

Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Química Programa de Pós-Graduação em Química

"Estudos teóricos aplicados ao 1-(1-benzofuran-n-il)-Nmetilpropan-2-amina e

compostos análogos".

Natália Jacovelli Pedrina

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: **Química**

RIBEIRÃO PRETO-SP

2020

Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Química Programa de Pós-Graduação em Química

Natália Jacovelli Pedrina

"Estudos teóricos aplicados ao 1-(1-benzofuran-n-il)-Nmetilpropan-2-amina e

compostos análogos".

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: **Química**

Orientadora: Prof. Dra. Aline Thaís Bruni

VERSÃO CORRIGIDA

RIBEIRÃO PRETO-SP

2020

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

FICHA CATALOGRÁFICA

Pedrina, Natália Jacovelli

Estudos teóricos aplicados ao 1-(1-benzofuran-n-il)-Nmetilpropan-2-amina e compostos análogos. Ribeirão Preto, 2020. 112 p. : il. ; 30cm

Dissertação de Mestrado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP – Área de concentração: Química.

Orientadora: Bruni, Aline Thaís.

1. Anfetaminas. 2. Catinonas. 3. Métodos *in silico*. 5. Espectros teóricos. 6. Química quântica. 7. Quimiometria

Nome: PEDRINA, Natália Jacovelli

Título: Estudos teóricos aplicados ao 1-(1-benzofuran-n-il)-Nmetilpropan-2-amina e compostos análogos

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: **Química**

Aprovado em:

BANCA EXAMINADORA

Prof. Dr.:	Instituição:	
Julgamento:	Assinatura:	
Prof. Dr.:	Instituição:	
Julgamento:	Assinatura:	
Prof. Dr.:	Instituição:	
Julgamento:	Assinatura:	

Ao Sérgio André Pedrina e Sandra Regina Jacovelli Pedrina

AGRADECIMENTOS

Acima de tudo, agradeço a Deus por ter estado comigo em todos os momentos e me proporcionado tantas alegrias e desafios durante o mestrado.

Agradeço a minha família, minha mãe Sandra, meu pai Sérgio, minha irmã Carolina e demais, por terem me apoiado, me escutado e me ajudado, além de serem exemplos para mim. Não estaria onde estou sem vocês.

À minha orientadora Aline Thaís Bruni pelas conversas, orientações, paciência e amizade nesses anos que estou no laboratório, também por demonstrar tanto amor pelo eu faz. Serei eternamente grata por todas as oportunidades dadas, nunca esquecerei o eu fez por mim.

Aos meus amigos do Laboratório de Estudos Interdisciplinares por serem tão companheiros, terem me ajudado em todas as minhas dúvidas, me proporcionado ótimas risadas e me escutado quando as coisas não saiam como o planejado. Todo o apoio de vocês foi muito importante.

Ao Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto por toda a minha formação.

Á CAPES pelo financiamento desse mestrado e todas as oportunidades vindas com isso.

RESUMO

PEDRINA, Natália Jacovelli.: Estudos teóricos aplicados ao 1-(1-benzofuran-n-il)-

Nmetilpropan-2-amina e compostos análogos. 2020, 112 f. Dissertação de Mestrado.

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo,

Ribeirão Preto

O uso de substâncias psicoativas remonta da antiguidade. A partir do século XX vários países passaram a legislar sobre o assunto estabelecendo critérios para a proibição do uso de entorpecentes. Recentemente tem sido registrado o aparecimento de novas substâncias que são similares em estrutura molecular àquelas proscritas por lei. Esses compostos consistem em modificações da estrutura molecular da droga inicialmente proibida e são chamados de Novas Substâncias Psicoativas (NPS-New Psychoactive Substances). A principal intenção dessas novas drogas é burlar a legislação e simular os efeitos das substâncias entorpecentes. Em termos forenses, as NPS ocasionaram muitos desafios, levando a incertezas relacionadas à identificação e mecanismo de ação dessas substâncias no organismo. Essas dúvidas podem acarretar incerteza acerca da aplicação da lei tanto no que diz respeito ao sentido preventivo como repressivo. Os estudos experimentais dessas substâncias, apesar de serem muito importantes, demandam um alto custo financeiro. O tempo também é um fator importante e, nesse caso, métodos laboratoriais podem não ser suficientes para acompanhar o acelerado aparecimento dessas substâncias. Nesse trabalho utilizamos métodos de química computacional de Teoria de Funcional Densidade para estudar NPS relacionadas ao n-MAPB e seus isômeros de posição e ópticos. Os métodos in sílico foram utilizados com duas abordagens: uma relacionada à identificação e outra à toxicidade. Em termos de identificação, os cálculos de química computacional foram utilizados para gerar espectros de infravermelho (IV), Raman, Ressonância Magnética Nuclear (RMN) e Dicroísmo Circular Vibracional (DCV). Todos os espectros foram hábeis em identificar as diferenças estruturais. No caso dos isômeros ópticos o DCV mostrou-se uma ferramenta adequada de diferenciação. As diferenças estruturais entre os isômeros foram determinadas por métodos de classificação multivariada. Nesse caso, utilizamos a análise de componentes principais para a aprendizagem não supervisionada e SIMCA (Soft Independent Modeling of Class Analogy) para a aprendizagem supervisionada. No caso da toxicidade, utilizamos métodos in silico para avaliar valores de dose letal (LD50), dose diária e coeficiente de partição. Além disso, também empregamos programas de ancoragem molecular para avaliar a interação dos diferentes isômeros em relação ao receptor dopaminérgico. Os resultados para toxicidade in silico mostraram algumas tendências convergentes de comportamento e indicaram que para que sejam confirmadas essas tendências estudos mais aprofundados precisam ser conduzidos. Por fim, os métodos in silico se mostraram aptos para estudar mecanismos de identificação e promissores no que diz respeito à verificação de toxicidade. Dessa maneira, mostramos que as ferramentas computacionais podem ser úteis ema auxiliar no entendimento de NPS e, portanto, em questões forenses a ela associadas.

Palavras-chave: Anfetaminas, catinonas, métodos *in silico*, espectros teóricos, química quântica, quimiometria.

ABSTRACT

PEDRINA, Natália Jacovelli.: Theoretical studies applied to 1-(1-benzofuran-n-yl)-

Nmethylpropan-2-amine and analogous compounds. 2020, 112 f. Dissertação de

Mestrado. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de

São Paulo, Ribeirão Preto

The use of psychoactive substances dates to antiquity. From the 20th century onwards, several countries began to legislate on the subject, establishing criteria for the prohibition of the use of narcotics. Recently, the appearance of new substances that are similar in molecular structure to those prohibited by law has been registered. These compounds consist of modifications to the molecular structure of the initially prohibited drug and are called NPS (New Psychoactive Substances). The main intention of these new drugs is to circumvent the legislation and simulate the effects of narcotic substances. In legal terms, NPS caused many challenges, leading to uncertainties related to the identification and mechanism of action of these substances in the body. These doubts can lead to insecurity about the application of the law, both in preventive and repressive aspects. Although experimental studies of these substances are very enlightening, they may be costly. Time is also an essential factor, and, in this case, laboratory methods may not be enough to keep up with the accelerated appearance of these substances. In this work, we use computational chemistry methods of Functional Density Theory to study SPLs related to n-MAPB and its position and optical isomers. We have used in silico tools throughout two approaches: one related to identification and the other to toxicity. In terms of identification, we have used computational chemistry calculations to generate infrared (IR), Raman, Nuclear Magnetic Resonance (NMR), and Vibrational Circular Dichroism (VCD) spectra. All spectra were able to identify structural differences. In the case of optical isomers, VCD proved to be an adequate differentiation tool. Multivariate classification methods determined structural differences between isomers. In this case, we have used PCA (Principal Component Analysis) for unsupervised learning and SIMCA (Soft Independent Modeling of Class Analogy) for supervised learning. In the case of toxicity, we have applied in silico methods to assess values of lethal dose (LD50), daily doses, and partition coefficient. Besides, we have employed molecular docking programs for evaluating the interaction of different isomers with the dopaminergic receptor. The results for silica toxicity showed some converging trends in behavior and indicated further studies need to be conducted. Finally, the silico methods proved to be able to study identification mechanisms and are promising about the verification of toxicity. In this way, we show that computational tools can be useful in helping to understand NPS and, therefore, in associated forensic issues.

Keywords: Amphetamines, cathinones, in silico methods, theoretical spectra, quantum chemistry, chemometrics.

LISTA DE EQUAÇÕES

Equação 1: Equação de Schrödinger	. 31
Equação 2: Operador Hamiltoniano	. 32
Equação 3: Laplaciano	. 32
Equação 4: Densidade eletrônica	. 33

LISTA DE FIGURAS

Figura 1: Demonstração da anfetamina e da S-metanfetamina e R-metanfetamina	a.
Fonte: http://qnint.sbq.org.br/novo/	22
Figura 2: Isômeros de posição do n-MAPB: (a) 4-MAPB, (b) 5-MAPB, (c) 6-	
MAPB e (d) 7-MAPB	27
Figura 3: Isômeros de posição do n-APB: (e) 4-APB, (f) 5-APB, (g) 6-APB e (h))
7-APB	28
Figura 4: Estrutura química da metcatinona ⁶⁴	29
Figura 5: Isômeros de posição das catinonas análogas a n-MAPB: (i) 4-MAPB, ((j)
5-MAPB, (k) 6-MAPB e (l) 7-MAPB	29
Figura 6: Espectro eletromagnético ⁸⁶	35
Figura 7: Polarização circular da radiação eletromagnética ⁹¹	36
Figura 8: Dispersão de Rayleigh, Stokes e anti-Stokes	37
Figura 9: Distribuição de Boltzmann em diferentes espectroscopias ⁹³	38
Figura 10: Sobreposição entre a estrutura do MDMA cristalizada, vermelha, e o	
MDMA otimizado com B3LYP/TZVP, azul	41
Figura 11: Isômeros de posição do n-MAPB seu isômero óptico R e S,	
respectivamente	42
Figura 12: Fluxograma do procedimento computacional	44
Figura 13: Sobreposição dos isômeros otimizados R e S para a n-MAPB	45
Figura 14: Sobreposição dos isômeros otimizados R e S para as catinonas	
análogas a n-MAPB	46
Figura 15: Espectro de IV em fase de vapor para MDMA a 150°C ¹¹²	47
Figura 16: Espectro de IV calculado para MDMA com B3LYP/TZVP	47
Figura 17: Espectro de IV experimental do 5-MAPB ¹¹⁵	48
Figura 18: Espectro de IV calculado para o 5-MAPB, gerado pelo Avogadro	48
Figura 19: Sobreposição dos espectros de IV calculado para 4-MAPB com	
B3LYP/TZVP em R(azul) e S(vermelho)	49
Figura 20: Sobreposição dos espectros de IV calculado para 5-MAPB com	
B3LYP/TZVP em R(azul) e S(vermelho)	49
Figura 21: Sobreposição dos espectros de IV calculado para 6-MAPB com	
B3LYP/TZVP em R(azul) e S(vermelho)	50
Figura 22: Sobreposição dos espectros de IV calculado para 7-MAPB com	
B3LYP/TZVP em R(azul) e S(vermelho)	50

Figura 23: Espectros experimentais de IV para 4-MAPB, 5-MAPB, 6-MAPB e 7-
MAPB ¹¹⁷
Figura 24: Sobreposição dos espectros de IV calculado para as catinonas análogas
a 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)
Figura 25: Sobreposição dos espectros de IV calculado para as catinonas análogas
a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)
Figura 26: Sobreposição dos espectros de IV calculado para as catinonas análogas
a 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)
Figura 27: Sobreposição dos espectros de IV calculado para as catinonas análogas
a 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)
Figura 28: Classificação feita por (a) PCA e (b) SIMCA a partir dos dados de IV
para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas (a) 54
Figura 29: Sobreposição dos espectros de DCV calculados para a 5-MAPB com
B3LYP/TZVP em R(azul) e S(vermelho)
Figura 30: Sobreposição dos espectros de DCV calculados para a 5-MAPB com
CAMB3LYP/TZVP em R(azul) e S(vermelho)
Figura 31: Sobreposição dos espectros de DCV calculados para a 5-MAPB com
B3PW91/TZVP em R(azul) e S(vermelho)
Figura 32: Sobreposição dos espectros de DCV calculados para a catinona
referente a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho) 57
Figura 33: Sobreposição dos espectros de DCV calculados para a catinona
referente a 5-MAPB com CAMB3LYP/TZVP em R(azul) e S(vermelho) 57
Figura 34: Sobreposição dos espectros de DCV calculados para para a catinona
referente a 5-MAPB com B3PW91/TZVP em R(azul) e S(vermelho) 57
Figura 35: Sobreposição do DCV para a 5-MAPB R calculado com B3LYP,
CAMB3LYP e B3PW91 com a base TZVP
Figura 36: Sobreposição do DCV para a 5-MAPB S calculado com B3LYP,
CAMB3LYP e B3PW91 com a base TZVP
Figura 37: Sobreposição do DCV para a catinona análoga a 5-MAPB R calculado
com B3LYP, CAMB3LYP e B3PW91 com a base TZVP 59
Figura 38: Sobreposição do DCV para a catinona análoga a 5-MAPB S calculado
com B3LYP, CAMB3LYP e B3PW91 com a base TZVP 59
Figura 39: (a) PCA e (a) SIMCA calculadas a partir dos dados de DCV para os
isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo B3LYP 60

Figura 40: (a) PCA e (a) SIMCA calculadas a partir dos dados de DCV para os
isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo B3PW91 61
Figura 41: (a) PCA e (a) SIMCA calculadas a partir dos dados de DCV para os
isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo CAM-B3LYP
Figura 42: Sobreposição dos espectros RAMAN calculados para 4-MAPB com
B3LYP/TZVP em R(azul) e S(vermelho)
Figura 43: Sobreposição dos espectros RAMAN calculados para 5-MAPB com
B3LYP/TZVP em R(azul) e S(vermelho)
Figura 44: Sobreposição dos espectros RAMAN calculados para 6-MAPB com
B3LYP/TZVP em R(azul) e S(vermelho)
Figura 45: Sobreposição dos espectros RAMAN calculados para 7-MAPB com
B3LYP/TZVP em R(azul) e S(vermelho)
Figura 46: Sobreposição dos espectros RAMAN calculados para a catinona
análoga a 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho) 65
Figura 47: Sobreposição dos espectros RAMAN calculados para a catinona
análoga a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho) 65
Figura 48: Sobreposição dos espectros RAMAN calculados para a catinona
análoga a 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho) 66
Figura 49: Sobreposição dos espectros RAMAN calculados para a catinona
análoga a 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho) 66
Figura 50: (a) PCA e (a) SIMCA calculadas a partir dos dados de RAMAN para
os isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo B3LYP 67
Figura 51: Demonstração da enumeração representada pela 5-MAPB R a) e
catinona análoga a 5-MAPB R b) 69
Figura 52: Deslocamento químico do carbono para as anfetaminas
Figura 53: Deslocamento químico do hidrogênio para as anfetaminas
Figura 54: Deslocamento químico do carbono para as catinonas
Figura 55: Deslocamento químico do hidrogênio para as catinonas
Figura 56: (a) PCA e (a) SIMCA calculadas a partir dos dados de RMN de
carbono para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas . 73
Figura 57: (a) PCA e (a) SIMCA calculadas a partir dos dados de RMN de
hidrogênio para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas

Figura 58: Exemplificação da ocorrência do <i>docking</i> ¹⁵⁰
Figura 59: Processo evolutivo de Darwin ¹⁵⁶
Figura 60:Reprodutibilidade do iGEMDOCK para as moléculas estudadas 92
Figura 61: Reprodutibilidade do PyRx para as moléculas estudadas
Figura 62: Interação dos aminoácidos do docking do receptor com a 5-MAPB R95
Figura 63: Interação dos aminoácidos do docking do receptor com a catinona
correspondente ao 5-MAPB R96
Figura 64: Interação dos aminoácidos do docking do receptor com a 5-APB R. 97
Figura 65: Interação dos aminoácidos do docking do receptor com a catinona
correspondente ao 5-APB R97
Figura 66: Interação proteína-ligante da estrutura cristalizada com a dopamina 98

LISTA DE TABELAS

Tabela 1: Palavras-chave utilizadas nos cálculos4	.3
Tabela 2: Resultado das otimizações para os isômeros de posição 4, 5, 6, 7 e	
isômeros ópticos das anfetaminas e catinonas e para o MDMA com o método	
B3LYP/TZVP	-5
Tabela 3: Resultado da análise utilizando a SIMCA para predição das amostras d	e
infravermelho5	5
Tabela 4: Resultado da análise utilizando a SIMCA para predição das amostras d	e
DCV calculadas com B3LYP6	0
Tabela 5: Resultado da análise utilizando a SIMCA para predição das amostras d	e
DCV calculadas com B3PW916	51
Tabela 6: Resultado da análise utilizando a SIMCA para predição das amostras d	e
DCV calculadas com CAMB3LYP6	62
Tabela 7: Resultado da análise utilizando a SIMCA para predição das amostras d	e
RAMAN calculadas com B3LYP6	i8
Tabela 8: Etapas do cálculo da correção do RMN6	i8
Tabela 9: Atribuições dos deslocamentos do carbono no RMN para as	
anfetaminas e catinonas	1
Tabela 10: Atribuições dos deslocamentos do hidrogênio no RMN para as	
anfetaminas e catinonas	2
Tabela 11: Resultado da análise utilizando a SIMCA para predição das amostras	
de RMN de carbono7	3
Tabela 12: Resultado da análise utilizando a SIMCA para predição das amostras	
de RMN de hidrogênio	4
Tabela 13: Estruturas SMILES do n-MAPB 8	0
Tabela 14: Estruturas SMILES do APB 8	0
Tabela 15: Cálculo de LD50 8	2
Tabela 16: Cálculo no Lazar	3
Tabela 17: Cálculo do logP no <i>software</i> SwissADME para n-MAPB 8	4
Tabela 18: Cálculo do logP no software SwissADME para APB 8	5
Tabela 19: Resumo dos resultados de toxicologia in silico 8	6
Tabela 20: Resultado em triplicata do <i>docking</i> no iGEMDOCK 9	2
Tabela 21: Resumo dos resultados de <i>docking</i> iGEMDOCK 9	3
Tabela 22: Resultado em triplicata do <i>docking</i> no PyRx	14

LISTA DE ABREVIAÇÕES E SIGLAS

ANVISA- Agência Nacional de Vigilância Sanitária

B3LYP- Becke Three-Parameter Lee-Yang-Parr

CCDC- Cambridge Crystallographic Data Centre

CENAPAD- Centro Nacional de Processamento de Alto Desempenho

COD- Crystallography Open Database

DCV- Dicroísmo Circular Vibracional

DFT- Density Functional Theory

EMCDDA- European Monitoring Centre for Drugs and Drug Addiction

GD3BJ- Dispersão de Grimme com amortecimento de Becke-Johnson

GEA- Aproximação do Gradiente Generalizado (Gradient Expansion Approximation)

GGA- Aproximação do Gradiente Generalizado (Generalizes Gradient Approximation)

GTO- Gaussian Type Orbital

HF- Hartree-Fock

HVA- Ácido homovalínico

IV- Infravermelho

LDA- Densidade Local (Local Density Aproximation)

LSA- Aproximação Local da Densidade de Spin (Local Spin-Density Approximation)

MDA- (3.4-methylenedioxy-amphetamine)

MDMA- Metilenodioximetanfetamina (estasy)

MMFF94- Merck Molecular Force Field Method 1994

n-APB- n-(2-aminopropil)benzofurano (n-(2-Aminopropyl)benzofuran)

NIST-National Institute of Standards and Technology

n-MAPB- 1-(1-benzofuran-n-il)-Nmetilpropran-2-amina (*1-(1-benzofuran-<u>n</u>-yl)-Nmethylpropan-2-amine*)

NPS- Novas Substâncias Psicoativas (New Psychoactive Substances)

PCA- Análise de Componentes Principais (Principal Component Analysis)

QSAR- Relação Quantitativa entre Estrutura-Atividade (*Quantitative Structure–Activity Relationship*)

RDC- Resoluções da Diretoria Colegiada

RCSB-PDB- Biological Macromolecular Structures Enabling Breakthroughs in Research and Education

RMN- Ressonância Magnética Nuclear

RMSD- Root Mean Square deviation

SAR- Relação entre Estrutura-Atividade (Structure Activity Relationship)

SIMCA- Soft Independent Modelling of Class Analogies

SMILES- Simplified Molecular-Input Line-Entry Specification

STO- Slater Type Orbitals

TDF- Teoria da Estrutura Eletrônica (Theory of Eletronic Structure)

TMS- Tetrametilsilano

TZVP- Polarização de Valência Triplo Zeta

UNODC- United Nations Office on Drugs and Crime

Sumário

1 PR	Capítulo 1: INTRODUÇÃO GERAL E CARACTERIZAÇÃO DO OBLEMA, OBJETIVOS E SISTEMA DE ESTUDO	. 19
1.1	Introdução e caracterização do problema	. 19
1.2	Objetivos	. 24
1.3	Sistema de estudo	. 25
2 SIL	Capítulo 2: IDENTIFICAÇÃO UTILIZANDO METODOLOGIA <i>IN</i> ICO	. 31
2.1	Fundamentação teórica	. 31
2.1.	1 Teoria do funcional de densidade	. 32
2.1.	2 Espectroscopia de infravermelho	. 34
2.1.	3 Espectroscopia de dicroísmo circular vibracional	. 35
2.1.	4 Espectroscopia Raman	. 37
2.1.	5 Espectroscopia de Ressonância Magnética Nuclear	. 38
2.1.	6 Análise de componentes principais	. 39
2.2	Procedimento computacional	. 41
2.3	Resultados e discussões	. 45
2.3.	1 Otimização	. 45
23	.2 Espectros de infravermelho	. 47
2.3.	3 Espectros de dicroísmo circular vibracional	. 55
2.3.	4 Espectros Raman	. 63
2.3.	5 RMN	. 68
2.4	Conclusões parciais	. 76
3 SIS	Capítulo 3: AVALIAÇÃO DO POTENCIAL TOXICOLÓGICO DO TEMA DE ESTUDO POR MEIO DA TOXICIDADE <i>IN SILICO</i>	. 77
3.1	Toxicidade <i>in silico</i>	. 77
3.2	Procedimento computacional	. 80
3.3	Resultados e discussões	. 82
3.4	Conclusões parciais	. 87
4	Capítulo 4: ESTUDO DE AFINIDADE RECEPTOR-LIGANTE	. 88
4.1	Docking	. 88
4.2	Procedimento computacional	. 90
4.3	Resultados e discussões	. 92

4.4	Conclusões parciais	
5	CONCLUSÕES GERAIS	100
6	REFERÊNCIAS BIBLIOGRÁFICAS	
7	ANEXOS	
	Anexo A- Coordenadas cartesianas do output	113
	Anexo B- Espectros de infravermelho	129
	Anexo C- Espectros de dicroísmo circular vibracional	
	Anexo D- Espectros RAMAN	
	Anexo E- RMN	146
	Anexo de F- Imagens das interações do docking	

1 Capítulo 1: INTRODUÇÃO GERAL E CARACTERIZAÇÃO DO PROBLEMA, OBJETIVOS E SISTEMA DE ESTUDO

1.1 Introdução e caracterização do problema

O uso de substâncias psicoativas é antigo na civilização e inicialmente era feito com o uso de plantas. Há cinco mil anos uma tribo de pigmeus da África observando o comportamento dos animais após comerem uma planta resolveu consumi-la e passaram por uma sensação de entorpecimento. A árvore conhecida como Iboga é utilizada até hoje em cerimoniais culturais. Nesse mesmo período na Europa e Sibéria um cogumelo alucinógeno era colhido e utilizado, mesma época em que no sudoeste da Ásia consumia-se o suco retirado da papoula branca. Os índios da bacia Amazônia fazem o uso de Ayahuasca, um chá alucinógeno, há mais de quatro mil anos. O cacto peiote é utilizado há mais de três mil anos também pelos indígenas. Já as folhas de coca eram utilizadas na fabricação de vinhos. Em 450 a.C., o historiador grego Heródoto relatou a queima da Cannabis sativa em saunas.^{1,2} No final do século XV e início do XVI o consumo de drogas era amplo, sendo o conceito de drogas muito vago, tendo tido até como mágica.³

No século XIX o homem conseguiu isolar os primeiros princípios ativos vegetais como a morfina, cocaína, que eram utilizadas como medicamento.¹ No Brasil, no século XX iniciou-se o controle do uso e comércio de drogas por meio de leis e decretos que as proibiam e previa pena, sendo o Brasil também presente em 1911 na Convenção de Haia, que estabelecia o primeiro tratado internacional para controle de venda de cocaína, morfina, heroína e ópio. Iniciaram-se então as proibições dos entorpecentes e criação das agências de controle, como em 1948 a criação da *The Dangerous Drugs Act* ⁴ pelos Estados Unidos da América, seguido de mais de 100 países, entre eles o Brasil, em uma convenção da ONU em 1961.^{2,5–7}

A Lei de Drogas brasileira é a Lei Nº 11.343/2006, a qual dispõe no artigo primeiro parágrafo único:

Para fins desta Lei, consideram-se como drogas as substâncias ou os produtos capazes de causar dependência, assim especificados em lei ou relacionados em listas atualizadas periodicamente pelo Poder Executivo da União. A perícia é um elemento primordial para a resolução de crimes, e em muitos casos é a prova pericial que fornece os fundamentos para o veredito final em julgamentos. Dentre os crimes em que a avaliação pericial é de extrema importância estão os relacionados a drogas ilícitas, que atualmente geram problemas de grande porte no âmbito internacional.

A Lei 11.343/2006 descreve que, para que ocorra a prisão em flagrante e materialidade do delito de tráfico, deve-se ter informação sobre a quantidade e natureza da droga. Essas informações devem estar contidas em um laudo pericial preliminar, cujos testes são feitos geralmente por métodos colorimétricos. Esses testes podem não ser específicos e sensíveis, resultando em falsos-positivos ou falso-negativos, respectivamente. A natureza da substância deve ser confirmada por meio de um laudo definitivo, que confirma ou nega o laudo anterior. Nesse laudo geralmente há informações que são obtidas por meio de métodos instrumentais que geram uma resposta mais confiável.^{8–10}

No Brasil a definição de quais substâncias são ilícitas é feita pela ANVISA, por meio da Portaria 344/98. As listas de proibição são atualizadas regularmente por meio da Resoluções da Diretoria Colegiada (RDCs).^{11,12}

Com o movimento mundial de proibição das drogas, um novo fenômeno tem sido observado. As listas de proibição costumavam ser feitas com base na estrutura molecular das substâncias proibidas. A fim de burlar a proibição de substâncias descritas em listagens, surgiras novas substâncias psicoativas (New Psychoactive Substances, NPS). De acordo com o Relatório Anual de Drogas da UNODC (United Nations Office on Drugs and Crime) a todo o momento são encontradas novas drogas sintéticas. As NPS também podem ser chamadas de drogas de desenho, sais de banho, legal highs, entre outros nomes. As NPS têm como principal características serem modificadas em laboratório. As primeiras a serem reportadas eram derivadas da heroína.¹³ Com o passar do tempo têm sido encontradas outras substâncias derivadas e análogas de drogas existentes, produtos farmacêuticos e alguns componentes naturais como ervas, fungos, que produzem efeito psicoativo. Essas modificações são feitas por meio de reações químicas, as quais alteram uma pequena porção das drogas inicialmente proibidas. A ideia consiste em sintetizar substâncias com o intuito burlar a lei. As modificações também são feitas com o objetivo de fornecer ao usuário uma substância com os mesmos efeitos das substâncias proibidas.¹⁴⁻¹⁹

Essas drogas estão cada vez mais sendo encontradas em uso recreativo e no mercado de drogas, pois supõe-se que as novas drogas podem imitar os efeitos das drogas já existentes. Isso causa uma série de desafios, uma vez que é necessário que essas novas substâncias sejam adequadamente identificadas e seus efeitos suficientemente conhecidos, a fim de que possam, posteriormente, serem classificadas nas listas de substâncias ilícitas.^{20,21} Anualmente centenas de drogas novas surgem, acarretando problemas para a aplicação da lei, legislação, médicos, cientistas forenses.^{17,19,22}

O aparecimento de novas substâncias psicoativas, alavancou em alguns casos, como o do Brasil, a proibição de classes de drogas derivadas de substâncias já conhecidas. A lista regulatória da ANVISA torna ilícita, por exemplo toda a classe de catinonas e todos os canabinoides. Para outras classes, no entanto, como as anfetaminas, algumas **MDMA** apenas estruturas são proibidas, como 0 (Metilenodioximetanfetamina) e MDA (3.4-methylenedioxy-amphetamine). Um problema decorrente de em alguns casos desse modelo de proibição é que pode haver semelhanças entre as classes de moléculas. Um exemplo é a diferença entre anfetaminas e catinonas. A semelhança entre essas duas classes é grande, uma vez que entre anfetaminas e catinonas análogas temos como diferencial apenas um grupo carbonila na catinona. Essa semelhança pode levar a inconsistências legais, uma vez que pode gerar novas NPS's com propriedades desconhecidas, acarretando vários fatores prejudiciais tanto para a sociedade quanto para o usuário.

