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“Love your neighbor as yourself. No other commandment is greater than these.
(Holy Bible, Mark 12, 31)





Resumo
A democratização da tecnologia proporcionada pela internet, tecnologia em nuvem e mídia
social aumentou drasticamente a quantidade de dados coletados. Aprendizado de máquina
é um campo de inteligência artificial que produz informações valiosas a partir de dados.
Especificamente, aprendizado supervisionado é um tipo de aprendizado de máquina que se
concentra no uso de dados rotulados para aprender a prever o rótulo de dados futuros.
Neste tópico, os algoritmos de classificação de alto nível usam a estrutura e relação entre
os dados para classificar em vez de atributos físicos como distância. Redes complexas são
uma estrutura de dados que fornece métricas para avaliar os dados como um sistema. Eles
fornecem medidas para a conectividade, comunicabilidade ou dispersão da interação de
dados. Neste estudo, exploramos propriedades de rede complexas e interação atributo-
atributo para desenvolver novas técnicas de classificação de alto nível. Em primeiro lugar,
aplicamos métrica de betweenness centrality, que captura características globais e locais
de rede. Este método reduz o número de métricas avaliadas e executa uma melhoria na
accuracy em comparação com outros algoritmos de alto nível. Em seguida, exploramos
uma nova metodologia de construção de rede complexa para capturar medidas estruturais
usando a interação atributo-atributo. Essa interação constrói e avalia cada atributo
independentemente e os combina usando uma equação ponderada otimizada. Finalmente,
analisamos os resultados obtidos por essas métricas em conjuntos de dados sintéticos e
reais e os comparamos com outros algoritmos clássicos de baixo e alto nível. As técnicas
propostas apresentam algumas características promissoras como a redução das métricas
utilizadas para classificação, resiliência diante de dados não normalizados e uma nova
métrica de avaliação de rede derivada da metodologia de construção.

Palavras-chave: aprendizado de máquina, aprendizado supervisionado, classificação de
alto nível, redes complexas.





Abstract
The democratization of technology caused by the internet, cloud technology, social media
increase dramatically the quantity of data collected. Machine learning is an artificial
intelligence field that produces valuable information from data. Supervised learning is a
type of machine learning that focuses on using labeled data to learn to predict the label
of future data. In this area, the High-level classification algorithms use the structure of
the relation between the data for classification instead of physical attributes like distance.
Complex networks are a data structure that provides metrics to evaluate the data as a
system. They provide measures to the connectivity, communicability, or sparseness of
the data interaction. In this study, we explore complex network properties and attribute-
attribute interaction to develop new high-level classification techniques. Firstly, we exploit
a mixed metric betweenness centrality that captures global and local characteristics for
classification. This method reduces the number of metrics evaluated and performs an
improvement compared to other high-level algorithms. Then, we explore a new complex
network building methodology to capture structural measures using attribute-attribute
interaction. This interaction builds and evaluates each attribute independently and
combining them using an optimized weighted equation. Finally, we analyze the results
obtained by these metrics in synthetic and real datasets and compare them to other classical
low-level and high-level algorithms. The proposed techniques present some promising
characteristics as the reduction of metrics used for classification, resilience in front of
non-normalized data, and a new network evaluation metric derived from the building
methodology.

Keywords: machine learning, supervised learning, high-level classification, complex
networks.
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1
Introduction

1.1 Context

In the last years, we live a revolution in technology. Now, we can collect tons of data using
cloud services . However, the transformation of this data into valuable information is still
an challenge problem (ALBRIGHT; WINSTON, 2015) (WITTEN et al., 2016).

Machine learning uses math and computational resources through simple or complex
transformations to help on decision making in several topics like churn prediction, diagnosis,
spam identification, price prediction, client recommendation, and so on (KREYENHAGEN
et al., 2014) (KELLEHER; NAMEE; D’ARCY, 2015) (PATIL et al., 2017) (ANUPRIYA
et al., 2018). Machine learning can be defined as a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict the future data,
or perform other kinds of decision making under uncertainty (MURPHY, 2013).

Usually, machine learning is divided into three main paradigms: supervised learning,
unsupervised learning and semi-supervised learning (GéRON, 2017). Supervised learning
uses labeled data to detect patterns and predict future cases. According to the kind
of labels, the prediction is called classification for categorical labels and regression for
numerical labels. Unsupervised learning focuses on the analysis of data without a label.
It is used in clustering, visualization, dimensionality reduction, association rule learning,
etc. (GéRON, 2017). Semi-supervised learning is a combination of the last two types of
paradigms. It considers a small number of labeled data and a large quantity of non-labeled
data to predict the labels of new examples (OLIVIER; BERNHARD; ALEXANDER,
2006).

One of the major topics to be investigated in supervised learning is data classification.
It aims at generating a map from the input data to the corresponding desired output,
for a given training set. The constructed map, called a classifier, is used to predict new
input instances. It can be applied to solve a large amount of real-world problems, such
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as recommendation system, for example, personalized cloth recommendations according
to brands (KREYENHAGEN et al., 2014), predicting witch costumer who will stop
buying on a company (churn prediction) (PATIL et al., 2017), credit card fraud detection
(ANUPRIYA et al., 2018), image and video recognition, medical diagnoses, just to name a
few.

Many classification techniques have been developed (WłADYSłAW; WITOLD,
2018) (GOPINATH; AJAY; SANJAY, 2019) (HIMANSHU, 2019), such as k-Nearest
Neighbors (kNN), Bayesian decision theory, neural networks (Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), Radial Basis Function (RBF), decision trees
(DT), neural networks (NN), and so on. In essence, all these techniques train labeled data
items and consequently classify unlabeled data items according to the physical features
(e.g., distance, similarity or distribution) of the input data. These kind of techniques divide
the training data space into sub-spaces, each one corresponds to a class. The shapes of the
sub-spaces should be as regular as possible. Complex shapes, such as twisted patterns, are
not permitted or very hard to be determined. The techniques that predict class labels using
only physical features are called low-level classification techniques (SILVA; ZHAO, 2012).
Human (animal) brain performs both low and high orders of learning and it has facility
of identifying patterns according to the semantic meanings of the input data. In general,
however, this kind of task is still hard to be performed by computers. Data classification
by considering not only physical attributes but also pattern formation is referred to as
high-level classification (SILVA; ZHAO, 2012) (SILVA; ZHAO, 2015) (COLLIRI et al.,
2018) (CARNEIRO; ZHAO, 2018b) (CARNEIRO et al., 2019).

