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Algoritmo para segmentação dentária em radiografias
panorâmicas

Resumo
A saúde bucal abrange uma ampla gama de condições, incluindo cáries dentárias, doenças
periodontais, perda de dentes e câncer oral. Manter uma boa saúde bucal requer tanto
a prevenção quanto o tratamento dessas condições. A detecção oportuna é crucial para
evitar sua progressão. Embora as inspeções clínicas sejam eficazes em muitos casos, elas
enfrentam limitações na identificação de problemas ocultos ou de difícil acesso. A ra-
diografia dentária desempenha nestes casos um papel vital na garantia de diagnósticos
precisos. Para aprimorar a velocidade e a precisão da análise de radiografias, os profis-
sionais de saúde bucal estão cada vez mais adotando soluções que utilizam de Visão
Computacional, com ênfase em Aprendizado Profundo para o processamento de imagens.
Essas soluções deram origem a diversas ferramentas de diagnóstico, que vão desde a iden-
tificação de cáries até o auxílio em tratamentos de canal. Um passo inicial comum para
essas ferramentas envolve a detecção dos dentes presentes nas imagens radiográficas. Para
aprimorar essa fase crítica, apresentamos um sistema modular de segmentação de dentes.
Esse sistema é composto por dois componentes-chave: (i) detecção da região bucal e (ii)
segmentação de cada dente dentro da cavidade bucal identificada. Utilizamos a rede Reti-
naNet para a detecção da boca e a rede Cascade Mask R-CNN para a identificação dos
dentes. Treinamos esses modelos com um conjunto de dados anotado por profissionais
experientes, que inclui 935 radiografias panorâmicas com caixas delimitadoras da boca
e, dentre elas, mais 605 com polígonos contornando os dentes, totalizando 14.582 dentes
anotados. As tarefas propostas nesta pesquisa estão interligadas, com a saída de uma
etapa sendo a entrada para a próxima. Nosso sistema obteve resultados excepcionais,
com a detecção da boca alcançando 92,446 mAP e 0,982 F1-score, e a segmentação de
instância dos dentes atingindo 79,222 mAP e 0,9894 F1-score, superando os benchmarks
estabelecidos por estudos similares. Nossa ferramenta modular permite futuras expansões,
integrando diversas novas funcionalidades, como a numeração dos dentes ou análise de
cáries. Além de servir como auxílio diagnóstico, oferecendo suporte aos dentistas como
uma segunda opinião, nosso sistema tem o potencial de agilizar a geração de relatórios
epidemiológicos para grandes amostras populacionais. Ele também encontra relevância
na medicina forense, uma área especializada dedicada à identificação de indivíduos com
base em suas características orais e dentárias.

Palavras-chave: Diagnóstico bucal. Sistemas de visão computacional. Aprendizado
profundo. Radiografias panorâmicas. Segmentação de dentes.





Enhanced tooth segmentation algorithm for
panoramic radiographs

Abstract
Oral health encompasses a broad range of conditions, including dental caries, periodontal
disease, tooth loss, and oral cancer. Maintaining optimal oral health requires both pre-
vention and treatment of these conditions. Timely detection is crucial to prevent their
progression. While clinical inspections are effective in many cases, they face limitations
in identifying hidden or hard-to-reach issues. Dental radiography plays a vital role in
ensuring accurate diagnoses. To enhance the speed and precision of radiograph analysis,
oral health professionals are increasingly embracing advancements in Computer Vision,
particularly leveraging Deep Learning for image processing. These techniques have given
rise to various diagnostic tools, ranging from identifying cavities to classifying root canal
treatments. A common initial step for these tools involves the detection of teeth in ra-
diographic images. To enhance this critical phase, we introduce a modular system for
teeth instance segmentation. This system comprises two key components: (i) dentomax-
ilo region detection (including mandible, maxilla and teeth) and (ii) segmentation of
individual teeth within the identified dentomaxilo area. We employed RetinaNet for den-
tomaxilo region detection and Cascade Mask R-CNN for tooth identification. We trained
these models using a dataset annotated by experienced professionals, which includes 935
panoramic radiographs with bounding boxes delimiting the dentomaxilo area and, among
them, an additional 605 with tooth polygons, totaling 14,582 annotated teeth. These
tasks are interconnected, with the output of one phase feeding into the next. Our system
achieved good results, with dentomaxilo region detection scoring 92.446 mAP and 0.982
F1-score, and tooth segmentation attaining 79.222 mAP and 0.989 F1-score, surpassing
benchmarks set by comparable studies. Our modular tool allows for future expansions,
with the potential to integrate diverse new functionalities, such as tooth numbering or
caries identification. Beyond serving as a diagnostic aid, offering support to dentists as
a secondary opinion, our system has the potential to expedite the generation of epidemi-
ological reports for large population samples.

Keywords: Oral diagnosis. Computer vision systems. Deep learning. Panoramic radio-
graphy. Teeth segmentation.
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Introduction

Oral health is a multifaceted concept that serves as a indicator of an individual’s overall
well-being and quality of life. This concept encompasses a wide range of conditions and
diseases, including, but not limited to, tooth decay, periodontal disease, tooth loss, and
oral cancer (WHO, 2022). These conditions raise significant public health concerns due to
their potential to substantially diminish individuals’ quality of life, leading to discomfort,
pain, and in some cases, chronic systemic infections1.

Clinical examination, supplemented by the use of dental probes and hand mirrors,
can identify advanced dental cavities resulting from caries. However, certain hidden or in-
accessible lesions may necessitate radiographs examinations for accurate diagnosis (LIAN
et al., 2021). In addition to detecting dental caries, which primarily affect the enamel
and dentin, dental radiographs play a crucial role in uncovering various issues within
mineralized tissues (KUMAR; BHADAURIA; SINGH, 2021; WANG et al., 2016). With-
out the aid of radiographic images, dentists would remain unable to detect these dental
issues until they reach advanced and even irreversible stages. Consequently, radiographic
images become invaluable sources of information for clinical diagnosis, treatment strat-
egy formulation, and surgical interventions. They enable the discovery of hidden dental
structures, as well as the identification of malignant or benign masses, bone loss, cavi-
ties, fractures in both bone and teeth, bone lesions, and other anomalies (WANG et al.,
2016). Furthermore, dental radiographs play a pivotal role in epidemiological studies, be-
ing a source of information on large population samples (MURAMATSU et al., 2020) and
forensic medicine, a specialized field dedicated to the identification of individuals through
their oral and dental characteristics, which are esteemed as the most enduring anatomical
features within the human body (OKTAY, 2018).

Oral radiographs are typically classified into two main categories: intraoral and
extraoral (WANG et al., 2016; KUMAR; KHAMBETE; PRIYA, 2011). Three examples
of commonly used intraoral radiographs are: interproximal (or bitewing), periapical and
occlusal radiographs, both of which require the placement of imaging equipment inside the
patient’s oral cavity. On the other hand, extraoral radiography features panoramic radio-

1 Oral health, World Health Organization (WHO). Available at https://www.who.int/health-
topics/oral-health
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graphy (PAN) as a technique with a high frequency of use. Unlike intraoral radiographs,
PAN captures images from outside the patient’s mouth, offering a comprehensive view
of the mandible, maxilla, specific facial bones, and the entirety of the dentition in a sin-
gle image, resulting in reduced patient discomfort and lower radiation exposure. (SILVA;
OLIVEIRA; PITHON, 2018).

However, manual radiograph analysis is susceptible to misinterpretations and er-
rors, especially when performed by less experienced professionals. Radiographs typically
appear as grayscale images with potential issues such as noise, artifacts, low contrast, and
uneven lighting. Furthermore, these images frequently feature overlapping structures, fur-
ther complicating the analysis, as documented in (KUMAR; BHADAURIA; SINGH, 2021;
MALLYA; ERNEST, 2018). Dentists routinely encounter a substantial volume of radio-
graphs in their daily practice, aiming to assist in individual diagnoses or observational
clinical studies(CHEN et al., 2019). Beyond the time-intensive process of analysing nu-
merous radiographs, these professionals must meticulously document their observations
in printed or digital records (ESTAI et al., 2022). Given this considerable workload,
factors like inexperience, stress, and fatigue among dental practitioners can impede the
accurate interpretation of their patients’ oral conditions. All these obstacles can result
in inconveniences for patients, including incorrect treatments, exacerbated issues, wasted
time, and financial burdens, among other complications. Nevertheless, these challenges
can be mitigated by the application of intelligent tools tailored to assist in radiograph
analysis (CHEN et al., 2019).

Intelligent tools commonly refer to Artificial Intelligence (AI), a broad category
encompassing various computational methods trained to recognize patterns and deliver
optimal responses to input data (BENKE; BENKE, 2018). Computer Vision (CV) delves
deeply into the application of AI methods to extract invaluable insights from visual in-
puts, such as digital images and videos (FERNANDES; DóREA; ROSA, 2020; PRINCE,
2012). Machine Learning (ML) is a branch of AI that allows computers to learn without
being directly programmed. As per the definition of ML given by (MITCHELL, 1997),
“a computer program learns from experience E in the context of a specific class of tasks
T and a performance measure P, if its performance on tasks within T, as assessed by
P, demonstrates improvement with the accumulation of experience E”. Deep Learning
(DL), a sub-field of ML, empowers the manipulation of complex data structures, includ-
ing images (SCHWENDICKE; SAMEK; KROIS, 2020), by representing them in a more
abstract manner through non-linear layers (LECUN; BENGIO; HINTON, 2015). The fore-
most advantage of DL over conventional ML methods lies in its capacity to autonomously
extract hierarchical and contextual features, contributing to a deeper understanding of
complex visual data (MAHDI; YAGI; KOBASHI, 2020; BAYRAKTAR; AYAN, 2022).
Convolutional Neural Networks (CNNs), a type of DL architecture inspired by the bio-
logical nervous system (OKTAY, 2017; CHEN et al., 2019; TUZOFF et al., 2019), play a
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significant role in the research dedicated to the advancement of AI tools for image inter-
pretation. CNNs automate the pattern recognition process, furnishing a robust platform
for CV technicians and researchers.

Within this context, the integration of DL techniques, mainly CNNs, into decision-
support tools can offer substantial advantages for the analysis of patient images (PARK;
PARK, 2018). DL’s ability to extract relevant information via pattern recognition, regard-
less of its location, accelerates the data analysis process, leading to a substantial reduction
in the time needed for these tasks compared to manual analysis without computational
tools (LEE et al., 2018). The adoption of DL in diagnostic imaging presents other bene-
fits, such as solving problems of subjectivity in individual exams, thereby enhancing the
overall efficiency of healthcare services. Moreover, it contributes to cost reduction by au-
tomating repetitive tasks (SCHWENDICKE; SAMEK; KROIS, 2020). In a wider context,
intelligent tools can take on a fundamental role in: (i) Elevating the precision of diagnoses
and facilitating the planning of dental treatments; (ii) Reducing the time invested in ra-
diographic image analyses and mitigating the risks of misdiagnosis which can often be
influenced by stress, fatigue, or inexperience; (iii) Automating essential tasks, including
report generation and the management of dental records (MAHDI; YAGI; KOBASHI,
2020; JADER et al., 2018; LEE et al., 2022; MURAMATSU et al., 2020).

CV applications employed in image processing cover a wide spectrum of tasks,
ranging from classification, object region detection, object semantic segmentation, and ob-
ject instance segmentation (SINGH; RAZA, 2022; MOHAMMAD-RAHIMI et al., 2022;
SINGH; SEHGAL, 2021; JADER et al., 2018). In the medical domain, these applica-
tions are used in tasks such as automatically identifying and classifying pulmonary nod-
ules (HOSNY et al., 2018), interpreting mammograms for cancer screening (SHIMIZU;
NAKAYAMA, 2020), detecting liver diseases (ZHOU et al., 2019), and discerning melanomas
and malignant carcinomas (SCHMIDT-ERFURTH et al., 2018). Similarly, in the field of
dentistry, DL techniques are increasingly assuming an important role as useful tools to as-
sist dental professionals in their decision-making processes (PARK; PARK, 2018). These
applications encompass a diverse array of activities, including tooth numbering (SILVA
et al., 2020; PINHEIRO et al., 2021; ZHANG et al., 2018; CHEN et al., 2019), au-
tomating the completion of dental records (MURAMATSU et al., 2020), diagnosing
caries (GEETHA; APRAMEYA; HINDUJA, 2020; SINGH; SEHGAL, 2017), detecting
dental restorations (ABDALLA-ASLAN et al., 2020), and the development of predic-
tive models capable of establishing the relationship between the frequency and quality of
brushing and instances of toothache (KIM; LIM; RHEE, 2009).

In the CV applications for oral radiographs, particularly those aimed at emphasiz-
ing dental characteristics, tooth detection or segmentation frequently stands out as the
initial step. This process is of immense value to researchers in the field, enabling them
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to undertake a spectrum of tasks, including diagnosis, tooth numbering, dental age es-
timation, among others (LIN; HUANG; HUANG, 2013). Object detection encompasses
the prediction of coordinates that define the smallest rectangle capable of enclosing the
object, with these coordinates denoting the object’s position, width, and height within
the image. In a complementary manner, image segmentation involves dividing the image
into discrete areas by grouping pixels that belong to the same object or region. Figure 1
depicts examples of these tasks. In a), an example of tooth detection in PANs is show-
cased, with bounding boxes delimiting each tooth separately. In b) and c), two examples
of tooth segmentation are presented, grouping pixels belonging to the identified object
in masks. The distinction between semantic segmentation, depicted in b), and instance
segmentation, depicted in c), lies in the latter’s ability to separate different instances
of the same object, while the former creates a single mask containing all pixels of the
identified objects in the image. Lastly, an example of classification is presented in d),
where the entire image is analyzed by the application and assigned a label based on its
characteristics. In this example, the label was “dentate,” as the image contains a PAN
with teeth.

Figure 1 – Examples of common computer vision tasks in the context of dentistry

Source: Author’s collection

In the context presented, this research introduces an innovative modular approach
designed for the automatic segmentation of teeth in PANs. Our system performs two
steps to achieve this objective: (i) the preprocessing step, inspired by (MURAMATSU et
al., 2020), which entails detecting the dentomaxilo region (considering mandible, maxilla
and teeth) to exclude surrounding areas that do not contribute to the network analysis,
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and (ii) the instance segmentation of the teeth using only the dentomaxilo region. We
conducted experiments with various DL network architectures for each task, with the
goal of optimizing mean Average Precision (mAP) in dentomaxilo region detection and
teeth segmentation. The focus on PANs in this research is justified by the fact that this
specific medical image configuration encompasses information about all teeth in a single
image. As a valuable contribution, our aim is to enhance the precision of patients’ dental
diagnoses and their treatment planning, ultimately reducing errors. In addition to being
a diagnostic aid tool, the resulting system holds the potential to automate tasks such as
report generation and the completion of dental records in various contexts.