Segundo o UNODC, o aumento do aparecimento, consumo e de mortes causadas pelo uso de drogas estão m constante crescimento. ^{19,23–25} Há limitados dados farmacológicos e analíticos sobre essas substâncias, havendo assim uma maior dificuldade no controle e monitoramento. Dessa forma, é de grande interesse e importância o desenvolvimento de métodos que tornem possível a identificação e separação dessas substâncias. Esse também é o grande problema para a perícia, já que muitas vezes não há referências instrumentais para a detecção e nem toxicológicas que podem ser usadas para a comparação.^{16,17,26–28}

Neste trabalho estudamos novas substâncias psicoativas conhecidas como n-MAPB (1-(1-benzofuran-<u>n</u>-yl)-Nmethylpropan-2-amine). Essas drogas correspondem a uma versão N-metilada da n-APB (<u>n</u>-(2-Aminopropyl)benzofuran) e são consideradas como benzofuranos. Alguns isômeros apresentam atividades alucinógenas semelhantes ao do MDMA, da classe das anfetaminas.²⁹ Essas moléculas possuem tanto isômeros ópticos, assim como a metanfetamina (Figura 1), quanto isômeros de posição. Sabe-se que os enantiômeros podem apresentar efeitos farmacológicos diferentes, sendo estes desconhecidos para as novas drogas, trazendo enormes riscos.¹⁷

Figura 1: Demonstração da anfetamina e da S-metanfetamina e R-metanfetamina. Fonte: http://qnint.sbq.org.br/novo/

Em termos forenses, duas informações são cruciais em casos de drogas: parâmetros de identificação e de toxicidade. No primeiro caso, a importância está relacionada com o trabalho pericial, uma vez que os centros de criminalística todos os dias se deparam com desafios para a identificação de drogas. No segundo caso, a toxicidade está diretamente relacionada a políticas públicas de proibição e/ou redução de danos.³⁰

Embora haja muitos estudos experimentais dedicados à elucidação de mecanismos de ação e detecção das NPS, o aparecimento de novas estruturas tem crescido consideravelmente.^{19,31} Apesar da grande importância dos métodos experimentais, a velocidade das análises e a obtenção de métodos confiáveis de detecção e investigação de toxicidade pode ser lenta frente ao surgimento acelerado dessas substâncias no mercado. Dessa forma, há necessidade de respostas e acessíveis para encontrar informações sobre essas substâncias. Nesse contexto, o uso de métodos computacionais- também chamados de métodos *in silico*- para a determinação e previsão de propriedades pode ser uma alternativa.

Nesse trabalho utilizamos métodos *in silico* para estudar propriedades de interesse químico relativas ao n-MAPB e seus isômeros. Ainda, estendemos o estudo para potenciais substâncias análogas, considerando também as catinonas correspondentes em cada caso. Abordamos as características a elas associadas em relação à detecção, toxicidade e a diferença gerada pela adição de um uma carbonila localizada no carbono da ramificação, vizinho ao anel aromático. ^{32,33}

A química computacional se baseia em simulações que auxiliam no prélaboratório e pós-laboratório. Cálculos de propriedades das moléculas como sua energia mínima, análises de informações químicas, previsões de espectros, entre outros podem ser abordados.^{34–36}

Utilizamos para os estudos os métodos de Teoria de Funcional Densidade (*Density Funcional Theory*, DFT) Alguns estudos da literatura utilizam o DFT para o cálculo do mínimo de energia e espectros de infravermelhos de anfetaminas e catinonas, comparando os resultados com dados experimentais.³⁷ Essa abordagem também foi utilizada para análise conformacional e de barreira de racemização do MDMA³⁸, adicionando solvente para observar seu efeito e também para análise dos comprimentos de ligações e do estado mínimo de energia.^{39,40} Há também estudos relacionado benzofurano e alguns derivados por meio de DFT. Nesse caso, foram gerados os dados de IV e Raman que foram confirmados por dados experimentais.⁴¹ Estudos também mostram o uso desse método de cálculo para a análise de energia, propriedades eletrônicas e espectroscopia do ácido acético (*1,3–benzodioxol–5–yl*)⁴² e a análise da metanfetamina como fonte de dor.⁴³ É possível também encontrar estudos que analisam a 5-MAPB por métodos experimentais e teóricos.⁴⁴

Um dos fatores que também está diretamente ligado a proibição de drogas é a toxicologia. A toxicologia é definida como estudo dos adversos efeitos de substâncias químicas sobre os organismos vivos.^{45,46} Para eu se haja um controle e combate às drogas é necessário acesso às características dessas substâncias, sendo de extrema importância a análise toxicológica, podendo esta ser custosa e levar um grande período de tempo, além do uso de animais, entrando assim na discussão sobre ética.^{47–51} O método *in silico* é uma ferramenta de extrema importância, já que pode apresentar tendências e ser combinado ao estudo experimental. Nesse caso, utilizamos de *software online* gratuitos para a realização de cálculos de toxicologia *in silico* para a n-MAPB (n=4, 5, 6, 7) e as suas catinonas análogas, comparando os resultados entre os diferentes métodos e analisando quais dos isômeros de posição e ópticos obtiveram resultados com maior toxicidade.

1.2 Objetivos

Este trabalho teve como objetivo geral estudar por meio de métodos computacionais as NPS n-MAPB (n= 4, 5, 6, 7), considerando seus isômeros de posição, isômeros ópticos e compostos análogos. De um modo geral, estudamos essas estruturas em relação à identificação e toxicidade.

Dentre os objetivos específicos, destacamos:

- a) Determinação de propriedades espectroscópicas dessas substâncias, para verificar se os métodos teóricos são capazes de prever a diferenciação entre as estruturas estudadas, 8 n-MAPBs e as 8 catinonas correspondentes no quesito de identificação.
- b) Estudo das catinonas homólogas para comparar os resultados com os obtidos para as moléculas originais e observar a diferença causada pela carbonila.
- c) Investigação de propriedades relacionadas à toxicidade das n-MAPBS, seus isômeros ópticos e catinonas análogas, bem como as n-APBS, seus isômeros ópticos e catinonas análogas, a fim de verificar o potencial risco à saúde.
- d) Estudos relacionados à toxicidade das n-MAPBS, seus isômeros ópticos e catinonas análogas, bem como as n-APBS, seus isômeros ópticos e catinonas análogas, por meio da diferença entre a afinidade receptor-ligante.

1.3 Sistema de estudo

Em 1912 a Merck isolou a MDMA e em 1941 patenteou a substância como inibidor de apetite. Em 1930 essa droga começou a ser comercializada como fármaco na função de descongestionante nasal. Foi utilizada pelos soldados da 2ª Guerra Mundial pelos efeitos de euforia, diminuição de sono e cansaço, além do aumento de desempenho físico e intelectual. Outro ápice da droga ocorreu em 1960, quando começou a ser utilizada em sessões de terapia por ser psicoativa e se popularizou entre os hippies. Nessa mesma época, no Brasil, era comercializada como Pervitin, medicamento utilizado por jovens.^{44,52,53}

A MDMA diminui a reabsorção de serotonina, noradrenalina e dopamina no cérebro, causando assim a euforia e demais alterações como humor instável, pensamento suicida, alucinações visuais e auditivas. O usuário passa de uma euforia acabando em um temor. Causa efeitos principalmente no fígado, coração e cérebro, como necrose, icterícia e neurodegradação. Entre seus efeitos estão nervosismo, irritação, paranoia, alucinações, aumento de batimentos cardíacos e da temperatura corporal, alteração do ritmo da respiração, dilatação da pupila.^{52,53}

A sua produção pode ser feita por meio da redução da L-efedrina, composto contido em medicamentos de gripe e resfriados, com ácido iodídrico e fósforo vermelho, produzindo a D-metanfetamina, lipossolúvel e volátil, seguido da formação do sal solúvel em água, cloridrato de metanfetamina, ao se adicionar ácido clorídrico. Elevando a temperatura, adiciona-se a esse sal água, seguido do resfriamento, havendo assim a precipitação dos sais de metanfetamina.⁵⁴

A biotransformação ocorre principalmente por enzimas hepáticas que fazem Ndesalquilação, hidroxidação aromática, desaminação e oxidação. A N-desalquilação, via CYP2D6, gera como metabólito ativo a anfetamina. Elas bloqueiam monoaminas, sendo capaz de ocupar o mesmo lugar no receptor que a dopamina, afetam expressão de proteínas transportadoras na superfície do neurônio. Observa-se também que elas invertem a atividade do transportador de monoaminas, expulsando os neurotransmissores do citosol para o meio extracelular.⁵⁴

As n-MAPB são derivadas de metanfetamina, pertencendo à classe dos benzofuranos. Considerando o anel de benzofurano da MDMA, há uma substituição de um oxigênio no anel de furano por um metino.^{44,54,55}

Os benzofuranos são uma classe de moléculas na qual o anel benzênico é ligado a um furano heterocíclico. Como também são derivados de anfetamina ou metanfetamina, podem apresentar efeitos similares como taquicardia, hipertensão, hipertermia, insônia e ansiedade. Esses compostos começaram a ser mais frequentes a partir de 2010, sendo consumidos como estimulantes ou entactogênicos, com efeitos de euforia. O 6-APB e 5-APB foram mencionados pela primeira vez em 2010/2011 pela EMCDDA (*European Monitoring Centre for Drugs and Drug Addiction*).^{56,57}

Essas substâncias e derivados são encontrados em plantas e possuem várias utilidades como anti-inflamatórios, antimicrobiano, antivirais etc. As pesquisas relacionadas a este composto datam do século 19, quando Perkin, um químico britânico, descreveu a síntese do ácido cumárico.⁵⁸ O número de fármacos e drogas contendo o benzofurano como estrutura básica é grande, como saprisartan, amidarone, 6-APB etc. Estudos sobre agentes oxidantes colocam os benzofuranos como destaque para química medicinal. Uma das primeiras descrições dos benzofuranos utilizados como antioxidante foi em 1958.⁵⁹

As n-MAPB (Figura 2) são drogas recentes, encontradas pela primeira vez em 2010^{56,57} não havendo muitas informações sobre elas. São utilizadas como estimulante e empatogênico, já que causa euforia semelhante ao MDA e MDMA, acarretando taquicardia, tensão do maxilar, hipertermia, insônia e ansiedade.^{44,54,55} Esta classe de drogas ainda não é proibida no Brasil.

Por serem drogas de identificação recente, há poucos dados de literatura sobre seus efeitos toxicológicos e reações com o organismo, dificultando sua caracterização e diferenciação de outras substâncias. O 5-MAPB foi mencionado a primeira vez em 2010, sendo esta a mais presente em estudos.^{27,44,55–57,60} Na Europa, a 5-MAPB e 2-MAPB foram mencionadas a primeira vez em 2014 pelo Centro de Monitoramento Europeu de Drogas e Vício em Drogas (EMCDDA-European Monitoring Centre for Drugs and Drug Addiction), no mesmo ano foram descobertas em Tóquio, Japão.⁵⁷

É relatado na literatura um caso do uso recreacional de 5-MAPB e as consequências causadas após a ingestão, como taquicardia, hipertensão, dilatação de pupilas.^{44,60} Também foi demonstrado que essa droga se liga ao transportador de dopamina, podendo causar um transporte reverso dessa substância.⁴⁴

Estudos mostram que o 5-MAPB, analisado a partir de urina de rato após uma única dose de 20 mg/kg de massa corporal, com extração em fase sólida sem e após a clivagem de enzimas e para a análise toxicológica uma dose 1 mg/kg de massa corporal, foi metabolizado em um pequeno grau, sendo CYP2B6, CYP2D6 por cinética de Michaelis-Menten e CYP1A2, CYP2C19 por inibição do substrato capazes de metabolizar a n-desmetilação. O 6-MAPB também foi metabolizado em menor grau.^{27,55}

Figura 2: Isômeros de posição do n-MAPB: (a) 4-MAPB, (b) 5-MAPB, (c) 6-MAPB e (d) 7-MAPB

Assim com o n-MAPB, o n-APB (Figura 3) faz parte dos benzofuranos.

O surgimento da n-APB data de 2010 no Reino Unido e Europa, inicialmente encontrado como 5-APB, 1-(benzofuran-5-il)propan-2-amina, já em 2011 foi encontrado o 6-APB na Hungria.^{61,62}

Essa droga foi sintetizada primeiramente como um inibidor do transportador de norepinefrina, dopamina e serotonina, induzindo também a liberação de dopamina no núcleo *accumbens* (NAc) do cérebro em ratos, bem como a liberação de norepinefrina e 5-HT serotonina *in vitro*. Sugere-se também que essas substâncias atuam na

neurotransmissão de dopamina, direta ou indiretamente, já que causa euforia no usuário. ⁶³

Usuários relatam os efeitos do 5-APB e 6-APB parecidos com os do MDMA, porém mais intensos. Os efeitos adversos incluem náuseas, agitação. Essas drogas mostraram sinais de inibição aos transportadores de dopamina, noradrenalina e seratonina. Além disse, experimentos mostraram que a 5-APB libera dopamina em altas concentrações.^{61–63}

A 5-APB já está descrita em na portaria da ANVISA, estando proibida no Brasil.

Neste trabalho foram estudadas as catinonas análogas às n-MAPB (n= 4, 5, 6, 7) e n-APB (n= 4, 5, 6, 7). Essa estrutura base é a metcatinona (Figura 4), também são conhecidas como efedronas, sintetizadas em 1928.⁶⁴

Figura 5: Isômeros de posição das catinonas análogas a n-MAPB: (i) 4-MAPB, (j) 5-MAPB, (k) 6-MAPB e (l) 7-MAPB

As folhas de Khat, *Catha edulis*, são originárias da África, o consumo era feito geralmente por mastigação e eram utilizadas por suas propriedades estimulantes. Somente no século XVIII o seu arbusto se tornou conhecido na Europa. O princípio ativo catina foi isolado e purificado somente em 1930.^{32,64,65}

Como estudos demonstraram que não fazia sentido as propriedades alucinógenas serem associadas à catina, iniciaram-se os estudos para determinar qual composto causava os efeitos alucinógenos. Em 1961 durante a Convenção Única sobre Entorpecentes e 1971 durante a Convenção sobre Substâncias Psicotrópicas foram discutidas medidas contra o uso, produção e um sistema de controle dessas drogas.³²

Em 1975 a catinona foi isolada das folhas do Khat; isso ocorreu anos depois da descoberta da catina, pois possui um tempo de vida curto nas folhas secas. Corresponde a um alcalóide, estruturalmente semelhante à anfetamina, se diferenciando na presença de um grupo cetônico no carbono β , sendo considerada β -cetoanfetamina. Ela possui dois enantiômeros, o R e o S, sendo geralmente o S mais potente. A catinona aumenta os níveis de HVA, ácido 5-hidroxiindolacético e 5-HT.^{32,64,65}

Os derivados de catinona possuem o grupo β -ceto na sua estrutura. Durante a década de 90, as catinonas foram esquecidas, porém com o surgimento das drogas de desenho, elas voltaram a aparecer, sendo produzidas em laboratório para imitar os efeitos de outras drogas.^{32,64,65}

Toda a classe de catinonas está proibida no Brasil.

2 Capítulo 2: IDENTIFICAÇÃO UTILIZANDO METODOLOGIA IN SILICO

2.1 Fundamentação teórica

Duas aproximações são utilizadas quando se trata de modelagem molecular, a mecânica clássica e a quântica. A escolha de uma dessas aproximações depende da adequação à utilização da modelagem a cada caso.⁶⁶

Na mecânica clássica a energia é calculada comparando ângulos e distâncias de ligação entre os átomos da molécula e os valores Tabelados gerados a partir de dados experimentais. As equações deste método só consideram o núcleo, não incluindo os elétrons; ele modifica ângulos e comprimentos das ligações originais, gerando novas conformações e suas energias.⁶⁷ Podemos classificar esses métodos em: a) mecânica molecular, que descreve as moléculas como átomos conectados, desenvolvendo várias funções de energia que estipulam valores a serem subtraídos quando há o afastamento da estrutura dos valores 'normais' de ligação; b) dinâmica molecular: mostra o trajeto dos movimentos moleculares em função do tempo. As moléculas podem superar barreiras de energia potencial buscando conformações.⁶⁶

Nos métodos quânticos são utilizadas equações da física quântica para calcular as propriedades de uma molécula, considerando as interações entre os elétrons e núcleos. É utilizada a equação de Schrödinger (Equação 1) com a aproximação de Born-Oppenheimer e o Hamiltoniano, separando assim o movimento do núcleo do movimento dos elétrons. Essa aproximação pode ser realizada pois os elétrons possuem uma massa muito menor do que a do núcleo. Dessa maneira, considera-se que os núcleos possuem posições fixas, sendo a equação Schrödinger resolvida somente para os elétrons. Ela considera os átomos ligados entre si por uma força elástica. Entre seus métodos, estão o *ab-initio* e o semi-empírico.^{66–68}

Equação 1: Equação de Schrödinger

$$\widehat{H}\Psi = E\Psi$$

Já na equação 2 tem-se o Hamiltoniano para M núcleos, sendo A e B referentes a eles, e N elétrons, sendo i e j referentes a eles:^{69,70}

Equação 2: Operador Hamiltoniano

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_{A}} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{R_{iA}} + \sum_{i=1}^{N} \sum_{j>1}^{M} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$

Equação 3: Laplaciano

$$\nabla^2 = \frac{\partial^2}{\partial x_q^2} + \frac{\partial^2}{\partial y_q^2} + \frac{\partial^2}{\partial z_q^2}$$

No Hamiltoniano, os dois primeiros termos descrevem a energia cinética do núcleo e do elétron, respectivamente. O terceiro termo representa a atração entre núcleo e elétron, o quarto termo a repulsão entre elétron e elétron e o quinto a repulsão entre núcleo-núcleo.^{69,70}

Os métodos *ab-initio*⁷¹ resolvem a equação de Schrödinger utilizando o procedimento de Hartree-Fock, o qual assume que o movimento de um elétron é independente dos movimentos dos outros, havendo a necessidade de que as funções de base sejam adequadas para tal método. Esses conjuntos base são determinados de acordo com as funções de cada orbital. Há dois tipos de funções de base que podem ser utilizadas, as de Slater (STO), que representam os spin-orbitas, sendo um produto da função orbital por uma função de spin, e as de Gaussiano (GTO), utilizada geralmente para moléculas poliatômicas.^{66,72}

Os métodos semi-empíricos utilizam valores aproximados para a equação de Schrödinger, utilizando também valores empíricos, que são obtidos experimentalmente. Neste método só são considerados os elétrons de valência, utilizando-se então apenas um conjunto de bases mínimo, negligenciando um grande número de integrais da equação de Schrödinger, reduzindo o tempo e memória necessários para o cálculo.^{66,68,72,73}

2.1.1 Teoria do funcional de densidade

A primeira aproximação com base somente na densidade eletrônica foi feita em 1927 por Fermi e Thomas, aplicando um modelo estatístico para aproximar a distribuição de elétrons nos átomos. Essa aproximação ficou conhecida como estatística de Fermi-Dirac.^{74,75}

Em 1900 Drude tentou utilizar a densidade eletrônica como variável básica⁷⁶, mas origens do DFT datam a 1964 com Hohenberg-Kohn-Sham. Thomas, Fermi e Dirac pensavam que a energia cinética e o potencial especialmente relacionado a troca de um sistema com muitos elétrons poderia ser representada por um modelo local pela energia de densidade uniforme do elétron em fase gasosa.^{74,76,77}

Em 1964 Hohenberg e Kohn demonstraram que todas as grandezas físicas que podem ser medidas em um sistema são funcionais da densidade e que o estado fundamental de um sistema pode ser encontrado com a minimização da energia total em função da densidade, sendo esta uma grandeza fundamental. No DFT, a correlação eletrônica é tratada intrinsicamente, tem como variável básica a densidade eletrônica, uma propriedade observável.^{71,74–77}

Equação 4: Densidade eletrônica

$$\rho(r) = N \int \Psi^*(r, r_2 r_3 \dots r_N) \Psi(r, r_2 r_3 \dots r_N) dr_2, dr_3 \dots dr_N$$

A integral mostra a densidade de probabilidade de encontrar um elétron na posição r independente dos outros n elétrons. Os potenciais atrativos determinam o hamiltoniano do sistema, pelo qual é possível obter a função de onda correspondente e em seguida a densidade eletrônica, o oposto também é válido. Portanto, a densidade eletrônica determina o Hamiltoniano, \hat{H} .⁷¹

O formalismo do DTF é baseado na aproximação de Kohn-Sham, que resolveram o problema que faltava neste método, utilizaram para descrever as camadas um sistema onde os elétrons não interagem entre si. A base dessas aproximações foi definida por dois teoremas publicados em 1964 por Hohenberg e Kohn, demonstrando que toda a informação extraída da função de onda de muitos elétrons pode ser obtida por meio da densidade eletrônica.^{71,74–76,78}

Os orbitais da equação de Kohn-Sham são expressos por um conjunto de bases para que ocorra.⁷⁵ Há dois tipos de funções de bases utilizadas: as STO *(Slater Type Orbitals)*, tipo Slater; as GTO *(Gaussian Type Orbital)*, tipo Gaussiana. Os conjuntos de bases podem ser: STO-nG, os expoentes das n Gaussianas primitivas ajustam a STO; Bases de Pople, 3-21G e 6-31G; Bases de Karlsruhe, def2-SVP, def2-TZVP.^{32,74,79}

Dentre as bases de Karlsruhe está a def2-TZVP. A def2 é a segunda geração, com mais precisão do que a def, ela acrescenta uma polarização extra para alguns elementos.^{80,81} A base Triplo Zeta de Valência com Polarização, TZVP, é uma função Gaussiana para os elétrons de valência e três funções para cada orbital de valência.^{32,69,74,79}

Um dos funcionais de troca e correlação mais utilizado é o funcional híbrido, nele utiliza-se parte do termo de troca exato do Hartree-Fock, sendo $E_X^{exato-HF}$ a energia de troca de Hartree-Fock, $a_0=0,20$, $a_x=0,72$ e $a_c=0,81$.^{71,76}

$$E_{XC}^{B3LYP} = (1 - a_0) E_X^{LDA}[\rho] + a_0 E_X^{exato-HF}[\rho] + a_x E_X^{B88}[\rho] + (1 - a_c) E_c^{LDA}[\rho] + a_c E_c^{LYP}[\rho]$$

As variáveis são: $E^{LDA} x = Energia de Troca na LDA; E^{exato} = Enegia de Troca exata obtida por Becke; <math>E^{B88} = Energia de Troca com limite assintótico correto obtida também por Becke; <math>E^{LYP} = Energia de Correlação obtida por Lee, Yang e Parr; E^{LDA} c = a Energia de Correlação na LDA.^{71,76}$

Esse funcional ficou conhecido como B3LYP (Becke, três termos de funcional de correlação; Lee, Yang e Parr funcional de troca), é amplamente utilizado pela química computacional por obter bons resultados quando comparados aos dados experimentais.^{32,71,76,82,83}

Becke propôs a seguinte melhoria, sendo c_x um parâmetro:

$$E_{XC} = E_{XC}^{GGA} + c_x E_X^{exato} + E_C^{GGA}$$

Com a utilização deste novo funcional foi possível obter valores de energia próximos aos dados experimentais.⁷⁶

2.1.2 Espectroscopia de infravermelho

A origem desta técnica se deu no início do século XIX por Frederick William Herschel, durante um experimento com um prisma e um termômetro ele estudou os efeitos térmicos nas regiões do espectro, observando que acima da cor vermelha a região espectral possuía uma alta potencialidade calorífica, descobrindo assim a região infravermelha. Até os anos 70 era somente utilizada qualitativamente, mas no início daquela década utilização de espectrofotômetros com transformada de Fourier permitiu também a avaliação quantitativa.^{84,85}

A espectroscopia de IV é um tipo de espectroscopia de absorção, baseia-se no fato de que as ligações químicas possuem frequências de vibração específicas. Ela utiliza a radiação com comprimento de onda na faixa do infravermelho, obtendo assim informações sobre a composição de substâncias.^{84,87–89}

Nem todas as moléculas absorvem na região do IV, mas quando isso ocorre a molécula recebe a incidência de um feixe de luz infravermelho, a luz é absorvida se possuir a mesma energia das vibrações e a molécula passa para o estado excitado, ocorrendo a alteração do momento dipolo, gerando espectros de absorção/transmissão, podendo assim determinar sua composição. A frequência da vibração depende das massas dos átomos e das forças de ligação. A sua primeira utilização foi durante a segunda guerra mundial pela indústria petroquímica.^{84,87,88}

A absorção ou emissão da radiação é devida à variação do momento de dipolo da substância. Portanto, quando a molécula vibra ela pode sofrer alterações de dipolo. A intensidade de absorção do infravermelho é proporcional à força de dipolo, na aproximação harmônica. As vibrações podem ser: estiramento simétrico e assimétrico, tesoura, torção, balanço e rotação.^{83,88–90}

2.1.3 Espectroscopia de dicroísmo circular vibracional

Em 1843 Louis Pasteur descobriu a atividade óptica de substâncias por meio de cristais de vinho, concluindo que eles possuíam as mesmas propriedades em solução, menos no desvio da luz plano-polarizada. Para a molécula possuir esse desvio ela deve

ser quiral, a qual possui no mínimo um carbono assimétrico, ou seja, que esteja ligado a quatro ligantes diferentes.⁹¹

O primeiro relato de DCV foi em 1974 para o (R)-(-)- e (S)-(+)-2,2,2-trifluor-1feniletanol, o primeiro instrumento comercializado para sua análise só chegou ao mercado em 1997, sendo o *Chiral/RTM* lançado pela *Bomem/BioTools*, utilizando a espectroscopia de IV com transformada de Fourier.⁹⁰

O DCV e o RAMAN são as duas principais técnicas de atividade óptica vibracional. O DCV se baseia na absorção diferencial, da molécula quiral, da radiação IV circularmente polarizada para a esquerda e para a direita, para as regiões de infravermelho e infravermelho próximas. O dicroísmo circular vibracional é causado devido a oscilação linear e angular de cargas durante a vibração e encontra-se na faixa de infravermelho e infravermelho próximo e sua intensidade é proporcional a força de rotação.^{90,91}

Figura 7: Polarização circular da radiação eletromagnética⁹¹

Os programas calculam essas intensidades utilizando as derivadas da energia da molécula em relação ao campo elétrico ou campo magnético e o deslocamento do modo normal vibracional. O cálculo *ab-initio* é mais utilizado por utilizar somente a função de onda do estado fundamental, tendo as bandas localizadas nas mesmas frequências que as do espectro vibracional.^{83,91}

Para pequenas moléculas, estudos tem demonstrado que o DCV apresenta melhores resultados quando utilizado TZVP ao invés de 6-31G*.^{82,83}
2.1.4 Espectroscopia Raman

O efeito conhecido como Raman foi proposto por Smekal em 1923 e observado experimentalmente por Raman em 1928, quando notou o espalhamento de luz em várias direções, com frequências diferentes do feixe incidente.^{85,92,93}

É uma técnica fotônica de alta resolução de espalhamento de luz. Uma fonte monocromática de radiação é espalhada ao incidir sobre o material estudado, a maior parte da luz que é espalhada possui a mesma frequência da incidente, ocorrendo um espalhamento elástico (espalhamento Rayleigh- Figura 8), uma pequena parte é espalhada inelasticamente, com frequência diferente a incidida, podendo ser maior ou menor que a inicial (Stokes ou anti-Stokes- Figura 8), sendo esta uma característica intrínseca do material estudado. ^{92–94}

Figura 8: Dispersão de Rayleigh, Stokes e anti-Stokes

Percebe-se um espalhamento perpendicular em direção ao feixe principal, podendo assim concluir que a intensidade da radiação espalhada é bem menor do que o feixe principal e que ela é constituída principalmente pela mesma frequência do feixe, porém com uma pequena quantidade de outras frequências.⁹³

O espectro é gerado devido a mudança de polarizabilidade das ligações moleculares, a informação vibracional obtida é característica para as ligações químicas e simetria das moléculas, fornecendo também informações sobre modos de baixa frequência e maior compreensão sobre estrutura molecular e rede de cristais.^{92,94}

2.1.5 Espectroscopia de Ressonância Magnética Nuclear

A descoberta do RMN foi realizada em 1946 por Bloch e Purcell, tendo o primeiro espectrômetro disponível em 1950. É uma técnica utilizada para a determinação de estruturas químicas, baseia-se na aplicação de um campo magnético intenso na substância, que por causa do spin nuclear, faz com que os núcleos se alinhem nos seus eixos de rotação com uma frequência específica. Quando fornecida uma frequência exata, a energia é absorvida mudando o estado energético do spin. ^{93,95}

Assim como os elétrons, os prótons e nêutrons também possuem spin, se o número de spin do núcleo se diferir de zero, o núcleo possui um momento magnético, ocorrendo assim a ressonância magnética nuclear. A ressonância magnética nuclear ocorre quando se aplica um campo aos núcleos, induzindo a absorção de energia e mudança na orientação do spin. A energia absorvida deve ser igual a diferença dos dois estados envolvidos.^{89,93}

Uma das principais diferenças da absorção de energia no RMN e IV é que mesmo com campo magnético forte, a diferença entre os estados possíveis para os núcleos é pequena, ou seja, o número de núcleos no equilíbrio é pouco maior do que os núcleos com maior energia.⁹³

Figura 9: Distribuição de Boltzmann em diferentes espectroscopias⁹³

Os núcleos de ¹H não absorvem na mesma frequência pois ocorre a blindagem, causada pelos elétrons que os envolvem. Essa proteção afeta também os núcleos vizinhos. O hidrogênio e o carbono absorvem em frequências diferentes, sendo a do hidrogênio maior do que a do carbono.⁹³

Os sinais de RMN possuem duas principais características: o deslocamento químico, alteração do campo magnético devido a densidade eletrônica em volta do núcleo e a multiplicidade dos sinais, várias bandas no espectro devido ao acoplamento spin-spin.⁹³

Nessa técnica, utiliza-se como padrão interno o TMS, pois o silício é menos eletronegativo que o carbono, possuindo os hidrogênios altamente protegidos, tendo assim o sinal definido como zero.^{89,96}

2.1.6 Análise de componentes principais

Em muitos casos é necessário saber o quanto amostras de um determinado conjunto de dados são similares. Para isso, podemos utilizar técnicas de classificação multivariada. Nesse caso, optamos por utilizar duas técnicas:

- aprendizagem não supervisionada: Análise de Componentes Principais (PCA, Principal Component Analysis)
- ii) aprendizagem supervisionada SIMCA (Soft Independent Modelling of Class Analogies).

