027	1278		
2	26/09/2021 18:53:02	26/09/2021 18:53:02	0.12	7	6	7	1		
3	26/09/2021 18:53:02	26/09/2021 18:53:02	0.03	7	6	7	1		
4	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	7	6	7	1		
5	26/09/2021 18:53:02	26/09/2021 18:53:02	0.03	9	8	9	1		
6	26/09/2021 18:53:02	26/09/2021 18:53:02	0.01	19	18	19	1		
7	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	25	24	25	1		
8	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	26	25	26	1		
9	26/09/2021 18:53:02	26/09/2021 18:53:02	0.01	28	27	26	1		
10	26/09/2021 18:53:02	26/09/2021, 18:53:02	0.01	28	27	26	1		
11	26/09/2021 18:53:02	26/09/2021 18:53:02	0.01	47	46	47	1		
12	26/09/2021 18:53:02	26/09/2021 18:53:02	0.01	60	59	60	1		
13	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	65	64	65	1		
14	26/09/2021 18:53:02	26/09/2021 18:53:02	0.01	71	70	71	1		
15	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	82	81	82	1		
16	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	96	95	96	1		
17	26/09/2021 18:53:02	26/09/2021 18:53:02	0.03	116	115	116	1		
18	26/09/2021 18:53:02	26/09/2021 18:53:02	0.02	126	125	126	1		
19	26/09/2021 18:53:02	26/09/2021 18:53:02	0.04	181	180	181	1		
20	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	224	223	224	1		
21	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	231	230	231	1		
22	26/09/2021 18:53:02	26/09/2021 18:53:02	0.04	242	241	242	1		
23	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	270	269	270	1		
24	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	284	283	284	1		
25	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	299	298	299	1		
26	26/09/2021 18:53:02	26/09/2021 18:53:02	0.05	321	320	321	1		
27	26/09/2021 18:53:02	26/09/2021 18:53:02	0.06	332	331	332	1		
28	26/09/2021 18:53:02	26/09/2021 18:53:03	0.07	360	359	360	1		

Tabela 21 – Demonstração dos resultados obtidos ao aplicar o coeficiente θ (método III) em cada uma das redes pertencentes ao conjunto de redes reais (*C. Elegans* e Rede mapeada da corrupção na política brasileira ((RIBEIRO et al., 2018))).

C

Gráficos das redes e subredes geradas

C.1 Distribuição de Graus - Redes Originais

C.1.1 Conjunto A

Nessa seção encontram-se os gráficos demonstrando a distribuição de graus das redes estudadas pelos métodos I, II e III – coeficientes ι , $\Theta \in \theta$ antes de sua aplicação. A distribuição exibida a seguir é a do conjunto de redes A. A Tabela 5 contém mais informações sobre a mesma.

Redes originais presente no conjunto A

Redes originais presente no conjunto A

Tabela 22 – Distribuição de graus do Conjunto A de redes sintéticas geradas para os experimentos.

C.1.2 Conjunto B

Grau dos vértices (log)

Nessa seção encontram-se os gráficos demonstrando a distribuição de graus das redes estudadas pelos métodos I, II e III – coeficientes ι , $\Theta \in \theta$ antes de sua aplicação. A distribuição exibida a seguir é a do conjunto de redes B. A Tabela 6 contém mais informações sobre a mesma.

Grau dos vértices (log)

Redes originais presente no conjunto B

Redes originais presente no conjunto B

Tabela 23 – Distribuição de graus do Conjunto B de redes sintéticas geradas para os experimentos.

C.1.3 Conjunto C

Nessa seção encontram-se os gráficos demonstrando a distribuição de graus das redes estudadas pelos métodos I, II e III – coeficientes ι , $\Theta \in \theta$ antes de sua aplicação. A distribuição exibida a seguir é a do conjunto de redes C. A Tabela 7 contém mais informações sobre a mesma.

Redes originais presente no conjunto C

Redes originais presente no conjunto C

Tabela 24 – Distribuição de graus do Conjunto C de redes sintéticas geradas para os experimentos.

C.1.4 Conjunto D

Nessa seção encontram-se os gráficos demonstrando a distribuição de graus das redes estudadas pelos métodos I, II e III – coeficientes ι , $\Theta \in \theta$ antes de sua aplicação. A distribuição exibida a seguir é a do conjunto de redes D. A Tabela 8 contém mais informações sobre a mesma.