This work is part of a multidisciplinary research group at the University of São
Paulo (USP) called InReDD (Interdisciplinary Research group in Digital Dentistry)2. As
previously mentioned, tooth detection and segmentation are critical stages in various
applications. This study focuses on the detection of the dentomaxilo area and the seg-
mentation of teeth in PANs. Other lines of research within the InReDD group aim to
use the outcomes of this investigation as a preprocessing step for tasks that involve tooth
numbering according to the Federation Dentaire Internationale (FDI) numbering system,
as well as the classification of teeth based on criteria such as decayed, restored, and other
relevant labels. The structure of this document is as follows: In Chapter 1, the theoret-
ical foundations supporting the project are elaborated in more detail; In Chapter 2, the
systematic mapping conducted on the state of the art is presented; Chapter 3 provides a
description of the materials and methods employed in our proposal; Chapter 4 presents
the results obtained, discusses and compares them with related work; and Chapter 5
concludes with final remarks.

2 InReDD. Available at https://sites.usp.br/inredd/mestrado/





1
Theoretical Foundation

In the development of our modular tooth instance segmentation system, it was imperative
to leverage concepts and definitions from Dentistry, Radiology and Computer Vision (CV).
The theoretical background derived from Dentistry and Radiology provide insights into
the characteristics of the images generated by radiographic examinations, particularly
with regard to panoramic radiography (PAN). These concepts are elucidated in Section
1.1. Consecutively, Sections 1.2, 1.3, 1.4 and 1.5 delve into the topics of CV, offering an
exploration of the Neural Networks employed in our system and associated concepts.

1.1 Radiographs
Dental radiological examinations serve various purposes, including endodontic procedures,
forensic investigations, and diagnosing conditions like caries (GURSES; OKTAY, 2020).
Particularly in diagnostics, radiographs are highly recommended due to their ability to
reveal both the internal and external morphology of teeth, providing insights into size,
location, and the condition of tissues hidden from the naked eye (RAD et al., 2018).

To generate a radiographic image, patients are exposed to a minimal amount of
radiation that crosses the region of the patient’s body under investigation, resulting in
a two-dimensional composition of overlapping shades, including black, white, and gray
(WHAITES; DRAGE, 2013). These shades emerge from the interaction of X-rays with
the patient’s tissues. X-rays penetrate and cross these tissues and reach the film or sensor
of the X-ray device. Different tissues absorb X-rays differently. Radiopaque tissues impede
X-ray passage, appearing brighter in the final image. Conversely, radiolucent tissues allow
more X-ray penetration, resulting in darker shapes in the image.

Dental radiographs are categorized into two main types: intraoral and extraoral,
determined by the placement of the radiographic film or sensor (digital radiography) ei-
ther within or outside the oral cavity (KUMAR; KHAMBETE; PRIYA, 2011). Among
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intraoral options, three modalities are prominent. Bitewing, also known as interproximal,
involves the patient biting down on a positioning device, allowing simultaneous imaging
of upper and lower teeth in a single frame. Typically, this radiograph covers a specific
region of the mouth, usually the crowns of molar or premolar teeth (WHAITES; DRAGE,
2013). The second intraoral radiography, known as periapical, captures the entire tooth
structure, including the crown, root, surrounding alveolar bone, and neighboring regions,
but is limited to two or three teeth per image. Lastly, the occlusal radiograph captures
the entire dental arch while the patient maintains occlusal pressure on the film or sen-
sor (WANG et al., 2016). Interproximal and periapical radiographs are commonly used
for caries diagnosis. However, some patients may struggle to hold the film or sensor inside
their oral cavity (WHAITES; DRAGE, 2013), especially those with a gag reflex or signif-
icant discomfort with intraoral methods, such as children or individuals with disabilities
(CLIFTON; TYNDALL; LUDLOW, 1998). Patient cooperation is crucial for producing
artifact-free images (ABDINIAN et al., 2015).

Extraoral radiographs eliminate the need to place films or sensors inside the oral
cavity. These images encompass all teeth, nasal and facial bones, the chin, and the
joints between the jaws and the skull, offering a comprehensive view rather than iso-
lating specific dental regions, as intraoral radiographs (SCHWENDICKE et al., 2019;
SILVA; OLIVEIRA; PITHON, 2018). The method for obtaining PANs involves the syn-
chronized rotation of the X-ray source and image receptor around the stationary pa-
tient (KAMBUROGLU et al., 2012). These exams are quick, employ minimal radiation
doses, cause no patient discomfort, are cost-effective, and relatively straightforward to
perform (AKKAYA et al., 2006).

However, factors such as morphological variations in patients’ jaws and the posi-
tioning of the patient’s head during the X-ray procedure can lead to distorted and blurry
images (ABDALLA-ASLAN et al., 2020). As highlighted by (OKTAY, 2018), the substan-
tial distortion and overlap of teeth frequently encountered in PANs can pose challenges
in segmenting tooth contours, adding complexity to panoramic image analysis. Moreover,
(FUKUDA et al., 2019) emphasize the frequent overlapping of anatomical structures in
PANs, making interpretation challenging, especially for inexperienced observers. Conse-
quently, diseases might remain undetected due to inaccurate diagnoses. In this context,
applying CV methods can enhance precision in analysis and diagnosis.
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1.2 Convolutional Neural Network and Deep
Learning

A Convolutional Neural Network (CNN) stands out as a specialized variant of artificial
neural networks designed for processing and analyzing visual data, such as images and
videos. CNNs have demonstrated their effectiveness in a diverse range of computer vision
tasks, including image classification, object detection, and image segmentation. CNNs are
a subset of Machine Learning (ML) techniques. ML is capable of making highly accurate
predictions by leveraging pre-existing data, often referred to as a dataset, which serves
as the foundation for learning (MOHRI; ROSTAMIZADEH; TALWALKAR, 2018). This
dataset can either be provided by a programmer or gathered through interaction with the
specific problem being analyzed.

Deep Learning (DL), a subfield of ML focuses on neural networks with multiple
layers (deep neural networks) enabling computer systems to enhance their performance
through experience and data. According to (LECUN; BENGIO; HINTON, 2015), training
a ML neural network to its full potential necessitates the selection of object features that
contribute most effectively to the network’s learning, through preprocessing techniques.
What sets DL apart is its layers’ ability to autonomously explore and choose the most
relevant features from input data. Guided by a learning mechanism, DL systems reduce
reliance on human experts for the extraction of relevant information for classification or
detection, often revealing intricate patterns elusive to human perception. A typical DL
system can be depicted as a sequence of simple and non-linear layers, where information
undergoes progressive abstraction at each layer, preparing it for the classification process.
The upshot is the capacity to master the learning of highly complex functions (LECUN;
BENGIO; HINTON, 2015).

In the domain of computer vision, Deep CNNs can automatically learn and extract
relevant features from images, starting from low-level features like edges and textures to
higher-level features like object parts and object categories. These networks, often referred
to as “convnets”, are adept at uncovering hierarchical patterns residing within a group of
neighboring pixels in an image, achieved through a combination of convolutional layers,
pooling layers, and fully connected layers (CHOLLET, 2017).

At the core of this architecture are the convolutional layers. These layers com-
prise a series of trainable filters, each consisting of (MxM) pixels, named “kernels”. These
kernels engage in the convolution operation, involving element-wise weighted multiplica-
tion between each pixel in the input image and its neighboring counterparts encapsulated
within the filter. The weights and biases associated with these filters take responsibility
for highlighting and recognizing patterns within the image, including contours and shapes.
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After each convolutional layer, an activation function is frequently employed to introduce
non-linearity into the model. This function acts as an activator for the convolutional layer,
deciding whether the feature map generated by the layer should be forwarded to the sub-
sequent layers. This function helps the network learn complex patterns and relationships
in the data. Pooling layers are used to reduce the spatial dimensions (width and height)
of the data while preserving important information. These layers are alternated with the
convolutional layers, helping in the reduction the computational demands and making the
network more robust to variations in the input. After a series of convolutional and pooling
layers, CNNs culminate in a flatten layer, succeeded by one or more fully connected layers.
The purpose of the flatten layer is to transform the multi-dimensional output from the
convolutional layers into a one-dimensional vector, serving as a transition from spatial
hierarchies to the fully connected layers. The fully connected layers are similar to those
in traditional artificial neural networks. Neurons in a fully connected layer establish con-
nections to all activations in the preceding layer. Similar to the convolutional layers, each
connection is associated with learnable weights and biases. In the final fully connected
layer, a distinctive activation function known as Softmax, is responsible for making final
decisions or predictions based on the learned features.

The training process involves forward and backward passes through the network,
adjusting the weights and biases of convolutional and fully connected layers. The pri-
mary objective is to minimize the difference between predictions and actual outcomes. To
commence training, weights and biases are initialized with random values. The network
then processes training images, passing information through convolutional, pooling, flat-
ten, and fully connected layers. At the output, a prediction is generated and compared
with the Ground Truth (GT) label for the corresponding training image. This compari-
son is done through a loss function that quantifies the disparity between the network’s
predictions and the actual labels. Using this measured error, an algorithm known as
backpropagation computes a loss gradient for each weight and bias. These gradients in-
dicate the direction and magnitude of adjustments needed on the weight and bias values
to reduce the overall network error. A hyperparameter called learning rate, controls the
intensity of corrections applied to these values based on the loss gradient. Each processed
image (forward pass) and weight update (backward pass) is called an iteration. This
iterative process is repeated numerous times, causing weight and bias updates that guide
the network toward minimizing prediction errors. Another significant hyperparameter,
known as Batch Size, allows the network to update weight and bias values by considering
the average error over multiple iterations rather than after each processed image (forward
pass).

Periodically, the network undergoes evaluation on a separate validation set of
images/GT to monitor performance on data not encountered during training, preventing
overfitting and ensuring adaptability to unseen data. Overfitting arises when a model not
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only captures the underlying patterns in the training data but also assimilates noise and
specific fluctuations. While the model excels on the training data, its ability to generalize
to new, unseen data diminishes. A key approach to detect overfitting involves using
the validation set. By plotting the model’s error or accuracy curves measured on both
the training and validation sets on the same graph, we expect that in the early stages
of training, the error will decrease, and accuracy will increase. However, as the training
process repeats, the model tends to learn more slowly. Overfitting manifests as a widening
gap between training and validation performance, observed on the graph as sustained
improvement on the training set and a decline on the validation set. For instance, the
training error continues to decrease or remain stable, while the validation error starts to
increase with each iteration. Recognizing overfitting is pivotal for deciding when to halt
training, ideally just before overfitting, where the model attains optimal performance for
that specific scenario. After training, the network is tested on a completely independent
test set to assess its ability to generalize to unseen data.

A CNN offers two advantages over conventional artificial neural networks: i) the
ability to discern patterns independent of their spatial location within images, enabling
the detection of a tooth, whether it resides in the mandible or maxilla; and ii) the sharing
of weight and bias, effectively reducing the quantity of variables that require training in
each convolutional layer (LEE et al., 2018).

1.3 Faster R-CNN
Conventional CNNs are typically designed to classify images based on the patterns they
contain. In 2014, (GIRSHICK et al., 2013) developed the R-CNN (Region-Based CNN),
one of the pioneering approaches for object detection using DL, integrating a selective
search (SS) algorithm with a CNN. The SS algorithm proposes a specified number of
rectangular regions in an image, termed Regions of Interest (RoIs), which might contain
objects of interest. In this approach, each RoI went through a CNN responsible for
generating the region feature map, and these features were subsequently classified using a
Support Vector Machine (SVM) for object detection. The computational cost of running
the CNN for each RoI was the main issue with this proposal. To address this challenge,
the same authors introduced a variation called Fast R-CNN approximately a year later. In
Fast R-CNN, the image is processed through a CNN network (called backbone) one single
time to generate a feature map for the entire image. Simultaneously, the image underwent
SS, and through a new layer called RoI Pooling Layer, the network could extract the set
of pixels from the feature map corresponding to each of the RoIs proposed by SS. This
idea of sharing the computation of the CNN backbone across all region proposals reduced
the complexity and time required for training the network (GIRSHICK, 2015). Finally,
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(REN et al., 2017) introduced a new model known as Faster R-CNN, which presented an
improvement over its predecessors by replacing the SS algorithm with a network called the
Region Proposal Network (RPN). The RPN, a fully connected network, predicts region
proposals and their objectness scores in a single forward pass.

Figure 2 illustrates the Faster R-CNN network. It performs two-stage object detec-
tion. Preceding these detection stages, the network employs an initial image preprocessing
network known as the backbone, tasked with generating the image feature map. The in-
put image undergoes processing through the backbone network, which can be any image
classification CNN with flatten and fully connected (FC) layers removed. The desired out-
put of this preprocessing, highlighted in Figure 2 as the “CNN backbone,” is the feature
map generated by the convolutional layers.

The first stage of object detection, the RPN comes up with a certain number of
possible RoIs where the object might be located. The RPN is a fully convolutional network
(FCN) that uses the feature map as input. For each pixel in the feature map, RPN predicts
multiple anchor boxes, which are predefined boxes with various aspect ratios and scales.
The RPN estimates two lists of values for each anchor box: the first list contains the
probability that the anchor box contains an object (“obj”) or background (“bg”), shown
as “classifier” in Figure 2, and the second list contains the refined coordinates of the
proposed region (coordinates “x” and “y” of the upper-left vertex of the region, width
“w,” and height “h”), shown as “box regressor” in Figure 2. Since multiple proposals
may correspond to the same object, the Non-Maximum Suppression algorithm (NMS) is
applied to eliminate redundant and overlapping regions, retaining only the most confident
RoIs. In the RoI Pooling process, these RoIs are resized to a standard bounding box size
and then flattened to a fixed-length feature vector to ensure that proposals of different
sizes are represented uniformly and can be fed into a fully connected layer.