A aprendizagem não supervisionada consiste na observação da similaridade natural entre as amostras de um sistema descrito por muitas variáveis. A análise de componentes principais é uma das técnicas de aprendizagem não supervisionada mais utilizadas na atualidade. Nesse caso, o sistema multivariado tem sua dimensão reduzida a fim de fornecer ao analista uma melhor visualização dos dados. O objetivo é verificar se há possibilidade de, sem informação prévia de classe, observar agrupamentos característicos no sistema de interesse. No contexto da aprendizagem supervisionada, usaremos a técnica SIMCA, que é hábil em classificar as amostras de acordo com informação prévia. Essa técnica se baseia em uma classificação flexível, onde cada classe é individualmente modelada por uma PCA. O resultado é a obtenção de hipervolume para cada classe feito com base nas informações das amostras a ela pertencentes. Há flexibilidade na modelagem de classe a existência de amostras de comportamento anômalo. Juntas, são capazes de confirmar os eventuais grupos observados na aprendizagem não supervisionada ou verificar o alcance do erro da classificação. A ideia é observar se as similaridades ou dissimilaridades podem ser avaliadas para posterior tomada de decisão e entendimento do conjunto de dados. ^{97–99}O *software* utilizado foi o Pirouette.^{100,101}

2.2 Procedimento computacional

A estrutura cristalográfica do n-MAPB (n= 4, 5, 6, 7) foi pesquisada em vários bancos de dados como *Cambridge Crystallographic Data Centre* (CCDC), *Crystallography Open Database* (COD), *Biological Macromolecular Structures Enabling Breakthroughs in Research and Education* (RCSB-PDB), porém em nenhum deles foi possível encontrar especificamente a estrutura dessa molécula. Para resolução deste problema, escolheu-se uma molécula estruturalmente similar a n-MAPB e a partir do COD obteve-se a estrutura cristalográfica *do 3,4-Methylenedioxymethamphetamine* (MDMA), também conhecido como ecstasy.¹⁰²

A estrutura cristalográfica foi aberta no *software* Avogadro®¹⁰³ e foi gerado um input para otimização, utilizando o método, a base e as correções citadas na Tabela 1. Após a obtenção do resultado, utilizou-se o programa VMD¹⁰⁴ para a realização da sobreposição da estrutura cristalizada com a estrutura otimizada (Figura 10).

Figura 10: Sobreposição entre a estrutura do MDMA cristalizada, vermelha, e o MDMA otimizado com B3LYP/TZVP, azul

O RMSD (*Root Mean Square Deviation*), que é o valor médio do desvio médio dos átomos a uma molécula referência¹⁰⁵, foi de 0,088. Isso significa que as moléculas diferem entre si de um valor menor que 1 angstrom em sua totalidade, confirmando, portanto, a similaridade estrutural.

A estrutura cristalográfica do MDMA foi tratada no *software* Avogadro®¹⁰³ para serem feitas as alterações necessárias para a obtenção dos quatro isômeros de posição, ou seja, 4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB, além de suas catinonas análogas. A partir de cada isômero de posição foram obtidos os isômeros ópticos R e S. Ao todo, resultaram 8 moléculas (Figuras 11) e seus átomos foram enumerados de maneira similar.

Figura 11: Isômeros de posição do n-MAPB seu isômero óptico R e S, respectivamente

A primeira otimização de todas as moléculas foi realizada usando o próprio *software* Avogadro® e o método MMFF94, que inclui efeitos eletrostáticos e de ligações de hidrogênio. A parametrização do núcleo é feita a partir de cálculos quânticos ao invés de dados experimentais.¹⁰⁶ Essa otimização foi feita para reduzir o tempo

computacional. Pelo mesmo programa foi feito um *input* para rodar os cálculos de otimização no Gaussian®.¹⁰⁷

Palavras chave	Utilidade
B3LYP	Método utilizado.
TZVP	Conjuntos de bases matemáticas utilizadas para descrição dos orbitais
	atômicos e moleculares.
Def2	Base auxiliar.
Opt=Tight	Otimização da estrutura molecular.
GD3BJ	Correção de dispersão de Grimme com amortecimento de Becke-
	Johnson. ¹⁰⁸
Freq	Comando para o cálculo de frequências vibracionais do espectro de
	IV.
Freq=VDC	Comando para o cálculo de frequências vibracionais do espectro de
	DCV.
Freq=Raman	Comando para o cálculo de frequências vibracionais do espectro
	Raman.
NMR	Comando para o cálculo de frequências do RMN.

Tabela 1: Palavras-chave utilizadas nos cálculos

As catinonas análogas aos n-MAPB foram desenhadas no *software* Avogadro® a partir das moléculas otimizadas do n-MAPB, adicionando o grupo carbonila. Foram realizados os mesmos cálculos anteriores.

A fim de comparar os dados para a n-MAPB foi realizado o cálculo do espectro de infravermelho para a molécula MDMA, cuja estrutura cristalográfica foi usada inicialmente.

Para todos os espectros de vibração foi utilizado o fator de correção para ajustar os valores de frequência da NIST para o método B3LYP com a base TZVP, esse valor foi de 0,965.¹⁰⁹

Para o cálculo do DCV, além do método citado na Tabela 1, também foram utilizados os métodos CAMB3LYP e B3PW91, já que técnica do DCV é sensível ao método utilizado.

Para a espectroscopia de RMN foi feita a validação do método utilizando para isso grupos de teste e de prova. Primeiramente foi realizado o cálculo para o grupo teste (Anexo E), composto de 80 moléculas que possuíam os valores de deslocamento descritos na literatura e também para o TMS (tetrametilsilano), pois como dito anteriormente, ele é utilizado com padrão interno nas amostras.⁸⁹ Foram utilizados do *output* os valores de deslocamentos para os átomos de carbono e para os átomos de hidrogênio (Anexo E).

Por meio dos valores encontrados do TMS foi feita uma média de deslocamento para o carbono e para o hidrogênio, em seguida foi subtraído os valores de deslocamentos dos carbonos e hidrogênios dessa média, respectivamente. Construiu-se então gráfico entre os valores calculados subtraídos do TMS e os valores experimentais, chegando a uma equação da reta. Esta equação foi aplicada a um grupo probe (Anexo Y) para análise da correção, da mesma forma realizada anteriormente. A partir do R² observou-se que a correção estava adequada para aplicação no grupo de estudo. Foi realizada uma comparação dos deslocamentos químicos do carbono e do hidrogênio para as anfetaminas e catinonas.

Figura 12: Fluxograma do procedimento computacional

2.3 Resultados e discussões

2.3.1 Otimização

Após a realização dos cálculos, o parâmetro utilizado para comparar as moléculas foi a energia eletrônica final (E_f) obtida do *output*.¹¹⁰

Tabela 2: Resultado das otimizações para os isômeros de posição 4, 5, 6, 7 e isômeros ópticos das anfetaminas e catinonas e para o MDMA com o método B3LYP/TZVP

		E _f /kcal mol ⁻¹		
Posição	Isômero	Anfetaminas	Catinonas	
Λ	R	-374333,3217	-420796,0677	
4	S	-374333,3217	-420796,0677	
5	R	-374332,8207	-420794,8458	
5	S	-374332,8207	-420794,8458	
6	R	-374332,9200	-420794,9218	
0	S	-374332,9200	-420794,9218	
7	R	-374333,8048	-420794,3734	
	, S	-374333,8048	-420794,3734	
MDMA		-397627,8982		

Figura 13: Sobreposição dos isômeros otimizados R e S para a n-MAPB

Isômero 4

Isômero 6

Isômero 5

Isômero 7

Figura 14: Sobreposição dos isômeros otimizados R e S para as catinonas análogas a n-MAPB

Ao analisar a Tabela 2 para as anfetaminas, nota-se que é obtida a mesma energia para todos os isômeros ópticos para cada isômero de posição. A diferença entre os isômeros de posição é de aproximadamente 1 kcal mol⁻¹, sendo uma diferença muito pequena para a determinação de qual dos isômeros é o mais estável.

Já para as catinonas, as energias obtidas entre os enantiômeros de cada isômero de posição é a mesma. O único isômero de posição que possui uma diferença maior quando comparado aos outros é a catinona correspondente a 4-MAPB. Ainda, a diferença entre os isômeros de posição é em torno de no máximo 1.6 kcal mol⁻¹.

Comparando as n-MAPB com as catinonas análogas, nota-se que a adição da carbonila faz com que a energia diminua em aproximadamente 5000 kcal mol⁻¹. Pode-se concluir que as catinonas estudadas são mais estáveis que as n-MAPB.

Em nenhum dos cálculos foram obtidas frequências negativas, o que indica que as moléculas estão em seu mínimo de energia.

2.3.2 Espectros de infravermelho

O espectro obtido por meio do cálculo para o MDMA foi comparado com o contido na literatura¹¹¹, apresentando uma grande similaridade, mostrando que o cálculo se mostrou adequado para a previsibilidade dos dados para as estruturas n-MAPB e catinonas análogas. O fator de correção utilizado para ajustar os valores de frequência de todos os espectros IV para se aproximarem dos espectros experimentais, segundo a NIST para o método B3LYP com a base TZVP, foi de 0,965.¹⁰⁹ Esse fator de correção deve ser utilizado pois podem surgir desvios como efeitos anarmônicos e de temperatura.¹¹²

Figura 16: Espectro de IV calculado para MDMA com B3LYP/TZVP

Observando as Figuras 15 e 16, nota-se que os dois espectros são semelhantes. Em ambos, os picos mais intensos estão na faixa de 1500 cm^{-1} referente a C=C

aromático, 1200 cm⁻¹ atribuído a ligação C-N alifática, e há um conjunto de sinais próximos a 3000 cm⁻¹ atribuído a ligação N-H.^{89,113} Portanto, espera-se a mesma a tendência para os espectros do n-MAPB e catinonas correspondentes.

As Figuras 17 e 18 mostram, respectivamente, a representação dos espectros de IR experimental e o calculado.¹¹⁴

Figura 17: Espectro de IV experimental do 5-MAPB¹¹⁴

Figura 18: Espectro de IV calculado para o 5-MAPB, gerado pelo Avogadro

Observa-se que há semelhanças entre os espectros experimentais e o calculado. Os picos de maior destaque se encontram na faixa de 2800-3000 cm⁻¹, 1400 cm⁻¹,1200 cm⁻¹ e 750 cm⁻¹. Considerando que o espectro experimental vem de uma referência policial, através de uma droga apreendida, essas diferenças podem ser decorrentes de impurezas inerentes à substância apreendida, o que é comum em casos de amostras periciais. Ainda, pode haver sinais relativos a solventes e aos ruídos decorrentes da avaliação experimental. De qualquer forma, os picos característicos foram reproduzidos pelo espectro teórico, mostrando que esse é apto para a indicação estrutural da molécula.

Os espectros de IV dos isômeros ópticos da 4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB foram gerados com os dados de frequência e intensidade de infravermelho obtidos dos outputs e utilizando a Gaussiana e do fator de correção para o método. Para uma melhor visualização e interpretação dos dados, os espectros foram sobrepostos (Figuras 19-22), os espectros individuais podem ser encontrados no Anexo B.

Figura 19: Sobreposição dos espectros de IV calculado para 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 20: Sobreposição dos espectros de IV calculado para 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 21: Sobreposição dos espectros de IV calculado para 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 22: Sobreposição dos espectros de IV calculado para 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Para qualquer um dos isômeros de posição, os espectros de R e S são idênticos, e os espectros dos isômeros 4, 5, 6, 7 são todos similares. Isso ocorre pois a espectroscopia de infravermelho se baseia nas frequências de vibracionais das moléculas.¹¹⁵ Os picos mais intensos para todos os espectros estão na faixa de: 800-900 cm⁻¹ referente a ligação C-O-C, 1200 cm⁻¹ representado a ligação C-N alifática, 1400-1500 cm⁻¹ CH₂ e CH₃ assimétricos e 2800-3200 cm⁻¹ referentes a ligação N-H.^{89,113}

Figura 23: Espectros experimentais de IV para 4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB¹¹⁶

Comparando os espectros calculados com os experimentais (Figura 23) nota-se uma semelhança de picos nas faixas de 800 cm⁻¹, 1120 cm⁻¹, 1500 cm⁻¹ e na faixa de 3000 cm⁻¹. Estando de acordo também com o espectro experimental do 5-MAPB.

Os espectros de IV das catinonas referentes ao 4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB foram gerados com os dados de frequência e intensidade de infravermelho obtidos dos outputs e utilizando a Gaussiana e do fator de correção para o método. Para uma melhor visualização e interpretação dos dados, os espectros foram sobrepostos (Figuras 24-27), os espectros individuais podem ser encontrados no Anexo B.

Figura 24: Sobreposição dos espectros de IV calculado para as catinonas análogas a 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 25: Sobreposição dos espectros de IV calculado para as catinonas análogas a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 26: Sobreposição dos espectros de IV calculado para as catinonas análogas a 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 27: Sobreposição dos espectros de IV calculado para as catinonas análogas a 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Em todos os casos das catinonas, os picos com maiores intensidades são os de aproximadamente: aproximadamente 800 cm⁻¹ referente a ligação C-O-C, 1000-1200 cm⁻¹ representado a ligação C-N alifática, 1400-1500 cm⁻¹ CH₂ e CH₃ assimétricos, 1700 cm⁻¹ referente a ligação C=O, 2900-3000 cm⁻¹ referentes a ligação N-H.^{89,113}

Como no caso anterior, as moléculas estudadas possuem os mesmos átomos e tipos de ligações, consequentemente os espectros serão similares.

Para todos os isômeros de posição e ópticos para anfetaminas e catinonas foi realizada uma PCA para a verificação não supervisionada e SIMCA para a classificação. A Figura 28 mostra que em duas PCs (Factors) é possível obter com segurança a separação do grupo de anfetaminas e catinonas, bem como entre seus isômeros de posição. Os isômeros ópticos estão sobrepostos, mostrando que não há diferença nas propriedades para cada par.

A SIMCA foi eficiente em classificar cada grupo, uma vez que nenhuma classificação errada foi encontrada. Além disso, nos parâmetros de separação de classes, tem-se que o resíduo interclasses é menor de uma classe para ela mesma e a distância entre classes distintas é diferente de zero.

Figura 28: Classificação feita por (a) PCA e (b) SIMCA a partir dos dados de IV para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas

(a)

(b)

Classificações erradas (Misclassifications)					
	Classe 1 Classe 2 Amostras não				
	(Pred.)	(Pred.)	classificadas		
Classe 1 (Orig.)	8	0	0		
Classe 2 (Orig.)	0	8	0		
	Resíduo interclasses				
	Classe 1		Classe 2		
Classe 1	0.02		0.13		
Classe 2	0.11		0.00		
	Distância inte	erclasses			
	Classe 1		Classe 2		
Classe 1	0		7.50		
Classe 2	7.50		0		

Tabela 3: Resultado da análise utilizando a SIMCA para predição das amostras de infravermelho

2.3.3 Espectros de dicroísmo circular vibracional

O espectro de infravermelho teve um comportamento idêntico para as conformações R e S, pois como dito acima, a espectroscopia de infravermelho se baseia nas frequências de vibracionais das moléculas¹¹⁵, porém o espectro de DCV deve apresentar um comportamento diferente. Isso ocorre pois os enantiômeros absorvem a luz circularmente polarizada dependendo do sentido de polarização, sendo contrárias uma a outra.⁹¹

Os espectros de DCV foram gerados com os dados de frequência e força rotacional obtidos dos *outputs*. Utilizando a Gaussiana e do fator de correção para o método eles foram plotados no Microsoft Excel.

Para uma melhor visualização e interpretação dos dados, os espectros do isômero 5 foram sobrepostos em todos os métodos calculados (Figuras 29-34).

Figura 29: Sobreposição dos espectros de DCV calculados para a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 30: Sobreposição dos espectros de DCV calculados para a 5-MAPB com CAMB3LYP/TZVP em R(azul) e S(vermelho)

Figura 31: Sobreposição dos espectros de DCV calculados para a 5-MAPB com B3PW91/TZVP em R(azul) e S(vermelho)

Figura 33: Sobreposição dos espectros de DCV calculados para a catinona referente a 5-MAPB com CAMB3LYP/TZVP em R(azul) e S(vermelho)

Figura 34: Sobreposição dos espectros de DCV calculados para para a catinona referente a 5-MAPB com B3PW91/TZVP em R(azul) e S(vermelho)

Os espectros de DCV foram simétricos para os enantiômeros da 4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB, conseguindo assim diferenciá-los, o que não foi possível na espectroscopia de IV. Abaixo (Figura 35-38) a representação das sobreposições dos espectros de DCV calculados em diferentes métodos com a mesma base para o isômero 5, os espectros individuais podem ser encontrados no Anexo C.

Figura 36: Sobreposição do DCV para a 5-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 38: Sobreposição do DCV para a catinona análoga a 5-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Foi realizada uma PCA com todos os dados dos espectros de dicroísmo circular vibracional, tanto da n-MAPB quanto das catinonas correspondentes. A SIMCA foi utilizada para validar a classificação dos dois grupos de substâncias. Os resultados estão separados por cada método computacional. Observa-se que nos três métodos foi possível a separação tanto dos isômeros ópticos quanto dos de posição. Pelos valores encontrados para resíduos e distâncias interclasses, observa-se, ainda, que os três procedimentos de cálculo possuíram sensibilidade semelhante para esse grupo de estudo. Dessa maneira, todos os métodos de DFT estudados são equivalentes e geram resultados semelhantes.

Figura 39: (a) PCA e (a) SIMCA calculadas a partir dos dados de DCV para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo B3LYP

(b)

Tabela 4: Resultado da análise utilizando a SIMCA para predição das amostras de DCV calculadas com B3LYP

Classif	Classificações erradas (Misclassifications)			
	Classe 1	Classe 2	Amostras não	
	(Pred.)	(Pred.)	classificadas	
Classe 1 (Orig.)	8	0	0	
Classe 2 (Orig.)	0	8	0	
	Resíduo inter	classes		
	Classe 1		Classe 2	
Classe 1	3.43		8.37	
Classe 2	14.82		6.54	
	Distância inter	rclasses		
	Classe 1		Classe 2	
Classe 1	0		1.31	
Classe 2	1.31		0	

(b)

Tabela 5: Resultado da análise utilizando a SIMCA para predição das amostras de DCV calculadas com B3PW91

Classif	icações erradas (A	Aisclassificati	ons)
	Classe 1	Classe 2	Amostras não
	(Pred.)	(Pred.)	classificadas
Classe 1 (Orig.)	8	0	0
Classe 2 (Orig.)	0	8	0
	Resíduo inter	classes	
	Classe 1		Classe 2
Classe 1	3.40		8.42
Classe 2	15.37		6.52
	Distância inter	rclasses	
	Classe 1		Classe 2
Classe 1	0		1.39
Classe 2	1.39		0

Figura 41: (a) PCA e (a) SIMCA calculadas a partir dos dados de DCV para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo CAM-B3LYP

cat 7-R anf 5-R cat 5-R cat 5-R cat 4-R cat 4-R cat 4-S cat 5-S cat 5-S cat 6-R cat 6-R cat 6-R cat 5-S cat 7-S cat 7-S

(b)

Tabela 6: Resultado da análise utilizando a SIMCA para predição das amostras de DCV calculadas com CAMB3LYP

Classif	icações erradas (M	<i>Iisclassificatio</i>	ons)
	Classe 1	Classe 2	Amostras não
	(Pred.)	(Pred.)	classificadas
Classe 1 (Orig.)	8	0	0
Classe 2 (Orig.)	0	8	0
	Resíduo inter	classes	
	Classe 1		Classe 2
Classe 1	3.87		7.93
Classe 2	15.41		6.50
	Distância inter	classes	
	Classe 1		Classe 2
Classe 1	0		1.29
Classe 2	1.29		0

2.3.4 Espectros Raman

As posições de grupo encontradas para o Raman são similares as que são encontradas para o infravermelho, pois as duas técnicas se baseiam na mesma diferença do nível de energia vibracional. Porém as intensidades das bandas se diferem, já que na espectroscopia de infravermelho a absorção ocorre devido a variação do momento de dipolo e na espectroscopia de Raman o espalhamento ocorre devido a variação da polarizabilidade.^{89,117}

Os espectros Raman foram gerados com os dados de frequência e o espalhamento Raman obtidos dos outputs, utilizando a Gaussiana e o fator de correção para o método. As sobreposições dos espectros das anfetaminas apresentam-se nas Figuras 42-45, os espectros individuais podem ser encontrados no Anexo D.

Figura 42: Sobreposição dos espectros RAMAN calculados para 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 43: Sobreposição dos espectros RAMAN calculados para 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 44: Sobreposição dos espectros RAMAN calculados para 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 45: Sobreposição dos espectros RAMAN calculados para 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Analisando os espectros obtidos percebe-se uma similaridade de frequência nas regiões com picos, sendo o espalhamento Raman diferente. Em todos os espectros os pode-se observar as seguintes regiões de espalhamento: 3400 cm^{-1} referente a ligação N-H, 2800-3200 cm⁻¹ referente a ligação C-H, 1400-1500 cm⁻¹ que se relaciona a CH₂ e CH₃ assimétricos, aproximadamente 1200 cm⁻¹ que se refere a C-N alifático e aproximadamente 1000 cm⁻¹ referente a vibração C-C do anel aromático.^{113,118}

Encontram-se abaixo as sobreposições dos espectros Raman dos isômeros ópticos para cada posição correspondentes as catinonas análogas (Figuras 46-49). Os espectros individuais podem ser encontrados no Anexo D.

Figura 46: Sobreposição dos espectros RAMAN calculados para a catinona análoga a 4-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 47: Sobreposição dos espectros RAMAN calculados para a catinona análoga a 5-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 48: Sobreposição dos espectros RAMAN calculados para a catinona análoga a 6-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Figura 49: Sobreposição dos espectros RAMAN calculados para a catinona análoga a 7-MAPB com B3LYP/TZVP em R(azul) e S(vermelho)

Para as catinonas análogas, os espectros obtidos também são semelhantes nas frequências das regiões de espalhamento, pode-se observar as regiões em: 3400 cm^{-1} referente a ligação N-H, 2800-3200 cm⁻¹ referente a ligação C-H, 1700 cm⁻¹ referente a ligação dupla C e O, 1400-1500 cm⁻¹ que se relaciona a CH₂ e CH₃ assimétricos, aproximadamente 1200 cm⁻¹ que se refere a C-N alifático e aproximadamente 1000 cm⁻¹ referente a vibração C-C do anel aromático.^{113,118}

Foi realizada uma PCA com todos os dados dos espectros Raman das anfetaminas e das catinonas (Figura 50). A SIMCA foi feita para verificar a separação de classes. Nos dois casos observamos que há uma maior dispersão para as catinonas do que para as anfetaminas. A SIMCA mostra que não há classificação errônea para as classes e os valores de resíduos e distâncias interclasses confirmam os parâmetros necessários para a diferenciação.

Figura 50: (a) PCA e (a) SIMCA calculadas a partir dos dados de RAMAN para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas pelo B3LYP

(a)

(b)

(lossificações arredos (Misslagsifications)			
Classifi	cações erradas (A	aisciassificai	ions)
	Classe 1	Classe 2	Amostras não
	(Pred.)	(Pred.)	classificadas
Classe 1 (Orig.)	8	0	0
Classe 2 (Orig.)	0	8	0
	Resíduo inter	classes	
	Classe 1		Classe 2
Classe 1	3.71		15.58
Classe 2	17.78		6.05
	Distância inte	rclasses	
	Classe 1		Classe 2
Classe 1	0		2.33
Classe 2	2.33		0

Tabela 7: Resultado da análise utilizando a SIMCA para predição das amostras de RAMAN calculadas com B3LYP

2.3.5 RMN

A partir dos cálculos, foram obtidas as seguintes equações da reta e R²:

Tabela 8:	Etapas o	do cá	lculo	da	correção	do	RMN
-----------	----------	-------	-------	----	----------	----	-----

	Equação da reta	\mathbb{R}^2
	Grupo teste	Grupo prova
Carbono	y = 1,0358x + 6,4538	0,9971
Hidrogênio	y = 1,006x + 0,1608	0,9563

y= Valor corrigido;

x= Valor médio TMS – valor calculado.

Analisando os valores obtidos para R^2 observou-se que a correção foi eficaz, sendo assim ela foi aplicada ao grupo de moléculas estudadas. Com os valores corrigidos foram gerados gráficos de deslocamento para o carbono 13 e para o hidrogênio das anfetaminas (Figuras 52 e 53) e das catinonas (Figuras 54 e 55).

As moléculas foram enumeradas como o demonstrado na Figura 51, para as catinonas os hidrogênios 28 e 29 são ausentes.

Figura 51: Demonstração da enumeração representada pela 5-MAPB R a) e catinona análoga a 5-MAPB R b)

a)

b)

Os deslocamentos obtidos para as moléculas são similares, para uma simplificação na análise dos dados, os picos referentes aos deslocamentos e os átomos atribuídos 93,119 estão relacionados nas Tabelas 9 e 10.

Figura 52: Deslocamento químico do carbono para as anfetaminas

Figura 53: Deslocamento químico do hidrogênio para as anfetaminas

Figura 54: Deslocamento químico do carbono para as catinonas

Figura 55: Deslocamento químico do hidrogênio para as catinonas

Tabela 9: Atribuições dos deslocamentos do carbono no RMN para as anfetaminas e catinonas

Deslocamento	Atribuição	Anfetamina	Catinona
(ppm)	do carbono 13		
220	Carbono da carbonila	Ausente	Presente
180-120	Carbono do anel	Presente	Presente
	aromático		
150-120	Carbono ligado	Presente	Presente
	duplamente a outro		
	carbono		
80-60	Carbono ligado ao	Presente	Presente
	oxigênio		
70-30	Carbono ligado ao	Presente	Presente
	nitrogênio		
40-20	Carbono do grupo metila	Presente	Presente

Deslocamento	Atribuição	Anfetamina	Catinona
(ppm)	do hidrogênio		
8,0-9,0	Hidrogênio mais próximo da	Ausente	Presente
	carbonila e ligado ao anel		
	aromático		
8,0-7,0	Hidrogênio do anel aromático	Presente	Presente
5,5-4,5	Hidrogênio ligado ao carbono	Ausente	Presente
	mais próximo da carbonila		
3,0-4,0	Hidrogênio ligado ao	Presente	Presente
	nitrogênio		
2,9-2,0	Hidrogênio ligado ao mesmo	Presente	Presente
	carbono que está ligado ao		
	nitrogênio		
2,5-1,5	Hidrogênio ligado ao	Presente	Presente
	nitrogênio		
1,3-0,7	Hidrogênios do grupo metila	Presente	Presente

Tabela 10: Atribuições dos deslocamentos do hidrogênio no RMN para as anfetaminas e catinonas

A PCA para os carbonos mostrou a clara separação entre os grupos. Uma aproximação da imagem foi feita em cada caso, mostrando que os diferentes isômeros de posição também mostraram diferenças. A SIMCA mostrou uma maior dispersão dos dados para anfetaminas do que para catinonas. Entre os grupos não houve nenhum erro de classificação, e os parâmetros de resíduos e distâncias interclasses também foram satisfatórios. Para o RMN de hidrogênios observa-se a PCA apresentou um distanciamento de um dos isômeros ópticos das anfetaminas. A classificação, no entanto, foi confirmada pela SIMCA. Observa-se que os valores de resíduos e distâncias interclasses são menores que aqueles encontrados no caso dos carbonos, apesar de ainda serem adequados.
Figura 56: (a) PCA e (a) SIMCA calculadas a partir dos dados de RMN de carbono para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas

(b)

Tabela 11: Resultado da análise utilizando a SIMCA para predição das amostras de RMN de carbono

Classificações erradas (Misclassifications)						
	Classe 1 (Pred.)	Classe 2 (Pred.)	Amostras não classificadas			
Classe 1 (Orig.)	8	0	0			
Classe 2 (Orig.)	0	8	0			
	Resíduo inter	classes				
	Classe 1		Classe 2			
Classe 1	3,25		49,62			
Classe 2	54,00		0,84			
	Distância inte	rclasses				
	Classe 1		Classe 2			
Classe 1	0		20,86			
Classe 2	20,86		0			

Figura 57: (a) PCA e (a) SIMCA calculadas a partir dos dados de RMN de hidrogênio para os isômeros ópticos e de posição da n-MAPB e das catinonas análogas

(b)

Tabela 12: Resultado da análise utilizando a SIMCA para predição das amostras de RMN de hidrogênio

Classificações erradas (Misclassifications)						
	Classe 1	Classe 2	Amostras não			
	(Pred.)	(Pred.)	classificadas			
Classe 1 (Orig.)	8	0	0			
Classe 2 (Orig.)	0	8	0			
	Resíduo inter	classes				
	Classe 1		Classe 2			
Classe 1	0,13		1,80			
Classe 2	1,13		0,16			
	Distância inter	rclasses				
	Classe 1		Classe 2			
Classe 1	0		9,40			
Classe 2	9,40		0			

Analisando os resultados, observa-se que o RMN foi capaz de separar as anfetaminas das catinonas, assim como foi possível a diferenciação dos isômeros de posição. Ainda, avaliamos que o RMN de carbono é mais efetivo na separação das classes que o de hidrogênio.

2.4 Conclusões parciais

O objetivo deste capítulo foi avaliar o método *in silico* utilizado para a obtenção de espectros para a n-MAPB, seus isômeros de posição, isômeros ópticos e suas catinonas análogas. Além disso, analisar os diferentes tipos de espectros quanto à diferenciação dos isômeros ópticos e de posição.

A metodologia foi considerada adequada, já que os espectros de infravermelho obtidos foram similares aos experimentais disponíveis e foi possível a identificação de bandas características. As mesmas observações podem ser feitas, para o RAMAN. Nos dois casos, utilizamos uma metodologia in sílico e validamos para a metodologia experimental por meio de comparação com espectros disponíveis e também por meio da correção por meio da aplicação do fator de escala para o B3LYP/TZVP. Os métodos quimiométricos aplicados ao IV e RAMAN mostraram claramente a diferenciação entre os isômeros de posição bem como entre as anfetaminas e catinonas.

O DCV foi hábil em distinguir os isômeros ópticos, os de posição e também as duas classes de compostos. Nesse caso, pela ausência de dados experimentais optamos por utilizar três tipos diferentes de DFT. Os métodos quimiométricos mostraram que todos eles foram equivalentes, pois valores similares para a classificação supervisionada foi obtida em todos os casos.

No caso dos espectros de RMN a validação foi feita por meio de simulação de conjuntos de teste e de prova, que forneceram o fator de correção para a base utilizada. Tanto os espectros de carbono quanto de hidrogênio foram eficientes em diferenciar isômeros de posição bem como as anfetaminas e catinonas. A análise quimiométrica mostrou que RMN de carbono 13 é mais sensível para a diferenciação.

Sendo assim, o método *in silico* se mostrou eficiente na geração de dados de identificação de anfetaminas e catinonas.