Redes originais presente no conjunto D

Redes originais presente no conjunto D

Tabela 25 – Distribuição de graus do Conjunto D de redes sintéticas geradas para os experimentos.

C.2 Distribuição de Graus - Método I

C.2.1 Conjunto A

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto A (Tabela 5) utilizando o coeficiente ι do método I de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.1.

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Distribuição de graus - Método I - Conjunto A - Redes 16 a 20

Distribuição de graus - Método I - Conjunto A - Redes 21 a 25

Distribuição de graus - Método I - Conjunto A - Redes 26 a 30

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Distribuição de graus - Método I - Conjunto A - Redes 36 a 40

Distribuição de graus - Método I - Conjunto A - Redes 41 a 45

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Distribuição de graus - Método I - Conjunto A - Redes 46 a 50

Tabela 26 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente ι (método I de indução de falhas) em todas as redes do Conjunto A (Tabela 5).

C.2.2 Conjunto B

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto B (Tabela 6) utilizando o coeficiente ι do método I de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.1.

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Distribuição de graus - Método I - Conjunto B - Redes 6 a 10

Distribuição de graus - Método I - Conjunto B - Redes 11 a 15

Distribuição de graus - Método I - Conjunto B - Redes 16 a 20

Distribuição de graus - Método I - Conjunto B - Redes 26 a 30

Distribuição de graus - Método I - Conjunto B - Redes 36 a 40

Distribuição de graus - Método I - Conjunto B - Redes 46 a 50

Tabela 27 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente ι (método I de indução de falhas) em todas as redes do Conjunto B (Tabela 6).

C.2.3 Conjunto C e D

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto C (Tabelas 7 e 8) utilizando o coeficiente ι do método I de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.1. Nota-se aqui que poucas redes estão listadas dado o tempo de execução do algoritmo que aumenta exponencialmente em relação ao tamanho da rede analisada.

Para as redes do conjunto D (Tabela 8) o algoritmo conseguiu processar somente 1 rede antes do travamento total da máquina, ocorrido pelo mesmo motivo explicado acima.

Distribuição de graus - Método I - Conjunto C - Redes 6 a 10

Gráficos dos resultados obtidos após a aplicação do coeficiente ι

Tabela 28 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente ι (método I de indução de falhas) das redes 6 a 15 do Conjunto em todas as redes do Conjunto C (Tabela 7) e na Rede 1 do Conjunto D (Tabela 8)

C.3 Distribuição de Graus - Método II

C.3.1 Conjunto A

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto A 5 utilizando o coeficiente Ω do método II de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.2.

Distribuição de graus - Método II - Conjunto A - Redes 21 a 25

Distribuição de graus - Método II - Conjunto A - Redes 26 a 30

Distribuição de graus - Método II - Conjunto A - Redes 36 a 40

Distribuição de graus - Método II - Conjunto A - Redes 46 a 50

Tabela 29 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente Ω (método II de indução de falhas) em todas as redes do Conjunto A (Tabela 5).

C.3.2 Conjunto B

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto B 6 utilizando o coeficiente Ω do método II de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.2.

Grau dos vértices (log)

Distribuição de graus - Método II - Conjunto B - Redes 6 a 10

Distribuição de graus - Método II - Conjunto B - Redes 16 a 20

Distribuição de graus - Método II - Conjunto B - Redes 26 a 30

Distribuição de graus - Método II - Conjunto B - Redes 36 a 40

4.0

Grau dos vértices (log)

3.0

3.5

2.5

2.0

5.0

4.5

5.5

Distribuição de graus - Método II - Conjunto B - Redes 46 a 50

Tabela 30 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente Ω (método II de indução de falhas) em todas as redes do Conjunto B (Tabela 6).

C.3.3 Conjunto C

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto C 7 utilizando o coeficiente Ω do método II de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.2.

Distribuição de graus - Método II - Conjunto C - Redes 6 a 10

Distribuição de graus - Método II - Conjunto C - Redes 16 a 20

Distribuição de graus - Método II - Conjunto C - Redes 26 a 30

Distribuição de graus - Método II - Conjunto C - Redes 36 a 40

Resultados obtidos utilizando o coeficiente Θ

Distribuição de graus - Método II - Conjunto C - Redes 46 a 50

Tabela 31 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente Θ (método II de indução de falhas) em todas as redes do Conjunto C (Tabela 7).