The high-level classification techniques developed so far transform training data set
into complex networks and use network topology to represent data patterns. Specifically,
the classification is performed by verifying whether a testing data instance conforms a data
pattern of a class presented in the training set, i.e., a testing instance will be classified
to a class, say class C, which its insertion to the sub-network formed by data items of
class C, results in a smaller change of the sub-network structure than its insertion to
the sub-networks of other classes. High-level classification through pattern formation has
already been shown useful in several applications. In the papers (FERREIRA; ZHAO,
2016) and (SOUTO et al., 2019), time series trends are modeled by network communities
to estimate financial market risks. In the works (BACKES; CASANOVA; BRUNO, 2013)
and (LIMA et al., 2019), the authors use network patterns to represent shapes of images
to enhance the classification accuracy. In the papers (COCA; ZHAO, 2016a) and (COCA;
ZHAO, 2016b), the authors use the pattern formation in networks to identify musical
rhythm and musical scales. These investigations show that the high-level data classification
algorithms are important to capture patterns in a wide range of data, such as time series
and images.
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Complex networks are large scale graphs with nontrivial connection patterns
(ALBERT; BARABÁSI, 2002). Complex networks have the ability to describe spatial,
functional, and topological relations among the elements (vertices and links). Such a
research field has become one of the major themes in complex systems and has been used
to study a wide range of problems (VITO; VINCENZO; GIOVANNI, 2017) (MARIA
et al., 2019) (SEAN et al., 2019) (JING; HUSSEIN; KAY, 2019) (MILOš; MIRJANA;
LAKHMI, 2019). Many network measures have been defined and each one of them
characterizes network structure from a particular viewpoint. In the category of degree-
related measures, we have degree distribution, degree-degree correlation measures like
density that represents how strong the nodes connections are (SILVA; ZHAO, 2016),
assortativity degree that represents the attraction of nodes with a similar degree (high
with high degree and low with low degree) (NEWMAN, 2003), and normalized rich-club
coefficient that measure the connection strength of hubs (ZHOU; MONDRAGON, 2004).
In the category of structural measures, we have clustering coefficient that represents
the connection strength between the neighbors of a node (WATTS; STROGATZ, 1998),
modularity that measure the connectivity of a portion of the network (CLAUSET et al.,
2004), and cyclic coefficient that determinate the degree of node circulation (KIM; KIM,
2005). In the category of centraliy measures, we have betweenness that measure the node
importance for communication on the network (FREEMAN, 1977), closeness vitality that
measure the impact of a network communication if a node is removed (SILVA; ZHAO,
2016), and so on.

There are three main parts in the high-level classification algorithms: the complex
network building technique, the graph measures evaluation for classification method, and
the optimization phase. In the first phase, there are some building methodologies like kNNG
(method based on k nearest neighbors), kNN+εNG(method based on knn and e-radius
technique). In the second phase, there are a variety of metrics and methods to exploit the
network structure like importance measure used in (CARNEIRO; ZHAO, 2017), impact
measure used in (COLLIRI et al., 2018), or link prediction used in (FADAEE; HAERI,
2019). In the third phase, we have and optimization phase to improve the original structure
like in (CARNEIRO et al., 2019) using a social learning particle swarm optimization
(SL-PSO), or as a metric (CHIRE-SAIRE, 2020) using ant colony optimization.

The current research provides a new methodology that explores the three above-
mentioned points: Firstly, we use betweenness centrality as a classification metric measuring
the communicability of a network once inserted a new data. Second, we introduce
the concept of attribute-attribute interaction to produce a complex network for each
attribute to evaluate them independently and evaluate each one using modularity to
remove the networks that provide noise to the classification process. Finally, we introduce
an optimization method to combine each network prediction as a weighted equation using
particle swarm optimization.
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1.2 Motivation and Objectives

The principal motivation of this research is to explore and exploit the concepts related
to the structure, characteristics, and patterns generated by the data as a system. As we
will explain in the last section, this field has many applications like business decisions,
music generation, time series analysis, etc. So, the research focused on the improvement of
high-level classification techniques is an important task. The proposed technique introduces
new concepts to the current literature like the next ones:

• Building a network for each attribute exploits the attribute-attribute interaction.
Following this method, we avoid compressing all the information of one instance into
one single node, but we will have a node for every single piece of data.

• Using betweenness centrality, we use just one metric to capture the local and global
characteristics of the networks.

• We introduce particle swarm optimization to reduce the impact of noisy networks.

These points introduce an improvement in each part of classification methodology:
building complex networks, evaluation metrics, and optimization.

The main objective in this research is the development and evaluation of a new
high-level classification technique that exploits the attribute-attribute interaction, uses a
mixed metric to capture local and global network properties, and optimize the participation
of each network into the classification.

1.3 Organization

This research presents the subsequent chapters:

• In chapter 2, titled "Review of Relevant Concepts and Techniques", we introduce three
main concepts. First, we explore the complex networks and their main properties.
Then, we describe the building techniques proposed in the literature. Finally, we
review the current high-level classification algorithms.

• In chapter 3, titled "Proposed Models", we explain the steps of the proposed algo-
rithms. First, we describe the use of betweenness centrality as a classification metric.
We explore the attribute-attribute interaction. Finally, we describe the optimization
of each network participation in the classification process.



1.3. Organization 33

• In chapter 4, titled "Results", we present the results obtained by the algorithm in
synthetic and existing data sets and compare them in front of other classical and
high-level algorithms.

• In chapter 5, titled "Conclusions", we draw some conclusions and point out further
works.





2
Review of Relevant Concepts and
Techniques

In the chapter 1, we have talked about high-level classification algorithms. Those algorithms
generate a complex network from training and testing data and use the network topology
to characterize data patterns for classification. In this chapter, we give a short review on
complex networks, network building methodologies, and high-level classification methods.

2.1 Complex Networks

Data is irrelevant if we do not transform it into information. First, we need a data structure
to describe and capture the behavior of the data interaction. Complex networks exploit
these characteristics. They are graphs with a non-trivial structure. Usually, they are used
to describe systems like the Internet, flight routes, country roads, people relationship, and
more. We will describe some of the principal metrics used in this research.