3 Capítulo 3: AVALIAÇÃO DO POTENCIAL TOXICOLÓGICO DO SISTEMA DE ESTUDO POR MEIO DA TOXICIDADE *IN SILICO*

3.1 Toxicidade in silico

O combate eficaz às drogas requer uma série de atividades, como acesso à informação das principais características dessas substâncias bem como a avaliação dos riscos associados. Esse conteúdo pode ser utilizado em mecanismos de redução de danos, que buscam entender os efeitos das drogas ilícitas a fim de informar a população e eventuais usuários sobre seus riscos.^{47–51}

A toxicologia *in silico* é a predição e cálculo de propriedades toxicológicas por meio de aproximações computacionais baseadas na estrutura química em questão. Geralmente é utilizada com outros testes toxicológicos e pode ser aplicada em várias áreas como ecotoxicologia, química verde, análise de metabólitos etc. Pode ser utilizada quando uma substância é muito nova, não havendo dados sobre ela, ou como complemento de um experimento em laboratório. A toxicologia *in silico* é uma alternativa viável para que os testes em animais sejam reduzidos.^{120–123}

A maior parte dessa tecnologia foi desenvolvida para o estudo de novas drogas descobertas pela indústria farmacêutica. Os programas disponíveis para esta análise são gratuitos ou pagos e cada um deles possui uma metodologia e aproximação diferente. A maioria deles se baseia na ideia de que compostos similares terão atividades tóxicas semelhantes.^{120–122}

Para a avaliação de risco de produtos químicos é necessário inicialmente reunir e avaliar as informações existentes sobre toxicidade e danos associados. Porém em muitos casos os dados são limitados, necessitando de outra forma de análise. O uso de métodos alternativos para a análise de propriedades como toxicidade de substâncias vem crescendo, como por exemplo os métodos comparativos, métodos de tendência, relação entre estrutura-atividade (SAR- *Structure Activity Relationship*) e QSAR(*Quantitative Structure–Activity Relationship*).^{124–126}

Os métodos comparativos e de tendência também podem ser utilizados para a predição das características físico-químicas e (eco)toxicológicas das substâncias. Existem quatro abordagens de interpretação para o método comparativo: um para um, quando somente um análogo é utilizado para predizer as propriedades de um composto

químico; muitos para um, quando dois ou mais análogos são utilizados para predizer as propriedades de um composto químico; um para muitos, quando um análogo é utilizado para predizer as propriedades de dois ou mais compostos químicos; muitos para muitos, quando dois ou mais análogos são utilizados para predizer as propriedades de dois ou mais compostos químicos. Esse método pode ser comparativo ou qualitativo.¹²⁵

O método *in silico* comumente utilizado, QSAR, prevê a toxicidade dos compostos por meio comparativo, utilizando descritores da estrutura química. Esse método comparativo baseia-se em moléculas semelhantes, nas 'impressões digitais' das substâncias, assumindo que elas tenderão a ter propriedades e atividades semelhantes ao do composto em questão.^{124,125}

O QSAR aplica a quimiometria, que utiliza matemática e estatística para analisar os dados. Ela converte as estruturas químicas em representações computacionais e compara-as utilizando vários coeficientes de similaridade. Geralmente esses cálculos dependem das 'impressões digitais' moleculares para assim gerar as representações computacionais, essas impressões são baseadas em representações em duas dimensões das moléculas. Geralmente, as matrizes de similaridades apresentam mais concordância quando calculadas para impressões digitais diferentes para séries homólogas. ^{124,125}

Além dos métodos QSAR, há também os métodos nos quais os próprios valores das toxicidades são previstos. Para uma avaliação QSAR é necessário que existam dados experimentais suficientes para que seja encontrada a relação entre a estrutura química e atividade biológica. No entanto, para muitas NPS esses dados não são conhecidos. Há muitos relatos sobre efeitos nocivos e mortes associadas à intoxicação por essas novas substâncias. No entanto, há ausência de dados sobre o comportamento dessas drogas e consequentemente ausência de referencial sobre caracterização e uso. Todas essas situações afetam a compreensão acerca dos riscos oferecidos, o que é um desafio no estabelecimento de políticas de proibição ou prevenção.^{14,127–133}

Apesar da grande importância dos métodos experimentais *in vivo* e *in vitro* para a caracterização da propriedade de uma substância, essas técnicas podem exigir recursos em tempo e financiamento. A opção por métodos mais rápidos pode ser uma alternativa viável para a determinação de toxicidade e estimativa de produtos não sintetizados. No entanto, no caso dos métodos *in silico* é importante ter consciência também de suas limitações. É importante entender que há muitos efeitos adversos que podem não ser completamente entendidos por meio de previsão computacional. Devido à ausência de dados experimentais sobre as NPS, torna-se difícil a validação dos valores encontrados. As diversas metodologias utilizadas também têm de ser avaliadas quanto à precisão e compatibilidade com as propriedades químicas. Mesmo com certas limitações, os métodos computacionais podem oferecer vantagens uma vez que as NPS têm aparecido com grande rapidez e variedade, as quais podem ser adicionadas a legislação após o complemento de um estudo experimental. A informação sobre toxicidade de uma maneira mais rápida pode ajudar na orientação de seus riscos. E, por fim, métodos experimentais também podem apresentar uma grande variabilidade nos dados e nem sempre são reprodutíveis.^{14,49,134–138}

3.2 Procedimento computacional

Para a toxicologia *in silico*, primeiramente partindo das estruturas já otimizadas anteriormente com B3LYP/TZVP foram obtidas as estruturas SMILES (S*implified Molecular-Input Line-Entry Specification*)¹³⁹, uma representação das estruturas químicas obtidas pelo *software* livre ChemSketch¹⁴⁰. Com essas estruturas foram calculadas as toxicidades a partir de alguns programas com execução *online*.

	Isômeros	MAPB
	4-R	C[C@@H](NC)Cc1cccc2occc12
	4-S	C[C@H](NC)Cc1cccc2occc12
	5-R	C[C@@H](NC)Cc1cc2ccoc2cc1
Anfotominos	5-S	C[C@H](NC)Cc1cc2ccoc2cc1
Ametammas	6-R	C[C@@H](NC)Cc1ccc2ccoc2c1
	6-S	C[C@H](NC)Cc1ccc2ccoc2c1
	7-R	C[C@@H](NC)Cc1cccc2ccoc12
	7-S	C[C@H](NC)Cc1cccc2ccoc12
	4-R	C[C@@H](NC)C(=O)c1cccc2occc12
	4-S	C[C@H](NC)C(=O)c1cccc2occc12
	5-R	C[C@@H](NC)C(=O)c1cc2ccc2cc1
Catinonas	5-S	C[C@H](NC)C(=O)c1cc2ccoc2cc1
Cannonas	6-R	C[C@@H](NC)C(=O)c1ccc2ccoc2c1
	6-S	C[C@H](NC)C(=O)c1ccc2ccoc2c1
	7-R	C[C@@H](NC)C(=O)c1cccc2ccoc12
	7-S	C[C@H](NC)C(=O)c1cccc2ccoc12

Tabela 13: Estruturas SMILES do n-MAPB

Tabela 14: Estruturas SMILES do APB

		Isômeros	APB
		4-R	C[C@@H](N)Cc1cccc2occc12
		4-S	C[C@H](N)Cc1cccc2occc12
		5-R	C[C@@H](N)Cc1cc2ccoc2cc1
	Anfotominos	5-S	C[C@H](N)Cc1cc2ccoc2cc1
	Ametammas	6-R	C[C@@H](N)Cc1ccc2ccoc2c1
		6-S	C[C@H](N)Cc1ccc2ccoc2c1
		7-R	C[C@@H](N)Cc1cccc2ccoc12
		7-S	C[C@H](N)Cc1cccc2ccoc12
		4-R	C[C@@H](N)C(=O)c1cccc2occc12
		4-S	C[C@H](N)C(=O)c1cccc2occc12
		5-R	C[C@@H](N)C(=O)c1cc2ccoc2cc1
	Catinonas	5-S	C[C@H](N)C(=O)c1cc2ccoc2cc1
	Catilionas	6-R	C[C@@H](N)C(=O)c1ccc2ccoc2c1
		6-S	C[C@H](N)C(=O)c1ccc2ccoc2c1
		7-R	C[C@@H](N)C(=O)c1cccc2ccoc12
		7-S	C[C@H](N)C(=O)c1cccc2ccoc12

Os cálculos foram realizados em diferentes plataformas para observar se haveria similaridade entre os resultados, ou seja, se é possível que os métodos tenham concordância em indicar valores de toxicidade para os compostos em questão. Para o pkCSM¹⁴¹ e Protox II¹⁴² foi utilizado como parâmetro a LD₅₀, que é a Dose Letal Mediana, ou seja, dose necessária para matar 50% de uma população teste animal, em todos foram utilizados roedores. Para Lazar Toxicity Predictions¹⁴³ foi utilizado como parâmetro a dose máxima diária recomendada para humanos, ou seja, a dose diária máxima que uma pessoa pode ingerir sem que haja efeitos maléficos.

Já para o SwissADME o parâmetro utilizado foi LOGP, logaritmo do coeficiente de partição, que é a concentração do soluto em solvente orgânico n-octanol dividido pela concentração do soluto. Quanto maior o seu valor, maior a afinidade com a fase orgânica, ou seja, mais lipofílico. ¹⁴⁴ Esse parâmetro foi calculado pelo *software* de várias maneiras: iLOGP que é baseado nas energias livres de solvatação da água e do n-octanol; XLOGP3 que é um método atomístico com fatores de correção inclusos; WLOGP modelo puramente atomístico; MLOGP modelo topológico e SILICOS-IT modelo híbrido.³⁰

- Lazar Toxicity Predictions- Utiliza algoritmos de mineração de dados para gerar previsões, também faz uso de modelos QSAR locais, identifica os compostos semelhantes no seu banco de dados, cria um modelo de previsão local e utiliza-o para as previsões do composto em questão;¹⁴³
- pkCSM- Utiliza o conceito de assinaturas estruturais baseadas em gráficos para prever as propriedades de absorção, distribuição, metabolismo e excreção e toxicidade (ADMET) das substâncias;¹⁴¹
- ProTox II- Utiliza modelos computacionais baseados em testes *in* vitro ou *in vivo* para fazer a predição de toxicidade das estruturas, tem como base a similaridade molecular do composto em questão com o banco de dados;¹⁴²
- SwissADME- Utiliza algoritmos abertos e também e também modelos próprios para gerar várias predições do mesmo parâmetro, com ADME (absorção, distribuição, metabolismo e excreção), farmacocinética e LOGP.¹⁴⁴

3.3 Resultados e discussões

O cálculo de LD₅₀ foi realizado nos programas pkCSM e Protox II, os resultados estão apresentados na Tabela 15.

		Anfeta	aminas		Catinonas				
-	L	D ₅₀	L	D ₅₀	LD	LD ₅₀		D ₅₀	
	(mol	$l kg^{-1}$)	(mg	kg ⁻¹)	(mol]	kg⁻¹)	(mg	kg ⁻¹)	
	pkC	SM	Proto	ox II	pkCS	M	Proto	ox II	
Isômero	MAPB	APB	MAPB	APB	MAPB ^{cat}	APB ^{cat}	MAPB ^{cat}	APB ^{cat}	
4-R	2,688	2,713	57,00	2700	2,589	2,526	1283	1283	
4-S	2,688	2,713	57,00	2700	2,589	2,526	1283	1283	
5-R	2,671	2,684	57,00	1283	2,552	2,487	1283	1283	
5-S	2,671	2,684	57,00	1283	2,552	2,487	1283	1283	
6-R	2,708	2,727	57,00	2700	2,603	2,538	1283	1283	
6-S	2,708	2,727	57,00	2700	2,603	2,538	1283	1283	
7-R	2,688	2,713	1400	1400	2,684	2,526	1230	1283	
7-S	2,688	2,713	1400	1400	2,684	2,526	1230	1283	

Tabela 15: Cálculo de LD₅₀

Em todos os casos da Tabela 15, os programas não conseguiram diferenciar os isômeros ópticos R e S.

Analisando somente os resultados do pkCSM, temos que para as anfetaminas, tanto para o MAPB quanto para o APB, a ordem crescente da LD_{50} para os isômeros de posição foi de: 5, 4 e 7, 6. Para os dois casos, o isômero 5 foi o que possuiu uma menor LD_{50} . Assim, a posição do substituinte no anel aromático provavelmente afeta a toxicidade desses compostos.

Comparando esses dois grupos de anfetaminas, o MAPB apresentou uma menor LD_{50} , ou seja, é necessária uma menor dose dessa molécula quando comparada a APB para matar 50% de uma população teste animal. Assim, provavelmente o grupamento metila tem uma função na toxicidade dessas substâncias.

Para as catinonas, observa-se que para o MAPB^{cat} a ordem crescente de LD_{50} foi: 5, 4, 6 e 7. Já para as APB^{cat} a ordem crescente foi: 5, 4 e 7, 6. Em ambos

os casos temos que o isômero 5 possuiu a menor LD_{50} . Novamente temos a influência do substituinte no anel aromático.

Comparando os dois grupos de catinonas, temos que os APB^{cat} possuem uma menor LD_{50} quando comparados aos $MAPB^{cat}$. Nesse caso, podemos dizer que o grupo metila ligado ao N é provavelmente o fator que influencia nesse comportamento, pois é a única diferença nessas moléculas. No entanto, a tendência de adição da metila inverte o comportamento tóxico quando há a presença de carbonila nessas moléculas.

Por meio dos resultados pode-se notar também que as MAPB^{cat} possuem menores valores de LD_{50} quando comparadas às anfetaminas análogas. A mesma tendência pode ser observada para as APB^{cat}. Nos dois casos, temos que a inserção da carbonila fez que com esses valores baixassem, tornando as moléculas mais tóxicas.

-	Dose máxima diária recomendada para humano (mg kg ⁻¹ de massa corporal dia ⁻¹)						
	Anfetar	ninas	Catinonas				
Isômeros	MAPB	APB	MAPB ^{cat}	APB ^{cat}			
4-R	1,65	1,28	2,85	2,41			
4-S	1,71	1,38	2,85	2,41			
5-R	1,61	1,82	2,85	2,41			
5-S	1,60	1,83	2,85	2,41			
6-R	1,56	1,46	1,62	1,33			
6-S	1,47	1,33	1,61	1,36			
7-R	2,01	1,38	1,67	1,39			
7-S	2,14	1,44	1,83	1,35			

Tabela 16: Cálculo no Lazar

O Lazar foi capaz de diferenciar tanto os isômeros de posição quando os isômeros ópticos, porém não foi reprodutível nos resultados.

Analisando os resultados das anfetaminas, observa-se que para o MAPB os isômeros de posição 6 são os possuem uma menor dose máxima recomendada. Já para o

APB esse resultado é obtido para os isômeros 4R e 6S. Comparando essas duas anfetaminas, exceto para o par 5, todas as APBs tiveram uma menor dose máxima.

Para as catinonas, na MAPB^{cat} os mesmos resultados foram encontrados para os pares de isômeros ópticos do 4 e 5 e o par 6 possui a menor dose máxima, reproduzindo a tendência também observada para o MAPB. Analisando as APB^{cat}, os mesmos resultados foram encontrados para os pares de isômeros ópticos do 4 e 5 e os isômeros 6R e 7S possuem a menor dose máxima. Comparando ambas as catinonas, conclui-se que os APBs possuem uma menor dose máxima, tendo estes uma tendência a serem mais tóxicos.

A partir dos resultados, nota-se que todos para o MAPB^{cat} possuem uma maior dose máxima, exceto o par 7, quando comparados com a MAPB. Observa-se também que para o APB os pares 4 e 5 possuem uma maior dose máxima, enquanto para APB^{cat} os pares 6 e 7 possuem uma menor dose máxima.

		MAPB					
	Isômeros					SILICOS	
	isomeros i	ilogP	XlogP3	WlogP	MlogP	IT	Consenso
	4-R	2,74	2,59	2,58	1,84	2,90	2,53
	4-S	2,70	2,59	2,58	1,84	2,90	2,52
	5-R	2,76	2,59	2,58	1,84	2,90	2,54
Anfetaminas	5-S	2,65	2,59	2,58	1,84	2,90	2,51
	6-R	2,79	2,59	2,58	1,84	2,90	2,54
	6-S	2,62	2,59	2,58	1,84	2,90	2,51
	7-R	2,73	2,59	2,58	1,84	2,90	2,53
	7-S	2,75	2,59	2,58	1,84	2,90	2,53
	4-R	2,36	2,01	2,22	0,87	2,44	1,98
	4-S	2,39	2,01	2,22	0,87	2,44	1,99
	5-R	2,39	2,01	2,22	0,87	2,44	1,99
Catinonas	5-S	2,40	2,01	2,22	0,87	2,44	1,99
Cutilionus	6-R	2,37	2,01	2,22	0,87	2,44	1,98
	6-S	2,42	2,01	2,22	0,87	2,44	1,99
	7-R	2,22	2,01	2,22	0,87	2,44	1,95
	7-S	2,24	2,01	2,22	0,87	2,44	1,96

Tabela 17: Cálculo do logP no software SwissADME para n-MAPB

					APB		
	Isômeros	ilogP	XlogP3	WlogP	MlogP	SILICOS IT	Consenso
	4-R	2,21	2,08	2,32	1,55	2,49	2,13
	4-S	2,13	2,08	2,32	1,55	2,49	2,12
	5-R	2,40	2,08	2,32	1,55	2,49	2,17
Anfetaminas	5-S	2,19	2,08	2,32	1,55	2,49	2,13
7 miletanninas	6-R	2,43	2,08	2,32	1,55	2,49	2,18
	6-S	2,31	2,08	2,32	1,55	2,49	2,15
	7-R	2,28	2,08	2,32	1,55	2,49	2,14
	7-S	2,26	2,08	2,32	1,55	2,49	2,14
	4-R	1,58	1,50	1,96	0,59	2,01	1,53
	4-S	1,57	1,50	1,936	0,59	2,01	1,53
	5-R	2,00	1,50	1,96	0,59	2,01	1,61
Catinonas	5-S	1,57	1,50	1,96	0,59	2,01	1,53
Catinonias	6-R	1,67	1,50	1,96	0,59	2,01	1,55
	6-S	1,72	1,50	1,96	0,59	2,01	1,56
	7-R	2,03	1,50	1,96	0,59	2,01	1,62
	7-S	1,38	1,50	1,96	0,59	2,01	1,49

Tabela 18: Cálculo do logP no software SwissADME para APB

A lipofilicidade é muito importante para a absorção, distribuição no organismo, metabolização etc. de uma substância. Observando o consenso, os valores de LOGP em todos os casos foram maiores que 1, isso significa que todas as drogas calculadas possuem uma maior afinidade com a fase orgânica.

O algoritmo do ilog foi o responsável por distinguir entre isômeros de posição e óptico.

Analisando os resultados, temos que para as anfetaminas, em todos os casos do MAPB, exceto para o par 7, o isômero S teve um menor log de P. Esse par, no consenso, teve o mesmo valor para R e S devido à aproximação de casas decimais. Já para o APB, o isômero S possuiu menor log de P. Comparando esses dois grupos de anfetaminas, o MAPB apresentou um maior logP.

Agora para as catinonas, observa-se que para o MAPB^{cat} todos os isômeros S possuíram um maior logP. Já para as APB^{cat}, exceto o par 4, todos os isômeros R possuíram um maior logP. Comparando os dois grupos de catinonas, temos que todos os MAPB^{cat} tiveram um maior logP.

Pela avaliação dos resultados pode-se notar também que MAPB possuem maiores valores de logP quando comparados as catinonas análogas. A mesma comparação pode ser realizada para APB.

Os valores obtidos para as catinonas no geral foram mais baixos do que para as anfetaminas, mostrando que elas são menos lipofílicas. Isso se deve à carbonila presente nessas moléculas.

A Tabela 19 sumariza os resultados para os cálculos de toxicidade *in silico*. Os valores em negrito mostram os grupos com menores valores na tendência geral.

LD_{50}	Dose diária	Log P
APB > MPAB	MAPB > APB	MAPB > APB
$MAPB^{cat} > APB^{cat}$	MAPBca t>APBcat	$MPAB^{cat} > APB^{cat}$
$MAPB > MAPB^{cat}$	MAPBcat > MAPB	MAPB > MAPB ^{cat}
$APB > APB^{cat}$	APBcat ?? APB	APB >APB ^{cat}
 A função do CH₃ é inconclusiva, não há reprodutibilidade de 	 A presença da metila diminui a toxidade relacionada à dose diária. 	- A presença da metila aumenta a lipofilicidade.
tendência quando ele está presente. - A introdução da carbonila aumenta o LD ₅₀	 A presença de carbonila não é conclusiva 	- A ausência da carbonila aumenta a lipofilicidade.

Tabela 19: Resumo dos resultados de toxicologia in silico

3.4 Conclusões parciais

O objetivo do capítulo foi estudar o comportamento toxicológico dessas drogas pela abordagem computacional de diferentes parâmetros. Nesse caso, além do grupo relacionado ao n-MAPB e suas catinonas análogas também fizemos a comparação com moléculas relacionadas ao n-APB e suas catinonas análogas.

O pkCSM e Lazar, forneceram resultados similares para as catinonas do n-APB e do n-MAPB, sendo que o valor de toxicidade foi maior para as do n-APB. Nesses mesmos programas, quando comparados os isômeros de posição das anfetaminas de n-MAPB, o isômero 6 teve um resultado mais tóxico. Assim, nesses dois casos, apesar de certa similaridade encontrada entre as catinonas não houve reprodutibilidade de resultados entre as anfetaminas. Em relação ao logP, temos que todas as catinonas foram mais hidrofílicas que as anfetaminas correspondentes. Comparando as classes de anfetaminas e catinonas do n-APB e n-MAPB, temos que a adição de um grupo metila aumenta a lipofilicidade. Dessa maneira, o cálculo para o coeficiente de partição foi hábil em identificar as tendências esperadas para lipofilicidade e hidrofilicidade.

Todas as ferramentas foram capazes de identificar os diferentes isômeros de posição, porém somente algumas delas foram capazes de realizar a identificação dos isômeros ópticos. Essa identificação é de extrema importância para o estudo de substâncias quirais. Os valores de LD50 e dose diária não foram reprodutíveis em comportamento para moléculas da mesma natureza (anfetaminas e catinonas).

De uma maneira geral, os programas utilizados foram hábeis em determinar tendências do comportamento dessas substâncias e podem auxiliar no mecanismo preventivo em relação ao uso.

4 Capítulo 4: ESTUDO DE AFINIDADE RECEPTOR-LIGANTE

4.1 Docking

Utilizado desde o início dos anos 1980, o *docking*, também conhecido como ancoragem molecular, se tornou uma metodologia de extrema importância para a indústria farmacêutica.¹⁴⁵ É uma ferramenta utilizada para predizer a melhor posição do ligante em uma proteína (Figura 58), permitindo assim caracterizar o comportamento da molécula em sítios ativos de proteínas alvo, elucidando interações e caracterizando os comportamentos.^{145–148}

Alvo

Figura 58: Exemplificação da ocorrência do docking¹⁴⁹

A investigação de estruturas químicas e as possíveis orientações envolvem fatores entálpicos e entrópicos, levando em consideração a flexibilidade das moléculas, distribuição de cargas etc. No geral, programas de computador que realizam *docking* utilizam dois passos principais: um algoritmo de busca e função de escore. O algoritmo busca as possíveis combinações, explorando os graus de liberdade. Já a função escore escolhe os melhores modos de ligação com base em uma função de pontuação. Os algoritmos devem conseguir reproduzir os resultados experimentais. ^{145,146,149,150}

Várias forças estão envolvidas nas interações intermoleculares. Modelar essas interações no complexo ligante-proteína é difícil já que há vários graus de liberdade. ¹⁴⁹A ancoragem molecular estima a energia livre de ligação entre proteína e ligante, podendo assim identificar qual interação é a mais provável. ¹⁵¹

O procedimento pode ser dividido em três tipos: *docking* rígido, trata o ligante e o receptor como rígidos e só utiliza seis graus de liberdades translacional e rotacional; *docking* flexível, leva em conta a flexibilidade da proteína em um receptor rígido e o *docking* que considera a molécula e proteína flexíveis.^{145,149}

Essa técnica, quando combinada com outros métodos computacionais e experimentais é de grande importância na análise da metabolização de drogas, ¹⁴⁵ por ser um método computacional reduz a quantidade dos testes *in vivo*, tempo de testes e de custos.

Um estudo *docking* realizado com a 5-MAPB demonstrou que ela se liga no transportador de dopamina e ocupa um lugar bem no interior do transportador da estrutura proteica.⁴⁴

4.2 Procedimento computacional

Para a realização desta etapa, foram utilizados os seguintes programas gratuitos:

iGEMDOCK 2.1- é um ambiente gráfico utilizado para o reconhecimento de interações farmacológicas e de encaixe, triagem virtual e pós triagem. Este programa identifica as interações baseando-se em perfis de interação proteína-ligante e utiliza um algoritmo genérico evolutivo, métodos estocásticos que derivam da teoria de evolução de Darwin (Figura 59). Neste programa os graus de liberdade do ligante são codificados em um sistema binário chamado 'genes' que fazem parte de um 'cromossomo', representando assim a pose do ligante. Ocorrem então dois tipos de operadores genéticos: as mutações que alteram aleatoriamente os genes e o crossover que gera a troca de gene entre dois cromossomos. Se esses operadores afetam o gene, surgem então novas estruturas de ligante que serão avaliadas pela função de pontuação e poderão ser utilizadas na nova geração.^{152–154}

PyRx- *software* de triagem virtual para descoberta computacional de drogas que utiliza AutoDock 4, onde o autodock realiza o encaixe do ligante em um sistema de grade que descreve a proteína de interesse e há um pré-cálculo das grades, ele modela a flexibilidade do receptor, permitindo assim que as cadeias laterais se movam e AutoDock Vina, uma versão mais recente de *docking* molecular que calcula as grades

internamente para os tipos de átomos necessários. Ambos tratam o *docking* como otimização global estocástica de função de pontuação, fazendo um pré-cálculo de mapas de grade, as diferenças entre os dois estão no código fonte, funções de pontuação e algoritmos utilizados.^{153,154,156,157}

As moléculas já otimizadas descritas no Capítulo 2 item 2.3.1 foram adicionadas ao iGEMDOCK, assim como o receptor 4XP1, estrutura cristalográfica do transportador de dopamina da *Drosophila melanogaster*, a ancoragem foi realizada com população de 300, 80 gerações e 10 soluções possíveis. Restringiu-se o sítio de ligação para a região "A", no qual a literatura indica a ancoragem no n-MAPB com o receptor.⁴⁴ O *software* utilizado restringiu as melhores posições de ancoragem entre proteína-receptor como aquelas que possuíram menor energia total, ou seja, um melhor encaixe.

Para o segundo *software*, PyRx, as estruturas otimizadas foram adicionadas, restringiu-se o sítio ativo levando em consideração o ligante ancorado a proteína do receptor 4XP1. Posteriormente as estruturas ancoradas foram observadas pelo *software* Pymol¹⁵⁸ e as interações entre proteína-ligante pelo *software* Discovery Studio¹⁵⁹.

Os cálculos foram realizados em triplicata para que fosse possível uma comparação entre a reprodutibilidade dos resultados.

4.3 Resultados e discussões

			APB			MAPB	
			Energia			Energia	
	Ligante	1	2	3	1	2	3
	4-R	-75,7591	-75,7542	-75,7651	-73,7053	-73,7385	-73,7385
	4-S	-81,0385	-81,0313	-81,0328	-84,4188	-84,4084	-84,421
Anfetaminas	5-R	-82,9429	-82,9463	-82,935	-89,3402	-89,3475	-89,3475
	5-S	-78,5168	-78,5214	-78,5214	-79,2858	-79,2783	-79,2862
	6-R	-78,9964	-78,9976	-78,9976	-81,5127	-81,5014	-81,5039
	6-S	-77,552	-77,5581	-77,5581	-84,4151	-84,4113	-84,4226
	7-R	-85,5572	-85,5478	-85,5509	-88,5914	-88,5818	-88,5987
	7-S	-76,7116	-76,7083	-76,7099	-81,6397	-81,6378	-81,6422
	4-R	-81,8241	-81,8266	-81,8334	-79,4043	-79,4119	-79,4119
	4-S	-81,0478	-81,037	-81,0521	-80,9903	-80,9959	-81,0047
Catinonas	5-R	-86,3501	-86,3511	-86,3552	-88,2665	-88,2515	-88,2515
	5-S	-89,1695	-89,1832	-89,1808	-92,0788	-92,0765	-92,0765
	6-R	-84,1509	-84,1683	-84,1683	-85,0736	-85,0763	-85,0763
	6-S	-89,3035	-89,3173	-89,3173	-94,3406	-94,34	-94,34
	7-R	-80,4435	-80,4525	-80,4543	-80,1758	-80,1486	-80,1694
	7-S	-79,6246	-79,6136	-79,6213	-80,6591	-80,6789	-80,6789

Tabela 20: Resultado em triplicata do *docking* no iGEMDOCK

Figura 60:Reprodutibilidade do iGEMDOCK para as moléculas estudadas

Para o APB, o isômero 7R foi o que apresentou menor energia para a interação com o receptor. Para o n-MAPB, o isômero 5R foi o que obteve a interação mais estável.

No caso das catinonas análogas, tanto para o APB^{cat} quanto para o MAPB^{cat} os menores valores de interação foram para as conformações 5S e 6S.

No geral, as moléculas de n-MAPB possuem uma maior tendência de interação com o receptor do que as moléculas de APB.

No caso das catinonas análogas também temos que o MAPB^{cat} tem uma interação com energia menor que o APB^{cat}.

A Tabela 21 sumariza os resultados para a ancoragem realizada pelo iGEMDOCK. Os valores em negrito mostram os grupos com menores valores na tendência geral.

Energia
APB> MAPB
$APB^{cat} > MAPB^{cat}$
MAPB ??? MAPB ^{cat}
APB>APB ^{cat}
- A presença da metila aumenta a
interação (menor energia)
- A presença da carbonila aumenta a
interação para APB, para MAPB é
inconclusivo

Tabela 21: Resumo dos resultados de docking iGEMDOCK

Comparando o APB e MAPB: o isômero R tem menor energia para todas as posições, exceto para o isômero 4. A adição da metila não mudou a tendência energética dos enantiômeros. Já para APB^{cat} e MAPB^{cat}, o S tem menor energia para os isômeros 5 e 6. Não é uma variação significativa para os isômeros 4 e 7. Novamente, a adição da metila manteve o comportamento para os isômeros óticos em todas as posições.