In the second stage of detection, the resized vectors are processed by the “bound-
ing box head” of the network, composed by two FC layers and two sibling layers: One
branch (“softmax”) is another FC layer with softmax activation function, responsible for
classifying the object among the labels or as background for object classification, which
assigns a class label to the RoI. The other branch (“bounding box regressor”) refines the
coordinates of the RoI bounding box to align it more accurately with the actual object
boundaries.

The learning process of Faster R-CNN involves a series of forward and backward
passes on training images. During the forward pass, RoIs are computed using the RPN,
and these proposals are further refined with the bounding box head. Subsequently, the
error in the generated predictions is calculated. The Faster R-CNN’s loss function com-
bines different components in a weighted manner: the prediction error of potential RoI
proposals generated by the RPN, the error in regressing the bounding box coordinates,
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and the error in classifying the object contained within the bounding box. Following the
computation of this error, the weights and biases of the RPN and bounding box head
are adjusted through the backpropagation algorithm. While it is possible to train the
backbone network in this process, it is common for this network to be leveraged from
other tasks through the transfer learning process, as explained in Section 1.6.

Figure 2 – Faster R-CNN architecture

Source: Author’s collection

1.4 RetinaNet
Similar to the Faster R-CNN network, RetinaNet is a DL model designed for object
detection in images, drawing labeled bounding boxes around objects of interest (LIN et
al., 2017). Introduced in 2017, its objective was to strike a balance between the accuracy
of Faster R-CNN, considered a two-stage object detection model, and the speed of YOLO
(You Only Look Once), considered an one-stage object detection model (REDMON et al.,
2016). The distinction between one-stage and two-stage models lies in the inclusion of
a RPN as an intermediary step, often referred to as the “first stage” in generating RoIs.
One-stage models bypass this intermediary step, enabling faster predictions. However,
until the advent of RetinaNet, they were generally considered less accurate (LIN et al.,
2017).

Figure 3 provides an overview of the RetinaNet model. It starts with the prepro-
cessing backbone network, which can be a ResNet, ResNeXt, or similar CNN architecture,
removing the flatten and FC layers. The backbone’s purpose aligns with that of Faster
R-CNN: extracting high-level features from the input image to generate the feature map.
These backbone networks are typically deep, incorporating multiple convolution layers
consecutively, thereby generating a sequence of feature maps that progressively capture
more complex features. This sequence of feature maps is visually represented in Figure 3
as an ascending pyramid of layers enclosed within the box labeled “CNN backbone.”
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RetinaNet introduces an innovation by integrating the Feature Pyramid Network
(FPN) atop the backbone. FPN plays a pivotal role in detecting objects of diverse scales
within an image. It achieves this by constructing a pyramid of feature maps at multiple
scales, empowering the model to detect both small and large objects. For each layer of the
feature map pyramid, RetinaNet generates several potential object location candidates.
It does so by using the Anchor Box concept, similar to Faster R-CNN, where predefined
rectangles with varying sizes and aspect ratios pass over all pixels of the feature map
in pursuit of objects of interest. However, the distinction is that, while Faster R-CNN’s
RPN proposes RoIs based on a single feature map, FPN uses anchor boxes to predict
object locations across distinct feature maps of varying dimensions. Subsequently, the
Bounding Box Head analyses each object location predicted with the anchor boxes. This
stage encompass (i) determining whether an object is present within a specific anchor box
and assigning a corresponding class label and (ii) fine-tuning the anchor box coordinates
to achieve a more precise alignment with the detected object’s boundaries.

The learning process of RetinaNet involves a series of forward and backward passes
on training images. During the forward pass, feature maps are extracted, and the bound-
ing box regression and object classification are performed through the bounding box head.
The subsequent step entails calculating the loss by comparing the predicted outputs with
the GT annotations. This loss is focused on the bounding box head and comprises two
components: classification loss and regression loss. A significant contribution of RetinaNet
is the introduction of Focal Loss, which serves as the loss function in the classification
part. Focal Loss addresses the challenge of class imbalance in object detection datasets. It
down-weights well-classified examples during training, allowing the model to concentrate
more on challenging examples. This approach significantly enhances the detection of rare
or complex classes (LIN et al., 2017). Based on this combined error, the weights and
biases of the bounding box head are adjusted using the backpropagation algorithm. Sim-
ilar to Faster R-CNN, the backbone network can be reused through the transfer learning
process, as elucidated in Section 1.6.

1.5 Mask R-CNN
Mask R-CNN (HE et al., 2017) is an extension of the Faster R-CNN architecture in-
troduced in 2017, incorporating a novel “mask head” branch, parallel to the two other
described for Faster as “bounding box head”. This addition expands the network’s ca-
pabilities, enabling it to predict pixel-level object masks in addition to object bounding
boxes.

Figure 4 presents the Mask R-CNN. The backbone CNN serves the same role
as in Faster R-CNN and RetinaNet, processing the input image to generate the feature
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Figure 3 – RetinaNet architecture

Source: Author’s collection

map. This CNN can be a VGG-16, ResNet, DenseNet, among others, and can utilize pre-
trained weights and biases. Another component shared with Faster R-CNN is the RPN,
which aims to propose potential RoIs where objects may be located. These proposals
are generated using predefined anchors boxes and the feature map, subsequently scored
based on their objectiveness and refined in position. Similar to Faster R-CNN, the NMS
algorithm is employed to eliminate overlapping and low-confidence regions, selecting a
configurable number of top candidates.

One difference between Faster R-CNN and Mask R-CNN is the replacement of
the RoI Pooling technique with RoI Align. While the core objective remains consistent
(generating vectors of uniform size from the top proposals provided by the RPN and NMS)
RoI Align avoids the misalignment issue encountered when converting pixel coordinates
to feature map coordinates (HE et al., 2017). This change significantly enhances mask
prediction accuracy. Subsequently, these vectors are delivered to both the bounding box
head (which remains identical to that of Faster R-CNN) and the mask head, a fully
convolutional network responsible for segmenting the object of interest. The Mask Head
assigns labels to each pixel within the bounding box, determining whether it belongs to
the object or the background.

As Mask R-CNN is an extension of Faster R-CNN, its learning process closely
mirrors that of its predecessor. As described in the preceding paragraphs, beyond object
detection, Mask R-CNN creates pixel-wise segmentation masks for each identified object.
Consequently, the loss function employed for error computation encompasses components
from RoI proposals, classification, bounding box regression, and introduces a novel ele-
ment related to segmentation mask prediction. Following the calculation of the error, the
backpropagation algorithm adjusts the weights and biases within both the RPN and the
Bounding Box Head, as well as the Mask Head.

Cascade R-CNN (CAI; VASCONCELOS, 2018), introduced in 2018, is an expan-
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Figure 4 – Mask R-CNN architecture

Source: Author’s collection

sion of the Faster and Mask R-CNN models, aiming to enhance object detection and
segmentation accuracy. This innovative approach creates a cascade architecture by inte-
grating multiple detectors, with the objective of iteratively refining bounding boxes and,
consequently, segmentation masks at each stage of detection. In this cascade model, the
initial bounding box head refines and assigns class labels to the bounding boxes proposed
by the RPN, using the features from the backbone network. In the next stages this
iterative process is meticulously repeated, with each successive bounding box head con-
tributing to the refinement of bounding box coordinates and class labels inherited from
the previous bounding box heads. These stages are designed to target the reduction of
false positives and the enhancement of object detection accuracy (CAI; VASCONCELOS,
2018). Each individual bounding box head uses a specific Intersection over Union (IoU)
threshold for bounding box generation and uses the outputs of previous detectors to refine
its own weights. Furthermore, Mask Heads are implemented in each Bounding Box Head,
similarly to the Mask R-CNN model.

1.6 Final Remarks
Interproximal and periapical radiographs constitute essential intraoral examinations in
dental diagnostics. However, they can cause a higher level of patient discomfort com-
pared to PANs, necessitating patient tolerance and cooperation (ABDINIAN et al., 2015).
In contrast, PANs provide a comprehensive view of the entire dental arch within a single
examination. This procedure is characterized by its simplicity, speed, minimal radiation
exposure, and enhanced patient comfort (AKKAYA et al., 2006). The field of computer
vision has witnessed significant advancements in recent years, especially in the applica-
tion of DL models. These models have grown in complexity and have shown remarkable
accuracy in object detection and segmentation tasks. Consequently, with access to an
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appropriate database and suitable annotations, it is possible to train DL models to ac-
curately segment teeth in PANs, thereby creating a valuable tool for diagnostic support,
epidemiological research among others.

In this research, advanced DL detection networks, including Faster R-CNN and
RetinaNet, as well as the instance segmentation networks Mask R-CNN and its adapted
version, Cascade Mask R-CNN, were employed. To avoid implementing each of these
networks from scratch, the models provided by the open-source tool Detectron2, developed
by the Facebook Artificial Intelligence Research Group (FAIR)1, were leveraged. Training
a model from scratch for a specific detection or segmentation task requires a substantial
volume of annotated data and considerable computational resources. To mitigate these
challenges, the transfer learning technique was adopted. In transfer learning, a model
previously trained on one task is adapted or fine-tuned for a second task.

This fine-tuning process involves reusing the learned weight and bias values from
the pre-trained model for a new task, utilizing a different dataset. In this research we
utilized models pre-trained by FAIR for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)2. These pre-trained models had been trained on two datasets: the
Common Objects in Context (COCO) instance segmentation dataset3, containing over
330 thousand images and 1.5 million annotated objects spanning more than 80 categories,
and the Large Vocabulary Instance Segmentation (LVIS) dataset4, encompassing over
164 thousand images and 2 million annotated objects across more than 1200 categories.
To adapt the weights and biases of these models for our specific task, the fine-tuning
technique was employed. This involved not retraining the weights and biases of the
backbone networks (freezing). With our dataset, we only trained the weights and biases
of the RPN and FPN (when applicable), as well as the bounding box heads and mask
heads of the networks.

1 Detectron2. Available at https://github.com/facebookresearch/detectron2
2 Imagenet LSVR Challenge. Available at https://www.image-net.org/challenges/LSVRC/index.php
3 COCO dataset. Available at https://cocodataset.org/#home
4 LVIS dataset. Available at https://www.lvisdataset.org





2
Related Work

Systematic Mapping (SM) consists of the identification and classification of primary stud-
ies, aimed at gathering information into a particular subject matter, with the goal of
identifying best practices and common trends. SM adopts a broad research question and
refrains from employing meta-analysis and narrative synthesis techniques (KITCHEN-
HAM; CHARTERS, 2007).

As previously stated, this study forms a component of the InReDD group’s ini-
tiatives and lays the groundwork for ongoing research endeavors within the same group.
Notably, it intersects with another research on tooth numbering employing the Federation
Dentaire Internationale (FDI) system, directly influencing the proposed teeth instance seg-
mentation. This project is being pursued by Breno Augusto Zancan, a master’s student
of the Programa de Pós Graduação em Computação Aplicada (PPG-CA) and who is also
a member of the InReDD group.

Given the close connection between these research, a collaborative SM was exe-
cuted to investigate the context of both areas (teeth detection/segmentation and tooth
numbering). The objective was to collect information and conduct an analysis of the
current state of the art within this areas. The task of dentomaxilo region detection (con-
sidering mandible, maxilla and teeth), which is a component of this research, was omitted
from the SM. A preliminary literature review we conducted prior to this SM revealed that
dentomaxilo region detection is an infrequently explored area in the research community,
with no dedicated studies available.

The manual developed by (KITCHENHAM; CHARTERS, 2007) served as a guide-
line in planning this SM. For the systematic organization and compilation of the acquired
information, we opted for the online tool Parsifal 1. The methodologies employed, the
results obtained, and the discussions generated from this research have been formally sub-
mitted as an article titled “Deep Learning to Detect and Classify Teeth, Dental Caries,
and Restorations: A Systematic Mapping” to the Journal Dentomaxillofacial Radiology.
1 Parsifal. Available at https://parsif.al/about/
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Currently, the article is undergoing the peer review process.

The purpose of the SM is to provide theoretical support for this research. Its
development is briefly outlined in this chapter, following these phases: Section 2.1 presents
the SM planning and details its conduction with the search string formulated during the
planning, and Section 2.2 presents and analyzes the mapping results.

2.1 Systematic Mapping Planning and Con-
duction

In the planning phase, we established the SM scope. The principal aim of this SM was to
systematically analyze papers that implemented Deep Learning (DL) methodologies for
detecting or segmenting teeth, caries, and restorations, and also the classification of teeth
in dental radiographs. To structure our investigation, we divided this objective into five
specific goals (SGs) and corresponding research questions (RQs):

• [SG1]: The identification and comparison of the source and annotation protocol,
including evaluation of consistency (eg, number and experience of annotators) and
adequacy (eg, number of samples) of the databases.

– RQ1: What types, sources and numbers (training, validation and testing) of
radiographs are used by the retrieved studies? Has the use of these images been
approved by an ethics committee? How many specialists annotate images and
prepare the study dataset? How good are they in terms of levels of knowledge
and experience? Is there information about how the datasets are stored during
the annotation period? What is the availability of the datasets? Public or
private repositories?

• [SG2]: The identification of the methods used to classify teeth, caries and restora-
tions.

– RQ2: What techniques are used to classify decayed and restored teeth on
radiographs?

• [SG3]: The identification of the methods used for numbering or identifying teeth.

– RQ3: What techniques number or identify teeth on radiographs?

• [SG4]: The identification of the methods used to segment or detect teeth, caries
and restorations.
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– RQ4: What techniques segment or detect teeth, caries and restorations on
radiographs?

• [SG5 Outcome]: Comparisons of the metrics that evaluate the methods resulting
of SG2,SG3 and SG4.

– RQ5: What evaluation criteria measure the quality of the results? What are
the best results considering each technique?