2.1.1 Basic concepts

A graph is represented by G = (V,E) where V is a set of vertices or nodes of the graph
and E is a set of edges. Each node is usually represented by a number i = 1, 2, 3, ..., n
where n is the size of V and each edge E ⊆ {(i, j)|i, j ∈ V } connects a pair of nodes (i, j).
There are some other special characteristics:

• Undirected graph: The graph presents a symmetric relationship between edges, i.e.,
if there is a link (i, j), then exists (j, i).

• Directed graph: The graph does not present a symmetric relationship between edges.
If there is a link (i, j), not necessarily exists (j, i).
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• Weighted graph: The graph presents an additional numeric measure in their links
W (i, j), where for each (i, j) ∈ E, there is a weight W (i, j).

There is some important basic metrics related to this graphs:

• Neighborhood of a node (N ): It is the set of nodes that are connected to a specific
node i.

N (i) = {j : (i, j) ∈ E}

• Degree of a node (k): It is the number of nodes on the neighborhood of a specific
node i.

ki = |N (i)|

• Average degree (k̂): It is the average of all the degree nodes on the network.

k̂ = 1
|V |

∑
i∈V

ki

.

2.1.2 Complex network models

As we mentioned before, complex networks are large-scale graphs with non-trivial connec-
tion patterns. Some well-known complex network models are:

• Random networks: These are networks with random connections, which start with
nodes without links and, for each node, a link is created with a probability p to
another node (ERDöS; RéNYI, 1959).

• Small-world networks: Many networks, like social networks, have quick information
spreading feature, known as small-world property. Such kinds of networks can be
generated using a regular structure and a probability p to relocate a link between
nodes (BARABáSI; PóSFAI, 2016). In the regular network, the average distance
between nodes is high. After a few link relocations, the average distance is drastically
reduced, while the local structure of the regular network is still maintained. This
behavior is called the small-world effect.

• Scale-Free networks: Some systems present a concentration of links in small groups
of nodes called hubs (BARABASI; ALBERT, 1999). Usually, this feature presents
in Internet, where some web pages are very well connected like Google or Facebook.

Complex networks are powerful structures to represent and simulate the real
structure of complex systems.
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2.1.3 Complex network measures

Many measures have been developed to describe complex networks from different viewpoints.
We here briefly review the following ones, which are related to the present project.

• Density: this measure represents the force of connection between the nodes (SILVA;
ZHAO, 2016).

D = 2|E|
|V |(|V | − 1)

Where |E| and |V | represent the number of edges and nodes respectively. This
measure is in the interval [0, 1]. Where 0 means that the undirected graph G is an
empty graph (without edges) and 1 means that G is complete (all nodes are fully
connected).

• Assortativity: It represents the preference of the nodes to be connected with nodes
of the same degree (NEWMAN, 2003).

r =
|E|−1 ∑

e∈E ueve − [ |E|−1

2
∑
e∈E(ue + ve)]2

|E|−1

2
∑
e∈E(u2

e + v2
e)− [ |E|−1

2
∑
e∈E(ue + ve)]2

Where ue and ve are the degrees of the two extreme nodes of the edge e. The value
of this measure varies between -1 and 1, where a low value means a high relation
between nodes of different degrees and a high represents a strong relation between
nodes of equal degree.

• PageRank: It is a measure to rank the importance of a node. It was used by Google
to rank the web pages (PERRA; FORTUNATO, 2008).

p(i) = q

V
+ (1− q)

∑
j∈V :j−>i

p(j)
k

(out)
j

(2.1)

Where p(i) is the pagerank value of the node i,k(out)
j is the out-degree of node j,

and j ∈ V : j− > i represents all the nodes pointing i. The constant q ∈ [0, 1] is a
probability of random walks and random jumps.

• Modularity: It represents the community structure of a subset of the network
(CLAUSET et al., 2004).

Q = 1
2|E|

∑
i,jεV

(Aij −
kikj
2|E|)
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Where Aij is the weight of the edge that links the vertex i and j. The modularity is
in the interval [0, 1] where 0 means a lack of community structure and 1 means a
completely modular structure.

• Betweenness Centrality (BC): This metric capture the communication between nodes
using the shortest paths (SILVA; ZHAO, 2016). For each node we will calculate the
number of geodesic path where this node is present. A node with higher BC present
an important role in the network communication.

B(i) =
∑
s 6=i∈V

∑
t6=i∈V

ηist
ηst

(2.2)

where ηist is 1 when the node i is part of the geodesic path from s to t and 0 otherwise.
ηst is the total number of shortest paths between s and t.

2.2 Building methodology

In order to capture the instance interactions, we need to represent the data in a network
structure. Different authors present building methodologies using the k nearest neighbors
algorithm (CARNEIRO; ZHAO, 2018a), which transform each instance into a node and
the k nearest neighbors of node i are connected to i.

Figure 1 – Figure of two related instances transformed in two linked nodes.

kNN is extensively used in the complex network building methodologies (SILVA;
ZHAO, 2012)(SILVA; ZHAO, 2015)(COLLIRI et al., 2018)(FADAEE; HAERI, 2019).
Given a training data set, a complex network is generated for each class of data. Each data
instance is mapped to be a vertex. The edges are generated according to the similarity
between each pair of data instance. Specifically, the following rule was introduced to
establish edges (SILVA; ZHAO, 2012)(SILVA; ZHAO, 2015)(COLLIRI et al., 2018):

N (xi) =

ε-radius(xi, yi), if |ε-radius(xi, yi)| > k.

kNN(xi, yi), otherwise.
(2.3)

where (xi, yi) represents a pair of data instance xi and its corresponding label yi. For
each vertex xi, N(xi) is the set of vertices to be connected to it. ε-radius(xi, yi) returns
the set of vertices {xj, j ∈ V : d(xi, xj) < ε ∧ yi = yj} i.e. the set of vertices xj whose
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Figure 2 – Figure of the UCI Iris Dataset transformed into complex networks.

similarity with xi is beyond a predefined value ε and have the same class label yi. Here, d
is a distance function (e.g. euclidean distance). kNN(xi, yi) returns the set containing
the k nearest neighbors of xi. Note that the ε-radius criteria is used for dense regions
(|ε−radius(xi)| > k), while the kNN is employed for sparse regions. With this mechanism,
it is expected that each class will have a network component (SILVA; ZHAO, 2012) (SILVA;
ZHAO, 2015) (COLLIRI et al., 2018). Another technique (FADAEE; HAERI, 2019) shows
us that we can combine all networks adding a class node for each label value and connect
to them the training nodes. Once the networks are generated, we can use Eq. (3.1) again
to insert the testing instance into the networks.