Pode-se dizer que no caso dos isômeros 5 e 6 houve uma inversão de tendência no caso da adição da carbonila.

	APB				MAPB			
		Ener	gia/Kcal m	ol ⁻¹	Energ	Energia/Kcal mol ⁻¹		
	Ligante	1	2	3	1	2	3	
Anfetaminas	4-R	-6,6	-6,6	-6,6	-7,1	-7,1	-7,1	
	4-S	-6,7	-6,7	-6,7	-6,9	-6,9	-6,9	
	5-R	-8,1	-8,1	-8,1	-8,2	-8,1	-8,0	
	5-S	-7,9	-7,9	-7,9	-8,0	-8,0	-8,0	
	6-R	-7,9	-7,9	-7,9	-8,1	-7,9	-8,1	
	6-S	-7,9	-7,9	-7,9	-8	-6,9	-6,9	
	7-R	-6,8	-6,5	-6,7	-7	-7	-7	
	7-S	-6,5	-6,6	-6,7	-6,7	-6,7	-6,7	
	4-R	-6,5	-6,5	-6,5	-6,9	-6,8	-6,8	
Catinonas	4-S	-6,7	-6,7	-6,7	-7,1	-7,1	-7,1	
	5-R	-8,1	-8,1	-8,1	-8,1	-8,2	-8,2	
	5-S	-8	-8	-8	-8	-8,1	-8,1	
	6-R	-7,9	-7,9	-7,9	-7,9	-7,9	-7,9	
	6-S	-7,7	-7,7	-7,7	-7,7	-7,9	-7,9	
	7-R	-6,6	-6,2	-6,6	-6,7	-6,7	-6,7	
	7-S	-6,7	-6,5	-6,7	-6,9	-6,9	-6,9	

Tabela 22: Resultado em triplicata do *docking* no PyRx

Figura 61: Reprodutibilidade do PyRx para as moléculas estudadas

Nota-se que os resultados foram reprodutíveis entre si, como pode ser observado na tabela 22. No entanto, a diferença entre os valores de energia obtidos é muito baixa, o que não fornece uma tendência para diferenciar os enantiômeros e nem as estruturas análogas.

Após a realização do *docking* no PyRx, os resultados obtidos foram visualizados no Pymol a fim de selecionar e salvas as interações. Em seguida, essas interações foram visualizadas no *software* Discovery Studio a fim de se obter o resultado gráfico. Observa-se a estrutura otimizada e suas interações com o receptor 4XP1 com 5R-MAPB na Figura 62, a catinona correspondente (5R -MAPB^{cat}) na Figura 63, o 5R-APB na Figura 64 e a catinona correspondente (5R-APB^{cat}) na Figura 65. As figuras das outras moléculas estão contidas no Anexo F.

Figura 63: Interação dos aminoácidos do docking do receptor com a catinona correspondente ao 5-MAPB R

Interactions

Figura 64: Interação dos aminoácidos do docking do receptor com a 5-APB R

Figura 65: Interação dos aminoácidos do docking do receptor com a catinona correspondente ao 5-APB R

Figura 66: Interação proteína-ligante da estrutura cristalizada com a dopamina

Todas as moléculas ancoraram no mesmo sítio quando comparadas à dopamina contida no transportador e a maioria dos resíduos de aminoácidos que interagem com ela (Figura 66) também interagem com as n-MAPB e suas catinonas correspondentes e as n-APB e suas catinonas correspondentes (vide anexo F Figuras).

4.4 Conclusões parciais

Com os resultados obtidos foi possível observar uma tendência de comportamento comparando as anfetaminas com as catinonas nas duas classes de drogas estudadas, confirmando que as catinonas possuem uma maior interação com o receptor dopaminérgico do que as anfetaminas.

Por meio da comparação dos resultados com a estrutura cristalizada da dopamina, pode-se afirmar que o *docking* reproduziu o sítio de ancoragem entre ligantereceptor, já que os resíduos de aminoácidos que interagem com essa estrutura interagem em sua maioria com as moléculas estudadas. Além disso, os programas utilizados apresentaram uma boa reprodutibilidade, já que os dados obtidos para as triplicatas foram muito parecidos, mas sem exibir uma tendência.

A metodologia *in silico* é uma ferramenta alternativa muito importante para o estudo das diversas drogas que surgem rapidamente no mercado, pois são métodos eficazes, rápidos, com menor custo, que podem demonstrar uma tendência de resultados antes dos dados laboratoriais.

5 CONCLUSÕES GERAIS

Por meio dos cálculos de otimização, todas as moléculas estudadas (4-MAPB, 5-MAPB, 6-MAPB e 7-MAPB) apresentaram uma tendência nos resultados.

Os valores de energias obtidos para os isômeros da n-MAPB (n= 4, 5, 6 e 7) diferem entre si por aproximadamente 1kcal, não sendo uma diferença significativa para a determinação do isômero de posição mais estável. Para as catinonas correspondentes essa diferença é um pouco maior, porém não significativa, também não podendo se determinar o isômero de posição mais estável.

Inicialmente, os dados *in silico* foram validados para o MDMA, por ser esta a molécula com estrutura mais próxima das moléculas em questão e que contém dados experimentais disponíveis.

Ao calcular os espectros de IV, Raman e RMN pôde-se perceber que estes métodos não são efetivos para a diferenciação dos isômeros ópticos das n-MAPB (n= 4, 5, 6 e 7) e das catinonas análogas, já que os espectros são similares e apresentam picos com valores próximos. Porém foi possível obter uma satisfatória diferenciação nos isômeros de posição. As técnicas quimiométricas foram adequadas em evidenciar a separação dos isômeros de posição e dos grupos de anfetaminas e catinonas.

O dicroísmo circular vibracional foi a técnica utilizada na caracterização dos enantiômeros. Os espectros obtidos foram simétricos para o R e S em todas as posições tanto para as n-MAPB (n= 4, 5, 6 e 7) quanto para as catinonas referentes. Estes métodos (CAMB3LYP/TZVP, B3LYP/TZVP, B3PW91/TZVP) mostram-se de extrema importância para a diferenciação de estruturas quirais.

Para os testes da toxicologia *in silico*, todos programas utilizados foram eficientes em identificar as diferenças relacionadas as posições dos isômeros. Para os isômeros ópticos uma parte dos programas também foi eficientes na identificação dos isômeros ópticos, mostrando uma potencialidade na utilização para compostos quirais. Além disso, o pkCSM e Lazar obtiveram resultados similares para alguns dos casos.

O docking se mostrou reprodutível nas duas ferramentas utilizadas, PyRx e iGEMDOCK. Foram obtidos resultados similares nas triplicatas. Porém, houve diferença para a determinação da melhor interação molécula-receptor, estando de acordo somente para o n-MAPB, sendo o isômero melhor 5R.

101

Por fim, os métodos *in silico* foram eficientes para o estudo das anfetaminas n-MAPB (n= 4, 5, 6 e 7) e compostos análogos, fornecendo informações sobre o comportamento de identificação, toxicologia e interação com o organismo. Estes métodos podem ser utilizados para direcionar a tomada de decisão, auxiliando na lei de drogas, saúde pública e obtenção de padrões de identificação.

6 REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Bulcão, R. *et al.* DESIGNER DRUGS: ASPECTOS ANALÍTICOS E BIOLÓGICOS. *Quim. Nova* **35**, 149–158 (2012).
- 2. Lopes, M. A. Drogas: 5 mil anos de viagem | Superinteressante. (2006).
- 3. Carneiro, H. As drogas: objeto da Nova História. *Revista USP* 84–91 (2012).
- 4. The Dangerous Drugs Act | Ministry of Justice Government of Jamaica.
- Regina, A., Miranda, C., Sérgio, P. & Regina, A. Fragmentos da história da atenção à saúde para usuários de álcool e outras drogas no Brasil : da Justiça à Saúde Pública Fragments of the Health. *História, Ciências, Saúde- Manguinhos* 14, 801–821 (2007).
- 6. Senado Federal. Da guerra ao tratamento: uma história de como o Brasil enfrenta as drogas. *Em Discussão! Rev. Audiências Públicas do Senado Fed.* Ano 2, 58 (2011).
- 7. Costa, P. H. A. da & Mendes, K. T. The War on Drugs ideology in Brazil. *Argumentum* **11**, 93–106 (2019).
- 8. Rodrigues, V., Truzzi, S. & Gerais, M. Perícia criminal : uma abordagem de serviços. *Gestão & Produção* **17**, 843–857 (2010).
- 9. Júnior, A. S. R. & Castro, M. de A. Das provas periciais no processo penal brasileiro. *Diálogos & Saberes* 9, 181–196 (2013).
- Marcelo, M. C. A., Mariotti, K. C., Ortiz, R. S., Ferrão, M. F. & Anzanello, M. J. Scott test evaluation by multivariate image analysis in cocaine samples. *Microchem. J.* 127, 87–93 (2016).
- ANVISA, A. N. de V. S. RESOLUÇÃO DA DIRETORIA COLEGIADA RDC Nº 277, DE 16 DE ABRIL DE 2019. 191–200 (2019).
- 12. ANVISA. Portaria nº 344, de 12 de maio de 1998. Aprova o regulamento técnico sobre substâncias e medicamentos sujeitos a controle especial. *Diário Oficial da União. Brasília, DF.* (1998).
- 13. Cardoso, H. O Uso Abusivo de Anfetaminas por Estudantes Universitários . *Rev. Científica Multidiscip. Núcleo do Conhecimento* **01**, 05–14 (2017).
- 14. United Nations Office on Drugs and Crime. *World Drug Report 2013*. (United Nations publication, Sales No. E.13.XI.6, 2013).
- 15. Elliott, S. & Evans, J. A 3-year review of new psychoactive substances in casework. *Forensic Sci. Int.* **243**, 55–60 (2014).
- 16. Soh, Y. N. A. & Elliott, S. An investigation of the stability of emerging new psychoactive substances. *Drug Test. Anal.* **6**, 696–704 (2014).
- 17. JENNIFER A. WEIß, STEFAN MOHR, M. G. S. Indirect Chiral Separation of

New Recreational Drugs by Gas Chromatography-Mass Spectrometry Using Trifluoroacetyl-L-Prolyl Chloride as Chiral Derivatization Reagent. *Chirality* 27, 211–215 (2015).

- Favretto, D., Pascali, J. P. & Tagliaro, F. New challenges and innovation in forensic toxicology: Focus on the 'New Psychoactive Substances'. *J. Chromatogr. A* 1287, 84–95 (2013).
- United Nations Office on Drugs and Crime UNODC. Executive Summary. in World Drug Report (United Nations publication, Sales No. E.19.XI.8, 2019). doi:10.1089/blr.1993.12.195
- Zeitoune, R. C. G., Ferreira, V. D. S., Silveira, H. S. da, Domingos, A. M. & Maia, A. C. O conhecimento de adolescentes sobre drogas lícitas e ilícitas: uma contribuição para a enfermagem comunitária. *Esc. Anna Nery Rev. Enferm.* 16, 57–63 (2012).
- Fraile Divucq, C. G., Riquelme Pereira, N. & Pimienta Carvalho, A. M. Consumo De Drogas Licitas E Ilicitas En Escolares Y Factores De Protección Y Riesgo. *Rev. Lat. Am. Enfermagem* 12, 345–351 (2004).
- 22. United Nations Office on Drugs and Crime UNODC. Global Overview of Drug Demand and Supply. in *World Drug Report* (United Nations publication, Sales No. E.19.XI.8, 2019).
- 23. United Nations Office on Drugs and Crime UNODC. Cannabis and hallucinogens. in *World Drug Report* (2019). doi:10.18356/5b5a0f55-en
- 24. United Nations Office on Drugs and Crime UNODC. Depressants. in *World Drug Report* (United Nations publication, Sales No. E.19.XI.8, 2019).
- 25. United Nations Office on Drugs and Crime UNODC. *Current NPS Threats*. (2019).
- Welter, J., Brandt, S. D., Kavanagh, P., Meyer, M. R. & Maurer, H. H. Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MS(n) techniques. *Anal. Bioanal. Chem.* 407, 3457– 3470 (2015).
- 27. Welter-Lüdeke, J. Amphetamine-Derived New Psychoactive Substances : Metabolic Fate and Toxicological Detectability of in Urine and Human Liver Preparations. 39 (2015).
- 28. United Nations. World Drug Report. ANALYSIS OF DRUG MARKETS. in *World Drug Report 2018* 76 (2018). doi:978-92-1-060623-3
- Nakagawa, Y., Suzuki, T., Tada, Y. & Inomata, A. Cytotoxic effects of psychotropic benzofuran derivatives, N-methyl-5-(2-aminopropyl)benzofuran and its N-demethylated derivative, on isolated rat hepatocytes. *J. Appl. Toxicol.* 37, 243–252 (2017).
- 30. Rodrigues, C. H. P. & Bruni, A. T. In silico toxicity as a tool for harm reduction: A study of new psychoactive amphetamines and cathinones in the context of

criminal science. Sci. Justice (2018). doi:10.1016/J.SCIJUS.2018.11.006

- 31. Pirona, A. *et al.* New psychoactive substances: Current health-related practices and challenges in responding to use and harms in Europe. *Int. J. Drug Policy* **40**, 84–92 (2017).
- Rodrigues, C. H. P. Estudos in silico do comportamento de catinonas sintéticas com interesse forense. (Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, 2018).
- 33. Lloyd, A. *et al.* The application of portable microchip electrophoresis for the screening and comparative analysis of synthetic cathinone seizures. *Forensic Sci. Int.* **242**, 16–23 (2014).
- Arroio, A., Honório, K. M., Weber, K. C., Homem-de-Mello, P. & Silva, A. B. F. O ensino de química quântica e o computador na perspectiva de projetos. *Quim. Nova* 28, 360–363 (2005).
- 35. Ortolan, A. O. Apostila de práticas de química computacional. (2014).
- 36. FERNANDES, F. M. S. S. PERSPECTIVAS DA QUÍMICA COMPUTACIONAL. 1–10 (2011).
- 37. Bruni, A. T., de Carvalho, P. O. M., Rodrigues, C. H. P. & Leite, V. B. P. In silico methods in forensic science: Quantum chemistry and multivariate analysis applied to infrared spectra of new amphetamine- and cathinone-derived psychoactive substances. *Forensic Chem.* **9**, 21–34 (2018).
- 38. Zapata-Torres, G. *et al.* Quantum-chemical, NMR and X-ray diffraction studies on (±)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane. *J. Mol. Graph. Model.* **26**, 1296–1305 (2008).
- 39. Hakey, P. M., Allis, D. G., Hudson, M. R. & Korter, T. M. Density Functional Dependence in the Theoretical Analysis of the Terahertz Spectrum of the Illicit Drug MDMA (Ecstasy). *IEEE Sens. J.* **10**, 478–484 (2010).
- 40. Riahi, S., Eynollahi, S. & Ganjali, M. R. Computational studies on effects of MDMA as an anticancer drug on DNA. *Chem. Biol. Drug Des.* **76**, 425–432 (2010).
- Singh, V. B. Ab initio and DFT studies of the vibrational spectra of benzofuran and some of its derivatives. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* 65, 1125–1130 (2006).
- 42. Arjunan, V., Thirunarayanan, S. & Mohan, S. Energy profile analysis, spectroscopic investigations (FT–IR, FT–Raman and FT–NMR), electronic properties, structure–activity aspects and DFT studies of (1,3–benzodioxol–5–yl)acetic acid. *Chem. Data Collect.* **17–18**, 75–94 (2018).
- 43. Far, J. S. Computational investigation of methamphetamine and its halogenated derivatives as the main source of pain and skin itching. *Orient. J. Chem.* **30**, 1737–1746 (2014).
- 44. Sahai, M. A. et al. Combined in vitro and in silico approaches to the assessment

of stimulant properties of novel psychoactive substances – The case of the benzofuran 5-MAPB. *Prog. Neuro-Psychopharmacology Biol. Psychiatry* **75**, 1–9 (2017).

- 45. Klaassen, C. D. & Watkins III, J. B. Fundamentos em Toxicologia de Casarett e Doull (Lange) Google Livros.
- 46. Leite, E. M. A. & Amorim, L. C. A. Toxicologia Geral.
- 47. Hawk, M. *et al.* Harm reduction principles for healthcare settings. *Harm Reduct. J.* **14**, 70 (2017).
- 48. SINGLE, E. Defining harm reduction. *Drug Alcohol Rev.* 14, 287–290 (1995).
- Reuter, P. & Pardo, B. New psychoactive substances : Are there any good options for regulating new psychoactive substances ? *Int. J. Drug Policy* 40, 117–122 (2017).
- Harper, L., Powell, J. & Pijl, E. M. An overview of forensic drug testing methods and their suitability for harm reduction point-of-care services. *Harm Reduct. J.* 14, (2017).
- 51. Kloosterman, A. *et al.* The interface between forensic science and technology: how technology could cause a paradigm shift in the role of forensic institutes in the criminal justice system. *Philos. Trans. R. Soc. B Biol. Sci.* **370**, 20140264 (2015).
- 52. Alves, B. E. P. & Carneiro, E. D. O. Drogas psicoestimulantes : uma abordagem toxicológica sobre cocaína e metanfetamina Psychostimulant drugs : a pharmacological approach to cocaine and methamphetamine A Secretaria Nacional Anti-Drogas SENAD e o Centro Brasileiro de Informações sobre. 0–20
- 53. Muakad, I. B. Anfetamias e drogas derivadas. *R. Fac. Direito, Univ. São Paulo* **108**, 545–572 (2013).
- 54. Shevyrin, V. & Shafran, Y. Distinguishing of 2-MAPB and 6-MAPB: Solution of the problem. *J. Mass Spectrom.* **52**, 633–637 (2017).
- 55. Welter, J., Kavanagh, P., Meyer, M. R. & Maurer, H. H. Benzofuran analogues of amphetamine and methamphetamine: Studies on the metabolism and toxicological analysis of 5-APB and 5-MAPB in urine and plasma using GC-MS and LC-(HR)-MSⁿ techniques. *Anal. Bioanal. Chem.* **407**, 1371–1388 (2015).
- 56. Welter-Luedeke, J. & Maurer, H. H. New Psychoactive Substances: Chemistry, Pharmacology, Metabolism, and Detectability of Amphetamine Derivatives with Modified Ring Systems. *Ther. Drug Monit.* **38**, 4–11 (2016).
- 57. Fuwa, T. *et al.* Novel psychoactive benzofurans strongly increase extracellular serotonin level in mouse corpus striatum. *J. Toxicol. Sci.* **41**, 329–337 (2016).
- 58. William Henry Perkin | Science History Institute.
- 59. Chand, K. et al. A review on antioxidant potential of bioactive heterocycle

benzofuran: Natural and synthetic derivatives. *Pharmacol. Reports* **69**, 281–295 (2017).

- 60. Faber, K. *et al.* Acute Toxicity Associated With the Recreational Use of the Novel Psychoactive Benzofuran N -methyl-5-(2 aminopropyl)benzofuran. *Ann. Emerg. Med.* **69**, 79–82 (2016).
- 61. Stanczuk, A., Morris, N., Gardner, E. A. & Kavanagh, P. Identification of (2aminopropyl)benzofuran (APB) phenyl ring positional isomers in Internet purchased products. *Drug Test. Anal.* **5**, 270–276 (2013).
- 62. Rickli, A., Kopf, S., Hoener, M. C. & Liechti, M. E. Pharmacological profile of novel psychoactive benzofurans. *Br. J. Pharmacol.* **172**, 3412–3425 (2015).
- 63. Cha, H. J. *et al.* 5-(2-Aminopropyl)benzofuran and phenazepam demonstrate the possibility of dependence by increasing dopamine levels in the brain. *Pharmacol. Biochem. Behav.* **149**, 17–22 (2016).
- 64. Ribeiro, E., Magalhães, T. & Dinis-oliveira, R. J. Mefedrona, a Nova Droga de Abuso : Farmacocinética, Farmacodinâmica e Implicações Clínicas e Forenses. *Rev. Científica da Ordem dos Médicos* **25**, 111–117 (2012).
- 65. Pail, P. B. Comparação dos efeitos dos derivados da catinona, metedrona e mefedrona em camundongos: determinação dos efeitos comportamentais e bioquímicos. (Pontifícia Universidade Católica do Rio Grande do Sul, 2014).
- Sant'Anna, C. M. R. Métodos de Modelagem Molecular para Estudo e Planejamento de Compostos Bioativos: Uma Introdução. *Rev. Virtual Química* 1, 49–57 (2009).
- Carvalho, I., Pupo, M. T., Borges, Á. D. L. & Bernardes, L. S. C. INTRODUÇÃO A MODELAGEM MOLECULAR DE FÁRMACOS NO CURSO EXPERIMENTAL DE QUÍMICA FARMACÊUTICA. *Quim. Nova* 26, 428–438 (2003).
- Coelho, L. W., Junqueira, G. M. A., Machuca Herrera, J. O., Machado, S. D. P. & Machado, B. D. C. Aplicação de mecânica molecular em química inorgânica. *Quim. Nova* 22, 396–404 (1999).
- 69. Koch, W. & Holthausen, M. C. A Chemist 's Guide to Density Functional *Theory*. (Wiley-VCH, 2001).
- 70. Cramer, C. J. Essentials of Computational Chemistry Theories and Models. Essentials of Computational Chemistry **42**, (2004).
- Pedroza, A. C. Teoria do Funcional da Densidade: Uma Possível Solução para o Problema de Muitos Elétrons da Mecânica Quântica. *Phys. Organum* 2, 14 (2016).
- 72. Laschuk, E. F. Novo Formalismo Semi-Empírico para Cálculos Químico-Quânticos. 143 (2005).
- 73. Stewart, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. *J. Mol.*

Model. 13, 1173–1213 (2007).

- 74. Lewars, E. G. Computitional Chemistry Introduction to the Theory and Applications of Molecular and Quantum Mechanics. (Springer, 2011). doi:10.1007/978-90-481-3862-3
- 75. Silva, C. P. da. Computação de Alto Desempenho com Placas Gráficas para Acelerar o Processamento da Teoria do Funcional da Densidade. *Pontifícia* Universidade Católica do Rio de Janeiro (2010). doi:10.5935/0100-4042.20140081
- Abreu, H. A. De. ESTUDO DE SISTEMAS QUÍMICOS APLICANDO-SE A TEORIA DO FUNCIONAL DE DENSIDADE. (Universidade Federal de Minas Gerais, 2004).
- 77. Becke, A. D. Perspective: Fifty years of density-functional theory in chemical physics. *J. Chem. Phys.* **140**, (2014).
- 78. Marques, M. A. L. & Botti, S. O que é e para serve a teoria dos funcionais da densidade? *Gaz. da Física* **29**, 10–15 (2007).
- 79. Arruda, P. M. Algumas considerações sobre conjuntos de bases para cálculos de propriedades elétricas. 119 (2009).
- Xu, X. & Truhlar, D. G. Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. *J. Chem. Theory Comput.* 7, 2766–2779 (2011).
- 81. Zheng, J., Xu, X. & Truhlar, D. G. Minimally augmented Karlsruhe basis sets. *Theor. Chem. Acc.* **128**, 295–305 (2011).
- 82. Batista, A. N. L., dos Santos, F. M., Batista, J. M. & Cass, Q. B. Enantiomeric mixtures in natural product chemistry: Separation and absolute configuration assignment. *Molecules* 23, 1–18 (2018).
- Freedman, T. B., Cao, X., Dukor, R. & Nafie, L. A. Absolute Configuration Determination of Chiral Molecules in the Solution State Using Vibrational Circular Dichroism. *Chirality* 15, 743–758 (2003).
- 84. Valderrama, P. Avaliação de figuras de mérito em calibração multivariada na determinação de parâmetros de controle de qualidade em indústria alcooleira por espectroscopia no infravermelho próximo. *Campinas: UNICAMP* 135 (2005).
- 85. Donoso, J. P. Datas e personagens na História da Espectroscopia. *Universidade de São Paulo, Instituto de Física de São Carlos*
- 86. Espectro Eletromagnético InfoEscola.
- 87. Leite, D. de O. & Prado, R. J. Espectroscopia no infravermelho: uma apresentação para o Ensino Médio. *Rev. Bras. Ensino Física* **34**, (2012).
- 88. Siqueira, M. R. S. Espectrometrias Teóricas UV, DOS, Raman, IR e Dicroísmo Circular das moléculas Diamorfina e 6-monoacetilmorfina. (Universidade

Federal do Pará, 2013).

- 89. Pavia, D. L., Lampman, G. M., Kriz, G. S. & Vyvyan, J. R. Introduction to Spectroscopy. Cengage Learning (2015). doi:10.1119/1.1935107
- Junior, J. M. B. Dicroísmo circular vibracional e eletrônico na determinação da configuração absoluta de benzopiranos de. (Universidade Estadual Paulista, 2012).
- Esteves, L. F. & Costa, L. A. S. Investigação computacional sobre a espectroscopia de dicroísmo circular vibracional (VCD) dos aminoácidos Ralanina e s-alanina. *Rev. Virtual Quim.* 6, 924–936 (2014).
- 92. Espectroscopia Raman | Instrumentação, Introdução e Princípios.
- 93. Constantino, M. G. *Química Orgânica*. (2006).
- 94. Faria, D. L. A., Afonso, M. C. & Edwads, H. G. M. 'Espectroscopia Raman : Uma Nova Luz'. *Mus. Arqueol. e Etnol.* **12**, 249–267 (2002).
- 95. Araújo de Souza, A. & Laverde, A. Aplicação da espectroscopia de ressonância magnética nuclear para estudos de difusão molecular em líquidos: A técnica dosy. *Quim. Nova* **25**, 1022–1026 (2002).
- 96. Lordello, A. Ressonância Magnética Nuclear . (2017).
- 97. Beebe, K. R., Pell, R. J. & Seasholtz, M. B. *Chemometrics: A Practical Guide*. (Wiley-Interscience, 1998).
- 98. Malinowski, E. R. Factor Analysis in Chemistry. Technometrics 45, (Wiley, 2003).
- Walmsley, A. D. Statistical Evaluation of Data. in *Practical Guide to Chemometrics* (ed. Gemperline, P.) 7–40 (CRC Press, Taylor & Francis Group, 2006).
- 100. Chemometrics Technical Note. Description of Pirouette Algorithms. *Infometrix, Inc.* (1993).
- 101. Infometrix, I. Pirouette Multivariate Data Analysis Software V4.5. (2014).
- Morimoto, B. H., Lovell, S. & Kahr, B. Information card MDMA- COD. Acta Crystallographica Section C: Crystal Structure Communications 54, 229–231 (1998).
- 103. Hanwell, M. D. *et al.* Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. *J. Cheminform.* **4**, 1–17 (2012).
- Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).
- 105. Alinhamento de estruturas e cálculo de RMSd no Chimera FCiências.
- 106. Halgren, T. A. MMFF VI. MMFF94s option for energy minimization studies. J. *Comput. Chem.* **20**, 720–729 (1999).
- 107. Frisch, M. J. et al. Gaussian 09. (2013).
- Schröder, H., Creon, A. & Schwabe, T. Reformulation of the D3(Becke-Johnson) Dispersion Correction without Resorting to Higher than C6 Dispersion Coefficients. J. Chem. Theory Comput. 11, 3163–3170 (2015).
- 109. NIST, N. I. of S. and T. Precomputed vibrational scaling factors. (2018).
- 110. Ochterski, J. W. & Ph, D. Thermochemistry in Gaussian. (2000).
- 111. Smith, F. P. & Athanaselis, S. A. *Handbook of forensic drug analysis*. (Elsevier Academic Press, 2005).
- 112. Carmichael, D. *et al.* Improved Infrared Spectra Prediction by DFT from a New Experimental Database. *Chem. A Eur. J.* **23**, 8414–8423 (2017).
- 113. Horiba Jobin Yvon. Raman Data And Analysis. Horiba 2-3
- 114. Serpelloni, G., Macchie, T., Locatelli, C., Rimondo, C. & Seri, C. New Drugs-Nuove Sostanze Psicoattive. *Dipartimento Politiche Antidroga-Sistema Nazionale di Allerta Precoce* 925–936 (2013).
- 115. De Souza, A. M. & Poppi, R. J. Experimento didático de quimiometria para análise exploratória de óleos vegetais comestíveis por espectroscopia no infravermelho médio e análise de componentes principais: UM tutorial, parte I. *Quim. Nova* 35, 223–229 (2012).
- 116. Aleman, J. Identification of Regioisomers via Gas Chromatography Coupled with Vapor-Phase Infrared Detection. 1–36 (2016).
- Rodrigues, A. D. G. & Galzerani, J. C. Espectroscopias de infravermelho, Raman e de fotoluminescência: Potencialidades e complementaridades. *Rev. Bras. Ensino Fis.* 34, (2012).
- Adar, F. Introduction to Interpretation of Raman Spectra Using Database Searching and Functional Group Detection and Identification. *Spectroscopy* 31, 16–23 (2016).
- 119. Pavia, D. L. Espectroscopia.
- 120. Myatt, G. J. *et al.* In silico toxicology protocols. *Regul. Toxicol. Pharmacol.* **96**, 1–17 (2018).
- 121. Raunio, H. In silico toxicology non-testing methods. *Front. Pharmacol.* JUN, 1–8 (2011).
- 122. Ford, K. A. Refinement, reduction, and replacement of animal toxicity tests by computational methods. *ILAR J.* **57**, 226–233 (2016).
- Halle, W., GORES, E. & Göres, E. Vorhersage von LD50-Werten mit der Zellkultur (Prediction of LD50 values by cell cultures). *Pharmazie* 42, 245–248 (1988).
- 124. Mellor, C. L. *et al.* Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use. *Regul. Toxicol.*

Pharmacol. **101**, 121–134 (2019).