To construct the search strings, we create a collection of keywords designed to
tackle the RQs. RQ 1 and 5 focus respectively on datasets and results evaluation. In
contrast, RQs 2, 3, and 4 correspond to distinct tasks. Consequently, distinct search
strings were created for RQ 2, 3, and 4, each incorporating task-specific keywords. Lastly,
a fourth search string was generated by amalgamating the three previous ones, with the
objective of identifying papers that simultaneously address all three tasks of RQ 2, 3,
and 4. We also created a set of keywords named “Context Keywords” (CK) to restrict
the research scope. All search strings include CK, which comprises the following terms:
(“dentistry” OR “digital imaging” OR “odontology” OR “radiology”) AND (“tooth” OR
“carie” OR “decay” OR “dent” OR “dentition” OR “filling” OR “restoration” OR “teeth”)
AND (“deep learning” OR “mask” OR “neural network” OR “u-net”) AND (“x-ray” OR
“bitewing” OR “panoramic” OR “periapical” OR “radiograph”). The strings were created
as follows:

• String 1 (S1): CK AND (“classification” OR “labeling”)

• String 2 (S2): CK AND (“numbering” OR “type identification”)

• String 3 (S3): CK AND (“segmentation” OR “demarcation” OR “detachment” OR
“mask” OR “partition)

• String 4 (S4): CK AND S1 AND S2 AND S3

The databases utilized for this SM were the ACM Digital Library2 and the IEEE
Digital Library3, both focused on computing. Additionally, we search on PubMed4, fo-
cused on medical and dental research, and Scopus5, a renowned digital library in both
the fields of computing and dentistry. The search strings were applied to these digital
libraries between April 22 and April 28, 2022, and were updated between June 8 and June
18, 2023.
2 ACM Digital Library. Available at http://portal.acm.org
3 IEEE Digital Library. Available at http://ieeexplore.ieee.org
4 PubMed. Available at https://pubmed.ncbi.nlm.nih.gov
5 Scopus. Available at http://www.scopus.com
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The selection criteria were defined during the planning phase. Inclusion criteria
(IC) permitted the approval of works that directly addressed the research questions. For
our context, the sole inclusion criterion was (IC): the paper aligns with RQ2, 3, or 4.
Exclusion criteria (EC) were established to remove incomplete, inaccessible, or irrelevant
articles or publications other than articles. The adopted exclusion criteria were as follows:
EC1: The full paper is not available on the Web or on the Portal de Periódicos da Capes
(Available at https://www.periodicos.capes.gov.br); EC2: The article is a book chapter;
EC3: It is not a primary study; EC4: The goal of the paper does not collaborate with
the research questions; EC5: The article does not use dental radiographs; EC6: The
article was published before 2012 (the use of DL in images became popular with the
publication of (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), which took place after
that date (MOHAMMAD-RAHIMI et al., 2022).

During the conduction phase of the SM, the search strings were executed across
the chosen digital libraries, and the found articles were submitted to a two-step filtering
process. In the initial step, duplicate articles between databases and those meeting the
ECs were excluded, with only the titles and abstracts considered. In the subsequent round
of filtering, the remaining articles were fully analysed and selected based on both the ECs
and IC. In total, 394 articles were initially found. After the first filtering stage, 125 articles
remained, and after the second round of filtering, 63 articles were approved. Furthermore,
a manual search was conducted within the references of the 63 approved articles to identify
related articles that had not been initially discovered. This supplementary search yielded
an additional 6 studies, resulting in a total set of 69 articles for the SM.

2.2 Systematic Mapping Results
During our SM, we categorized the 69 approved articles into eight distinct categories based
on their primary objectives. Here are the categories along with the respective number of
articles in each:

• C1 (1 article): Tooth detection;

• C2 (14 articles): Tooth classification into decayed tooth or restored tooth classes;

• C3 (10 articles): Tooth semantic segmentation;

• C4 (4 articles): Tooth instance segmentation;

• C5 (21 articles): Tooth classification into type or FDI numbering;

• C6 (8 articles): Detection of caries or restoration;
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• C7 (3 articles): Classification of caries stages or restoration types;

• C8 (8 articles): Others.

For this research, the 4 articles in category C4 stand out, which have the same
objective as ours. Below, we provide concise summaries of each of these articles.

The first article focuses on performing instance segmentation of teeth in panoramic
radiographs (PANs) using the Mask R-CNN network pretrained without altering its de-
fault parameter values. To train the network, the authors adapted a subset of the UFBA-
UESC Dental Images dataset (SILVA; OLIVEIRA; PITHON, 2018), which was annotated
for the semantic segmentation of teeth. They manually divided the region containing
teeth into separate entities. Utilizing 276 PANs, the authors achieved precision, recall,
and F1-score values of 0.94, 0.84, and 0.88, respectively (JADER et al., 2018).

The second article shares the same objective of segmenting tooth instances in
PANs. It utilizes 50 annotated images from their specific dataset (obtained from Yonsei
University Dental Hospital) and employs data augmentation techniques to train the Mask
R-CNN network. Rather than containing all tooth annotations within a single image, the
authors generate an image/annotation pair for each tooth. To illustrate, if a radiograph
comprises 28 teeth, this data augmentation technique results in the generation of 28
training images. This approach yields precision, recall, and F1-score values of 0.858,
0.893, and 0.875, respectively (LEE et al., 2020).

The third article employs a distinct strategy for tooth instance segmentation. The
initial step involves detecting teeth in PANs using the DeepLabV3 object detection net-
work. Subsequently, they apply an fully connected network (FCN) to each bounding box
encompassing the detected teeth, thereby creating masks for individual teeth. The FCN
used in this process is the same segmentation network employed in the Mask R-CNN.
Using 153 PANs from the M3BE database (DOI: 10.1111/ocr.12297), the authors achieve
precision, recall, and F1-score values of 0.969, 0.983, and 0.975, respectively (LEITE et
al., 2021).

The fourth and final article introduces the concept of Federated Learning (FL), de-
scribed by the authors as a method that “enables collaborative training of Artificial Intel-
ligence (AI) models from multiple data sources without directly sharing data” (SCHNEI-
DER et al., 2023). To achieve individual tooth segmentation, the authors utilize 4,177
PANs from nine diverse centers worldwide, including universities and clinics. They employ
the UNet++ network for this purpose. The key idea is that each center independently
trains the same model, and subsequently, the parameter sets found in each center are
aggregated into a single final model. Although they report the F1-score achieved by the
models at each center, the paper does not explicitly mention the metric achieved by the
final model, with aggregated parameters (SCHNEIDER et al., 2023).
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Furthermore, a number of other articles included in the SM utilize tooth instance
segmentation as an intermediary step to accomplish their primary objectives. Notably,
two categories, C2, “Tooth classification into decayed tooth or restored tooth classes” ,
and C5, “Tooth classification into type or FDI numbering” , capture this trend. From
this subset of articles, five have been chosen for detailed discussion. These selections were
made based on their use as sources of inspiration for our research (CHEN et al., 2019;
MURAMATSU et al., 2020; ESTAI et al., 2022) and their application of metrics similar
to those employed in our study (SILVA et al., 2020; PINHEIRO et al., 2021). Here is an
overview of these articles:

In the category C2, an application was conducted in (CHEN et al., 2019) for
the automatic detection and numbering (using the FDI system) of teeth, including the
identification of missing teeth. The authors employed the Faster R-CNN architecture
in conjunction with a custom Deep Neural Network, trained using 1250 periapical radio-
graphic images. To evaluate the performance of the developed tooth detection system,
three expert dentists with varying levels of experience were invited to annotate the test
dataset. The results of the proposed system closely matched those of the least experienced
dentist. Tooth detection achieved a precision of 0.988 and a recall of 0.985 (CHEN et al.,
2019).

In the category C5, (MURAMATSU et al., 2020) introduces a semi-automatic
technique for dentomaxilo region detection. The authors aimed to precisely delineate the
area of interest in PANs, detecting and classifying teeth into categories such as incisors,
canines, premolars, and molars. Additionally, they sought to classify tooth condition, dis-
tinguishing between healthy teeth and those with non-metallic, light metallic, or complete
metallic restoration. Employing the Canny edge detector and contrast filters, with vari-
ous manual adjustments and post-processing refinements, they isolated the dentomaxilo
region by locating the mandible line and the highest point of the hard palate. For the
tasks of tooth detection and classification, they harnessed the power of the GoogleNet
and ResNet networks. With a training set comprising 100 PANs, the authors achieved
a sensitivity of 96.4% for detection, and accuracy rates of 93.2% and 98.0% for tooth
type and tooth condition classification, respectively. The authors did not furnish metrics
pertaining to the detection of the dentomaxilo region.

Also in C5, the authors (ESTAI et al., 2022) set out to detect the dentomaxilo re-
gion and, from within this area, identify and enumerate teeth with the FDI nomenclature.
To annotate the dentomaxilo region, they utilized the space corresponding to the union
of tooth bounding boxes as a teeth region annotation (similar to the dentomaxilo region).
Employing a U-Net, they segmented this defined region. Subsequently, a Faster R-CNN
was deployed to detect and enumerate each tooth within this segmented area. Leverag-
ing a dataset comprising 591 PANs, the authors achieved recall and precision metrics for
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tooth detection (0.9919 and 0.9936) and tooth numbering (0.9803 and 0.98). However,
it’s noteworthy that the authors did not provide metrics related to the detection of the
dentomaxilo region.

Still in C5 category, the authors (SILVA et al., 2020) conducted instance segmenta-
tion and tooth numbering on PANs using DL techniques. They compared the performance
of the Mask R-CNN, Hybrid Task Cascade (HTC) (LIU et al., 2018a), Split-Attention
Network (ResNeSt) (ZHANG et al., 2020), and Path Aggregation Network (PANet) (LIU
et al., 2018b) networks on a dataset consisting of 543 images. The PANet network deliv-
ered the most promising results, achieving a mean Average Precision (mAP) of 71.9 for
segmentation and 74.0 for numbering, using the FDI system.

Another C5 paper (PINHEIRO et al., 2021) conducted a comparative analysis
between two networks, Mask R-CNN and Mask R-CNN with the PointRend module, for
the segmentation and numbering (FDI) of permanent and deciduous teeth in PANs. In
a dataset containing 874 images with individually segmented teeth, Mask R-CNN with
PointRend achieved results of 77.3 mAP for segmentation and 75.3 mAP for numbering.

Below, we have compiled some general trends and discussions observed after ana-
lyzing all 69 articles that constitute the SM.

• Upon examining the publication dates of the 69 articles, a significant increase in
interest in the subject in recent years becomes evident. This is reflected in the
growth rate of publications between 2017 and 2022, with the latter year witnessing
the highest number of articles published (20 papers). This trend suggests that
2023 and the subsequent years may experience even more extensive research and
publications focused on the application of DL in Dentistry.

• (Related to Research Question - RQ - 1) The majority of these articles (66.667%)
utilize PANs. In terms of image origin, most papers employ proprietary datasets, of-
ten without divulging them (75.362%). Additionally, not all articles provide explicit
details regarding ethical approvals for data utilization or the annotation processes,
including the amount and experience of the annotators. This lack of detailed infor-
mation in scientific research publications increases the risk of biases, raises doubts
about result reliability, and impedes the replication of experiments and progress in
the state of the art.

• (Related to RQs 2, 3 and 4) Concerning the DL networks applied, the segmentation
networks U-Net (27.536%) and Mask R-CNN (18.841%) have the highest frequency
of use. In contrast, specialized detection networks such as Faster R-CNN and YOLO
make fewer appearances. This observation suggests that despite segmentation being
a more complex task than detection, researchers are opting for segmentation due



50

to its capacity to provide richer spatial information, which can be useful in future
applications.

• (Related to RQ 5) The prevailing performance metrics adopted, in general, for re-
sult reporting are, in order, accuracy, recall, and precision. Only 23.188% of the
analyzed papers adhere to some form of guideline, such as STARD (Standards for
Reporting Diagnostic accuracy Studies), CLAIM (Checklist for Artificial Intelli-
gence in Medical Imaging), or Checklist AI (Checklist for Artificial Intelligence in
Dental Research), to standardize the reporting of methodologies and results. While
this percentage may appear relatively low, there appears to be a growing trend in
the adoption of guidelines from 2019 to 2022.

2.3 Final Remarks
This chapter has outlined the planning, execution, and outcomes of a Systematic Mapping
designed to explore the current state of the art for teeth detection/segmentation and tooth
numbering. There has been a consistent growth in the number of publications in this
field in recent years. The majority of articles identified in the SM employ PANs, utilize
proprietary datasets, and offer limited information about the annotation process. Mask
R-CNN and UNet, which focus on segmentation, are the most frequently used networks,
while accuracy, recall, and precision are the preferred evaluation metrics.

Out of all the studies reviewed, only four were focused on tooth instance segmenta-
tion, with others integrating this task as an intermediate component of their research. The
most notable results achieved were a precision of 0.969 (LEITE et al., 2021) and an mAP
of 77.3 (PINHEIRO et al., 2021). There remains potential for further enhancements in
the precision and mAP of tooth segmentation models by implementing innovative strate-
gies. This ongoing progress promises to deliver a valuable tool for diagnostic support,
epidemiological research, and various other applications.

In this chapter, we elucidated the execution methodology of the SM, presented its
RQs and key trends and discussions observed after answering these RQs. Our compre-
hensive article on this SM, titled “Deep Learning to Detect and Classify Teeth, Dental
Caries, and Restorations: A Systematic Mapping”, is presently undergoing peer review
for the Journal of Dentomaxillofacial Radiology. It contains our detailed findings for each
of these RQs. The trends and discussions presented here are the ones that contributed to
the strategic decisions for this research:

• We opted to work with panoramic radiographs (PANs), driven by their prevalence
in this mapping (66.667%). In addition, we chose to work with PANs because they
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contain all teeth in the dentomaxilo region in a single image, coupled with the
advantages of cost-effectiveness and minimal radiation exposure.

• We chose to test the performance of the Mask R-CNN network because, among
other reasons, it is the second most common DL network found in the mapping
(18.841%). We did not apply the U-Net network because it is focused on semantic
segmentation. Other reasons for choosing the Mask R-CNN include its open-source
implementation and good performance in international challenges focused on object
instance segmentation.

• We adopted the recall and precision metrics in our work, two of the most commonly
found metrics. Additionally, we incorporated the Average Precision metric for its
adoption in assessing image detection and segmentation networks (ZOU et al., 2023),
along with the F1-score metric, which strikes a balance between recall and precision.

We offer a concise overview of the four articles classified as C4, focusing on Tooth
Instance Segmentation, in our SM. Moreover, we include summaries of other articles used
either as sources of inspiration or for comparative analysis alongside our results. For a
comprehensive exploration of articles across all categories of the SM, please refer to our
full-length article(CARNEIRO et al., 2023).