In Figure 2, we can observe the iris data set transformed into a complex network,
where each class is transformed into a network (red, green, and blue). The complexity
of the graph is high even if the number of instances and attributes in the iris dataset is
small.

2.3 Network-based classification Methods

There are many ways to exploit this structure to build a classification model. We will
explore some of them related to our research.

• Calculate the distance, structure and centrality measures of the network after and
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before the testing nodes insertion and evaluate the fluctuation that they creates on
each component network. This is called impact measure.

I
(j)
i (x)(u) = 4G(j)

i (u)p(j) (2.4)

where 4G(j)
i (u) is the variation of the measure u of the network j caused by the

test instance i. The component network that present the minimum impact will be
the network class of the test node. The metrics used in the article (COLLIRI et al.,
2018) were average degree, assortativity, average shortest path length and second
moment of degree distribution. The method presents a good performance but the use
of many global metrics affects the execution time of the algorithm. If we want to use
the attribute-instance as a node, the size of the network will increase dramatically
and the processing time also.

• Using the Page Rank technique on the training networks to predict the testing nodes
based on the importance of the neighbors was proposed on (CARNEIRO; ZHAO,
2018b).

I
(t+1)
j =

∑
i−>j

β
I

(t)
i

di
+ (1− β) 1

n
(2.5)

where I(t+1)
j is the importance measure of a node on time t + 1 (I(0)

j = 1
n
), β is

a constant (0.85), n is the total number of nodes. The value of t is defined by a
threshold value. According to this measure, the test node will be classify where it
has more important neighbors.

• Using a class node and connecting all the training nodes to their respective ones. In
this way, it is possible to predict the label of a testing node using link prediction
that measures the probability of a link creation between two nodes. In this case, this
measure will be calculated on the edges between test and training nodes.

λi,j =
∑

λ∈Γi∩Γj

1
log|Γλ|

(2.6)

λi,j =
∑

λ∈Γi∩Γj

1
|Γλ| − |Γλ ∩ Γj|

+ 1
|Γλ| − |Γλ ∩ Γi|

(2.7)

The equations 2.6 & 2.7 give a probability according to the number the neighbors in
common of two nodes(test and training)(FADAEE; HAERI, 2019). This is a local
measure and the time consuming is lower than the used for global measures.

• Additionally, many strategies combine the classification method with classical algo-
rithms like SVM, kNN, CART, etc.

M
(j)
i = (1− λ)T (j)

i + λC
(j)
i (2.8)
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where T (j)
i is the probability that an instance xi is part of the class j produced by

an arbitrary traditional (low level) classifier, C(j)
i represents the same membership

function produced by the high-level algorithm, and λ is the constant called compliance
term that balance the two classification decisions.

There are others main concepts that could improve the performance of the high-level
classification algorithms:

1. The optimization proposed on (CARNEIRO et al., 2019) use particle swarm to
remove some links of the k-nearest neighbors that are noisy. This particular technique
will be vital to reduce the number of links on a large network.

2. The detection of community on a multi-layer network proposed on (GAO et al.,
2019) could help us to find some common structures on attribute networks, identify
important edges and detect noisy networks without community structure.





3
The Proposed Methods

In this chapter, we propose three new improvements to the high-level classification
techniques: 1) Using betweenness centrality to generate a new classification method;
2) Presenting an Ensemble Method for Complex Network Building; 3) proposing an
Evaluation Metric Method - Lost Links. The explanation of each of these new methods
will be exposed in this chapter and the experimental results will be shown in the next
chapter.

3.1 High-Level Classification Based on Be-
tweenness Centrality

In this section, we present the Network-Based High-level Classification method using
Betweenness Centrality (NBHL-BC).

3.1.1 Mixed network measure

Several network measures have been applied to high-level classification, like clustering
coefficient, assortativity, average degree. However, there are mixed measures that can
capture local and global features by a unique measure, like betweenness centrality. Other
mixed measures, like PageRank, have been applied to high-level classification provide
promising results. Here, we will present a new method using betweenness centrality.

3.1.2 Overview of the Model

Each complex network consists of a set of nodes or vertices V and a set of links or edges
E between each pair of nodes. The input data D of N elements for supervised learning
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contains two parts: the attributes X and the labels Y .

In supervised learning, the dataset D = {(X1, y1), ..., (Xn, yn)} where Xi =
(x1, ..., xd) represents the d attributes, and yi represents the label of the instance Xi.
The values of yi ∈ L = {l1, ..., lc} where L is the possible labels of the instance. The goal
of supervised learning is to predict the yi values using the instances Xi. This could be
considered as function approximation f(Xi) ≈ yi where the function f is our algorithm.
To evaluate the model, it is required to split the data in training and testing datasets.
The Xtraining dataset will be used to build our model and the Xtesting dataset will be used
for evaluation.

In the training phase, we will build complex networks using the training dataset.
The instances in the dataset will be the nodes and the links will represent the similarity
between these nodes. Therefore, we will have D 7→ G = 〈V , E〉, where V = {1, ..., N} is the
set of nodes and E is the set of links in the complex network G. The links could be created
using kNN and ε− radius or personalized relation metrics like friendship on social data,
flight routes, or city connections.

The network G will be built using Xtraining to produce the nodes V and kNN and
e− radius as relation metric for links E . Then, we remove the links between nodes with
different labels yi. Following this strategy, we will have one network component Gi for
each label in L.

In the testing phase, we insert a node from Xtesting into each component Gi

following the same kNN and e− radius rules of training phase. Then, we calculate the
betweenness measure of this node in each Gi. This measure is compared to the others
from each network component Gi. So, the differences are saved in a new list for each Gi.

Finally, we get the average of the b lowest values for each list and we classify
the new node to the Gi with the lowest average. Then, we remove this node from the
other components. In the case that the average differences of two or more lists are equal,
we use the number of links connected to this new node in each component as a second
difference measure. Moreover, we use a ratio α to combine this high-level method with
other techniques; in our case, we use the number of links connected to the new node
inserted. This ratio is between 0 when we use only the number of links and 1 when we use
just our method.

3.1.3 Network-Based High-level Classification Using
Betweenness Centrality (NBHL-BC)

The proposed high-level classification algorithm, which will be referred as NBHL-BC, has
four parameters k, e, b, and α. Where k is the number of neighbors used in the kNN ,
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e is the percentile into kNNdistances used to calculate ε, b is the number of nodes with
similar betweenness used for classification, and α is the weight to balance between links
and betweenness centrality.