- 125. Stanton, K. & Kruszewski, F. H. Quantifying the benefits of using read-across and in silico techniques to fulfill hazard data requirements for chemical categories. *Regul. Toxicol. Pharmacol.* **81**, 250–259 (2016).
- Lester, C., Reis, A., Laufersweiler, M., Wu, S. & Blackburn, K. Structure activity relationship (SAR) toxicological assessments: The role of expert judgment. *Regul. Toxicol. Pharmacol.* 92, 390–406 (2018).
- 127. Baumann, M. H., Partilla, J. S. & Lehner, K. R. Psychoactive 'bath salts': not so soothing. *Eur. J. Pharmacol.* **698**, 1–5 (2013).
- 128. Gerona, R. R. & Wu, A. H. B. Bath salts. Clin. Lab. Med. 32, 415–27 (2012).
- 129. EWA UNODC Early Warning Advisory. What are NPS? UNODC Early Warning Advisory on New Psychoactive Substances (2017).
- 130. UNODC. Executive Summary: Conclusions and policy Implications. World Drug Report 2018 (United Nations publication, Sales No. E.18.XI.9). (2018).
- UNODC. World Drug Report: Global Overview of drug demand and supply. World Drug Report 2018 (United Nations publication, Sales No. E.18.XI.9). No (2018). doi:10.18356/bdc264f4-en
- 132. INTERNATIONAL NARCOTICS CONTROL BOARD. Report of the International Narcotics Control Board for 2017. *United Nations publication* (2018).
- 133. Hohmann, N., Mikus, G. & Czock, D. Wirkungen und risiken neuartiger psychoaktiver substanzen: Fehldeklaration und verkauf als 'badesalze', 'spice' und 'forschungschemikalien'. *Dtsch. Arztebl. Int.* **111**, 139–147 (2014).
- 134. Sutherland, R. *et al.* Motivations for new psychoactive substances use among regular psychostimulant users in Australia. *Int. J. Drug Policy* **43**, 23–32 (2017).
- Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 6, 147– 172 (2016).
- 136. Kavakiotis, I. *et al.* Machine Learning and Data Mining Methods in Diabetes Research. *Comput. Struct. Biotechnol. J.* **15**, 104–116 (2017).
- 137. Ravi, D. *et al.* Deep Learning for Health Informatics. *IEEE J. Biomed. Heal. Informatics* **21**, 4–21 (2017).
- 138. Cockbain, E. & Laycock, G. Crime Science. OXFORD RESEARCH ENCYCLOPEDIA, CRIMINOLOGY AND CRIMINAL JUSTICE 1–35 (2017). doi:10.4324/9781843925842
- 139. Alves, V., Braga, R., Muratov, E. & Andrade, C. Quimioinformática: Uma Introdução. *Quim. Nova* **41**, 202–212 (2017).
- 140. Advanced Chemistry Development, I. ChemSketch. (2019).

- Pires, D. E. V., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting smallmolecule pharmacokinetic and toxicity properties using graph-based signatures. *J. Med. Chem.* 58, 4066–4072 (2015).
- 142. ProTox-II Prediction of TOXicity of chemicals.
- 143. Maunz, A. *et al.* lazar: a modular predictive toxicology framework. *Front. Pharmacol.* **4**, (2013).
- 144. Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Nature 19, (Nature Publishing Group, 2017).
- 145. Morris, G. M. & Lim-Wilby, M. Molecular docking. *Methods Mol. Biol.* **443**, 365–382 (2008).
- 146. Barros, M. E. de S. B. Estudos de Docking Molecular, Síntese e Atividade Biológica de Análogos da (-)-Massoialactona e da Combretastatina A-4. (Universidade Federal de Pernambuco, 2015).
- 147. Brito, G. de S. L. Corroboração Computacional Por 'Docking' Molecular Da Hipótese Auto-Imune Da Esquizofrenia. (Universidade Federal do Rio de Janeiro, 2007).
- 148. Souza, R. L. de. Aplicação Da Técnica De Ancoragem Molecular Na Otimização Do Fármaco Hipoglicemiante Metformina. (Centro Universitário Luterano de Palmas (CEULP/ULBRA)., 2015).
- 149. Hernández-Santoyo, A., Tenorio-Barajas, A. Y. V. A., Vivanco-Cid, H. & Mendoza-Barrera, C. Protein-Protein and Protein-Ligand Docking Chapter. in *Intech* 63–81 (2016). doi:http://dx.doi.org/10.5772/57353
- 150. Flávio Diniz Silva. Docking molecular para determinação de fármacos com maior afinidade aos alvos candidatos para o tratamento de adenocarcinoma gástrico. (Faculdade Promove, 2018).
- Sethi, A., Joshi, K., Sasikala, K. & Alvala, M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications Aaftaab. in *Intech* i, 1–21 (2016).
- 152. Drug Design and Systems Biology Laboratory of National Chiao Tung University. iGEMDOCK. 69pgs. (2008).
- Meng, X.-Y., Zhang, H.-X., Mezei, M. & Cui, M. Molecular Docking: A powerful approach for structure-based drug discovery. *Curr Comput Aided Drug Des* 7, 146–157 (2012).
- 154. Castro, J. S. de. Inteligência forense aplicada a lei de drogas e ao estudo de novas substâncias psicoativas. (Universidade de São Paulo, 2019).
- 155. iGEMDOCK.generic algorithm.
- 156. AutoDock AutoDock.
- 157. AutoDock Vina molecular docking and virtual screening program.

- 158. The PyMOL Molecular Graphics System.
- 159. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. (2016).

3 ANEXOS

4 Anexo A- Coordenadas cartesianas do output

Anfetaminas

Tabela 23: Coordenadas cartesianas da 4-MAPB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	-3,293007	-0,690513	0,493051	3,293007	-0,690513	0,493051
C2	-2,344903	0,238807	0,157978	2,344903	0,238807	0,157978
C3	-2,50118	1,612784	0,190272	2,50118	1,612784	0,190272
C4	-1,399301	2,3594	-0,203269	1,399301	2,3594	-0,203269
C5	-0,205961	1,745028	-0,603981	0,205961	1,745028	-0,603981
C6	-0,054829	0,365367	-0,631453	0,054829	0,365367	-0,631453
C7	-1,16252	-0,400496	-0,239046	1,16252	-0,400496	-0,239046
C8	-1,436666	-1,812854	-0,128921	1,436666	-1,812854	-0,128921
C9	-2,710518	-1,917473	0,307706	2,710518	-1,917473	0,307706
H10	-3,428988	2,071116	0,502227	3,428988	2,071116	0,502226
H11	-1,461493	3,439727	-0,198243	1,461493	3,439727	-0,198243
H12	0,629346	2,368679	-0,896135	-0,629346	2,368679	-0,896135
H13	-0,776069	-2,634496	-0,3473	0,776069	-2,634496	-0,347299
H14	-3,336887	-2,763343	0,531166	3,336887	-2,763344	0,531166
C15	1,234976	-0,292479	-1,025472	-1,234976	-0,292479	-1,025472
C16	2,06162	-0,792891	0,175692	-2,06162	-0,792891	0,175692
N17	2,428502	0,320808	1,050862	-2,428502	0,320808	1,050862
C18	3,45129	1,23495	0,569999	-3,45129	1,23495	0,569999
C19	3,237378	-1,65361	-0,303197	-3,237378	-1,65361	-0,303197
H20	1,838917	0,398685	-1,617152	-1,838917	0,398686	-1,617152
H21	1,029832	-1,149488	-1,672504	-1,029832	-1,149488	-1,672504
H22	1,403296	-1,425069	0,777782	-1,403296	-1,425069	0,777782
H23	2,677787	-0,031532	1,964898	-2,677787	-0,031532	1,964898
H24	3,108948	1,738108	-0,335523	-3,108947	1,738108	-0,335523
H25	3,614114	2,006237	1,323477	-3,614114	2,006238	1,323477
H26	4,422284	0,770832	0,344902	-4,422283	0,770833	0,344902
H27	3,884933	-1,104315	-0,989231	-3,884933	-1,104315	-0,989231
H28	3,844758	-1,985259	0,541853	-3,844757	-1,985259	0,541854
H29	2,87745	-2,540641	-0,828504	-2,87745	-2,540642	-0,828504

Isômero R			Isômero S			
O1	3,822651	-0,52261	0,325155	-3,82265	-0,52261	0,32516
C2	2,48007	-0,59993	0,071903	-2,48007	-0,59993	0,071901
C3	1,696016	-1,73848	0,115292	-1,69602	-1,73848	0,115286
C4	0,350904	-1,57658	-0,18252	-0,3509	-1,57657	-0,18253
C5	-0,20147	-0,32465	-0,51341	0,201466	-0,32465	-0,51341
C6	0,617125	0,79667	-0,55191	-0,61713	0,796672	-0,55191
C7	1,976384	0,665614	-0,25591	-1,97638	0,665615	-0,25591
C8	3,107305	1,556519	-0,19039	-3,10731	1,556519	-0,19039
C9	4,166795	0,794248	0,157825	-4,1668	0,794248	0,157829
H10	2,114651	-2,70392	0,363555	-2,11465	-2,70392	0,363549
H11	0,201022	1,763208	-0,80818	-0,20102	1,763211	-0,80818
H12	3,121465	2,616905	-0,3779	-3,12147	2,616905	-0,3779
H13	5,204979	1,023056	0,323972	-5,20498	1,023055	0,323976
C14	-1,6782	-0,21646	-0,79158	1,678197	-0,21645	-0,79159
C15	-2,5459	-0,30215	0,476753	2,545896	-0,30215	0,476746
N16	-3,95415	-0,4887	0,106224	3,954148	-0,48869	0,106219
C17	-4,61747	0,635207	-0,54136	4,617468	0,635218	-0,54135
C18	-2,28083	0,868627	1,429303	2,280825	0,86861	1,429309
H19	-2,26207	-1,22289	0,995197	2,262068	-1,22291	0,995181
H20	-4,47696	-0,75853	0,930056	4,47696	-0,75854	0,930051
H21	-4,16409	0,827291	-1,51464	4,164095	0,827315	-1,51462
H22	-5,66044	0,370412	-0,71862	5,660438	0,37043	-0,71861
H23	-4,60031	1,575434	0,02822	4,6003	1,575438	0,028243
H24	-2,48455	1,829043	0,951621	2,484528	1,829032	0,951633
H25	-2,9107	0,791504	2,318321	2,910703	0,791485	2,31832
H26	-1,23942	0,875901	1,7522	1,239414	0,875868	1,752217
H27	-0,29813	-2,44348	-0,16647	0,298133	-2,44348	-0,16648
H28	-1,8762	0,726058	-1,30678	1,995897	-1,02011	-1,45929
H29	-1,9959	-1,02012	-1,45927	1,876198	0,726068	-1,30677

Tabela 24: Coordenadas cartesianas da 5-MAPB otimizada com B3LYP/TZVP

		Isômero R	Isômero R			Isômero S		
01	2,999673	-1,52402	0,051127	-2,99967	-1,52402	0,051127		
C2	2,002191	-0,606	-0,13175	-2,00219	-0,606	-0,13175		
C3	0,676711	-0,88459	-0,40418	-0,67671	-0,88459	-0,40418		
C4	-0,18867	0,196124	-0,56303	0,188665	0,196124	-0,56303		
C5	0,310803	1,505375	-0,44775	-0,3108	1,505375	-0,44775		
C6	1,643271	1,770138	-0,17441	-1,64327	1,770138	-0,17441		
C7	2,516199	0,693374	-0,01009	-2,5162	0,693374	-0,01009		
C8	3,921102	0,527301	0,265699	-3,9211	0,527301	0,265699		
C9	4,144358	-0,80403	0,289646	-4,14436	-0,80403	0,289646		
H10	0,327626	-1,90495	-0,49513	-0,32763	-1,90495	-0,49513		
H11	-0,37658	2,331952	-0,57801	0,376576	2,331952	-0,57801		
H12	1,996602	2,790046	-0,0946	-1,9966	2,790046	-0,0946		
H13	4,656626	1,298049	0,422881	-4,65663	1,298049	0,422881		
H14	5,03008	-1,39151	0,45687	-5,03008	-1,39151	0,45687		
C15	-1,65182	-0,04856	-0,82269	1,651822	-0,04856	-0,82269		
C16	-2,43017	-0,4771	0,43498	2,430167	-0,4771	0,43498		
N17	-3,7613	-0,96535	0,054255	3,761299	-0,96535	0,054255		
C18	-4,70698	0,027175	-0,43946	4,706977	0,027175	-0,43946		
C19	-2,42948	0,615525	1,509474	2,429476	0,615525	1,509474		
H20	-2,09762	0,858054	-1,2375	2,097621	0,858054	-1,2375		
H21	-1,77636	-0,83772	-1,56683	1,776362	-0,83772	-1,56683		
H22	-1,91182	-1,34847	0,846146	1,911818	-1,34847	0,846146		
H23	-4,16814	-1,45371	0,842219	4,16814	-1,45371	0,842219		
H24	-4,35186	0,446707	-1,38163	4,351861	0,446707	-1,38163		
H25	-5,65707	-0,46712	-0,64499	5,65707	-0,46712	-0,64499		
H26	-4,90203	0,862652	0,247588	4,90203	0,862652	0,247588		
H27	-2,87694	1,541097	1,1418	2,876939	1,541097	1,1418		
H28	-2,9939	0,290956	2,386491	2,993904	0,290956	2,386491		
H29	-1,41207	0,845105	1,827263	1,412069	0,845105	1,827263		

Tabela 25: Coordenadas cartesianas da 6-MAPB otimizada com B3LYP/TZVP

	Isômero R			Isômero S		
01	1,017803	-1,69341	-0,28068	-1,0178	-1,69341	-0,28068
C2	1,179143	-0,33265	-0,23901	-1,17914	-0,33264	-0,23901
C3	0,185371	0,605496	-0,49098	-0,18537	0,605493	-0,49098
C4	0,599305	1,931238	-0,39318	-0,5993	1,931234	-0,39318
C5	1,914483	2,285516	-0,06282	-1,91448	2,285515	-0,06282
C6	2,8799	1,324021	0,184787	-2,8799	1,324025	0,184783
C7	2,504281	-0,01906	0,093635	-2,50428	-0,01906	0,093632
C8	3,170779	-1,28646	0,25903	-3,17078	-1,28646	0,259026
C9	2,239712	-2,23567	0,02432	-2,23972	-2,23566	0,024326
H10	-0,12666	2,713108	-0,57922	0,126663	2,713103	-0,57922
H11	2,175698	3,334106	-0,00301	-2,17569	3,334108	-0,00302
H12	3,89369	1,60401	0,438828	-3,89368	1,604018	0,438824
H13	4,202519	-1,45724	0,516096	-4,20253	-1,45723	0,516089
H14	2,277178	-3,31098	0,030681	-2,27719	-3,31098	0,030692
C15	-1,22473	0,208001	-0,81888	1,224731	0,207992	-0,81888
C16	-1,98752	-0,39485	0,376434	1,987527	-0,39485	0,376444
N17	-3,26953	-0,93994	-0,08456	3,269523	-0,93995	-0,08454
C18	-4,29879	0,020328	-0,45835	4,298779	0,020318	-0,45838
C19	-2,08841	0,592278	1,544372	2,088412	0,592294	1,544373
H20	-1,23072	-0,53707	-1,61687	1,230721	-0,53709	-1,61686
H21	-1,75619	1,087193	-1,18809	1,756196	1,087183	-1,18809
H22	-1,41299	-1,26003	0,714849	1,412989	-1,26002	0,714872
H23	-3,63305	-1,56762	0,621108	3,633055	-1,5676	0,621145
H24	-3,97443	0,600507	-1,32344	3,97444	0,600424	-1,32352
H25	-5,19489	-0,52556	-0,75574	5,194899	-0,52557	-0,75568
H26	-4,58158	0,729046	0,332854	4,581531	0,729104	0,332791
H27	-2,58223	1,519882	1,247631	2,582222	1,519899	1,247625
H28	-2,65583	0,154919	2,368822	2,655835	0,154944	2,368832
H29	-1,09739	0,853427	1,916676	1,097395	0,85344	1,916673

Tabela 26: Coordenadas cartesianas da 7-MAPB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	-2,88623	-1,05426	0,365146	2,896744	-1,0011	0,371031
C2	-2,08267	0,029173	0,130129	2,065505	0,056269	0,123376
C3	-2,45429	1,357947	0,228085	2,396509	1,395927	0,226801
C4	-1,46767	2,288692	-0,06622	1,387831	2,297782	-0,07983
C5	-0,1765	1,891936	-0,4374	0,113209	1,862502	-0,46904
C6	0,189977	0,556611	-0,53245	-0,21403	0,515066	-0,57038
C7	-0,79887	-0,39425	-0,23932	0,799531	-0,40602	-0,26179
C8	-0,85176	-1,836	-0,21973	0,893936	-1,84511	-0,237
C9	-2,11074	-2,16272	0,144695	2,15732	-2,13324	0,143784
H10	-3,45521	1,647254	0,515632	3,385067	1,713877	0,526447
H11	-1,69887	3,344041	-0,00549	1,58854	3,359389	-0,02086
H12	0,564168	2,652694	-0,6487	-0,64222	2,601767	-0,70535
H13	-0,06083	-2,53046	-0,4465	0,125817	-2,56223	-0,47079
H14	-2,60502	-3,10731	0,290309	2,677895	-3,06209	0,298294
C15	1,580199	0,128411	-0,90267	-1,5952	0,054199	-0,92951
C16	2,429244	-0,33289	0,294558	-2,42531	-0,38317	0,302924
N17	2,643356	0,799724	1,195597	-2,60421	0,662752	1,307234
C18	3,71947	-1,00327	-0,18335	-3,7896	-0,9046	-0,12761
H19	2,101953	0,95264	-1,39884	-2,13335	0,857922	-1,44032
H20	1,531916	-0,68924	-1,62684	-1,53644	-0,78519	-1,62883
H21	1,844004	-1,06687	0,856487	-1,88225	-1,19564	0,795628
H22	4,316888	-0,30665	-0,77862	-4,3656	-0,11368	-0,61753
H23	4,326001	-1,32444	0,666021	-4,35611	-1,24835	0,737602
H24	3,512629	-1,88102	-0,80101	-3,69116	-1,72996	-0,83473
H25	3,228911	1,499546	0,750717	-3,14492	1,43136	0,922644
H26	3,121472	0,504024	2,038509	-1,70797	1,044691	1,588411

Tabela 27: Coordenadas cartesianas da 4-APB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	-3,3792	0,598477	0,460257	3,380432	0,592226	0,468545
C2	-2,04559	0,63398	0,156856	2,046623	0,633624	0,166332
C3	-1,20325	1,72509	0,266838	1,206807	1,725593	0,287015
C4	0,11891	1,527119	-0,10337	-0,11611	1,533682	-0,08399
C5	0,593113	0,285108	-0,56708	-0,59338	0,297353	-0,55899
C6	-0,28282	-0,78837	-0,66821	0,280067	-0,77688	-0,6712
C7	-1,62097	-0,61933	-0,30402	1,618842	-0,61418	-0,30608
C8	-2,79325	-1,45693	-0,26954	2,789137	-1,45489	-0,28017
C9	-3,79741	-0,67952	0,190943	3,795467	-0,68434	0,186916
H10	-1,56121	2,682458	0,619357	1,567338	2,679027	0,647527
H11	0,073335	-1,74703	-1,02461	-0,07883	-1,73062	-1,0375
H12	-2,86972	-2,49377	-0,55029	2,862766	-2,48919	-0,57092
H13	-4,83873	-0,87232	0,381385	4,836486	-0,88132	0,374684
C14	2,052846	0,128988	-0,90263	-2,05093	0,143772	-0,90419
C15	2,979939	0,062437	0,333231	-2,96957	0,044766	0,324504
N16	4,402945	0,066234	-0,01132	-4,35786	0,006987	-0,14521
C17	2,683595	-1,15393	1,199323	-2,69095	-1,20359	1,149457
H18	2,798072	0,961095	0,931504	-2,76713	0,921753	0,958398
H19	2,858139	-2,07566	0,635012	-2,85399	-2,09861	0,545281
H20	3,334786	-1,16331	2,072982	-3,35691	-1,25253	2,014262
H21	1,645746	-1,15862	1,53066	-1,66444	-1,20886	1,515218
H22	0,810848	2,357791	-0,03693	-0,80622	2,36525	-0,0103
H23	2,204612	-0,77768	-1,49583	-2,37507	0,999429	-1,50533
H24	2,377778	0,970284	-1,52245	-2,20676	-0,7472	-1,51581
H25	4,626682	0,852688	-0,61115	-4,59376	0,858964	-0,64163
H26	4,641973	-0,77526	-0,5265	-4,99796	-0,07224	0,636616

Tabela 28: Coordenadas cartesianas da 5-APB otimizada com B3LYP/TZVP

	Isômero R			Isômero S		
01	2,580386	-1,528	0,132158	-2,58073	-1,52987	0,14216
C2	1,594804	-0,61051	-0,10675	-1,59509	-0,61311	-0,10101
C3	0,277779	-0,88984	-0,41711	-0,27801	-0,89344	-0,41037
C4	-0,57673	0,190459	-0,63016	0,576287	0,185849	-0,62792
C5	-0,07511	1,500382	-0,52838	0,074648	1,496027	-0,53218
C6	1,249005	1,765437	-0,21839	-1,24953	1,762287	-0,22285
C7	2,110806	0,689178	0,000642	-2,11109	0,686908	0,000993
C8	3,50461	0,523937	0,327917	-3,50491	0,522929	0,329311
C9	3,720151	-0,80736	0,392048	-3,72039	-0,80807	0,399169
H10	-0,07176	-1,91117	-0,49471	0,071821	-1,91492	-0,48411
H11	-0,75364	2,326742	-0,69965	0,753421	2,321028	-0,70799
H12	1,604783	2,785409	-0,15154	-1,60534	2,782511	-0,16023
H13	4,238197	1,295167	0,491544	-4,23853	1,294835	0,489605
H14	4,596482	-1,39448	0,603964	-4,5968	-1,39421	0,613531
C15	-2,03352	-0,05487	-0,91835	2,032342	-0,05509	-0,92317
C16	-2,86335	-0,45134	0,326105	2,858759	-0,43467	0,317219
N17	-4,23932	-0,83199	0,004278	4,22557	-0,73368	-0,11967
C18	-2,88775	0,655373	1,371017	2,901243	0,686076	1,346165
H19	-2,48198	0,838849	-1,3622	2,482956	0,831943	-1,37276
H20	-2,1303	-0,85745	-1,65548	2,126586	-0,86309	-1,65549
H21	-2,3878	-1,33165	0,770913	2,369486	-1,30405	0,783093
H22	-3,36742	1,552273	0,966242	3,361591	1,577189	0,914363
H23	-3,45281	0,334941	2,245925	3,490298	0,388446	2,216936
H24	-1,87958	0,928143	1,680873	1,89876	0,939837	1,68977
H25	-4,2578	-1,54979	-0,71174	4,237047	-1,52646	-0,75158
H26	-4,74843	-0,0342	-0,36289	4,810014	-0,97255	0,673153

Tabela 29: Coordenadas cartesianas da 6-APB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	0,683817	-1,70402	-0,25366	-0,69541	-1,70839	-0,24219
C2	0,829362	-0,34073	-0,23081	-0,83374	-0,34414	-0,22272
C3	-0,16064	0,579631	-0,55158	0,160306	0,570739	-0,54626
C4	0,231956	1,912683	-0,46174	-0,22641	1,905664	-0,46201
C5	1,525219	2,2886	-0,07432	-1,51824	2,288906	-0,07645
C6	2,488082	1,343891	0,240525	-2,4853	1,349665	0,241421
C7	2,133015	-0,00531	0,158963	-2,13622	-0,00134	0,165013
C8	2,803848	-1,26166	0,38192	-2,81371	-1,25365	0,390585
C9	1,895675	-2,22601	0,121327	-1,91027	-2,22319	0,132856
H10	-0,4921	2,68201	-0,70011	0,501139	2,670151	-0,70464
H11	1,771986	3,341141	-0,02366	-1,76039	3,342716	-0,03025
H12	3,48486	1,641673	0,537832	-3,48118	1,652829	0,536419
H13	3,823374	-1,41562	0,692662	-3,83444	-1,40165	0,700334
H14	1,944161	-3,30045	0,152324	-1,9648	-3,29731	0,165379
C15	-1,54908	0,150257	-0,92483	1,545507	0,139429	-0,92887
C16	-2,39178	-0,36416	0,267557	2,391037	-0,34677	0,260654
N17	-3,68167	-0,92088	-0,14123	3,665268	-0,84587	-0,26678
C18	-2,62742	0,724972	1,304643	2,669709	0,767878	1,258509
H19	-1,4952	-0,65107	-1,6669	1,482674	-0,67478	-1,65672
H20	-2,07652	0,9875	-1,39096	2,073689	0,962878	-1,41321
H21	-1,83339	-1,17759	0,738857	1,817588	-1,13156	0,773974
H22	-3,19846	1,55114	0,868956	3,228624	1,574033	0,778473
H23	-3,19559	0,327536	2,145225	3,264108	0,395461	2,096223
H24	-1,68568	1,129988	1,67406	1,741979	1,174484	1,660894
H25	-3,55666	-1,64949	-0,83517	3,513371	-1,64835	-0,8678
H26	-4,2591	-0,2015	-0,56516	4,267994	-1,14991	0,489446

Tabela 30: Coordenadas cartesianas da 7-APB otimizada com B3LYP/TZVP

	Isõmero R			Isômero S		
01	3,060469	-1,30444	0,0666	-3,06047	-1,30444	0,066599
C2	2,37551	-0,12483	-0,02519	-2,37551	-0,12483	-0,02519
C3	2,94261	1,095619	-0,33004	-2,94261	1,095621	-0,33005
C4	2,082955	2,186411	-0,36823	-2,08295	2,186412	-0,36823
C5	0,725097	2,033479	-0,09748	-0,72509	2,033478	-0,09748
C6	0,152065	0,795632	0,202773	-0,15207	0,79563	0,202773
C7	1,005979	-0,32722	0,230731	-1,00598	-0,32722	0,23073
C8	0,888675	-1,74014	0,492893	-0,88868	-1,74014	0,492894
C9	2,131147	-2,25658	0,382655	-2,13115	-2,25658	0,382657
H10	4,001742	1,186436	-0,52737	-4,00174	1,186442	-0,52737
H11	2,472685	3,167273	-0,60482	-2,47268	3,167274	-0,60483
H12	0,072462	2,894723	-0,11073	-0,07246	2,894722	-0,11073
H13	0,000214	-2,30364	0,700934	-0,00022	-2,30364	0,700933
H14	2,511426	-3,25782	0,487	-2,51143	-3,25782	0,487003
C15	-1,31082	0,798153	0,509634	1,310821	0,798149	0,50964
C16	-2,10382	-0,51536	0,490067	2,103821	-0,51537	0,490064
N17	-1,88899	-1,18879	-0,79003	1,888993	-1,18879	-0,79003
C18	-2,35447	-0,46836	-1,96889	2,354472	-0,46836	-1,96889
C19	-3,56388	-0,28752	0,87763	3,563876	-0,28752	0,877626
H20	-1,64717	-1,15052	1,257829	1,647169	-1,15053	1,257824
H21	-2,30571	-2,11053	-0,75848	2,3057	-2,11053	-0,75849
H22	-1,8012	0,467124	-2,06782	1,801203	0,467132	-2,06782
H23	-2,14074	-1,06901	-2,85302	2,140736	-1,069	-2,85302
H24	-3,42546	-0,22718	-1,96667	3,425459	-0,22718	-1,96668
H25	-4,0565	0,402802	0,195105	4,056501	0,402804	0,195103
H26	-4,098	-1,24002	0,864087	4,098	-1,24002	0,864079
H27	-3,63814	0,138471	1,877729	3,638138	0,138466	1,877727
O28	-1,87909	1,840398	0,76553	1,879088	1,840392	0,765545

Tabela 31: Coordenadas cartesianas da catinona correspondente a 4-MAPB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	-3,98003	0,776007	-0,05501	-3,98003	-0,77601	-0,05501
C2	-2,6255	0,643775	-0,10964	-2,62549	-0,64377	-0,10963
C3	-1,70752	1,658462	-0,31013	-1,70752	-1,65846	-0,31013
C4	-0,37054	1,291757	-0,32798	-0,37054	-1,29176	-0,32797
C5	0,037233	-0,04573	-0,15304	0,037231	0,045735	-0,15304
C6	-0,9159	-1,04491	0,043881	-0,9159	1,044908	0,043883
C7	-2,26238	-0,70167	0,067473	-2,26238	0,701676	0,067473
C8	-3,50484	-1,41383	0,239946	-3,50485	1,413826	0,239942
C9	-4,48176	-0,48764	0,15744	-4,48176	0,487637	0,157433
H10	-2,02017	2,683857	-0,44811	-2,02018	-2,68386	-0,44811
H11	0,365469	2,06531	-0,48784	-0,58082	2,06475	0,1712
H12	-0,58082	-2,06475	0,171198	-3,63919	2,469819	0,401123
H13	-3,63918	-2,46982	0,401128	-5,55377	0,548709	0,224239
H14	-5,55377	-0,54871	0,224249	1,474838	0,470278	-0,17509
C15	1,47484	-0,47028	-0,1751	2,562246	-0,60901	-0,18628
C16	2,562247	0,609007	-0,18628	3,806781	-0,10859	-0,75628
N17	3,806787	0,108594	-0,75627	4,652423	0,736767	0,080882
C18	4,65242	-0,73677	0,080891	2,672229	-1,21231	1,230447
C19	2,672218	1,212304	1,230451	2,231853	-1,39869	-0,86331
H20	2,231857	1,398697	-0,86331	4,342617	-0,89475	-1,09886
H21	4,342627	0,894756	-1,09884	4,106598	1,635922	0,353671
H22	4,106601	-1,63594	0,353657	5,523702	1,034635	-0,50372
H23	5,523715	-1,03461	-0,5037	5,012291	0,252563	0,999854
H24	5,012268	-0,25258	0,999881	2,951004	-0,44936	1,957402
H25	2,950989	0,449351	1,957405	3,434287	-1,9936	1,243029
H26	3,434278	1,9936	1,243039	1,726839	-1,64897	1,552112
H27	1,726828	1,648964	1,552113	1,763612	1,6479	-0,13928
O28	1,763614	-1,6479	-0,1393	0,365472	-2,06531	-0,48783

 Tabela 32: Coordenadas cartesianas da catinona correspondente a 5-MAPB otimizada com B3LYP/TZVP