3
Materials and Methods

Our objective is the precise segmentation of teeth in panoramic radiograph (PANs), where
dentomaxilo region detection (including mandible, maxilla and teeth) serves as an initial
step to eliminate surrounding areas from the image. We aim to achieve the highest
performance in mean Average Precision (mAP) for both detection and segmentation tasks.
To attain this objective, we have designed and developed a modular system that combines
two distinct Deep Learning (DL) networks. The utilization of two networks in combination
to accomplish a goal is a prevalent approach in the literature. While a single network
may suffice for the proposed task, recent studies have demonstrated significant potential
by breaking down the overarching objective into smaller tasks and employing specialized
networks for each (MURAMATSU et al., 2020; LEITE et al., 2021; ESTAI et al., 2022).

Figure 5 illustrates the project’s design, with dentomaxilo region detection and
teeth segmentation presented as two separate tasks. For each task, we specify the dataset
used, the applied network, and provide an example of input and output for that network.

As presented in Section 1.1, PANs capture all teeth within a single image, including
the mandible, maxilla, and parts of facial bones (SILVA; OLIVEIRA; PITHON, 2018),
and that is why we chose to work with this type of dental image, a choice observed in
most related works, as presented in Section 2.3. Given our focus on teeth segmentation,
any regions outside the dentomaxilo area are irrelevant. Hence, Task 1 aims to detect the
dentomaxilo region (utilizing a bounding box) and remove all PAN portions beyond this
region of interest. This task was influenced by the findings in (ESTAI et al., 2022), which
showcase a notable reduction in false positives during tooth detection by eliminating the
external PAN regions. To execute this task, we utilized 935 PANs (indicated in Figure 5
as DS) and the RetinaNet network (LIN et al., 2017).

Expanding upon the dentomaxilo area established in the previous task, Task 2
focuses on the precise identification and delineation of each tooth’s edges. This pixel-level
contour can be applied to various future applications, including tooth pathology diagnosis.
In such scenarios, segmentation may outperforms detection as it allows the exclusion of
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non-tooth regions, such as adjacent jaw and neighboring teeth. Moreover, segmentation
inherently encompasses detection since bounding boxes can be derived from the outermost
pixels of the segmented object. We applied the Cascade Mask R-CNN network (CAI;
VASCONCELOS, 2018) and employed 605 segmented PANs to accomplish this task (in
Figure 5, the dataset used is denoted as ds’ since it is a manipulated subset of the original
dataset DS).

Figure 5 – Project design

Source: Author’s collection

This project is part of a multidisciplinary research initiative at the University of
São Paulo (USP) known as InReDD (Interdisciplinary Research Group in Digital Den-
tistry). The group is divided into two cores: one focused on computer science within the
Department of Computer Science and Mathematics (DCM) at the Faculty of Philosophy,
Sciences, and Letters in Ribeirão Preto (FFCLRP - USP), and the other dedicated to
dentistry and radiology within the Department of Dental Materials and Prosthodontics
(DMDP) and the Department of Stomatology, Public Health, and Legal Dentistry (DE-
SCOL) at the Faculty of Dentistry in Ribeirão Preto (FORP - USP). The group includes
professors, postdoctoral researchers, doctoral and master’s students, as well as undergrad-
uate research students.

InReDD’s objective is to develop a comprehensive system encompassing segmen-
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tation, classification, and numbering tasks. This system is designed to: a) detect the
dentomaxilo area, b) segment teeth in radiographic images, c) numbering the detected
teeth, d) identify missing teeth, e) identifying carious teeth, and f) identifying restored
teeth in PANs. Figure 6 presents a visual representation of the project’s architecture. The
specific project outlined in this document focuses on the initial tasks of (a) dentomaxilo
region detection and (b) teeth segmentation (depicted as stages 2 and 3 in Figure 6).
Another component of this solution involves numbering teeth according to the nomencla-
ture established by the Federation Dentaire Internationale (FDI), represented as stage 4.
This stage is the focus of the research conducted by the master’s student Breno Augusto
Guerra Zancan (ZANCAN, 2023). These stages together aim to develop a tool capable
of generating initial reports on teeth present in PANs. Utilizing the outcomes of this
tool, various specialized applications can be developed. Examples include the detection
of carious teeth (Stage 5) and restored teeth (Stage 6), among numerous other potential
applications. The research dataset employed in this project was meticulously created by
FORP dental and radiology professionals and is identified as stage 1 in Figure 6.

Figure 6 – InReDD project diagram

Source: Author’s collection

The following sections will provide a detailed description of the dataset used, the
definition of the implemented DL networks, the experimental procedures, and the em-
ployed metrics to measure the performance of the experiments.

3.1 Dataset
Our system’s initial dataset comprises 935 PANs compiled by the dentists and radiolo-
gists of InReDD. This dataset underwent approval by the local Research Ethics Commit-
tee (Plataforma Brasil, CAAE: 51238021.2.0000.5419) prior to its utilization. Beyond its
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capacity to capture all teeth in a single image, our choice to work with PANs was influ-
enced by their prevalence in analogous studies, as outlined in Section 2.3. The process
of generating the dataset, including image selection and annotation, has been extensively
documented by the dental professionals within the InReDD group in a submitted article
that is currently undergoing peer review at Oral Surgery, Oral Medicine, Oral Pathology
and Oral Radiology (COSTA et al., 2023). In the subsequent paragraphs, we will outline
key aspects of the dataset’s composition and the annotation protocol employed.

The dataset consists of PANs obtained from adult subjects aged 18 and above.
These radiographs were randomly selected by a radiologist from the clinical image repos-
itory at FORP-USP. Figure 7 showcases three random samples of these PANs, one eden-
tulous and two dentate. These radiographs were originally acquired for routine patient
care and have the patient’s consent for using the data in research. Sourced from the same
clinical setting, these PANs were captured using the Veraviewepocs device by J. Morita
in Japan. Different exposure settings were employed, tailored to each patient’s unique
characteristics. These collected PANs exhibit diagnostic quality, characterized by their ad-
equate sharpness and contrast. The dataset excludes radiographs featuring deciduous or
mixed dentition, supernumerary teeth, bone fractures, bone loss, images of recent surgical
interventions, orthodontic appliances, dental implants or any other metalic appliance in
bones, fixed dental prosthesis and bone lesions of any type within the maxillofacial region.
Radiographs displaying low contrast, limited sharpness, or motion artifacts were likewise
omitted from the dataset. These exclusions were implemented to create an dataset free
from outliers and unwanted noise.

Figure 7 – Examples of PANs from the dataset

Source: Author’s collection

Following this selection process, the chosen images underwent anonymization and
were stored in a PACS system, namely LyriaPacs - I-Medsys - Innovative Medical Infor-
matics software 1. The radiographs were stored in their original JPEG format, maintain-
ing their dimensions of 2903 x 1536 pixels and 300 dpi resolution. No adjustments, such
as brightness, contrast, cropping, or resizing, were applied during this phase.

The dataset underwent annotation in two distinct cycles, conducted as follows:

1 LyriaPacs. Available at http://lyria.i-medsys.com/lyriaViewer-web/
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Initially, all 935 PANs received bounding box annotations. This task was ac-
complished by three radiologists, each having a decade of experience. One radiologist
individually labeled the dentomaxilo region (comprising maxilla, mandible and teeth) in
the radiograph. The bounding box borders for the dentomaxilo region were limited at
right and left by the most prominent anatomic landmark, (at the angle of mandible or
the mandibular condyle) and similarly at bottom (the lowest region of the mandibular
shymphisis) and top (at upper region of the mandibular condyle). Subsequently, a second
radiologist independently validated the annotations. In discrepancy cases, a third radiol-
ogist was consulted to arbitrate. Dentomaxilo regions were categorized as either dentate,
edentulous (no teeth), edentulous mandible (no teeth in the mandible), or edentulous
maxillae (no teeth in the maxillae). Figure 8 a) illustrates an example of a PAN with
annotations generated in this initial cycle. In this example, the dentomaxilo region is
classified as “dentate”, indicated by the letters “De” on the image. The outcome of this
initial cycle yielded a dataset with 935 bounding boxes outlining the dentomaxilo area, a
resource used in Task 1 (as depicted in Figure 5).

Subsequently, two radiologists individually segmented the teeth within a random
subset of 605 PANs, excluding those with edentulous mouths (120 images). The remaining
210 PANs categorized as dentate, edentulous mandible or edentulous maxillae in the first
annotation cycle were not segmented due to insufficient time before the project deadline.
Employing the open-source annotation software, LabelMe 2, these radiologists delineated
the tooth contours pixel-wise, following the labels generated during the first annotation
cycle. In this segment of 605 images, the radiologists successfully labeled a total of 14,582
teeth. Figure 8 b) presents an example of a PAN with annotations generated during
this second cycle. In this instance, all teeth were outlined with polygons and classified as
“tooth”, as indicated in the image. In instances of tooth overlap (such as when the crowns
of two teeth slightly intersect due to misalignment and/or the X-ray projection orientation)
annotators generated polygons that overlap while preserving the potential complete shape
of each tooth, adopting approaches from the dataset provided by (PINHEIRO et al., 2021).
Consequently, a given pixel in the image may be associated with more than one object.
Figure 9 provides a fragment of the annotated example showcased in Figure 8. This
close-up highlights the creation of overlapping polygons, aiming to capture the actual
shape of each tooth. This second cycle created 605 segmented PANs, applied on the
implementation of Task 2 (as shown in Figure 5).

It is important to state that the annotation protocol was collaboratively devel-
oped by professionals from the fields of Radiology, Dentistry, and Computing within
the InReDD group, following discussions and calibration procedures. This protocol was
crafted to ensure the annotators’ alignment and to generate datasets that are robust,

2 LabelMe. Available at http://labelme.csail.mit.edu
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Figure 8 – Examples of annotations visually represented on PANs

Source: Author’s collection

Figure 9 – Examples of overlapping annotations

Source: Author’s collection

manipulable, operationally feasible, and user-friendly.

3.2 Dentomaxilo Region Detection

PAN captures all teeth, the jaw, and a portion of facial bones in a single image (SILVA;
OLIVEIRA; PITHON, 2018). However, for precise teeth segmentation, only the den-
tomaxilo region holds relevance. Therefore, the first task focuses on detecting and crop-
ping the dentomaxilo area within the PAN, discarding the non-essential elements outside
this area. This preparatory task allows the next step to learn how to segment teeth with
only relevant information, reducing computational costs by decreasing the image size. The
research carried out by (ESTAI et al., 2022) validated that excluding this region prevents
the network from erroneously detecting teeth in improbable locations (false positives).
This study served as a source of inspiration for our work.

All 935 images in the dataset originally have dimensions of 2903x1536 pixels, with
8-bit grayscale intensity. The average size of the bounding boxes delimiting the dentomax-
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ilo area annotated by experts in all these images is 2444x1194. Considering this average
size, by cropping only the dentomaxilo region, approximately 35% of the original image
size is eliminated, without using resizing techniques.

The equipment used to generate PANs is designed to keep the patient in the
same position, often utilizing fixed reference points like the forehead or chin, varying by
manufacturer. Although this technique aims to produce relatively standardized images,
the patient’s size, bone structure, or other characteristics cause slight variations in the
position and size of the dentomaxilo area within the image. These variations impede
the predetermined or standardized cropping of the dentomaxilo region. Therefore, to
perform the dynamic detection of the dentomaxilo area, the application of a specialized
DL network for object detection was proposed.

(MURAMATSU et al., 2020) proposes a semi-automatic dentomaxilo region detec-
tion technique. The method identifies the mandible line using the Canny edge detector
and locates the highest point of the hard palate based on image contrast. By combining
these markings, the dentomaxilo area is defined and cropped. However, to detect the
mandible line without other contours causing noise in the process, the author uses a fixed
mask as a filter, generated from manual expert annotations (MURAMATSU et al., 2012).
This method is complex because it uses a sequence of image processing methods, with
different parameters and configurations. In light of this, we opted for DL networks, given
their minimal preprocessing requirements. The authors (ESTAI et al., 2022) utilize the
region corresponding to the union of tooth bounding boxes as a teeth region annotation
(similar to the dentomaxilo region). Subsequently, they employ the DL network U-Net
for teeth region segmentation and proceed to crop a bounding box aligned with the seg-
mented area. As our goal is to cut a rectangle in the image that contains the teeth region,
it was not necessary to use segmentation networks.

To detect dentomaxilo area, we utilized Detectron23, an open-source Python li-
brary that implements the Faster R-CNN network (REN et al., 2017). Developed by
the Facebook Artificial Intelligence Research Group (FAIR) and built using PyTorch
and Cuda, Detectron2 provides open access code on GitHub, simplifying the implemen-
tation of DL models and the reproducibility of research efforts. Moreover, the library
offers pretrained models on Common Objects in Context - COCO - instance segmenta-
tion dataset4, speeding up the network training by using transfer learning technique. To
compare the Faster R-CNN network’s performance in dentomaxilo region detection, we
also incorporated the RetinaNet network (LIN et al., 2017). In contrast to its predeces-
sor, the RetinaNet network functions as a one-stage object detection model. Detectron2
library also includes pretrained models and weights for the RetinaNet network, enabling

3 Detectron2. Available at https://github.com/facebookresearch/detectron2
4 COCO dataset. Available at https://cocodataset.org/#home
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comprehensive comparative analysis.

3.3 Teeth Segmentation
The primary objective of this project is tooth segmentation. Instead of using the en-
tire PAN, we employ the cropped dentomaxilo regions as the network’s input to reduce
computational cost and enhance the network’s convergence by eliminating unnecessary
information.

Object segmentation is a step beyond object detection. It generates a mask that
outlines the object within the detected bounding box, at a pixel level. While detection
networks attempts to create the smallest bounding box possible to encompass the object,
this often includes many background pixels. Segmentation removes this information that
doesn’t belong to the specific object being looked for.

We observed from the results of our Systematic Mapping (SM), presented in Sec-
tion 2.2, that the U-Net and Mask R-CNN networks are the most popular among the
studies found. Some studies show good segmentation results using U-Net (KOCH et al.,
2019; BAYDAR et al., 2023; ARI et al., 2022). However, U-Net is capable of performing
semantic segmentation instead of instance segmentation. In other words, the network
classifies all pixels in the image and groups objects of the same class into a single mask.
To apply it for the InReDD group purpose of subsequently numbering each of the seg-
mented teeth, we would need to implement post-processing steps to separate each tooth
from the segmented mask. In contrast, Mask R-CNN performs instance segmentation
and is also present in studies with good results (CHANG et al., 2020; LI et al., 2021;
VINAYAHALINGAM et al., 2021; RASHID et al., 2022).