During the training phase, we build the network using the Xtraining and Ytraining
where Xtraining 7→ G = 〈V , E〉. Each node in V is related with one instance in Xtraining

and each link in E is defined following these two techniques:

N (Xi) =

ε-radius(Xi, yi), if |ε-radius(Xi, yi)| > k

kNN(Xi, yi), otherwise
(3.1)

where (Xi, yi) represents a pair of data instance Xi and its corresponding label yi. For
each instance Xi, N (Xi) is the set of nodes to be connected to it, its neighborhood.
ε-radius(Xi, yi) returns the set of nodes {Xj, j ∈ V : distance(Xi, Xj) < ε ∧ yi = yj} i.e.
the set of nodes Xj whose similarity with Xi is beyond a predefined value ε and have
the same class label yi. Here, distance is a similarity function like euclidean distance.
kNN(Xi, yi) returns the set containing the k nearest neighbors of Xi. The value ε is the
percentile e of the kNNdistances in the sub graph of yi. Note that the ε-radius criteria
is used for dense regions (|ε− radius(Xi)| > k), while the kNN is employed for sparse
regions. With this mechanism, it is expected that each label will have an independent sub
graph Gc (SILVA; ZHAO, 2012) (SILVA; ZHAO, 2015) (COLLIRI et al., 2018).

(a) Inserted node in Gg (b) Inserted node in Gb

(c) Inserted node in Gr (d) Final Classification

Figure 3 – Figure of classification of a new instance (dark node) into the iris dataset graph
G using with k = 5 e = 0.5 b = 5 α = 1.0
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In Figure 3d, we can see the network G = {Gr,Gg,Gb} where r, g, b represent the
sub graphs with nodes red, green and blue. At the testing phase, we insert each Xtesting

instance (dark node) to each component Gi following the same rule defined by equation
(3.1), and assuming that the node will be inserted in each sub-network.

Figure 3 shows an example where there are three network components Gi and the
node to be tested is inserted to each one. In Figures 3a 3b 3c, the testing node uses its
k-nearest neighbors with the same label. In this case with k = 5, there are 4 nodes in
Gg, 1 in Gb, and 0 in Gr. The ε− radius with the e = 0.5 (median of kNNdistances) is less
than 5, because the current inserted node presents a sparse behavior; for this reason, we
will use just kNN . Moreover, due to the condition of the same label, the algorithm will
produce one sub-network for each possible label.

Now we calculate the betweenness centrality for the node in each component when
the new node is inserted. Following this rule, the inserted node will have different values
for each component.

The betweenness centrality is a mixed measure (global and local) that captures
how much a given node is in the shortest paths of others nodes (SILVA; ZHAO, 2016).
This measure captures the influence of a node in the communication of the network
(NEEDHAM; HODLER, 2019). We capture not only the characteristics of a node but also
the behavior of their neighborhood. So, we have a metric that provides local and global
network characteristics. This metrics is defined in the equation 3.2.

B(i) =
∑
s6=i∈V

∑
t6=i∈V

ηist
ηst

(3.2)

where ηist is 1 when the node i is part of the geodesic path from s to t and 0 otherwise.
ηst is the total number of shortest paths between s and t.

Then, we calculate the difference of this measure between the inserted node and
the other nodes in each component Gi. The Line 14 of the algorithm 2 shows this step.
In the algorithm 1, we can appreciate how an inserted node will present a different
betweenness centrality for each sub graph.

These values will be inserted into an independent list for each component Gi. We
will calculate the average of the b lower values on each list. In the 2 on line 19, we can
appreciate how we get just the b lower elements on NB previously sorted on line 16. The
results are stored on the array W = {w1, ..., wc} where each wi represents the average
difference of the b nearest betweenness node values on the sub-network Gi. This process is
represented in the algorithm 2 on line 27 and 28.

Wn = 1−W∑
wi∈W 1− wi

(3.3)
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Algorithm 1 Node Insertion
1: function NodeInsertion(G, instance, index, k, e)
2: 〈V , E〉 ← G . index is the number of nodes in the graph +1
3: V ← V ∪ {index}
4: edges← {}
5: for Xi ∈ Xtraining do
6: if Xi ∈ N (instance, k, e) then
7: edges← edges ∪ (i, index)
8: end if
9: end for

10: E ← E ∪ {edges}
11: G ← 〈V , E〉
12: return G
13: end function

where Wn is the normalized version of W . In order to avoid conflicts of probabilities with
the same value wi ∈ Wn, we calculate the number of links of the inserted node with respect
to each sub-network Gi on the array T . Then, we follow a similar process of equation 3.3
for T normalization. This process is represented in the algorithm 2 on line 29.

T n = T∑
ti∈T ti

(3.4)

Finally, once we normalize these values, we calculate the sum of T n,Wn and made a final
normalization.

H = (α)Wn + (1− α)T n∑
ti∈T n,wi∈Wn (α)wi + (1− α)ti

(3.5)

where hi ∈ H represents the probability of a node i to be inserted in the sub graph Gi,
and α controls the weights between structural information and number of links. If α = 1.0,
we just capture information using betweenness centrality, and if α = 0.0, we just capture
information about number of links. The fully algorithm is described in algorithm 2.
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Algorithm 2 Classification Algorithm
1: function Classification(G,instance, k, e, b, α)
2: index← n+ 1 . n is the number of nodes in G
3: G ←NodeInsertion(G, instance, index, k, e)
4: W ← {}
5: T ← {}
6: for Gi ∈ G do . Where each Gi is a subgraph
7: NB ← {} . NB is a list of node betweenness differences
8: 〈V i, Ei〉 ← Gi
9: Links← 0
10: for j ∈ V i do
11: if j ∈ N (index, k, e) then
12: Links← Links+ 1
13: end if
14: NB ← NB ∪ {B(index)−B(j)} . B is betweenness centrality
15: end for
16: Sort(NB) . NB has the differences between the nodes in Gi and the new node
17: Total← 0
18: count← 0
19: while count < b do
20: Total← Total +NB[count]
21: count← count+ 1
22: end while
23: Total← Total

b

24: W ←W ∪ Total
25: T ← T ∪ Links
26: end for
27: Wn ← 1−W
28: Wn ← Wn

sum(Wn)
29: T n ← T

sum(T )
30: H ← (α)W + (1− α)T
31: H ← H

sum(H)
32: return MaxIndexValue(H) . H has each class probability
33: end function

3.2 Attribute-attribute Interactions

In this section, we will explore the attribute-attribute interaction to develop a new build
network method (Quipus).
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3.2.1 Hidden Links

There are different methodologies to build the networks from the dataset that combines
variations of kNN and e-radius techniques. However, following these strategies, we are
ignoring some hidden links between the data. Each instance that is represented as a node
is usually a complex structure with more than four attributes. So, we cannot ignore the
fact that each instance is a network.