	Isômero R			Isômero S		
01	2,944221	-1,60814	-0,24295	-2,94422	-1,60814	-0,24295
C2	2,061348	-0,56836	-0,12911	-2,06135	-0,56836	-0,12911
C3	0,686881	-0,66	-0,19847	-0,68688	-0,66	-0,19847
C4	-0,03675	0,526857	-0,06162	0,036753	0,526857	-0,06162
C5	0,643599	1,746181	0,137961	-0,6436	1,746182	0,137958
C6	2,020084	1,816066	0,205471	-2,02009	1,816066	0,205466
C7	2,756308	0,633577	0,06894	-2,75631	0,633577	0,068937
C8	4,149191	0,276281	0,072464	-4,14919	0,27628	0,072462
С9	4,193341	-1,06192	-0,11644	-4,19334	-1,06192	-0,11644
H10	0,214973	-1,61755	-0,35769	-0,21497	-1,61755	-0,35769
H11	0,041138	2,638087	0,234494	-0,04114	2,638088	0,234491
H12	2,517394	2,764608	0,3598	-2,5174	2,764608	0,359794
H13	4,996158	0,929222	0,197625	-4,99616	0,92922	0,197621
H14	5,009691	-1,75978	-0,18421	-5,00969	-1,75978	-0,18421
C15	-1,53185	0,576346	-0,12699	1,531853	0,576345	-0,12698
C16	-2,31203	-0,74181	-0,16888	2,31203	-0,74181	-0,16888
N17	-3,59969	-0,5778	-0,83262	3,599686	-0,5778	-0,83263
C18	-4,68841	0,035973	-0,07862	4,68841	0,035973	-0,07863
C19	-2,36316	-1,32643	1,258438	2,363171	-1,32642	1,258443
H20	-1,75257	-1,43715	-0,79658	1,752562	-1,43715	-0,79657
H21	-3,89508	-1,47727	-1,1878	3,895069	-1,47727	-1,18781
H22	-4,40859	1,04773	0,202055	4,408589	1,047732	0,202042
H23	-5,56271	0,094827	-0,72808	5,562703	0,094823	-0,72809
H24	-4,97924	-0,51193	0,828954	4,979243	-0,51193	0,828942
H25	-2,86984	-0,64377	1,940589	2,869848	-0,64376	1,940588
H26	-2,90543	-2,27375	1,253795	2,905437	-2,27375	1,2538
H27	-1,3615	-1,50592	1,649586	1,361508	-1,50592	1,649597
O28	-2,10895	1,643219	-0,10243	2,10895	1,643218	-0,10242

Tabela 33: Coordenadas cartesianas da catinona correspondente a 6-MAPB otimizada com B3LYP/TZVP

		Isômero R			Isômero S	
01	0,906531	-1,61782	-0,29573	-0,90653	-1,61782	-0,29572
C2	1,2143	-0,29559	-0,12624	-1,2143	-0,29559	-0,12623
C3	0,328401	0,78245	-0,09689	-0,3284	0,782449	-0,09689
C4	0,922504	2,036074	0,077135	-0,92251	2,036072	0,077135
C5	2,29877	2,200732	0,220644	-2,29878	2,200729	0,220636
C6	3,156724	1,110957	0,188237	-3,15673	1,110953	0,188227
C7	2,607102	-0,15715	0,008709	-2,6071	-0,15716	0,008706
C8	3,147162	-1,4898	-0,08648	-3,14716	-1,4898	-0,08648
C9	2,093685	-2,30988	-0,26684	-2,09368	-2,30989	-0,26684
H10	0,263619	2,892857	0,094272	-0,26363	2,892857	0,094276
H11	2,700117	3,195922	0,358482	-2,70013	3,195918	0,358468
H12	4,225531	1,240619	0,297525	-4,22554	1,240616	0,297506
H13	4,181703	-1,7826	-0,02903	-4,1817	-1,7826	-0,02904
H14	2,005307	-3,37487	-0,38951	-2,0053	-3,37488	-0,3895
C15	-1,16536	0,732858	-0,25427	1,165356	0,732862	-0,25426
C16	-1,87808	-0,60991	-0,10898	1,878082	-0,6099	-0,10898
N17	-3,21476	-0,57301	-0,68406	3,214749	-0,57301	-0,68407
C18	-4,27012	0,087271	0,076176	4,27012	0,087269	0,07616
C19	-1,8004	-1,05067	1,369804	1,800408	-1,05068	1,369801
H20	-1,31334	-1,33322	-0,69701	1,313327	-1,33322	-0,69701
H21	-3,49365	-1,51819	-0,90996	3,493637	-1,51818	-0,90998
H22	-4,01483	1,134961	0,214374	4,014831	1,13496	0,214359
H23	-5,19225	0,040801	-0,50455	5,19225	0,040797	-0,50456
H24	-4,47021	-0,35719	1,061772	4,470216	-0,3572	1,061755
H25	-2,29775	-0,33061	2,0199	2,297755	-0,33061	2,0199
H26	-2,29055	-2,0182	1,490125	2,290582	-2,01819	1,490113
H27	-0,76832	-1,15151	1,702499	0,768339	-1,15153	1,702499
O28	-1,77656	1,761359	-0,44509	1,776561	1,761367	-0,44506

Tabela 34: Coordenadas cartesianas da catinona correspondente a 7- otimizada com B3LYP/TZVP

	Isômero R			Isômero S		
01	-2,8824	-1,31916	-0,1334	2,879062	-1,30475	-0,09565
C2	-2,21459	-0,12731	-0,10963	2,198935	-0,11973	-0,04979
C3	-2,79288	1,123385	-0,20307	2,790566	1,124977	0,016828
C4	-1,93545	2,214235	-0,11062	1,933173	2,216496	0,069492
C5	-0,56269	2,03746	0,063258	0,551865	2,038918	0,054862
C6	0,016443	0,770063	0,127568	-0,0464	0,779633	-0,01809
C7	-0,83628	-0,34674	0,050582	0,808636	-0,34537	-0,07095
C8	-0,6876	-1,7767	0,150992	0,677054	-1,78489	-0,12727
C9	-1,93103	-2,29129	0,031935	1,932112	-2,28524	-0,13964
H10	-3,85978	1,240012	-0,33347	3,866291	1,232064	0,028375
H11	-2,339	3,21571	-0,1752	2,342246	3,216393	0,121796
H12	0,089266	2,896804	0,137456	-0,10546	2,895824	0,09627
H13	0,221016	-2,31972	0,344211	-0,21594	-2,38243	-0,14655
H14	-2,30423	-3,30034	0,053939	2,306929	-3,29329	-0,17736
C15	1,493547	0,678989	0,257781	-1,54434	0,748717	-0,05429
C16	2,23353	-0,51889	-0,35805	-2,26026	-0,59531	-0,20074
N17	2,544157	-1,43072	0,749021	-2,27175	-1,29013	1,098826
C18	3,446254	-0,03425	-1,15106	-3,68232	-0,42933	-0,70608
H19	1,554944	-1,04268	-1,03317	-1,70899	-1,21573	-0,90771
H20	4,118431	0,532641	-0,50733	-4,25945	0,206373	-0,03461
H21	3,984906	-0,89012	-1,56333	-4,1602	-1,4065	-0,77216
H22	3,145871	0,60897	-1,98155	-3,69163	0,039546	-1,69003
O23	2,133119	1,548653	0,813939	-2,1826	1,774293	0,081763
H24	3,081305	-0,93623	1,454009	-2,85272	-0,77112	1,749506
H25	3,116917	-2,1997	0,418847	-1,34465	-1,33984	1,505869

 Tabela 35: Coordenadas cartesianas da catinona correspondente a 4-APB otimizada com B3LYP/TZVP

	Isômero R			Isômero S		
01	3 560035	-0 89247	-0 08779	-3 56004	-0 89247	-0 08778
C2	2.213847	-0.69203	-0.12415	-2.21385	-0.69203	-0.12415
C3	1.244793	-1.65849	-0.32404	-1.24479	-1.65849	-0.32405
C4	-0.07218	-1,22623	-0,32025	0.072177	-1,22623	-0,32025
C5	-0,40933	0,128279	-0,1246	0,409327	0,128278	-0,1246
C6	0,593338	1,078274	0,072033	-0,59334	1,078272	0,072034
C7	1,921056	0,668069	0,074092	-1,92106	0,668068	0,074092
C8	3,199824	1,314397	0,240251	-3,19982	1,314399	0,240248
C9	4,127624	0,341321	0,134486	-4,12762	0,341322	0,134487
H10	1,5051	-2,69647	-0,47564	-1,5051	-2,69647	-0,47564
H11	-0,85054	-1,95838	-0,47376	-0,31115	2,111418	0,219202
H12	0,311149	2,11142	0,219201	-3,3893	2,35991	0,413819
H13	3,389296	2,359909	0,413824	-5,20201	0,347088	0,189557
H14	5,202009	0,347086	0,189556	1,824189	0,60575	-0,11668
C15	-1,82419	0,605752	-0,11668	2,976272	-0,41139	-0,17928
C16	-2,97627	-0,41138	-0,17928	4,233919	0,171989	-0,62177
N17	-4,23392	0,171989	-0,62178	3,158801	-1,03245	1,210704
C18	-3,1588	-1,03245	1,210701	2,717273	-1,20179	-0,88643
H19	-2,71727	-1,20178	-0,88643	3,448692	-0,25916	1,925406
H20	-3,44869	-0,25917	1,925408	3,95209	-1,77785	1,171912
H21	-3,95209	-1,77785	1,171899	2,243193	-1,50002	1,572835
H22	-2,24319	-1,50002	1,572829	2,079816	1,790593	-0,02286
O23	-2,07982	1,790594	-0,02285	0,850533	-1,95839	-0,47377
H24	-4,15328	0,47406	-1,58681	4,40509	1,019243	-0,08793
H25	-4,4051	1,019244	-0,08794	4,153279	0,474062	-1,58681

 Tabela 36: Coordenadas cartesianas da catinona correspondente a 5-APB otimizada com B3LYP/TZVP

	Isômero R			Isômero S			
01	2,558875	-1,6088	-0,24083	-2,55887	-1,6088	-0,24083	
C2	1,677273	-0,56838	-0,12696	-1,67727	-0,56838	-0,12696	
C3	0,302901	-0,65813	-0,19423	-0,3029	-0,65813	-0,19423	
C4	-0,41739	0,530905	-0,05437	0,417386	0,530906	-0,05437	
C5	0,263666	1,750051	0,144844	-0,26367	1,750051	0,144842	
C6	1,640343	1,817301	0,2098	-1,64034	1,817302	0,209798	
C7	2,373891	0,633153	0,071121	-2,37389	0,633154	0,07112	
C8	3,766059	0,274196	0,074302	-3,76606	0,274194	0,074307	
C9	3,808337	-1,06423	-0,11442	-3,80834	-1,06423	-0,11443	
H10	-0,1742	-1,61383	-0,34922	0,174199	-1,61383	-0,34922	
H11	-0,33728	2,64255	0,246081	0,337273	2,642551	0,246078	
H12	2,140141	2,764427	0,364585	-2,14014	2,764428	0,364583	
H13	4,613867	0,925928	0,199891	-4,61387	0,925924	0,199897	
H14	4,623819	-1,76318	-0,1817	-4,62382	-1,76318	-0,1817	
C15	-1,9075	0,566782	-0,11042	1,907502	0,566783	-0,11042	
C16	-2,70139	-0,74751	-0,20237	2,701391	-0,74751	-0,20237	
N17	-4,04381	-0,56995	-0,73604	4,043812	-0,56996	-0,73605	
C18	-2,78361	-1,36844	1,197227	2,78361	-1,36844	1,197229	
H19	-2,17681	-1,43889	-0,86451	2,176804	-1,43889	-0,8645	
H20	-3,33624	-0,70283	1,863785	3,33624	-0,70283	1,863788	
H21	-3,31563	-2,31732	1,141734	3,315627	-2,31732	1,141739	
H22	-1,79672	-1,5346	1,629305	1,796715	-1,53459	1,62931	
O23	-2,50704	1,622645	-0,04876	2,507045	1,622643	-0,04876	
H24	-3,99392	-0,27516	-1,70539	4,490506	0,197571	-0,24265	
H25	-4,4905	0,19758	-0,24265	3,993918	-0,27516	-1,70539	

Tabela 37: Coordenadas cartesianas da catinona correspondente a 6-APB otimizada com B3LYP/TZVP

		Isômero R			Isômero S			
_	01	0,528487	-1,61572	-0,26294	-0,52849	-1,61572	-0,26296	
	C2	0,862506	-0,29897	-0,1137	-0,86251	-0,29897	-0,11371	
	C3	-0,0049	0,793729	-0,06766	0,0049	0,793726	-0,06767	
	C4	0,612148	2,039692	0,085398	-0,61214	2,03969	0,085403	
	C5	1,99385	2,182788	0,19128	-1,99384	2,18279	0,191303	
	C6	2,833367	1,078751	0,142549	-2,83336	1,078756	0,142572	
	C7	2,260312	-0,18182	-0,01454	-2,26031	-0,18182	-0,01454	
	C8	2,775657	-1,52416	-0,1111	-2,77566	-1,52415	-0,11111	
	C9	1,704219	-2,32782	-0,25714	-1,70423	-2,32782	-0,25716	
	H10	-0,03293	2,906413	0,119426	0,032944	2,90641	0,119429	
	H11	2,414892	3,171891	0,313034	-2,41488	3,171894	0,313071	
	H12	3,906495	1,192469	0,223752	-3,90649	1,192476	0,223787	
	H13	3,806164	-1,83411	-0,07586	-3,80617	-1,8341	-0,07586	
	H14	1,594203	-3,39223	-0,36646	-1,59422	-3,39223	-0,36649	
	C15	-1,49778	0,753994	-0,17531	1,497785	0,753986	-0,17534	
	C16	-2,24075	-0,58672	-0,10822	2,240745	-0,58673	-0,1082	
	N17	-3,61371	-0,50912	-0,58119	3,613717	-0,50914	-0,58115	
	C18	-2,22116	-1,08499	1,341904	2,221135	-1,08496	1,34194	
	H19	-1,7086	-1,30879	-0,7276	1,708604	-1,30881	-0,72756	
	H20	-2,77132	-0,39048	1,981008	2,771273	-0,39042	1,981041	
	H21	-2,70784	-2,05784	1,393078	2,707827	-2,0578	1,393147	
	H22	-1,20664	-1,17593	1,727637	1,206617	-1,17591	1,727657	
	O23	-2,12289	1,790312	-0,27696	2,122893	1,790297	-0,27704	
	H24	-3,62581	-0,27237	-1,5674	4,082294	0,261148	-0,11383	
	H25	-4,08229	0,261168	-0,11387	3,625839	-0,2724	-1,56736	

 Tabela 38: Coordenadas cartesianas da catinona correspondente a 7-APB otimizada com B3LYP/TZVP

5 Anexo B- Espectros de infravermelho

ANFETAMINAS

Figura 67:Espectro de IV calculado com B3LYP/TZVP para o 4-MAPB em seu isômero óptico R

Figura 68: Espectro de IV calculado com B3LYP/TZVP para o 4-MAPB em seu isômero óptico S

Figura 69:Espectro de IV calculado com B3LYP/TZVP para o 5-MAPB em seu isômero óptico R

Figura 70:Espectro de IV calculado com B3LYP/TZVP para o 5-MAPB em seu isômero óptico S

Figura 71: Espectro de IV calculado com B3LYP/TZVP para o 6-MAPB em seu isômero óptico R

Figura 72: Espectro de IV calculado com B3LYP/TZVP para o 6-MAPB em seu isômero óptico S

Figura 73: Espectro de IV calculado com B3LYP/TZVP para o 7-MAPB em seu isômero óptico R

Figura 74: Espectro de IV calculado com B3LYP/TZVP para o 7-MAPB em seu isômero óptico S

Figura 75: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 4-MAPB em seu isômero óptico R

Figura 76: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 4-MAPB em seu isômero óptico S

Figura 77: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 5-MAPB em seu isômero óptico R

Figura 78: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 5-MAPB em seu isômero óptico S

Figura 79: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 6-MAPB em seu isômero óptico R

Figura 80: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 6-MAPB em seu isômero óptico S

Figura 81: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 7-MAPB em seu isômero óptico R

Figura 82: Espectro de IV calculado com B3LYP/TZVP para a catinona análoga a 7-MAPB em seu isômero óptico S

6 Anexo C- Espectros de dicroísmo circular vibracional

ANFETAMINAS

Figura 84:Sobreposição do DCV para a 4-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 85: Sobreposição do DCV para a 5-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 86: Sobreposição do DCV para a 5-MAPB S calculado com B3LYP,

Figura 87: Sobreposição do DCV para a 6-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 88: Sobreposição do DCV para a 6-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 89: Sobreposição do DCV para a 7-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 90: Sobreposição do DCV para a 7-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 92: Sobreposição do DCV para a catinona análoga a 4-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 93: Sobreposição do DCV para a catinona análoga a 5-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 95: Sobreposição do DCV para a catinona análoga a 6-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 96: Sobreposição do DCV para a catinona análoga a 6-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 97: Sobreposição do DCV para a catinona análoga a 7-MAPB R calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

Figura 98: Sobreposição do DCV para a catinona análoga a 7-MAPB S calculado com B3LYP, CAMB3LYP e B3PW91 com a base TZVP

7 Anexo D- Espectros RAMAN

ANFETAMINAS

Figura 100: Espectro RAMAN calculado com B3LYP/TZVP para 4-MAPB em seu isômero óptico S

Figura 101: Espectro RAMAN calculado com B3LYP/TZVP para 5-MAPB em seu isômero óptico R

Figura 102: Espectro RAMAN calculado com B3LYP/TZVP para 5-MAPB em seu isômero óptico S

Figura 103: Espectro RAMAN calculado com B3LYP/TZVP para 6-MAPB em seu isômero óptico R

Figura 104: Espectro RAMAN calculado com B3LYP/TZVP para 6-MAPB em seu isômero óptico S

Figura 105: Espectro RAMAN calculado com B3LYP/TZVP para 7-MAPB em seu isômero óptico R

Figura 106: Espectro RAMAN calculado com B3LYP/TZVP para 7-MAPB em seu isômero óptico S

Figura 108: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 4-MAPB em seu isômero óptico S

Figura 109: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 5-MAPB em seu isômero óptico R

Figura 110: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 5-MAPB em seu isômero óptico S

Figura 111: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 6-MAPB em seu isômero óptico R

Figura 112: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 6-MAPB em seu isômero óptico S

Figura 113: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 7-MAPB em seu isômero óptico R

Figura 114: Espectro RAMAN calculado com B3LYP/TZVP para a catinona análoga a 7-MAPB em seu isômero óptico S

17 Anexo E- RMN

	Si1	0,000045	-2E-06	-0,00014
	C2	-1,02154	-1,03351	1,192961
	H3	-1,51565	-1,86013	0,676767
	H4	-1,79649	-0,43155	1,673639
a a a a a a a a a a a a a a a a a a a	H5	-0,3966	-1,46102	1,98076
	C6	1,315719	-1,08076	-0,79774
	H7	1,984958	-1,50653	-0,0463
	H8	1,925876	-0,50742	-1,49968
	H9	0,865749	-1,90967	-1,34926
	C10	-1,12119	0,709602	-1,33192
	H11	-1,61801	-0,08435	-1,89484
	H12	-0,55512	1,315725	-2,04313
	H13	-1,89751	1,344531	-0,89816
	C14	0,826942	1,404731	0,93684
	H15	1,486116	1,023463	1,720411
	H16	0,086466	2,052329	1,412203
	H17	1,42999	2,024292	0,268716

Tabela 39: Tetrametilsilano e suas coordenadas cartesianas

Grupo Teste Tabela 40: Dichloromethane e suas coordenadas cartesianas

4,5	C1	-0,00024	0,787226	-0,00014
	Cl2	-1,49467	-0,22031	-0,00001
	C13	1,494766	-0,22025	-4E-06
	H4	-0,00014	1,382631	0,903466
	H5	0,000014	1,383586	-0,90241

Tabela 41: Chloform e suas coordenadas cartesianas

CI	C1	0,000709	-0,0004	0,46794
	Cl2	-0,5932	1,598241	-0,08528
СІ—-С́,—-Н ²	Cl3	1,68199	-0,28585	-0,08547
	Cl4	-1,08901	-1,31209	-0,08549
ĊI	H5	-0,0005	-0,00272	1,548377

Tabela 42: Methanol e suas coordenadas cartesianas

^{3,4,5} Н ₃ С—ОН	C1	0,671971	-0,01941	-0,00036
	O2	-0,75399	0,123662	-0,00028
	H3	1,096686	0,983334	-0,01047
	H4	1,021998	-0,55906	-0,88546
	H5	1,023126	-0,53758	0,898043
	H6	-1,14172	-0,75951	0,002286

H1	-1,67601	0,714158	-0,71354
C2	-1,33279	-0,03053	-0,00151
N3	0,163788	-0,00071	-0,0086
O4	0,770431	-1,06426	0,00237
O5	0,70697	1,097055	0,001846
H6	-1,63847	0,244866	1,007098
H7	-1,65452	-1,03332	-0,25803
	H1 C2 N3 O4 O5 H6 H7	H1 -1,67601 C2 -1,33279 N3 0,163788 O4 0,770431 O5 0,70697 H6 -1,63847 H7 -1,65452	H1-1,676010,714158C2-1,33279-0,03053N30,163788-0,00071O40,770431-1,06426O50,706971,097055H6-1,638470,244866H7-1,65452-1,03332

Tabela 43: Nitromethane e suas coordenadas cartesianas

Tabela 44: Chloroethane e suas coordenadas cartesianas

	Cl1	-1,14834	-0,14863	0,00017
	C2	0,5124	0,664029	-0,00036
4,5 678 H-	C3	1,615362	-0,36567	-0,0002
	H4	0,518739	1,288618	0,888243
3 2	H5	0,517061	1,287676	-0,88932
	H6	1,574533	-0,99488	0,88903
	H7	2,576653	0,157189	-0,00254
	H8	1,568255	-1,00212	-0,88498

Tabela 45: 1,1,1-trichloroethane e suas coordenadas cartesianas

	C1	0,000096	-0,0006	0,271455
	C2	0,003944	0,001979	1,781898
	Cl3	1,685576	-0,20688	-0,36976
6,7,8	Cl4	-0,66475	1,561043	-0,36804
$CI_3C - CH_3$	Cl5	-1,02312	-1,35523	-0,36589
1 2	H6	0,527031	0,88523	2,144666
	H7	0,509501	-0,89063	2,14944
	H8	-1,02184	0,015146	2,148463

Tabela 46: Nitroethane e suas coordenadas cartesianas

	C1	-1,88406	0,115202	-0,08218
	C2	-0,64985	-0,73486	0,109809
	N3	0,649749	0,043276	0,0096
	O4	0,623759	1,26476	0,047246
$H_{3C}^{9,10} = H_{2}^{0,10}$	O5	1,67938	-0,61494	-0,08595
	H6	-1,8955	0,587372	-1,06522
	H7	-1,97073	0,885506	0,682227
	H8	-2,75148	-0,54332	-0,00519
	H9	-0,54922	-1,52182	-0,63459
	H10	-0,60294	-1,19133	1,099462

	Si1	0,426636	0,000784	0,407301
	Cl2	-1,65429	-0,00721	-0,115
	H3	0,417398	0,001519	1,893402
H ₃	C4	1,145896	1,592633	-0,26949
6,7,8 9,10,11	H5	2,193753	1,680077	0,031937
H ₃ C—Si—CH ₃	H6	0,598044	2,449706	0,127437
	H7	1,095126	1,615983	-1,35959
G	C8	1,167506	-1,58132	-0,27019
	H9	0,628639	-2,4463	0,121538
	H10	2,214714	-1,65537	0,036637
	H11	1,121991	-1,60186	-1,36056

Tabela 47: Chlorodimethylsilane e suas coordenadas cartesianas

Tabela 48: 1,1-dichloroethylene e suas coordenadas cartesianas

	C1	0,000408	0,434584	0,001906
CI ⁵ H	C2	0,006852	1,754245	-0,00076
	C13	-1,47068	-0,51886	-0,00022
jc <u> </u>	Cl4	1,466886	-0,52462	-0,00017
	H5	-0,92099	2,309046	0,000574
6	H6	0,941859	2,29708	-0,00076

Tabela 49: Trans-1,2-dichloroethylene e suas coordenadas cartesianas

	C1	0,485492	-0,44734	0,000166
⁵H CI	C2	-0,48549	0,447344	-0,00015
	Cl3	2,167949	0,049661	-1,3E-05
	Cl4	-2,16795	-0,04966	0,000006
	H5	0,347284	-1,5181	-0,00028
	H6	-0,34729	1,518101	0,000295

Tabela 50: Trichloroethylene e suas coordenadas cartesianas

	C1	-0,42445	-0,11524	0,003855
୦୲ୁ ୦୦	C2	0,632608	-0,9166	0,002141
	Cl3	-2,037	-0,78796	-0,00117
$1C = C_2$	Cl4	2,276307	-0,35054	-0,00105
	Cl5	-0,3441	1,619792	-6,6E-05
	H6	0,53259	-1,99086	0,002816

	01	1,236891	-0,27423	0,000552
0	C2	0,224164	0,398126	-0,00241
	C3	-1,16358	-0,15167	-0,0013
Č.	H4	-1,16296	-1,23881	-0,06489
$H_{2}C_{2}$ H	H5	-1,72644	0,280502	-0,83415
	H6	-1,66841	0,171755	0,915401
	H7	0,299193	1,501651	0,001438

Tabela 51: Acetaldehyde e suas coordenadas cartesianas

Tabela 52: Acetonitrile e suas coordenadas cartesianas

	C1	1,174129	0,000429	0,000067	
	C2	-0,27783	-0,00011	0,000147	
4,5,6	i i i i i i i i i i i i i i i i i i i	N3	-1,43014	-3,2E-05	0,000089
H ₃ C−−CN	H4	1,54319	0,986543	-0,28369	
	1 2	H5	1,543186	-0,73985	-0,7119
	H6	1,546824	-0,24839	0,993679	

Tabela 53: 2-chloropropane e suas coordenadas cartesianas

	Cl1	1,375521	-0,00848	-0,05502
	H2	-0,41518	-9,8E-05	1,490323
	C3	-0,44376	0,000385	0,403399
H	C4	-1,08457	-1,26657	-0,12334
6,7,8 3 9,10,11	H5	-1,07564	-1,28857	-1,21502
H ₃ CCH ₃ ⁴ ⁵ CI	H6	-2,1249	-1,29702	0,214201
	H7	-0,58124	-2,15743	0,251261
	C8	-1,05725	1,281402	-0,12254
	H9	-0,57361	2,158167	0,30906
	H10	-2,11622	1,304775	0,150989
	H11	-0,98358	1,333018	-1,21054

Tabela 54: 2-chloropropene e suas coordenadas cartesianas

	C1	0,944368 1,371751 0,000326
	C2	0,463279 0,138828 -0,00027
^{7,8,9} H ₂ C ³ H 6	C3	1,223437 -1,14403 0,000545
	Cl4	-1,31555 -0,09098 -0,00017
² C=C ¹	H5	0,309213 2,247149 0,003014
	H6	2,017337 1,520823 -0,00287
	H7	2,293851 -0,93654 -0,01106
	H8	0,972328 -1,7455 -0,87596
	H9	0,985088 -1,73862 0,886175

	C1	2,202791	-0,28442	-0,28416
	C2	1,147712	-0,00959	0,477772
	C3	-0,01144	0,78531	0,001699
H ⁷	Cl4	-1,54645	-0,26771	-0,06728
5,6 C 3 Cl	H5	3,044733	-0,8455	0,10407
H_2C^{-1} H_2	H6	2,261893	0,048196	-1,31544
8,9	H7	1,107117	-0,35294	1,507169
	H8	-0,27967	1,588391	0,682961
	H9	0,121249	1,165136	-1,00686

Tabela 55: 3-chloropropene e suas coordenadas cartesianas

Tabela 56: Acetone e suas coordenadas cartesianas

	01	0,007113	1,400269	0,000875
	C2	0,001159	0,178962	-0,00352
	C3	1,278955	-0,61637	0,003096
0	H4	1,38124	-1,13654	-0,95359
l l	H5	1,243591	-1,38688	0,777502
5,6,7 C 8,9,10	H6	2,138625	0,035425	0,152557
$\Pi_{3} \bigcirc \bigcirc \bigcirc \square_{3}$	C7	-1,28467	-0,60828	-0,00476
	H8	-1,20878	-1,47809	-0,65957
	H9	-2,12276	0,020412	-0,30216
	H10	-1,46151	-0,98237	1,009362

Tabela 57: Methyl acetate e suas coordenadas cartesianas

	O1	-0,5499	-0,70554	-0,01784
	C2	0,467973	0,170499	-0,00864
	C3	1,79789	-0,52695	0,006613
O I	C4	-1,89025	-0,15981	0,010224
9,10,11	05	0,304917	1,374681	-0,00175
6,7,8 C CH ₃	H6	1,923082	-1,04591	0,959771
³ ³	H7	2,597383	0,198431	-0,12122
	H8	1,840032	-1,27605	-0,78516
	H9	-2,06273	0,468426	-0,86307
	H10	-2,04124	0,421834	0,918271
	H11	-2,55033	-1,02232	-0,00104
	H10 H11	-2,04124 -2,55033	0,421834 -1,02232	0,918271 -0,00104

	O1	-1,96249	-0,08532	0,005188
	C2	-0,85858	-0,63667	-0,00356
	N3	0,333775	-0,02093	-0,00696
0	C4	0,448056	1,432126	-0,0009
7,8,9 ∠C、 ∠CH₃	C5	1,57725	-0,78028	0,004466
H ² N ⁴	H6	-0,76911	-1,73274	-0,0138
6 10,11,12	H7	1,008146	1,765664	-0,87725
₅ CH3	H8	0,976725	1,763667	0,896528
	H9	-0,54705	1,868553	-0,01593
	H10	2,134441	-0,58623	0,924705
	H11	2,201472	-0,49584	-0,84524
	H12	1,358496	-1,84505	-0,06186

