• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.59.2021.tde-08022022-091409
Documento
Autor
Nombre completo
Jesimiel Glaycon Rodrigues Antônio
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Ribeirão Preto, 2021
Director
Tribunal
Andrade, Adalgisa Rodrigues de (Presidente)
Forti, Juliane Cristina
Yamanaka, Hideko
Título en portugués
Preparação e caracterização de sistemas híbridos para biocélulas enzimáticas operando com etilenoglicol/O2
Palabras clave en portugués
Biocélula a combustível enzimática
Biocélula híbrida
Etilenoglicol
MWCNTs
Nanocatalisadores
Oxalato oxidase
TEMPO-NH2
Resumen en portugués
Este trabalho descreve a investigação de sistemas híbridos para o desenvolvimento de uma biocélula a combustível etilenoglicol/O2 visando a oxidação completa do combustível. Os catalisadores de nanopartículas de Pt65Sn35 depositadas sobre nanotubos de carbono de parede múltiplas (MWCNTs-Pt65Sn35) e 4-amino-TEMPO (TEMPO-NH2) demostraram atividade eletrocatalítica para a oxidação do etilenoglicol (EG) com um pico de oxidação bem definido. A enzima oxalato oxidase (OxOx) obtida pela Ceriporiopsis subvermispora foi empregada como catalisador na quebra da ligação C-C do substrato. As voltametrias cíclicas do sistema híbrido MWCNTsPt65Sn35+OxOx, na presença de EG apresentaram uma corrente 1,6 maior em relação a densidade de corrente observada para o MWCNTs-Pt65Sn35; já TEMPO-NH2+OxOx foi em média 1,23 maior quando comparada com o TEMPO-NH2. Análises voltamétricas, cronoamperométricas e de eletrólises demonstraram que a OxOx não oxida diretamente o EG. Foram realizados estudos cronoamperométricos do EG e dos subprodutos de oxidação (glicoaldeído (GAld), ácido fórmico (AF), ácido glicólico (AG), ácido glioxílico (AGO) e ácido oxálico (AO)) no sistema MWCNTs-Pt65Sn35+OxOx e MWCNTs-Pt65Sn35 em um potencial fixo de 0,9 V vs Ag/ AgCl. O sistema híbrido apresentou corrente superior para todos os substratos analisados. O sistema TEMPO NH2+OxOx e TEMPO-NH2 após injeções sucessivas de EG em um potencial fixo de 0,75 V vs Ag/AgCl, mostraram um aumento médio de 14% na presença da enzima OxOx. A eletrólise de longo prazo em um potencial de 0,5 V vs Ag/AgCl para o MWCNTs-Pt65Sn35+OxOx gerou uma densidade de corrente 65% maior em comparação com o sistema contendo apenas MWCNTs-Pt65Sn35; e as eletrolises em 0,75 V vs Ag/AgCl do TEMPO-NH2+OxOx gerou uma densidade de corrente 58% maior em comparação com o sistema contendo apenas TEMPO-NH2. Os resultados obtidos pela técnica de CLAE (cromatografia líquida de alta eficiência) para o MWCNTs-Pt65Sn35+OxOx e TEMPO-NH2+OxOx mostraram a formação de CO2, confirmando a coleta de todos os 10 elétrons do EG. Eletrólises com os subprodutos de oxidação do EG e ensaios com a OxOx, possibilitaram ser proposto um provável mecanismo de oxidação para ambos os sistemas híbridos. MWCNTs-Pt65Sn35+OxOx atingiu 930 ± 85 µA cm-2, 332 ± 28 µW cm-2 e VCA (tensão de circuito aberto) de 0,643 ± 0,020 V, todos superiores ao sistema simples em 38,3% para a densidade de e potência, 28% para a densidade de corrente, e 18% para o VCA.
Título en inglés
Preparation and characterization of hybrid systems for enzymatic biocells operating with ethylene glycol/O2
Palabras clave en inglés
Enzymatic biofuel cell
Ethylene glycol
Hybrid biofuel cell
MWCNTs
Nanocatalysts
Oxalate oxidase
TEMPO-NH2
Resumen en inglés
This work describes the investigation of hybrid systems for the development of an ethylene glycol/O2 biofuel cell aiming at the complete oxidation of the fuel. The catalysts of Pt65Sn35 nanoparticles deposited on multi-walled carbon nanotubes (MWCNTs-Pt65Sn35) and 4-amino-TEMPO (TEMPO-NH2) catalysts showed electrocatalytic activity for the oxidation of ethylene glycol (EG) with a well-defined oxidation peak. The oxalate oxidase (OxOx) enzyme obtained by Ceriporiopsis subvermispora was employed to break the C-C bond of the substrate. Cyclic voltammetric curves of the hybrid system in the presence of ethylene glycol of the MWCNTs-Pt65Sn35+OxOx system showed a current 1.6 higher than the current density observed in the absence of the enzyme MWCNTs-Pt65Sn35, whereas the current of TEMPO-NH2+OxOx was on average 1.23 higher when compared to TEMPO-NH2. Cyclic voltammetric, chronoamperometric, and electrolysis reveals that OxOx does not oxidize directly the EG. Chronoamperometric assays of EG and its oxidation byproducts (GAld, FA, AG, AGO, and AO) for MWCNTs-Pt665Sn35+OxOx and MWCNTs-Pt65Sn35 at a fixed potential of 0.9 V vs Ag / AgCl, showed that the hybrid system presented a higher current for all analyzed substrates. And the chronoamperometric curves for TEMPO-NH2+OxOx and TEMPO-NH2, after successive injections of EG at a fixed potential of 0.75 V vs Ag / AgCl, showed that in the system in the presence of OxOx there is an average increase of 14% in current density relative to the system in its absence. Long-term electrolysis at a potential of 0.5 V vs Ag/AgCl for MWCNTs-Pt65Sn35+OxOx generated a 65% higher current density compared to the system containing only MWCNTs-Pt65Sn35; the 0.75 V vs Ag/AgCl electrolysis of TEMPO-NH2+OxOx generated a 58% higher current density compared to the system containing only TEMPO-NH2. The results obtained by the HPLC (High performance liquid chromatograph) technique for MWCNTs-Pt65Sn35+OxOx and TEMPO-NH2+OxOx showed the formation of CO2, confirming the collection of all 10 EG electrons. Electrolysis with EG oxidation by-products and assays with OxOx, made it possible to propose a probable oxidation mechanism for both hybrid systems. MWCNTs-Pt65Sn35+OxOx reached 930 ± 85 µA cm-2, 332 ± 28 µW cm-2 and OCV (open circuit voltage) of 0.643 ± 0.020 V, 38.3% superior to the simple system for power density, 28% for current density, and 18% for the OCV.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2022-02-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.