As a result, in our tooth segmentation task, we compare the original Mask R-
CNN (HE et al., 2017) with a modified version, called Cascade R-CNN (CAI; VASCON-
CELOS, 2018), both designed for instance segmentation. These networks are both imple-
mented in Detectron2 and are available as open-source code on GitHub, complete with
pretrained weights on COCO dataset and also Large Vocabulary Instance Segmentation
(LVIS) dataset5.

3.4 Experiments
We have designed and executed a comprehensive testing plan to evaluate the mAP of
pretrained DL models within our specific context. The primary objective was to iden-
5 LVIS dataset. Available at https://www.lvisdataset.org
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tify the optimal networks that could deliver peak performance given the constraints of
our available data. In the forthcoming sections, we will show our dataset organization
for training, validation, and test, as well as elucidating the data preprocessing and aug-
mentation methodologies employed. Moreover, we will explain the training and testing
procedures and present expected outcomes for each model.

Concerning dataset preparation, we adhered the five-fold cross-validation as the
standard practice for measuring the models. To prepare the datasets for both tasks (den-
tomaxilo region detection and teeth segmentation) we applied the same cross-validation
division. For elucidation purposes, we denominated the original image dataset as “E” for
each task. Subsequently, “E” was partitioned into five near-equitable subsets, or folds,
named “F1, F2, F3, F4, and F5”. This division ensured the absence of duplicate images
across the folds. This cross-validation procedure underwent five iterations, where each
iteration applied one fold, denoted as “FT”, for the roles of validation (“V”) and testing
(“T”). Simultaneously, the remaining four folds were enlisted for training (“Tr”). The
“V” and “T” partition signified that 50% of the images from the total “FT” fold were
allocated to the validation set “V”, with the remaining 50% constituting the testing set
“T”. Figure 10 illustrates the dataset division into five folds, ensuring an equal number of
images in each fold, with no repetition across folds. The blue rectangles (F1 to F5) repre-
sent these folds. The figure demonstrates an example of the five iterations comprising the
five-fold cross-validation. In each iteration, the 4 folds designated for network training are
depicted in green and labeled as “Train (Tr).” These 4 folds collectively undergo the data
augmentation process described in the subsequent paragraph, forming the training set
(Tr). The pink fold, identified as “FT (V/T),” is divided into two sets, one for validation
and another for testing, as illustrated on the right side of the image. These two sets (“V”
and “T”) do not go through the data augmentation process

Figure 10 – Folds division

Source: Author’s collection

To augment the amount of PANs for training, we employed a range of data aug-
mentation techniques to all training sets “Tr”. Specifically, two augmented images were
generated for each original image. Our data augmentation strategy was developed by
adopting ideas from the research of (LEE et al., 2020; CANTU et al., 2020). This strat-
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egy encompassed the application of Gaussian blur, rotation and variations in brightness
and exposure intensity. Figure 11 presents samples of augmented PANs, generated by
applying each of the specified data augmentation techniques. These augmented images
were exclusively derived from the original images within the training set (Tr) for each
fold. They were applied only during training. No images from the validation (V) and test
(T) sets were involved in the data augmentation process for their respective folds, and
no augmented images were incorporated into these subsets. The five-folds creation and
augmentation process was facilitated through the use of the Roboflow tool6. We opted
to generate our folds using the external tool Roboflow. As we’ll explore in the following
sections, we are testing various models for the execution of Tasks 1 and 2 in our research.
External fold generation ensures consistency in using identical training, validation, and
test sets for comparing model performance. Beyond employing these augmentation tech-
niques through Roboflow, the Detectron2 library automatically incorporates the horizon-
tal flip technique on training images with a random frequency. Given that all models
used in this research were implemented using this library, the horizontal flip technique
can also be considered part of our data augmentation strategy. The configuration pa-
rameters entered into Roboflow to generate the augmented images were: rotation angle
into the range of -3º to +3º, Gaussian blur filter with a maximum intensity of 1 pixel,
and adjustments in brightness and exposure intensity ranging from -10% to +10%. In
conclusion, we adopted the same data augmentation strategy for both tasks (detecting
the dentomaxilo region and segmenting teeth). Despite the distinct nature of these tasks,
the images used in both training and subsequent inferences are highly similar. The input
for one network is essentially a cropped region of the input from the preceding network.

Figure 11 – Samples of the data augmentation technique

Source: Author’s collection

With regard to our regimen of experiments, both tasks (dentomaxilo region de-
tection and teeth segmentation) underwent two sequential training phases. These two
phases, identified as Stage A and Stage B, are described below and visually represented
in Figure 12.
6 Roboflow. Available at roboflow.com
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1. Stage A “Model selection”: In this initial phase, we conducted experiments with
various network configurations available in the Detectron2 library. This investiga-
tion focused solely on Iteration 1 to identify the two best models for each task. As
illustrated in the upper rectangle of Figure 12, each model was trained on the Iter-
ation 1 training set (Tr), and its performance was assessed using the mAP metric
on the corresponding Validation set (V). At this stage, the other 4 cross-validation
iterations were not used, as well as the test set (T) from Iteration 1..

2. Stage B “Cross-validation”: Having identified the top two models in Stage A, we
proceeded to the five-fold cross-validation phase. In this stage, we rigorously tested
the selected models across all five folds, training each model five times, once in each
iteration. The primary objective was to validate their performance, thus confirming
their ability to generalize effectively to unseen data.As shown in the bottom rectan-
gle of Figure 12, in each iteration, we trained the model with its respective training
set (Tr) and monitored its learning using the validation set (V) and the mAP met-
ric. Following the completion of training, we evaluated the model’s performance in
terms of mAP, precision, recall, and F1-score on the test set (T).

Figure 12 – Two stage sequence

Source: Author’s collection

This systematic experimentation protocol facilitated the precise determination of
the best models for our application context. Our utilization of cross-validation lent robust-
ness to our findings, affirming the models’ efficacy in generalizing to previously unseen
data.
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3.4.1 Dentomaxilo Region Detection Experiments

For Task 1, we applied our initial dataset, comprising 935 PANs, and their correspond-
ing bounding boxes delimiting the dentomaxilo area. These bounding boxes included
the classes “edentulous” and “dentate”. Annotations initially categorized as “edentulous
mandibles” and “edentulous maxillae” were reclassified as “dentate”. An illustrative ex-
ample of the images used as network input can be observed in Figure 5, within the “Input”
section of the first column. No preprocessing methods were applied to these images.

To construct the training, validation and test sets, all 935 images were utilized.
The distribution of PANs across the sets was as follows: 80% (748 images) were allocated
for training, while 10% (comprising 94 and 93 images, respectively) were assigned to both
the validation and testing sets. The image distribution for Task 1 among the training,
validation, and testing sets on each cross-validation iteration is provided in Table 1. The
augmentation techniques applied on the training set were rotation within a range of -3º
to +3º, the application of Gaussian blur with a maximum intensity of 1 pixel, variations
in brightness and exposure intensity spanning from -10% to +10%. The “Train” column
in Table 1 outlines the number of augmented images used for training per iteration, with
counts of dentate and edentulous images within each set indicated in parentheses.

Table 1 – Datasets for Task 1

Iteration Train Valid Test
1 2244 (1938/306) 94 (81/13) 93 (77/16)
2 2244 (1913/331) 94 (85/9) 93 (77/16)
3 2244 (1938/306) 94 (79/15) 93 (76/17)
4 2244 (1919/325) 94 (82/12) 93 (80/13)
5 2244 (1900/344) 94 (86/8) 93 (82/11)

For our training and evaluation process, we harnessed the capabilities of the Faster
R-CNN and RetinaNet detection networks available in the Detectron2 library’s Model
Zoo module7. These models generated bounding box (BB) coordinates that delineated
the dentomaxilo region, accompanied by class labels “Ed” (edentulous) or “De” (dentate)
assigned to each bounding box. Figure 5, in the first column’s “Output” section, showcases
an illustrative example of the outcomes produced by these networks.

To expedite the training process, we adopted transfer learning by leveraging pre-
trained weights (trained on COCO dataset) for the backbone stage, provided by Detec-
tron2, for all our models.

In Stage A, our primary objective was to explore various network configurations
to identify the most effective models. We conducted training and evaluation on eleven
distinct configurations of Faster R-CNN and RetinaNet models, exclusively utilizing the
7 Detectron2 Model Zoo. Available at https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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folds of Iteration 1. This approach enabled us to pinpoint the optimal combination of
backbone and bounding box head tailored to our specific context. The model configura-
tions were sourced from Detectron2, encompassing three backbone networks (ResNet-50,
ResNet-101, and ResNeXt), three distinct bounding box head setups (C4, DC5, and FPN),
and two pre-trained weight strategies (1x - pre-trained for approximately 12 epochs on
COCO dataset and 3x - about 37 epochs on COCO dataset). Each model went through
a training regime consisting of 5,000 iterations, preserving Detectron2’s default hyperpa-
rameters. Only two hyperparameters had their values changed from the default: Learning
Rate, changed to 0.00025 and Batch Size, changed to 2 images per batch.

In Stage B, we selected the two most promising models identified in Stage A and
put them through the five-fold cross-validation methodology, as elucidated earlier. Our
top-performing Faster R-CNN model (ResNeXt backbone, FPN bounding box head, and
pre-trained 3x weights) and RetinaNet model (ResNet101 backbone, FPN bounding box
head, and pre-trained 3x weights) underwent training and evaluation across the five iter-
ations of the cross-validation. We maintained a consistent LR of 0.00025 and a fixed BS
of 2, while adhering to other hyperparameters in line with Detectron2’s default settings.
We also only used the same data augmentation strategy: rotation (-3º/3º), Gaussian blur
(1px), brightness (-10%/10%) and exposure (-10%/10%). Throughout the training phase,
we evaluated the models against the validation set every 100 iterations, tracking progress
in terms of training loss, validation loss, and mAP. These metrics offered insights into the
models’ performance, indicating their efficacy in detecting and categorizing edentulous
and dentate dentomaxilo regions. The Faster R-CNN training was extended to 15,000
iterations, and the RetinaNet model underwent 10,000 iterations of training. These iter-
ation counts were determined through vigilant monitoring of the training and validation
loss curves, aimed at preventing potential overfitting pitfalls. We interrupted the training
process when we observed the training loss curve consistently decreasing, while the vali-
dation loss either plateaued or increased, signaling that the model was fitting the training
data too closely and might not generalize well to new data.

3.4.2 Teeth Segmentation Experiments

In Task 2, we worked with a dataset comprising dentomaxilo regions extracted from
605 segmented images. These dentomaxilo regions were manually cropped based on
expert-annotated bounding boxes, ensuring precise Ground Truth (GT) annotations dur-
ing model training. We did not use the bounding boxes inferred by the DL models in Task
1 during the training phase of this task. The training annotations for this task consisted
of polygons outlining the contours of individual teeth, each defined by a set of coordinates.
Every object within the dataset received the same label “Tooth”. Figure 5, in the “Input”
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field of the second column, provides an example of the dentomaxilo region crop used as
input.

We divided the 605 segmented PANs into the training, validation and test sets,
with 484 (80%), 61 (about 10%), and 60 (about 10%) images respectively. Table 2 shows
the number of images and the number of teeth per set for each cross-validation iteration,
with the second column indicating the number of training images after augmentation. On
average, each image contained approximately 24 teeth. The dataset encompassed 4170
incisors, 2182 canines, 3764 premolars, and 4466 molars.

To expand the dataset size, we employed the same data augmentation strategy
identified in Task 1, comprising the application of the following filters: rotation within
the range of -3º to +3º, Gaussian blur with a maximum intensity of 1 pixel, brightness
and exposure variations ranging from -10% to +10%. The Roboflow tool was employed
to generate two new augmented images for each original image.

Table 2 – Datasets for Task 2

Iteration Train Valid Test
1 1452 (35043) 61 (1474) 60 (1423)
2 1452 (34836) 61 (1529) 60 (1437)
3 1452 (34692) 61 (1516) 60 (1498)
4 1452 (35091) 61 (1463) 60 (1418)
5 1452 (35274) 61 (1471) 60 (1349)

For Task 2, we utilized the Mask R-CNN and Cascade Mask R-CNN models avail-
able in Detectron2. The prediction outputs of these models included a list of detected
instances, each defined by four bounding box coordinates, a class label (solely “Tooth”
in this case), and a binary matrix representing the object’s segmented mask inside the
respective bounding box. Figure 5, under the “Output” field of the second column, il-
lustrates an example of the predicted output, with teeth color-coded to indicate instance
segmentation.

In Stage A, our primary goal was to experiment with various network configura-
tions to identify the two best models for our application context. We conducted training,
validation, and testing of thirteen distinct variations of Mask R-CNN and Cascade Mask
R-CNN segmentation networks exclusively on the first iteration of cross-validation. The
aim was to determine the most suitable combination of backbone and bounding box head
for our specific context. All model variations were sourced from the Detectron2 library’s
Model Zoo module8. Among the evaluated models, seven shared backbone networks
(ResNet-50, ResNet-101, and ResNeXt) and head configurations (C4, DC5, and FPN).
Additionally, we introduced specific variations: three models had backbone networks
pre-trained using the Large Vocabulary Instance Segmentation (LVIS) public dataset
8 Detectron2 Model Zoo. Available at https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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(version 0.5) for approximately 24 epochs, one model incorporated the Deformable Con-
volution (DAI et al., 2017) technique into the backbone network, another model employed
the Group Normalization (GN) technique (WU; HE, 2018), requiring network retraining
from scratch, and one model utilized the Cascade R-CNN network. Each model under-
went training for a total of 5000 iterations. In all experiments, we adhered to the default
Detectron2 hyperparameters, with the exception of LR (Learning Rate) and BS (Batch
Size). For these specific parameters, we opted for the values determined in Task 1, namely
0.00025 for LR and a BS of 2 images per batch.

In Stage B, the most precise Mask R-CNN and Cascade Mask R-CNN models
identified during the testing phase were further evaluated using a five-fold cross-validation
approach. The top-performing Mask R-CNN model, featuring a ResNet50 backbone, FPN
bounding box head, and retraining from scratch with GN, was trained for 5000 iterations.
Meanwhile, the Cascade Mask R-CNN model, with a ResNet50 backbone, FPN bounding
box head, and pre-trained weights, underwent 10000 iterations of training. Both models
adhered to the default Detectron2 hyperparameters, with a fixed LR of 0.00025 and a BS
set to 2. Similar to Task 1, these models were evaluated every 100 iterations, monitoring
the training and validation loss curves for indications of overfitting. The models’ learning
progress was also observed through mAP growth. Additionally, transfer learning was
applied to all models, focusing on the backbone pre-training stage, utilizing weights from
training the models on the COCO or LVIS dataset.