3.2.2 Quipus

The Quipus is an accounting tool used for the historical American Inca Empire to measure
the number of people, food, animals, or other information that they have. It is based on
strings for each thing to measure and knots to capture the quantity (SCHMIDT; SANTOS
LUIZ DOS SANTOS, 2017). Inspired by this concept, we split the dataset for each
attribute to capture the relations inside them. Also, each final attribute network presents
a form of a string as it is shown by Figures 7 and 8.

3.2.3 Attribute-attribute interactions

We analyse how each instance is represented as a node but this approach ignore some
hidden patterns between attribute-attribute interaction.

Figure 4 – Figure of 4 graphs that capture the interactions into each attribute.

In this method, we create a network for each attribute to detect this hidden patterns.
In Figure 4, we can appreciate how each attribute is represented as an independent network.
Using this approach, we can capture the attribute-attribute interaction. Since we are using
attributes that have the same scale to produces the networks, our method increases its
resistance to non-normalized data. However, there are attributes that by themselves do
not provide relevant information and require others to be useful. Thus, we will use the Q
to evaluate each network.



50 Chapter 3. The Proposed Methods

3.2.4 Training phase

In the training phase, we split the training dataset Xtraining in two Xnet and Xopt because
we will use them for optimization phase. The proportion depends on the quantity of data
available usually. Then, we follow the next steps:

• First, we build a network for each attribute to capture their hidden patters following
the equation (3.1) on Xnet. Then, we build the main network using all attributes to
capture the instance-instance interaction.

• Second, we calculate the Q for each network. To avoid possible noise of attributes
without relevant information, we ignore the networks with modularity lower than
the main network.

• Third, we insert each instance from Xopt to the networks following the same strategy
described in step 1. However, we will keep the links between different labels because
we want to simulate a real insertion. Then, we introduce each attribute into the
correspondent network and the complete instance (with all attributes) in the instance-
instance network (main network).

• Fourth, we obtain the probability to be part of each class in each network using
the high-level algorithm HLNB-BC. For example, in a dataset with 3 classes and
4 attributes, it will give us a list with three probabilities for each network (12
probabilities in total).

• Fifth, we give a weight for each network from 0 to 1. This will give us a way to
reduce or increase the classification probability of the networks. Then, we use an
optimization algorithm like particle swarm to determinate the better weights for
each network to increase the accuracy of the predicted instances in Xopt.

• Finally, we save the weights and produce the final networks following the same
procedure in step 1 with Xtraining.

We use Q to reduce the networks with low community structure because some
attributes introduce noise in the classification process. In figure 5, we observe that the
first and second attributes present a clear community structure for the three classes but
with some noise between green and blue nodes. However, the other two attributes do not
have a clear structure. We use modularity to remove the weak networks. The modularity
of the main network (with all attributes) is used as a delimiter.
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(a) Figure of iris attribute 1 network (b) Figure of iris attribute 2 network

(c) Figure of iris attribute 3 network (d) Figure of iris attribute 4 network

Figure 5 – Figure of the four attribute-attribute networks in iris dataset.

3.2.5 Testing phase

In testing phase, we use the final networks built in section 3.2.4 and predict each label in
testing dataset Xtesting.

• First, we insert each instance from Xtesting to the networks following the same
strategy described in equation (3.1). However, we will keep the links between
different labels because we want to calculate them. We introduce each attribute into
its corresponding network and the complete instance in the main network.

• Second, we obtain the probability to be part of each class in each network using the
high-level algorithm HLNB-BC.

• Third, we multiply these probabilities for their corresponding optimized weights
calculated in section 3.2.4.

• Finally, the labels with higher probability will capture the new node.





4
Experimental Results

In this section, we present the experimental results of our algorithm in different scenarios.
i) We explore the proposed techniques using synthetics datasets to explore the behavior
of the high level technique in context with structured data. ii) We explore the proposed
technique on UCI datasets to explore the algorithm parameters.

We compare the proposed algorithm with others high-level and classical classification
algorithms using 5-folds cross validation 10 times technique and parameter optimization
with grid search. The classical algorithms are: 1) Nearest Neighbors (optimized with k
between 1 to 30); 2) Multi Layer Perceptron (input - dense layer - dense layer -output with
420 nodes); 3) Random Forest (trees between 100 to 500); 4) High-Level Classification
(optimized with k between 1 to 30); 5) High-Level Link Prediction (optimized with k

between 1 to 30) ; 6) Quipus. In Quipus, we search k from 1 to 30, the percentile ε is
tested with the values [0.1, 0.2, 0.3, 0.4, 0.5], b nearest nodes from 1 to 7 and α with these
values [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The results of cross validation show
us improvements of the proposed technique in the tests.

4.1 Synthetic Datasets

In this section, we present the classification performance of our algorithm in toy datasets
and compare the results with other algorithms using python as programming language
and Scikit-learn library for algorithms (PEDREGOSA et al., 2011). Specifically, we
test our algorithm against Multi Layer Perceptron (MLP) (RIEDMILLER; BRAUN,
1993), Decision Tree C4.5 (DT) (SHAFER; AGRAWAL; MEHTA, 2000), and Random
Forest (RF) (BREIMAN, 2001). The algorithms are tested using cross validation 10-folds,
executed 10 times, and we use a grid search to select the hyper parameters that give the
best accuracy for all the algorithms.

The toy datasets are Moons and Circle with 0.0 and 0.25 of Gaussian standard
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deviation noise added to the data 6. The NBHL-BC parameter values are shown in
table 1, and the classification accuracy results are shown in table 2. These datasets are
used because they present clear data patterns where traditional algorithms have their
effectiveness reduced in these cases. In the case of Decision tree, we use gini index as
quality measure without pruning method. In the case of Random Forest, we use gini index
as split criterion and 100 trees. In the case of MLP, we use 2 hidden layer with 10 nodes
and 100 interactions for dataset without noise and 500 interactions with noise.