C.3.4 Conjunto D

Os resultados aqui apresentados abrangeram somente uma parte do conjunto D de redes (Tabela 8) devido ao seu longo tempo de processamento e travamentos recorrentes das máquinas utilizadas para rodar o algoritmo. Dada que a premissa do estudo reflete também na agilidade do processo, resolvemos abortar esse método e analisar outros mais eficazes.

Resultados obtidos utilizando o coeficiente Ω

Distribuição de graus - Método II - Conjunto D - Redes 4 a 6

Distribuição de graus - Método II - Conjunto D - Redes 10 a 12

Resultados obtidos utilizando o coeficiente Ω

Distribuição de graus - Método II - Conjunto D - Redes 16 a 18

Distribuição de graus - Método II - Conjunto D - Redes 22 a 24

Resultados obtidos utilizando o coeficiente Ω

Tabela 32 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente Ω (método II de indução de falhas) parcialmente nas redes do Conjunto D (Tabela 8).

C.4 Distribuição de Graus - Método III

C.4.1 Conjunto A

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto A (Tabela 5) utilizando o coeficiente α do método III de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.1.

Distribuição de graus - Método III - Conjunto A - Redes 6 a 10

0.0

1.5

2.0

2.5

Resultados obtidos utilizando o coeficiente α

Distribuição de graus - Método III - Conjunto A - Redes 21 a 25

3.0

Grau dos vértices (log)

±▲

3.5

4.0

4.5

Distribuição de graus - Método III - Conjunto A - Redes 26 a 30

Distribuição de graus - Método III - Conjunto A - Redes 36 a 40

Distribuição de graus - Método III - Conjunto A - Redes 41 a 45

Distribuição de graus - Método III - Conjunto A - Redes 46 a 50

Tabela 33 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente α (método III de indução de falhas) em todas as redes do Conjunto A (Tabela 5).

C.4.2 Conjunto B

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto B (Tabela 6) utilizando o coeficiente α do método III de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.3.

Resultados obtidos utilizando o coeficiente α

Distribuição de graus - Método III - Conjunto B - Redes 6 a 10

Distribuição de graus - Método III - Conjunto B - Redes 11 a 15

Distribuição de graus - Método III - Conjunto B - Redes 16 a 20

Distribuição de graus - Método III - Conjunto B - Redes 26 a 30

Distribuição de graus - Método III - Conjunto B - Redes 31 a 35

Distribuição de graus - Método III - Conjunto B - Redes 46 a 50

Tabela 34 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente α (método III de indução de falhas) em todas as redes do Conjunto B (Tabela 6).

C.4.3 Conjunto C

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto C (Tabela 7) utilizando o coeficiente α do método III de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.3.

Distribuição de graus - Método III - Conjunto C - Redes 6 a 10

Distribuição de graus - Método III - Conjunto C - Redes 16 a 20

Distribuição de graus - Método III - Conjunto C - Redes 21 a 25

Distribuição de graus - Método III - Conjunto C - Redes 26 a 30

Distribuição de graus - Método III - Conjunto C - Redes 36 a 40

Distribuição de graus - Método III - Conjunto C - Redes 41 a 45

Distribuição de graus - Método III - Conjunto C - Redes 46 a 50

Tabela 35 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente α (método III de indução de falhas) em todas as redes do Conjunto C (Tabela 7).

C.4.4 Conjunto D

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto D (Tabela 8) utilizando o coeficiente α do método III de remoção. O gráfico das primeiro cinco redes analisadas já estão presentes na subseção 3.3.

Grau dos vértices (log)

Distribuição de graus - Método III - Conjunto D - Redes 16 a 18

Distribuição de graus - Método III - Conjunto D - Redes 19 a 21

Distribuição de graus - Método III - Conjunto D - Redes 22 a 24

Distribuição de graus - Método III - Conjunto D - Redes 28 a 30

Tabela 36 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente α (método III de indução de falhas) em todas as redes do Conjunto D (Tabela 8).

C.4.5 Redes reais

Nessa seção encontram-se os gráficos gerados após a remoção dos vértices das redes pertencentes ao conjunto de redes reais analisadas (Tabela 9) utilizando o coeficiente α do método III de remoção.

Tabela 37 – Gráficos demonstrando a distribuição de graus após a aplicação do coeficiente α (método III de indução de falhas) em todas as redes reais analisadas (Tabela 9).