3.5 Evaluation metrics

To evaluate the performance of our detection and segmentation networks, we conducted
a comparison between the objects (dentomaxilo area and tooth) detected or segmented
by the models, called “predictions” and the annotations provided by experts for all test
set images, called “Ground Truth (GT)”. We measured the results using four main per-
formance metrics: precision; recall; F1-score and mean Average Precision (mAP). For
the detection task mAP comprises two classes (“Dentate” and “Edentulous”) and for the
segmentation task, focused solely on the “Tooth” class.

The metrics recall, precision, and F1-score were selected given that these metrics
were among the most frequently encountered in our mapping, as presented in Section
2.3. The mAP metric was selected as our primary evaluation criteria due to this exten-
sive adoption in assessing image detection and segmentation networks (ZOU et al., 2023).
Numerous object detection algorithms, including Faster R-CNN (REN et al., 2017), and
YOLO (REDMON et al., 2016), utilize mAP as a key metric for evaluating their models.
mAP is also a standard evaluation measure in various benchmark challenges, including
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COCO9, LVIS10 and others. mAP is an object-level metric and takes into account the
balance between the precision and recall of the model across various confidence levels, cal-
culated through the area under the precision-recall curve. In addition to the assessment
of prediction correctness, mAP also considers the quality of object localization and seg-
mentation in a pixel-level, measured by Intersection over Union (IoU). The mAP metric
considers predictions over a range of IoU levels to ensure that the final evaluation is not
distorted by an arbitrarily selected IoU level.

In line with our experimental approach conducted in two stages (as detailed in
Section 3.4), we employed the mAP metric to assess model performance during Stage A for
both Task 1 and Task 2, specifically on the validation set. During Stage B, mAP evaluation
extended to both the validation and test sets. Furthermore, the metrics precision, recall,
and F1-score were applied to the test set of Stage B. As Stage A focuses on model selection
for cross-validation, precision, recall, and F1-score were not utilized in this stage.

To compute the four metrics employed in this study, it is essential to apply the
definitions of True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN), taking into account the model’s predictions and the GT:

• True Positives (TP): The model correctly predicted a label that aligns with the GT;

• False Positives (FP): The model predicted a label that is not part of the GT;

• True Negatives (TN): The model did not predict the label, and it is also not part
of the GT;

• False Negatives (FN): The model failed to predict a label that is, however, present
in the GT.

Precision serves as a gauge for the accuracy of a model’s predictions. It is cal-
culated as the ratio of TP to the total number of positive predictions (TP and FP). A
high precision value indicates that when the model predicts an object, it is likely to be
correct. Recall, alternatively known as sensitivity or the true positive rate, assesses a
model’s capability to capture all instances outlined in the GT. It is computed as the ratio
of TP to the total number of actual instances (TP and FN). The F1-score represents the
harmonic mean of precision and recall.

Precision (P), recall (R) and F1-score (F1) are defined in Equations (3.1), (3.2)
and (3.3).

P = TP

TP + FP
(3.1)

9 COCO dataset. Available at https://cocodataset.org/#home
10 LVIS dataset. Available at https://www.lvisdataset.org/challenge_2021
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R = TP

TP + FN
(3.2)

F1 = 2 ∗ P ∗ R

P + R
(3.3)

To determine whether a prediction is considered TP, FP, or FN, we first evaluate
the degree of overlap between each predicted bounding box or polygon (Pred) and the
GT objects through the Intersection over Union (IoU) metric, defined by Equation (3.4):

IoU = AreaPred ∪ AreaGT

AreaPred ∩ AreaGT
(3.4)

The IoU value acts as the criterion (threshold) for determining whether a prediction
is qualified as a true positive (TP). False positives (FP) denote inaccurate predictions,
while false negatives (FN) signify instances within the GT that the model did not predict.
To compute precision, recall, and F1-score in Stage B, a fixed threshold of 85% IoU was
employed. A prediction was designated as a TP if it exhibited an overlap of 85% or more
with its pixels (bounding box or polygon) compared to the GT. Instances with IoU below
85% were categorized as FP, while GT elements without any associated predictions were
counted as FN.

For computing mAP, applied in Stages A and B, the procedure involves the fol-
lowing steps:

1. Input all images from the assessed set (validation or test set) into the model to
obtain predictions;

2. Select a class for measurement;

3. Set an IoU value as a threshold;

4. Examine all model predictions on all images, comparing them with the GT. Classify
these predictions as TP or FP based on the defined IoU;

5. Count the GT elements not detected as FN;

6. Construct an ordered list of all predictions, sorted in descending order based on the
model’s confidence level for each prediction (confidence level is a standard output
of the models, indicating the certainty of a given prediction on a scale from 0 to 1);

7. Calculate precision and recall for the assessed set for each prediction, following the
ordered list;

8. Plot precision and recall values on a line graph, using the precision-recall pairs as
coordinates (precision-recall curve);
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9. Compute AP, which is calculated as the average of the P values based on the area
under the precision-recall curve, with R spanning a finite and discrete range of 11
values from R = 0.0 to 1.0, incremented by 0.1. Employing interpolation, calculate
P(R) for each R value as the maximum P value within the interval [R’, R], where
R’ denoted the preceding R value in the assessment. The formula for AP is defined
in Equation (3.5).

AP = 1
11

1∑
R=0

P (R) (3.5)

AP represented the Average Precision for each class. In models with multiple
classes, such as Task 1 involving two classes (edentulous and dentate), mAP was calculated
as the average of each class’s AP. As highlighted earlier in this section, the mAP metric
considers predictions across various IoU levels. Consequently, determining the model’s
final mAP value involves iteratively calculating AP, varying the IoU threshold. Following
the standard used by the models (Faster R-CNN and YOLO) and challenges (COCO
and LVIS) mentioned above, in this study, the model final mAP was computed as the
arithmetic mean of mAP values, varying IoU between 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, and 0.95. Note that, for Task 1, this process was replicated for each class
(edentulous and dentate). mAP was calculated for all Stage A models in the validation
set and Stage B models in the validation and test sets.



4
Results and Discussion

In this section, we present the results achieved in each task of our research after training
and validation. Furthermore, we conduct an in-depth analysis and discussion of the
achieved results.

These results are the outcome of the process involving data collection and prepara-
tion, model training, and subsequent evaluation, as outlined in Chapter 3. Our research
has successfully achieved its objective, which is to propose a modular system driven by
Deep Learning (DL), designed for the automatic segmentation of teeth in Panoramic Ra-
diographs (PANs). This system begins with a preprocessing step, referred to as Task
1, involving the detection of the dentomaxilo region (including mandible, maxilla and
teeth) to exclude surrounding areas that do not contribute to the network analysis. The
final step, known as Task 2, focuses on instance segmentation of the teeth using only the
dentomaxilo area.

In the context of Task 1, Dentomaxilo Region Detection, we delineated bounding
boxes and distinguished between “dentate” and “edentulous” dentomaxilo regions, deploy-
ing the Faster R-CNN and RetinaNet networks. We conducted experiments, comprising
eleven distinct permutations of Faster R-CNN and RetinaNet models, exclusively on the
first cross-validation iteration. The results are detailed in Table 3. The first column (Mod)
characterizes each model, with designations starting with the letter D to denote detec-
tion. The second column (Network) outlines the network employed, with eight models
utilizing Faster R-CNN and three models harnessing the capabilities of RetinaNet. The
third column (Configuration) exhibits the configuration of each model, encompassing the
backbone network, bounding box head, and the pre-trained weights routine. The fourth
column (s/it) specifies the average time taken per iteration during the training process
for each model, measured in seconds. Finally, the fifth (ValD mAP) column exhibits
the mAP values calculated in the validation sets (inferred during the last phase of the
validation process after training completion).

Among the observed models, the model D4 emerged as the faster in terms of train-
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ing efficiency, averaging 0.503 seconds per iteration. It was closely followed by models D1,
D9, and D10. It’s noteworthy that deeper backbone networks necessitate more extensive
training duration. Models implementing the ResNet50 architecture exhibited superior
training speeds compared to their ResNet101 counterparts. The most time-consuming
model was D8, utilizing the ResNeXt network, with an average iteration time of 2.481
seconds. Models embracing the DC5 configuration also demonstrated relatively slower
training speeds.

Furthermore, models D9, D10, and D11, encompassing the entire spectrum of Reti-
naNet networks, consistently outperformed their Faster R-CNN counterparts in terms
of mAP. However, when preparing for the five-fold cross-validation in Stage B, we se-
lected models D8 and D11, representing one each from Faster R-CNN and RetinaNet,
respectively. This selection was made based on the highest mAP values recorded in the
validation set, standing at 85.157 for D8 and an 91.908 for D11.

Table 3 – Stage A Model selection for Task 1

Mod Network Configuration s / it ValD mAP
D1 Faster ResNet50 FPN 1x 0.526 67.984
D2 Faster ResNet50 C4 3x 0.612 64.895
D3 Faster ResNet50 DC5 3x 0.795 76.589
D4 Faster ResNet50 FPN 3x 0.503 71.265
D5 Faster ResNet101 C4 3x 0.822 66.781
D6 Faster ResNet101 DC5 3x 1,087 64.658
D7 Faster ResNet101 FPN 3x 0.712 65.785
D8 Faster ResNeXt FPN 3x 2.481 85.157
D9 RetinaNet ResNet50 FPN 1x 0.513 91.141
D10 RetinaNet ResNet50 FPN 3x 0.520 91.716
D11 RetinaNet ResNet101 FPN 3x 0.740 91.908

In Stage B, we conducted experiments employing the D8 and D11 models, utiliz-
ing the five-fold cross-validation approach. As previously outlined, D8 (Faster R-CNN)
underwent an training regimen of 15,000 iterations, while D11 (RetinaNet) was subjected
to 10,000 iterations, chosen through vigilant oversight to prevent overfitting. Figure 13
provides a visual representation of the training dynamics for models D8 and D11. The
charts illustrate the models’ loss values measured on the training set at each iteration
(“Total Loss”) and on the validation set every 100 iterations (“Val Loss”). The loss scale
is depicted on the Y-axis to the left of the graph. Simultaneously, on the right side of
the Y-axis, the evolution of mAP on the validation set is showcased every 100 training
iterations. The mAP for each class (“Val bbox De AP” and “Val bbox Ed AP”) and
the average mAP (“Val bbox AP”) are presented. Examining the mAP curves reveals a
progressively slower improvement as the iterations progress. Furthermore, by observing
the loss curves, an initial deviation between the training and validation losses becomes
apparent, with the validation loss on an ascending trajectory and the training loss on a
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descending one. In light of this disparity and considering the modest enhancement in
precision (mAP), the decision is made to conclude the training process.

Figure 13 – Training Progress Charts for Models D8 and D11 in Stage B of Task 1

Source: Author’s collection

The results of the Stage B experiments are presented in Table 4. Each data within
the table represents the arithmetic mean of the outcomes obtained across the five folds.
The table not only provides insights into the average time per iteration (s/it) and the
mean Average Precision (mAP) values assessed in both the validation (ValD mAP) and
test (TestD mAP) sets but also presents the average values for precision (Pre), recall
(Rec), and F1-score (F1) across the five folds for the two models. Since Task 1 involves a
multiclass detection assignment, distinguishing between “dentate” and “edentulous” cases,
we calculated the arithmetic mean of precision and recall across both classes, allowing us
to derive the precision and recall metrics for each model.

Figure 14 displays 3 samples of dentomaxilo region detection generated by models
D8 and D11 on the test set.

Table 4 – Stage B Results for Task 1

Mod s / it ValD mAP TestD mAP Pre Rec F1
D8 1.968 89.403 87.798 0.971 0.954 0.960
D11 0.750 92.147 92.446 0.971 0.994 0.982

Our observations demonstrated that D11 consistently outperformed D8 in terms of
ValD mAP and TestD mAP. D8 achieved mAP values of 89.403 in the validation set and
87.798 in the test set, whereas the D11 model scored 92.147 and 92.446 in these metrics.
It is noteworthy that the average time per iteration in D8 is significantly higher than in
D11, representing the time required for the model to make predictions on a single image.

The superior performance of D11 is also evident in recall, and consequently, the
F1-score. D8 achieved a recall of 0.954 and an F1-score of 0.960, while D11 exhibited a
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Figure 14 – Samples of dentomaxilo region detection generated on Stage B

Source: Author’s collection

recall of 0.994 and an F1-score of 0.982. Both models achieved the same precision, with
a value of 0.971. Both models marked improvement in this stage compared to Stage A,
thanks to the largest number of iterations.

Table 1 presents that each cross-validation iteration contains 93 images in the
test set, resulting in a total of 465 radiographs across all five test sets, with 392 being
dentate and 73 edentulous. During the testing phase, models D8 and D11 processed these
465 radiographs in their respective test sets. Combining the predictions from these tests
into a single analysis, the five iterations of the D8 model failed to detect 6 dentate and 5
edentulous dentomaxilo regions, resulting in a 2.366% false-negative rate. In contrast, the
five iterations of the D11 model missed 4 dentate dentomaxilo regions but successfully
identified all edentulous dentomaxilo regions, resulting in only a 0.860% false-negative
rate.

It is worth noting that the task of separating the dentomaxilo area can be ac-
complished using simpler image processing techniques, as demonstrated in previous stud-
ies (MURAMATSU et al., 2020; MURAMATSU et al., 2012). These techniques might
offer advantages in terms of time efficiency during the model setup and hyperparameter
search phases compared to DL. However, once our model is trained, it provides rapid
predictions (approximately 0.750 seconds per prediction), high accuracy (precision of
0.971), and consistency (0.860% false negatives) for new image predictions. Furthermore,
by applying a similar approach to train the models used in detection and segmentation,
replicating strategies and routines, we reduce planning time and achieve the final result
more efficiently. The detection of the dentomaxilo area can be considered a preparatory
task for segmentation, making these results an integral part of Task 2.

