Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.59.2020.tde-07122020-220625
Documento
Autor
Nome completo
Rafael Silva Del Lama
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Ribeirão Preto, 2020
Orientador
Banca examinadora
Tinós, Renato (Presidente)
Gutierrez, Marco Antonio
Liang, Zhao
Pozo, Aurora Trinidad Ramirez
Título em português
Algoritmos genéticos e redes neurais convolucionais para auxílio ao diagnóstico de fraturas vertebrais por compressão
Palavras-chave em português
Algoritmos genéticos (AG)
Diagnóstico auxiliado por computador (CAD)
Fratura de coluna vertebral por compressão (FVC)
Rede neural convolucional (CNN)
Resumo em português
A Fratura Vertebral por Compressão (FVC) é uma fratura do corpo vertebral relacionada a forças compressivas, com colapso parcial do corpo vertebral. As FVCs podem ocorrer secundariamente ao trauma, mas as FVCs não traumáticas podem ser secundárias à fragilidade causada por osteoporose (FVCs benignas) ou tumores (FVCs malignas). No caso de FVCs não traumáticas, a investigação da etiologia é geralmente necessária, uma vez que o tratamento e o prognóstico são dependentes do tipo da FVC. Atualmente, tem havido grande interesse no uso de Redes Neurais Convolucionais (CNNs) para a classificação de imagens médicas, pois essas redes permitem a extração automática de características interessantes para a classificação em um determinado problema. No entanto, as CNNs geralmente exigem grandes bancos de dados que muitas vezes não estão disponíveis. Além disso, essas redes geralmente não usam informações adicionais que podem ser importantes para a classificação. Uma abordagem diferente é classificar a imagem com base em um grande número de características predefinidas, uma abordagem conhecida como radiômica. Neste trabalho, propomos um método híbrido de classificação de FVCs que utiliza características de três fontes distintas: i) camadas intermediárias de CNNs; ii) radiômica; iii) informações adicionais dos pacientes e histograma de imagens. No método híbrido proposto aqui, características externas extraídas das imagens são inseridas como entradas adicionais para a primeira camada densa de uma CNN. Um Algoritmo Genético (AG) foi empregado para i) selecionar um subconjunto de características visuais, radiômicas e clínicas relevantes para a classificação de FVCs; ii) selecionar hiper-parâmetros que definem a arquitetura do modelo híbrido proposto para classificação. Experimentos usando diferentes abordagens para as entradas indicam que combinar informações pode ser interessante para melhorar o desempenho do classificador.
Título em inglês
Genetic algorithms and convolutional neural networks to aid the diagnosis of compression vertebral fractures
Palavras-chave em inglês
Computer aided diagnosis (CAD)
Convolutional neural network (CNN)
Genetic algorithm (GA)
Vertebral compression fracture (VCF)
Resumo em inglês
Vertebral Compression Fracture (VCF) is a vertebral body fracture related to compressive forces, with vertebral body partial collapse. VCFs may occur secondary to trauma, but non- traumatic VCFs may be secondary to osteoporosis fragility (benign VCFs) or tumors (malignant VCFs). In the case of non-traumatic VCFs, the investigation of etiology is usually necessary, since treatment and prognosis are dependent on the type of VCF. Currently, there has been great interest in using Convolutional Neural Networks (CNNs) for the classification of medical images because these networks allow the automatic extraction of interesting features for the classification in a given problem. However, CNNs usually require large databases that are often not available. Besides, these networks generally do not use additional information that may be important for classification. A different approach is to classify the image based on a large number of predefined features, an approach known as radiomics. In this work, we propose a hybrid method for classifying VCFs that uses features from three different sources: i) intermediate layers of CNNs; ii) radiomics; iii) additional information from the patients and image histogram. In the hybrid method proposed here, external features extracted from the images are inserted as additional inputs to the first dense layer of a CNN. A Genetic Algorithm (GA) was used to i) select a subset of visual, radiomic and clinical characteristics relevant to the classification of FVCs; ii) select hyper parameters that define the architecture of the proposed hybrid model for classification. Experiments using different approaches for the inputs indicate that combining information can be interesting to improve the performance of the classifier.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-01-25