(a) Moons Noise 0.0 (b) Moons Noise 0.25

(c) Circle Noise 0.0 (d) Circle Noise 0.25

Figure 6 – Figure of synthetic Datasets for Testing

Dataset k e b α accuracy
Moons 0.00 5 0.5 5 1.0 100.0
Moons 0.25 8 0.0 10 1.0 97.0
Circle 0.00 1 0.5 1 1.0 100.0
Circle 0.25 5 0.5 1 1.0 64.0
Moons 0.00 5 0.5 5 0.5 100.0
Moons 0.25 9 0.0 10 0.5 96.0
Circle 0.00 1 0.0 1 0.5 100.0
Circle 0.25 5 0.5 1 0.5 65.0
Moons 0.00 5 0.5 5 0.0 100.0
Moons 0.25 9 0.0 10 0.0 96.0
Circle 0.00 1 0.0 1 0.0 100.0
Circle 0.25 5 0.5 1 0.0 64.0

Table 1 – Parameter values used by our algorithm (NBHL-BC) in Toy Datasets

We use in the first group α = 1.0 because we want to evaluate just the structural
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methodology using betweenness centrality. In the second group, we combine both
strategies with α = 0.5 and we got a small improvement on the dataset Circle 0.25. In
the last group, we use just the number of links and we got similar results but there is a
reduction of the accuracy in Moons 0.25. In some cases, we need to remove the property
of ε− radius using e = 0.0 and increase the quantity of k neighbors in Moons with 0.25
noise. The b similar betweenness centrality nodes were kept in all the tests because other
values reduce accuracy.

MLP DT RF NBHL-BC
Moons 0.00 94.0 95.0 98.0 100.0
Moons 0.25 84.0 85.0 91.0 97.0
Circle 0.00 90.0 92.0 91.0 100.0
Circle 0.25 62.0 56.0 56.0 65.0

Table 2 – Classification accuracy of the NBHL-BC compared to Multi Layer Perceptron
(MLP), Decision Tree (DT), and Random Forest (RF) in Toy Datasets

In this simulations, our algorithm presents the best results in all the datasets.
Specially in the the circle dataset with noise 0.25, which is the most difficult case, our
algorithm presents better classification accuracy than other techniques under comparison.

4.2 UCI Datasets

In this section, we are going to present the results of the NBHL-BC technique on UCI
classification datasets (DUA; GRAFF, 2017) . Also, we will compare our results with other
algorithms. We test our algorithm against Multi Layer Perceptron (MLP) (RIEDMILLER;
BRAUN, 1993), Decision Tree C4.5 (DT) (SHAFER; AGRAWAL; MEHTA, 2000), Random
Forest (RF) (BREIMAN, 2001), and the Network Base High Level Technique (NBHL)
(COLLIRI et al., 2018).

The algorithms are tested splitting each dataset in two sub data sets, for training
and testing with a proportion of 75% and 25% respectively following an stratified sampling
using python as programming language and Scikit-learn library for algorithms .

The datasets used are shown in Table 3 with the number of instances, attributes
and classes. These datasets are selected because the previous high-level algorithm used
them. The NBHL-BC parameter values are given in Table 4, and classification accuracy
results are presented in Table 5.

Our algorithm presents good performance in all the datasets compared to other
algorithms. In four cases, our algorithm presents the best results. Just in case of Iris
dataset, another high level classification algorithm NBHL is better than the proposed one.
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Dataset Instances Attributes Classes
Glass 214 9 6
Iris 150 4 3
Pima 768 8 2

Teaching 151 5 3
Wine 178 13 3
Yeast 1484 8 10
Zoo 101 16 7

Table 3 – Information about the UCI classification dataset used on these project.

Dataset k e b α
Glass 1 0.0 1 1.0
Iris 7 0.0 3 1.0
Pima 8 0.0 4 1.0

Teaching 5 0.0 5 1.0
Wine 12 0.0 5 1.0
Yeast 14 0.0 3 0.5
Zoo 1 0.0 1 1.0

Table 4 – Parameter values used by our algorithm (NBHL-BC) in UCI datasets.

MLP DT RF NBHL NBHL-BC
Glass 69.231 63.077 75.385 66.700 69.231
Iris 93.333 93.333 93.333 97.400 95.556
Pima 74.892 69.264 77.056 73.400 77.056

Teaching 52.174 52.174 60.870 55.300 65.217
Wine 96.296 92.593 98.148 80.000 98.148
Yeast 59.641 48.430 61.883 36.700 54.036
Zoo 96.774 96.774 96.774 100.00 100.00

Table 5 – Classification accuracy results of the NBHL-BC compared to Multi Layer Per-
ceptron (MLP), Decision Tree C4.5 (DT), Random Forest (RF), and Network
Base High Level Classification (NBHL) using the testing dataset.

Moreover, the α parameter that regulates the weight between the betweenness
measure and number of links in 6 of the 7 datasets is 1.0 that means that the algorithm
just use the betweenness. In the dataset Yeast, it is required an α = 0.5 that means that
give same importance between betweenness and number of links. In Table 6, we test UCI
Wine dataset (DUA; GRAFF, 2017) using 10-fold cross validation with different values
for α. The accuracy with only links number α = 0.0 is quite lower than α = 1.0, and
the best result is mixing both techniques with α = 0.4. The b parameter that evaluates
the number of nodes with the lower betweenness centrality difference with respect to the
inserted node were kept constant.

The datasets used, their attributes, instances, and classes are described in Table 3.

In Section 3.2.4, we split the training data in Xnet and Xopt. In our tests, we use a
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Dataset k e b α accuracy
Wine 8 0.5 5 0.0 95.492
Wine 8 0.5 5 0.1 96.619
Wine 8 0.5 5 0.2 96.619
Wine 8 0.5 5 0.3 96.619
Wine 8 0.5 5 0.4 97.175
Wine 8 0.5 5 0.5 96.619
Wine 8 0.5 5 0.6 96.063
Wine 8 0.5 5 0.7 96.048
Wine 8 0.5 5 0.8 95.508
Wine 8 0.5 5 0.9 96.619
Wine 8 0.5 5 1.0 96.048

Table 6 – Results of 10-folds cross validation in UCI Wine dataset with the training
dataset.

stratified random split 80% and 20% respectively. This value could be modified according
to the quantity of data. Then, we build a network for each attribute and one network
for instance-instance interactions. We calculate their modularities (Q) and compare each
attribute network with the instance-instance network. The networks with lower modularity
will be ignored in the rest of the process. Table 7 show us the modularities for each
network.