In Task 2: Teeth Segmentation, during Stage A, we deployed twelve unique Mask
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R-CNN models alongside the sole Cascade Mask R-CNN version available in the Detec-
tron2 library. Our primary goals in this phase were twofold: first, to identify the most
effective Mask R-CNN configuration within our specific domain, and second, to assess
whether Cascade Mask R-CNN delivered comparable results. These experiments were
exclusively conducted using the first cross-validation iteration. Table 5 offers a compre-
hensive overview of these 13 network configurations in its second column (Configuration),
detailing aspects such as the backbone network, bounding box head, pre-trained weight
routine, and additional information (LVIS: backbone pre-trained on the Large Vocabulary
Instance Segmentation - LVIS - dataset; DConv: backbone with deformable convolution;
GN: group normalization). Each model is distinguished by an “S” character denoting
instance segmentation, followed by a numerical identifier, as shown in the first column
(Mod) of the table. The third column (s/it) presents the average time per iteration during
the training process, while the subsequent two columns provide the metrics for network
predictions. These metrics encompass bounding box generation in the validation set (ValD
mAP) as well as polygon generation in the validation set (ValS mAP).

Among these models, S8 emerged as the fastest, boasting an average iteration time
of 0.481 seconds per iteration, closely followed by S3 at 0.484 seconds per iteration. This
outcome aligns with expectations, considering that both models share the same architec-
ture, differing only in the pre-training of the backbone network weights (S8 was trained
on the LVIS dataset, whereas S3 utilized the Common Objects in Context - COCO -
instance segmentation dataset). In contrast, models S7 and S10 displayed slower perfor-
mance due to their reliance on the ResNeXt backbone network. These time-related results
are consistent with those observed in Stage A of Dentomaxilo Region Detection. More-
over, regarding the backbone network, the ranking from fastest to slowest is as follows:
ResNet50, ResNet101, and ResNeXt. Concerning the bounding box head configuration,
FPN proved to be the fastest, followed by C4 and DC5.

In terms of mAP values, S13 excelled in the validation set, followed by S12. Specif-
ically, S13 achieved a detection mAP of 79.464 and a segmentation mAP of 80.611 in the
validation set, whereas S12 attained a detection mAP of 78.463 and a segmentation mAP
of 79.855 in the validation set. Among the Mask R-CNN models (S1 to S12), S12 consis-
tently outperformed its peers across both mAP metrics. Consequently, both S12 and S13
were designated as the top-performing models for this task and were subsequently chosen
for testing in Stage B, which involves five-fold cross-validation.

In line with Task 1, for Stage B of Task 2, we trained the selected models until
the first signs of overfitting became apparent. S12 (Mask R-CNN with GN) underwent
5000 iterations of training, while S13 (Cascade Mask R-CNN) completed 10000 iterations.
Figure 15 presents the training graphs for models S12 and S13. The graph illustrates the
loss values of the models measured on the training set at each iteration (“Total Loss”) and
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Table 5 – Stage A Model selection for Task 2

Mod Configuration s / it ValD mAP ValS mAP
S1 ResNet50 C4 3x 0.568 77.914 78.625
S2 ResNet50 DC5 3x 0.737 76.369 76.212
S3 ResNet50 FPN 3x 0.484 76.592 77.313
S4 ResNet101 C4 3x 0.757 76.298 77.860
S5 ResNet101 DC5 3x 0.966 76.675 77.671
S6 ResNet101 FPN 3x 0.665 76.984 78.042
S7 ResNeXt FPN 3x 2.109 76.812 78.454
S8 ResNet50 FPN 1X LVIS 0.481 74.897 76.132
S9 ResNet101 FPN 1X LVIS 0.656 76.796 77.681
S10 ResNeXt FPN 1X LVIS 2.184 77.741 78.095
S11 ResNet50 FPN 3x DConv 0.618 76.548 77.572
S12 ResNet50 FPN 9x GN 0.630 78.463 79.855
S13 Cascade ResNet50 FPN 3x 0.514 79.464 80.611

on the validation set every 100 iterations (“Val Loss”). The loss scale is depicted on the
Y-axis to the left. Simultaneously, on the same graph, using the scale on the right side of
the Y-axis, we showcase the evolution of mAP measured on the validation set every 100
training iterations. Specifically, mAP is displayed for the bounding box head (“Val bbox
AP”) and the mask head (“Val seg AP”). Similar to the patterns observed in the models
of Task 1 (Figure 13) and as anticipated, there is a progressively slower improvement in
model precision (mAP) as the iterations advance. Analyzing the loss curves, a earlier
and more pronounced divergence emerges between the validation loss, on an ascending
trajectory, and the training error, on a descending path. This divergence, as reflected in
the growing validation set loss, suggests that the model is starting to overfit the training
data, compromising its ability to generalize. In Task 2, this overfitting indication is more
apparent due to the task’s heightened complexity and a constrained number of training
images, compared to Task 1.

Figure 15 – Training Progress Charts for Models S12 and S13 in Stage B of Task 2

Source: Author’s collection
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Table 6 presents the outcomes achieved by models S12 and S13 utilizing the five-
fold cross-validation technique of Task 2’s Stage B. Each value in the table represents the
arithmetic mean of the model’s performance across the five cross-validation folds. This
table closely follows the structure of Table 4, providing insights into time per iteration
(s/it), bounding box mAP for both the validation (ValD mAP) and test sets (TestD
mAP), precision (Pre), recall (Rec), and F1-score (F1). This task deals with a single class,
eliminating the need for additional precision and recall calculations beyond the arithmetic
mean of the model’s fold-wise performance. Another noteworthy distinction concerns to
the segmentation aspect of the task, where the table presents the results of bounding box
predictions in terms of ValD mAP and TestD mAP, along with the model’s performance in
mask creation, assessed in both the validation and test sets. These results are meticulously
detailed in the columns labeled (ValS mAP) and (TestS mAP), respectively.

Figure 16 displays 3 samples of teeth segmentation generated by models S12 and
S13 on the test set.

Table 6 – Stage B Results for Task 2

Mod s / it ValD mAP TestD mAP ValS mAP TestS mAP Pre Rec F1
S12 0.744 81.124 78.291 81.324 77.999 0.986 0.988 0.987
S13 0.857 79.971 79.222 80.188 78.954 0.991 0.991 0.989

Figure 16 – Samples of teeth segmentation generated on Stage B

Source: Author’s collection

Analyzing the data in Table 6, we note that S12 exhibits a slightly better average
processing time than S13, with a marginal difference of 0.113 seconds per iteration.

In terms of performance metrics, S12 stands out in the validation set, boasting
higher mAP scores (81.124 in detection mAP and 81.324 in segmentation mAP). Con-
versely, S13 outperforms S12 in the test set, achieving superior results (79.222 in detec-
tion mAP and 78.954 in segmentation mAP). Additionally, S13 demonstrates superior
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precision (0.991), recall (0.991), and consequently, a higher F1-score (0.989) compared to
S12.

Each test set within the five iterations of the cross-validation comprises 60 images,
encompassing an average of 1425 teeth, as outlined in Table 2. Cumulatively, across all five
iterations, we evaluated a total of 350 images and 7125 teeth. Out of these 7125 teeth, S12
failed to detect 78, while S13 missed 75 (equivalent to 1.095% and 1.053% false-negative
predictions, respectively). The most prevalent error scenarios involve overlapping teeth
or teeth positioned closely to other bone structures. Additionally, teeth with pins and
extensive restorations pose challenges for accurate prediction.

Considering the mAP values calculated in the test set, the F1-score, and the
number of false negatives, Model 13, Cascade Mask R-CNN with a ResNet50 backbone,
delivered the most favorable results (79.222 mAP for detection, 78.954 mAP for segmen-
tation, and a 0.989 F1-score) for Task 2. Nevertheless, these results closely align with the
performance achieved by the Mask R-CNN network using the ResNet50 backbone and
the Group Normalization technique.

Some related studies have tackled the task of instance segmentation of teeth in
PANs, and a concise summary of these works can be located in Section 2.2. In Table
7, we present a comparative analysis of our tooth segmentation results alongside those
achieved in these related studies, highlighting the quantity of images used and the chosen
network architecture. These papers report their findings using diverse sets of metrics.
The papers (LEE et al., 2020; JADER et al., 2018; LEITE et al., 2021; SILVA et al.,
2020) employ metrics such as precision, recall, and F1-score, while (PINHEIRO et al.,
2021) and, once again, (SILVA et al., 2020) use the mAP metric. Across all these metrics,
our study consistently demonstrates superior performance.

Table 7 – Task 2 results comparison

Paper #imgs Network mAP Pre Rec F1
(LEE et al., 2020) 50 Mask R-CNN - 0.858 0.893 0.875
(JADER et al., 2018) 1500 Mask R-CNN - 0.94 0.84 0.88
(LEITE et al., 2021) 153 DeepLabV3 + FCN - 0.969 0.983 0.975
(SILVA et al., 2020) 543 PaNet 71.3 0.944 0.891 0.916
(PINHEIRO et al., 2021) 450 Mask R-CNN PointRend 77.3 - - -
Our 605 Cascade Mask R-CNN 78.954 0.991 0.991 0.989

We chose not to compare our study with (SCHNEIDER et al., 2023), because the
paper, despite also delving into tooth instance segmentation, does not explicitly disclose
the F1-score achieved by the final model, after the Federated Learning step of parameters
aggregation. Instead, it reports F1-scores for local models generated in the middle of
the Federated Learning process. Similarly, we refrained from drawing comparisons with
(CHEN et al., 2019) since that study concentrates solely on tooth detection, rather than
segmentation, making it unsuitable for a direct comparison between different tasks. Nev-
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ertheless, even if such a comparison were feasible, our precision and recall values would
still surpass those reported in the paper, specifically registering values of 0.988 and 0.985,
respectively.

The study that achieved performance closest to ours was conducted by (PIN-
HEIRO et al., 2021), achieving an mAP of 77.3. The authors utilized the Mask R-CNN
network in combination with the PointRend module, a neural network designed to enhance
the precision of segmented object boundaries. It’s important to note that since each ar-
ticle used its own dataset, the comparison presented in Table 7 serves as a benchmark.
A fair assessment of performance across different systems necessitates similar conditions,
such as a standardized reference test collection.

We abstained from comparing the results of Task 1 with related studies because
similar papers often treat dentomaxilo region detection as a preliminary stage of segmen-
tation and typically do not disclose the results of this initial phase. Consequently, they
only present the final outcomes (ESTAI et al., 2022; MURAMATSU et al., 2020; MURA-
MATSU et al., 2012). Nevertheless, we have chosen to share the results obtained at all
stages of our study.





5
Conclusion

Our approach revolves around a modular solution designed for tooth segmentation, pre-
ceded by the detection and classification of dentate and edentulous dentomaxilo regions
(mandible, maxilla and teeth) in panoramic radiographs (PANs). Through the develop-
ment of specialized and complementary components, we have successfully implemented
two distinct models, each dedicated to its respective task, delivering satisfactory perfor-
mance. In the task of dentomaxilo region detection, among the various models we evalu-
ated, the RetinaNet with a ResNet101 backbone emerged as the top performer, achieving
92.446 mAP and 0.982 F1-score in the test set. Transitioning to tooth segmentation, we
accomplished an mAP of 79.222 for detection, 78.954 for segmentation, and F1-score of
0.989 in the test set, leveraging the Cascade Mask R-CNN. These results not only met
but surpassed the performance of similar studies (LEE et al., 2020; JADER et al., 2018;
LEITE et al., 2021; SILVA et al., 2020; PINHEIRO et al., 2021).

Our findings substantiate the effectiveness of our modular solution, which har-
nesses specialized networks, proving to be as effective, if not more so, than a single neural
network attempting to tackle all the tasks proposed within our system. It is important to
highlight that this work also makes a contribution by introducing the intermediate stage
of detecting the dentomaxilo region in the tooth segmentation process. This step involves
cropping the dentomaxilo region, which, on average, eliminates 35% of pixels from the
original PAN. This not only optimizes computational resources but also mitigates the risk
of false positives during tooth segmentation, particularly in regions removed where the
presence of a tooth is anatomically impossible. Another contribution of this research is
the segmentation of teeth without the simultaneous enumeration attempt within the same
neural network (a common approach in many existing studies). Instead, we designed a
specialized module with the exclusive responsibility of tooth segmentation. Given the
structural similarities among teeth, this approach enhances the network’s generalization
capability, allowing it to learn the fundamental characteristics of a tooth through exposure
to a more diverse set of examples.



While our tests have yielded promising results, it is essential to acknowledge cer-
tain limitations associated with the nature and volume of the images used. The availability
of a limited set of segmented images posed a constraint in our testing process. Despite im-
plementing data augmentation strategies for both tasks, the extent of teeth segmentation
performed by professionals significantly influenced the results. In contrast, some studies
trained their models using images segmented by researchers from diverse fields outside
of Dentistry or Radiology. Our approach stands out as all our images were meticulously
annotated and checked by experienced professionals in these specialized domains. Addi-
tionally, the use of an unbalanced dataset for dentomaxilo area detection tasks presents
a potential challenge to the generalization of results. Furthermore, we relied on images
from a specific location, all generated using the same radiographic unit (Veraviewepocs
from J Morita), inherently representing a confined community.

Despite these acknowledged limitations, our methodologies exhibit potential for
future investigations in the context of diagnostic aids. To enhance the outcomes of the
proposed methodology, implementing strategies such as expanding the dataset size, di-
versifying the dataset’s sources (including data from various locations and different ra-
diographic units), including images removed from our dataset based on exclusion criteria,
and exploring explainable AI techniques like decision heat maps could be beneficial. Fur-
thermore, evaluating the performance of our networks across various types of radiographs
(periapical, bitewing, occlusal, CBCT, etc.) would provide valuable insights. Another in-
teresting test would involve training the proposed segmentation networks on our dataset
without the dentomaxilo region removal stage and compare their performance with the
original approach. The modular structure of our solution allows for the integration of ad-
ditional modules, each offering distinct functionalities within the system. As previously
highlighted, this research is part of the InReDD group. Within this research group, active
work is already underway on the subsequent module, which involves assigning numerical
identifiers to segmented teeth using the Federation Dentaire Internationale (FDI) nomen-
clature and classifying them among deciduous or healthy. Furthermore, the framework is
flexible enough to accommodate various applications. For example, one can think about
the development and integration of a module dedicated to the identification of dental
braces and pins within segmented teeth. Similarly, another module could be incorpo-
rated to identify restored teeth or teeth with prior endodontic treatment. This adaptable
approach empowers the utilization of diverse network architectures, enabling the selection
of the most suitable model for each task’s specific domain, whether originating from our
research or integrated into the system.
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