Table 7 – Modularities of attribute networks in UCI Wine Dataset

Network Modularity Q
Instance-instance 0.3181

Attribute 1 0.3189
Attribute 2 0.0924
Attribute 3 0.0500
Attribute 4 0.1689

... ...
Attribute 10 0.2288
Attribute 11 0.3008
Attribute 12 0.3333

For instance, the modularity of the networks attribute 1 and attribute 12 are
higher than modularity of instance-instance network. So, these networks will be used for
optimization, classification, and insertion. The others will be ignore because do not have
a high community structure.

The insertion of the nodes into each graph follow the equation (3.1), but preserving
the links with nodes of different labels. Given that we want to capture the insertion
probability for each class. Then, we create a weight for each graph probabilities and start
an optimization phase. We use a particle swarm optimization from Pyswarms library
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with these parameters {c1 = 0.5, c2 = 0.1, w = 0.9, iterations = 500}. Theses could be
optimized but we use these fixed values for these experiments.

For example, in one interaction, our algorithm capture the weight in Table 7.

Table 8 – Modularities and weights of attribute networks in UCI Wine Dataset

Network Modularity Q Weights Ignored
Instance-instance 0.3181 0.9083 False

Attribute 1 0.3189 0.8065 False
Attribute 2 0.0924 - True
Attribute 3 0.0500 - True
Attribute 4 0.1689 - True

... ...
Attribute 10 0.2288 - True
Attribute 11 0.3008 - True
Attribute 12 0.3333 0.1746 False

Once the weights are defined, we proceed to rebuild the graphs but using the entire
training dataset Xtraining. Finally, the classification phase, will follow the same process
that optimization phase but using the optimized weights.

Figure 7 – Figure of instance-instance network from one interaction in UCI wine dataset
classification.

In Figure 7, we can observe the instance-instance network from one instance of
wine dataset classification. The black nodes represents instances classified. It present an
structure where the red nodes are in one side, the blue nodes in the other side, and the
green nodes in the middle of them. In the figure 8, we observe the network from the first
attribute of wine datset that had a modularity of 0.3189. Once the nodes are inserted this
graphs present a higher modularity Q = 0.6553. Without this methodology, we will lose
these attribute-attribute interactions. These networks gives us an accuracy of 91.11%.

In Table 10, we observe the accuracy of Quipus against the literature network
building technique kNN+ε-radius. This current technique present problems related to data
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Figure 8 – Figure of attribute-attribute 1 network from one interaction with higher modu-
larity than its instance-instance network in UCI wine dataset classification.

Table 9 – parameter values used by NBHL-BC with Quipus methodology in uci datasets

Dataset k e b α
Glass 1 0.0 1 0.5
Iris 12 0.0 3 1.0
Pima 8 0.0 4 0.5

Teaching 1 0.0 1 0.5
Wine 7 0.0 3 1.0
Yeast 14 0.5 1 0.5
Zoo 1 0.0 1 1.0

non-normalized like wine UCI dataset. However, using Quipus, we reduce this problem.
Due to the attribute networks build their relations in the same scale, the optimized weight
manage the probability force, and reduce its impact in the final classification.
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Table 10 – Table with accuracy and one standard deviation of different building method-
ologies and UCI datasets without normalization.

Results of 10 times using 10-folds cross validation
Dataset Prediction Building (k) Accuracy

Glass HLNB-BC kNN+ε-radius (1) 58.87 ± 10.73
Quipus(1) 57.94 ± 7.04

Iris HLNB-BC kNN+ε-radius (7) 95.33 ± 05.92
Quipus (12) 95.80 ± 04.68

Pima HLNB-BC kNN+ε-radius (8) 70.93 ± 3.18
Quipus(8) 72.96 ± 3.46

Teaching HLNB-BC kNN+ε-radius (1) 60.24 ± 24.70
Quipus(1) 58.08 ± 23.48

Wine HLNB-BC kNN+ε-radius (1) 75.84 ± 09.57
Quipus (7) 93.03 ± 06.54

Yeast HLNB-BC kNN+ε-radius (14) 41.10 ± 2.77
Quipus(14) 41.61 ± 3.22

Zoo HLNB-BC kNN+ε-radius (1) 96.36 ± 06.49
Quipus(1) 96.87 ± 02.485
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Conclusion

The results presented in this research to classify using an attribute-attribute interaction
with betweenness centrality show another perspective related to high-level classification. In
some cases, the hidden patterns in data produce some promising results in non-normalized
data. Also, in some cases, our algorithm presents a higher accuracy.

The toy dataset like circle and spiral explores that the betweenness centrality
metric could describe complex structures. Moreover, the performance obtained in real
datasets shows us that our algorithm can be used in a real business context.

This research shows us evidence that capturing more structures in data could
improve the performance of the high-level algorithms. Other possible hidden patterns are
in images where each instance presents a complex composition. More investigation will be
needed to exploit these instance-attribute patterns in a high-level classification.

5.1 Publications

The research presented generated two scientific papers:

One titled "A Network-Based High-Level Data Classification Algorithm Using Be-
tweenness Centrality", published in "XVII ENCONTRO NACIONAL DE INTELIGÊNCIA
ARTIFICIAL E COMPUTACIONAL", 2020, Porto Alegre, Brasil, pp. 188-198. Where
we explore the Betweenness Centrality as a classification Technique.

The second paper "A new network-based high-level data classification methodology
(Quipus) by modeling attribute-attribute interactions", presented in "INTERNATIONAL
CONFERENCE OF DIGITAL TRANSFORMATION AND INNOVATION TECHNOL-
OGY INCODTRIN 2020", 2020, Quito, Ecuador. Where we explore the attribute-attribute
interaction.



5.2 Future works

According to the presented results, we explore that a high-level classification technique using
attribute-attribute interaction can capture the structure hidden in each attribute. Also,
we exploit the community structure to identify the networks with the best performance.

We will explore other metrics to evaluate the performance of a network instead
of modularity. This metric produces competent results to decide which network to use.
However, we need to measure each network by each class independently.

Another problem is the high number of nodes and subgraphs that we must use to
capture these hidden patterns. Reduce the number of attributes and capture the variation
between them could improve the current algorithm. Non-supervised learning methods to
reduce the dimensionality could provide an improvement in the algorithm.

Also, we want to introduce these algorithms in business problems like sales classifi-
cation, time series analysis, and data visualization.
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