Tabela 58: N,N-dimethylformamide e suas coordenadas cartesianas

Tabela 59: 1,1,1-trichloroacetone e suas coordenadas cartesianas

	C1	1,151564	0,716883	-0,02677
	O2	1,162492	1,918566	-0,06304
	C3	-0,22675	-0,03848	-0,0045
0	C4	2,394902	-0,12885	-0,01063
	C15	-1,60393	1,090456	-0,13714
8,9,10 C	Cl6	-0,33106	-0,92677	1,566522
	Cl7	-0,26311	-1,2049	-1,38058
4 3	H8	3,119619	0,343626	0,652154
	H9	2,809473	-0,13297	-1,0224
	H10	2,220304	-1,15605	0,296243

Tabela 60: Propionitrile e suas coordenadas cartesianas

	N1	-1,94468	-0,32958	-0,00037
	C2	-0,8773	0,10615	0,000433
	C3	0,477646	0,647104	0,000105
7,8,9 ^{5,6} H ₂	C4	1,559504	-0,445	0,0001
H ₃ C—C ⁻ —CN	H5	0,576812	1,288308	0,879021
4 3 2	H6	0,576473	1,289358	-0,87847
	H7	1,482213	-1,07423	0,887513
	H8	2,539992	0,031556	-0,00528
	H9	1,478136	-1,07747	-0,88402

H 9	C1	0,08189	1,752957	-0,18876
6,7,8	C2	-0,03594	0,375799	0,44706
H ₃ C—C—CN	C3	-1,28181	-0,29675	0,101638
	N4	-2,27895	-0,79802	-0,18068
CI	Cl5	1,353036	-0,71183	-0,08384
	H6	0,045768	1,684463	-1,275
	H7	1,020113	2,212031	0,117963
	H8	-0,74669	2,374809	0,156792
	H9	0,046964	0,423928	1,530618

Tabela 61: 2-Cl-propionitrile e suas coordenadas cartesianas

Tabela 62: 2-methylpropene e suas coordenadas cartesianas

	C1	-0,00029	0,121609	-0,0019
	C2	0,002424	1,456104	0,000355
	C3	-1,27723	-0,67524	-9,8E-05
² CH ₂	C4	1,275187	-0,67931	-0,00013
5,6	H5	-0,92012	2,026674	0,001187
7,8,9 C 10,11,12	H6	0,928422	2,021915	0,001578
$H_3C_3^{\prime}$ $_4^{\prime}CH_3$	H7	-1,34294	-1,29996	0,897327
	H8	-1,31088	-1,35756	-0,85515
	H9	-2,15615	-0,03012	-0,03788
	H10	1,339554	-1,30531	0,896566
	H11	2,153936	-0,03389	-0,03666
	H12	1,307624	-1,36072	-0,85636

Tabela 63: 2-butyne e suas coordenadas cartesianas

	C1	0,602866	0,001403	0,001316
	C2	-0,60287	-0,00142	-0,00134
	C3	2,064555	-9,7E-05	-0,00025
5,6,7 8,9,10	H4	2,463301	-0,01152	1,016762
$H_3C - C - CH_3$	H5	2,457969	0,88831	-0,50053
	H6	2,456781	-0,87873	-0,51931
	C7	-2,06456	0,000106	0,000264
	H8	-2,45796	-0,88822	0,500701
	H9	-2,46334	0,011387	-1,01674
	H10	-2,45673	0,878831	0,519206

		Cl1	-1,50677	-0,00857	-0,0031
		C2	0,395789	0,004138	-0,00136
		C3	0,833314	-0,83429	-1,19202
		C4	0,821842	-0,61591	1,320396
	^{6,7,8} ³ CH ₂	C5	0,805833	1,4641	-0,1231
		H6	0,490556	-1,86468	-1,09248
H ₃ C-	–ċ—cı	H7	1,926172	-0,83965	-1,23193
4	2 12,13,14	H8	0,459487	-0,42296	-2,13051
	₅ĊH ₃	H9	0,433072	-1,62878	1,426193
		H10	0,482335	-0,01863	2,167569
		H11	1,914238	-0,66577	1,347116
		H12	0,452574	1,898975	-1,05926
		H13	1,897526	1,526837	-0,1072
		H14	0,418421	2,052171	0,709598

Tabela 64: 2-chloro-2-methylpropane e suas coordenadas cartesianas

Tabela 65: 1-chloro-2methylpropene e suas coordenadas cartesianas

	Cl1	1,899813	-0,03852	0,001429
	C2	0,266603	-0,73757	-0,00358
	C3	-0,85572	-0,02534	-0,00099
4 CH ₃	C4	-2,17291	-0,76	0,002013
· · · ·	C5	-0,92821	1,472767	-0,00114
7,8,9 C 1 Cl	H6	0,306593	-1,81641	-0,01167
H ₃ Ç ⁻ ² [°] C	H7	-2,75011	-0,50077	0,894482
з Пб	H8	-2,03526	-1,8414	-0,0163
	H9	-2,77399	-0,46942	-0,86501
	H10	-1,48954	1,822095	0,870928
	H11	-1,46755	1,822113	-0,88703
	H12	0,054413	1,939552	0,012484

Tabela 66: 3-butyne-2-one e suas coordenadas cartesianas

	C1	-1,28834	-1,05212	-0,00255
	C2	-0,45089	0,193632	-0,00295
0	O3	-0,92081	1,321404	0,00045
	C4	0,98822	-1,3E-05	0,001353
$\frac{6,7,8}{2}$	C5	2,180044	-0,16758	0,000032
H ₃ C CH ⁹	H6	-0,96455	-1,72846	-0,79664
	H7	-2,33888	-0,79357	-0,12352
	H8	-1,14131	-1,58064	0,944875
	H9	3,236966	-0,31206	-0,00362

	N1	-0,98954 0,017477 -0,04398
	C2	0,57388 0,002108 0,003173
	C3	1,085998 1,377998 -0,40003
	C4	1,053399 -1,07565 -0,96495
³ CH ₃	C5	0,912992 -0,34255 1,457756
91011	H6	0,809421 1,612214 -1,42906
$H_3C - C - NO_2$	H7	2,174784 1,362841 -0,33404
4 2 12,13,14	H8	0,715418 2,162063 0,258131
₅CH ₃	H9	0,722013 -0,86815 -1,98354
	H10	0,703115 -2,06379 -0,67205
	H11	2,144433 -1,07495 -0,95494
	H12	0,490996 0,39205 2,146122
	H13	1,997511 -0,33341 1,571924
	H14	0,545309 -1,33538 1,718385
	O15	-1,57226 1,092582 -0,02905
	016	-1,56947 -1,06099 -0,04455

Tabela 67: 2-methyl-2-nitropropane e suas coordenadas cartesianas

Tabela 68: N,N-dimethylacetamide e suas coordenadas cartesianas

	N1	0,586201 0,085308 -0,06879
	C2	-0,71309 -0,29577 -0,00802
	O3	-1,04101 -1,49192 0,046089
	C4	1,641499 -0,9229 -0,01414
	C5	1,036926 1,47036 0,041571
O	C6	-1,77635 0,786444 -0,02089
7,8,9 C CHo	H7	1,254026 -1,87423 -0,36604
$H_{3}C$ N 4 H_{3}	H8	2,019235 -1,04614 1,006413
6	H9	2,466749 -0,60563 -0,65185
₅ ĊH ₃	H10	1,357404 1,698654 1,063497
	H11	0,252023 2,162713 -0,24455
	H12	1,886694 1,62127 -0,62514
	H13	-1,73353 1,39001 0,888282
	H14	-2,74873 0,302516 -0,07715
	H15	-1,66311 1,460238 -0,87174

Tabela 69: 3-butyne-2-one e suas coordenadas cartesianas

	C1	-1,28834 -1,05212 -0,00255
	C2	-0,45089 0,193632 -0,00295
0	03	-0,92081 1,321404 0,00045
	C4	0,98822 -1,3E-05 0,001353
67.8 H ₃ C 1 5 CH ⁹	C5	2,180044 -0,16758 0,000032
	H6	-0,96455 -1,72846 -0,79664
	H7	-2,33888 -0,79357 -0,12352
	H8	-1,14131 -1,58064 0,944875
	H9	3,236966 -0,31206 -0,00362

4 7,8,9	N1	2,204978	-0,00096	0,152052
CH ₃	C2	1,078521	-0,00026	-0,09472
10,11,12 2 HaC C C N	C3	-0,3563	-4,1E-05	-0,39465
⁵ ³	C4	-1,0177	-1,28144	0,143444
6 H	C5	-1,01557	1,28239	0,143059
	H6	-0,43386	-0,00033	-1,48599
	H7	-0,57269	-2,16982	-0,3063
	H8	-2,07947	-1,2629	-0,10398
	H9	-0,91825	-1,34654	1,228825
	H10	-0,9189	1,3451	1,228922
	H11	-2,07748	1,266088	-0,10543
	H12	-0,56796	2,171285	-0,30322

Tabela 70: 2-methylpropanenitrile e suas coordenadas cartesianas

Tabela 71: 3-butyne-2-one e suas coordenadas cartesianas

	C1	-1,28834	-1,05212	-0,00255
	C2	-0,45089	0,193632	-0,00295
0	O3	-0,92081	1,321404	0,00045
6,7,8 H ₃ C 1 5 CH ⁹	C4	0,98822	-1,3E-05	0,001353
	C5	2,180044	-0,16758	0,000032
	H6	-0,96455	-1,72846	-0,79664
	H7	-2,33888	-0,79357	-0,12352
	H8	-1,14131	-1,58064	0,944875
	H9	3,236966	-0,31206	-0,00362

Tabela 72: 2-methyl-2-butene e suas coordenadas cartesianas

	C1	0,632247	1,455879	-0,00256
	C2	0,448102	-0,04036	-0,00596
	C3	-0,7339	-0,66925	-0,00734
	C4	-2,11312	-0,07439	0,005859
	C5	1,73748	-0,82563	0,004314
1 CH ₃ ^{6,7,8}	H6	-0,30143	2,00554	-0,11439
10,11,12	H7	1,301819	1,75858	-0,81368
13,14,15 C 3 CH ₃	H8	1,114114	1,782261	0,926992
¹³ ⁵ H ₉	H9	-2,7062	-0,49733	0,822709
	H10	-2,65073	-0,31825	-0,9177
	H11	-2,11486	1,010061	0,121709
	H12	-0,71299	-1,75769	-0,02104
	H13	1,556729	-1,89861	-0,07959
	H14	2,297994	-0,64218	0,928411
	H15	2,390655	-0.51993	-0.81927

	C1	-2,0567	0,006195	-0,1369
	O2	-0,79943	-0,01367	-0,80812
	C3	0,407019	-0,0006	0,009405
	C4	0,420283	-1,18503	0,980341
	C5	1,538155	-0,13847	-1,00872
101112	C6	0,539508	1,327304	0,76431
4 CH3	H7	-2,15731	0,861865	0,537691
13,14,15 7,8,9	H8	-2,23405	-0,91152	0,432246
$H_3C_{5} - C_{1} - O_{1} + C_{1}$	H9	-2,81691	0,08955	-0,91361
16,17,18	H10	0,258482	-2,12184	0,442086
	H11	-0,34707	-1,0874	1,750046
	H12	1,388003	-1,24038	1,483295
	H13	2,505251	-0,15609	-0,50235
	H14	1,530629	0,701946	-1,70662
	H15	1,426756	-1,06369	-1,57771
	H16	1,488541	1,349339	1,304492
	H17	-0,25816	1,462767	1,497004
	H18	0,521715	2,168429	0,067746

Tabela 73: Methyl tert-butyl ether e suas coordenadas cartesianas

Tabela 74: t-butylcyanide e suas coordenadas cartesianas

	N1	-2,34588	-0,0035	0,002664
	C2	-1,19264	-0,00271	0,00204
	C3	0,278958	0,000036	-0,0008
	C4	0,761612	1,398832	-0,44374
	C5	0,7723	-0,31307	1,428033
⁴ CH ₃ ^{7,8,9}	C6	0,768679	-1,08167	-0,98717
10,11,12 5 3 2	H7	0,414725	1,634562	-1,45052
H₃C—C—CN	H8	1,853167	1,410611	-0,44207
13,14,15	H9	0,405869	2,171182	0,23962
₆ СП3	H10	1,863838	-0,30543	1,431147
	H11	0,431406	-1,29666	1,754973
	H12	0,418358	0,435153	2,138292
	H13	0,403337	-0,88885	-1,99712
	H14	0,436956	-2,07383	-0,67722
	H15	1,860004	-1,07073	-1,0059

	C1	-2,20574	-0,07534	-0,00229
	C2	-1,01075	-0,66039	0,006387
	C3	0,351964	0,002303	-0,00068
	C4	0,268191	1,534022	-0,04435
	C5	1,127522	-0,50801	-1,23496
H / 10,11,12	C6	1,102033	-0,43244	1,275838
⁴ CH ₃ (1 8	H7	-3,11536	-0,66549	0,005883
13,14,15 2 // H	H8	-2,32841	1,001748	-0,01416
113 <u>5</u> 3 H 9	H9	-0,97042	-1,74918	0,02123
٥ĊH3	H10	-0,26413	1,929908	0,823864
16,17,18	H11	-0,24557	1,881398	-0,94402
	H12	1,273238	1,963184	-0,04537
	H13	0,62034	-0,21969	-2,15926
	H14	1,216732	-1,5977	-1,22139
	H15	2,136008	-0,08615	-1,2515
	H16	2,10796	-0,00348	1,289087
	H17	1,196509	-1,52049	1,324693
	H18	0.573749	-0,09489	2,171224

Tabela 75: 3,3-dimethyl-1-butene e suas coordenadas cartesianas

Tabela 76: T-butylacetylene e suas coordenadas cartesianas

	C1	0,297551	0,000192	-0,00279
	C2	-1,1737	-0,00302	0,003615
	C3	-2,37788	-0,00344	0,009532
	H4	-3,44275	-0,00416	0,011714
	C5	0,804012	-1,22545	-0,79317
^{8,9,10} 4 CH ₂	H6	0,468774	-1,19016	-1,83112
11 12 12 7	H7	0,441758	-2,15169	-0,34271
"й₃с—с≡сн	H8	1,896747	-1,24205	-0,78521
5 1 2 3	C9	0,81948	-0,07382	1,448055
6 CH ₃	H10	0,471059	-0,98072	1,945625
14,15,10	H11	0,484961	0,787637	2,02982
	H12	1,91221	-0,08123	1,439384
	C13	0,795863	1,303536	-0,66343
	H14	0,472363	1,363738	-1,70435
	H15	1,888054	1,333172	-0,64271
	H16	0,414858	2,177495	-0,13134

	O1	-0,11144	1,516809	0,378838
	S2	-0,00885	0,209403	-0,45172
	C3	1,428936	-0,71664	0,197781
0	C4	-1,32216	-0,88301	0,193048
5,6,7 S 8,9,10	H5	1,471882	-1,68194	-0,30742
	H6	1,323305	-0,83771	1,275783
	H7	2,315752	-0,1319	-0,03895
	H8	-2,27068	-0,42721	-0,08292
	H9	-1,21993	-0,94362	1,276248
	H10	-1,22791	-1,86463	-0,27087

Tabela 77: Dimethylsulfoxide e suas coordenadas cartesianas

Tabela 78: Acetyl chloride e suas coordenadas cartesianas

C1	0,508917	0,238373	-0,00266
C2	1,335194	-1,00009	-0,00034
O3	0,841832	1,371891	0,000734
Cl4	-1,31624	-0,14624	0,000134
H5	1,075342	-1,61517	-0,86238
H6	1,113243	-1,5772	0,899453
H7	2,388126	-0,72641	-0,02726
	C1 C2 O3 C14 H5 H6 H7	C10,508917C21,335194O30,841832C14-1,31624H51,075342H61,113243H72,388126	C10,5089170,238373C21,335194-1,00009O30,8418321,371891Cl4-1,31624-0,14624H51,075342-1,61517H61,113243-1,5772H72,388126-0,72641

Tabela 79: Oxirane e suas coordenadas cartesianas

	O1	0,001806	0,865476	-0,00069
	C2	0,730431	-0,38016	0,000248
<u> </u>	C3	-0,73202	-0,37778	0,00029
4,5	H4	1,263854	-0,59405	0,920727
$H_2C - CH_2$	H5	1,263941	-0,59742	-0,91921
	H6	-1,26601	-0,59469	-0,91928
	H7	-1,2667	-0,59	0,920087

Tabela 80: Thiirane e suas coordenadas cartesianas

S 1	-0,88441	-0,00066	-0,00016
C2	0,818535	0,736357	-0,00002
C3	0,820855	-0,73482	0,00006
H4	1,075652	1,251206	0,916507
H5	1,078304	1,252184	-0,91491
H6	1,081597	-1,25118	-0,91479
H7	1,0787	-1,25095	0,915569
	S1 C2 C3 H4 H5 H6 H7	S1-0,88441C20,818535C30,820855H41,075652H51,078304H61,081597H71,0787	S1-0,88441-0,00066C20,8185350,736357C30,820855-0,73482H41,0756521,251206H51,0783041,252184H61,081597-1,25118H71,0787-1,25095

	C1	-0,83368	-0,24972	0,000117
	C2	0,633288	-0,59645	-0,00037
	C3	0,200153	0,845826	0,000158
^{8,9} H ₂	H4	1,059688	-0,99709	0,910912
C 3	H5	0,33701	1,416086	0,910644
4.5 / $\langle 6.7$ H ₂ C — CH ₂	H6	0,334657	1,415247	-0,911
1 2	H7	-1,39373	-0,41867	0,911613
	H8	-1,39621	-0,41611	-0,91033
	H9	1,060035	-0,99741	-0,91128

Tabela 81: Cyclopropane e suas coordenadas cartesianas

 Tabela 82: Cyclopropanone e suas coordenadas cartesianas

	01	-1,57923	-0,00076	0,000292
-	C2	-0,37316	-0,00103	-0,00502
O	C3	0,854049	0,787359	0,001506
	C4	0,856579	-0,78581	0,001609
	H5	1,159712	1,284101	-0,91358
	H6	1,163361	-1,2815	-0,91403
5,6 7,8	H7	1,145547	-1,28992	0,917619
	H8	1,140378	1,290272	0,919108

Tabela 83: Oxetane e suas coordenadas cartesianas

	O1	-0,00406	-1,08116	-0,00659
	C2	0,004209	1,073395	-0,00443
	C3	1,042802	-0,06091	0,004592
7,8 3 HaCO	C4	-1,04403	-0,05334	0,004651
	H5	0,007607	1,690203	-0,90124
^{5,6} H ₂ C	H6	0,007666	1,710337	0,877953
2 4	H7	1,678774	-0,13356	-0,88004
	H8	1,65932	-0,13189	0,903594
	H9	-1,67942	-0,12083	-0,8808
	H10	-1,6594	-0,1199	0,904403

	C1	-1,02751	-0,35736	-0,11161
	C2	-0,35701	1,02841	0,111525
	C3	1,027444	0,35545	-0,11179
	C4	0,356191	-1,02616	0,11209
$_{1,12}^{5,6}$ 1 4 11,12 H ₂ C CH ₂	H5	-1,37704	-0,47975	-1,13882
	H6	-1,83506	-0,63947	0,565636
	H7	-0,47717	1,379497	1,138638
2 3	H8	-0,63725	1,83483	-0,56812
	H9	1,834946	0,635874	0,566411
	H10	1,379921	0,476459	-1,13822
	H11	0,47795	-1,376	1,139046
	H12	0,638997	-1,83351	-0,56589

Tabela 84: Cyclobutane e suas coordenadas cartesianas

Tabela 85: Cyclobutene e suas coordenadas cartesianas

C1	0,811454	-0,6724	-0,0017
C2	0,816516	0,665603	0,00165
C3	-0,70373	-0,78424	0,000021
C4	-0,69618	0,789835	-0,00062
H5	1,595677	-1,42123	-0,00027
H6	1,605049	1,409565	-0,00154
H7	-1,14373	-1,24094	0,890342
H8	-1,15192	-1,24315	-0,88465
H9	-1,13681	1,24952	0,88735
H10	-1,13663	1,253449	-0,88736
	C1 C2 C3 C4 H5 H6 H7 H8 H9 H10	C10,811454C20,816516C3-0,70373C4-0,69618H51,595677H61,605049H7-1,14373H8-1,15192H9-1,13681H10-1,13663	C10,811454-0,6724C20,8165160,665603C3-0,70373-0,78424C4-0,696180,789835H51,595677-1,42123H61,6050491,409565H7-1,14373-1,24094H8-1,15192-1,24315H9-1,136811,24952H10-1,136631,253449

Tabela 86: Cyclobutanone e suas coordenadas cartesianas

	01	-1,8759	0,001477	-0,02125
	C2	-0,66812	0,002643	0,008963
	C3	0,377692	-1,1072	0,022036
, //	C4	1,47806	-0,00386	-0,03491
$H_2C - C_2$	C5	0,384405	1,107726	0,022007
6,7 2 8 9	H6	0,354122	-1,69971	0,93974
	H7	0,314398	-1,7851	-0,83163
10,11 2 5 4 2	H8	0,326235	1,785541	-0,83226
	H9	0,366858	1,702392	0,938434
	H10	2,048036	-0,00528	-0,96168
	H11	2,165382	-0,0055	0,808838

	C1	-0,00025	-0,89815	0,2946
	C2	0,000249	0,898157	-0,29465
	C3	1,195642	0,000018	-0,00018
H ⁶	C4	-1,19564	-3,1E-05	0,000209
9,10 ² C 7,8	H5	-0,00116	-1,62082	-0,52794
H ₂ C CH ₂	H6	0,001159	1,620833	0,527899
	H7	1,806895	-0,48514	-0,75577
-	H8	1,807314	0,483128	0,756309
	H9	-1,80684	0,485134	0,755837
	H10	-1,80737	-0,48313	-0,75624

Tabela 87: Bicyclobutane e suas coordenadas cartesianas

Tabela 88: Isoxazole e suas coordenadas cartesianas

	01	0,566711	-1,00161	0,000734
	N2	-0,83577	-0,87887	-0,00118
	C3	1,104682	0,233588	-8,1E-05
N, ÇH	C4	-1,06822	0,407587	0,001061
8 1 7	C5	0,128702	1,173225	-0,00103
HC CH	H6	2,181488	0,279152	0,000284
	H7	-2,09106	0,755347	0,001417
	H8	0,23526	2,244095	0,000979

Tabela 89: Tetrahydrofuran e suas coordenadas cartesianas

	01	0,011721	-1,25635	-0,01046
	C2	-1,17407	-0,4333	-0,12362
	C3	1,17802	-0,41375	0,138512
	C4	0,726051	0,995186	-0,23063
_	H5	1,965951	-0,80036	-0,51071
2 7,9	H6	1,524544	-0,4609	1,177304
H_2C CH_2	C7	-0,73991	0,990432	0,223547
	H8	-1,9358	-0,8304	0,550103
H ₂ C CH ₂ 4 5	H9	-1,54976	-0,49619	-1,15015
	H10	-0,80576	1,160863	1,300741
	H11	-1,34704	1,743189	-0,27957
	H12	0,788592	1,140868	-1,31218
	H13	1,324944	1,762369	0,261253

	C1	-0,87969 0,005043 -0,00026
	C2	1,275197 -0,82565 0,134855
	C3	1,414326 0,659091 -0,20099
0 II	C4	0,028286 1,209222 0,146394
	05	-0,14389 -1,12489 -0,06534
7,8 2	O6	-2,08869 -0,02941 -0,05156
$\square_2 \bigcirc \bigcirc$	H7	-0,03716 1,549484 1,183619
9,10 H_2C $$ CH_2	H8	-0,31364 2,021115 -0,49289
3 4	H9	1,837776 -1,48999 -0,51588
	H10	1,510627 -1,04164 1,178078
	H11	1,617266 0,784197 -1,26564
	H12	2,217064 1,125042 0,367846
$\begin{array}{c} 0 \\ H_2C \\ H_2C \\ 0,10 \\ H_2C \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	C4 O5 O6 H7 H8 H9 H10 H11 H12	0,028286 1,209222 0,146394 -0,14389 -1,12489 -0,06534 -2,08869 -0,02941 -0,05156 -0,03716 1,549484 1,183619 -0,31364 2,021115 -0,49289 1,837776 -1,48999 -0,51588 1,510627 -1,04164 1,178078 1,617266 0,784197 -1,26564 2,217064 1,125042 0,367846

Tabela 90: Butyrolactone e suas coordenadas cartesianas

Tabela 91: Furan e suas coordenadas cartesianas	
---	--

	01	-0,0003	-1,1597	-0,00094
	C2	1,099376	-0,34566	0,00032
	C3	-1,10034	-0,34448	0,001249
	, C4	0,718685	0,955951	-0,00081
°нс(́)́с́н	C5	-0,71736	0,956459	0,000422
8 \\ // 9	H6	2,053573	-0,84392	0,003388
HC—CH	H7	-2,05562	-0,84069	-0,00188
	H8	1,372194	1,813718	-0,00033
	H9	-1,36993	1,814867	-0,00077

 Tabela 92: Thiophene e suas coordenadas cartesianas

	S 1	1,200337 -0,00049 -0,00019
	C2	-0,01568 -1,24682 -0,00069
	C3	-0,01446 1,246914 0,001053
6 2 S 3 7	C4	-1,27102 -0,71408 0,000858
нс,)сн	C5	-1,2697 0,714772 -0,00117
8 \\ // 9	H6	0,278188 -2,28518 0,001014
HC—CH	H7	0,279396 2,2849 0,001978
	H8	-2,17062 -1,31486 0,002356
	H9	-2,16722 1,318229 -0,00262

	C1	1,53545	-0,47541	-0,00265
	C2	0,315656	0,357838	0,007031
O II	C3	-0,74586	-0,45002	0,004453
	C4	-0,29212	-1,87327	0,014794
2	C15	-2,4061	-0,02973	-0,00961
	Cl6	0,383314	2,075716	0,006393
	07	1,150731	-1,77918	-0,00065
3 4	08	2,690919	-0,13522	-0,0166
	H9	-0,60291	-2,39911	0,918827
	H10	-0,6217	-2,42228	-0,86792

Tabela 93: 3,4-dichloro-2(5H)-furanone e suas coordenadas cartesianas

Tabela 94: Methylthiazole e suas coordenadas cartesianas

	S 1	-1,56994	-0,45154	0,001064
	C2	-0,91164	1,163918	-0,00019
	C3	0,055898	-1,06526	-0,0006
7 S 8	N4	0,384264	1,223911	-0,00242
HC CH	C5	0,953908	-0,04001	-0,0035
2 \\ // 4	C6	2,445189	-0,16818	0,002153
NC	H7	-1,56664	2,024205	0,004978
6CH3	H8	0,244909	-2,12681	-0,0073
Ŭ	H9	2,881696	0,351729	-0,85364
	H10	2,747347	-1,21492	-0,03911
	H11	2,861756	0,280237	0,907777

Tabela 95: Pyrimidine e suas coordenadas cartesianas

	H1	2,398755	-0,0157	0,00418
	C2	1,313941	-0,00858	0,001644
	N3	0,722171	1,18711	-0,00045
5 N 2	N4	0,70629	-1,19621	-0,00203
⁸ HC →CH	C5	-0,61646	1,18599	-0,00119
	C6	-0,63251	-1,17803	0,000611
	C7	-1,35231	0,008793	0,000585
°Ă	H8	-1,10587	2,154001	-0,00014
	H9	-1,13425	-2,13978	0,000066
	H10	-2,43384	0,016171	0,003326

	C1	-0,67737	1,181517	-0,00015
	C2	0,700134	1,168444	-0,0003
3 N	C3	-1,325	-0,05564	0,000931
,HC´ ∑N	C4	1,323604	-0,08074	-0,00019
	N5	0,656592	-1,23264	-0,00158
, HC CH	N6	-0,68042	-1,22	0,001019
² C ⁴	H7	-1,24615	2,1021	-0,00334
8	H8	1,287561	2,077295	0,002903
	H9	-2,40649	-0,12363	-0,00155
	H10	2,403666	-0,16874	0,004172

Tabela 96: 1,2-pyrazine e suas coordenadas cartesianas

Tabela 97:	Cvclo	pentane	e suas	coord	lenadas	cartesianas
	- ,					

	C1	0,427018 1,218696 0,124977
	C2	-1,00034 0,767615 -0,24384
	C3	1,305412 -0,06166 0,016297
	C4	-1,05638 -0,68081 0,259214
$H_{2}^{6,7}$	C5	0,31383 -1,24488 -0,15624
	H6	0,437475 1,590444 1,153241
	H7	0,788737 2,030034 -0,51006
	H8	-1,89145 -1,25113 -0,15458
¹ , H ₂ C — CH ² ,	H9	-1,15849 -0,68556 1,350165
5 4	H10	-1,77151 1,408453 0,189853
	H11	-1,1346 0,778215 -1,33115
	H12	0,275273 -1,54743 -1,20686
	H13	0,606829 -2,12514 0,419958
	H14	1,996199 -0,00534 -0,8274
	H15	1,914255 -0,18633 0,914372

Tabela 98: 1,4-pyrizine e suas coordenadas cartesianas

	N1	0,007131	-1,39991	-0,00049
	N2	-0,00713	1,399912	0,000487
3 N 4	C3	1,131606	0,701772	0,000342
,HC CH	C4	-1,13894	0,690675	-0,00079
	C5	1,138943	-0,69068	0,000791
, HC CH	C6	-1,13161	-0,70177	-0,00035
^S N [®]	H7	2,060958	1,260264	-0,00304
	H8	-2,0732	1,240797	0,000708
	H9	2,073196	-1,2408	-0,0007
	H10	-2,06096	-1,26026	0,00303

	C1	0,012711	-1,23162	-0,11545
	H2	0,017559	-1,62129	-1,13546
	H3	0,022316	-2,09026	0,557301
H2,3	C4	-1,23408	-0,32906	0,087963
,C	C5	1,240507	-0,30358	0,089326
$H_{2}C$ CH_{2}^{4}	C6	0,654782	1,082567	-0,04188
10,11	C7	-0,67719	1,069246	-0,03927
нс̀—с́н	H8	-2,02051	-0,53599	-0,64303
13 7 6 12	H9	-1,68626	-0,47035	1,077916
	H10	1,694863	-0,43483	1,079213
	H11	2,032517	-0,49637	-0,63941
	H12	-1,30936	1,948858	-0,08759
	H13	1,268476	1,974869	-0,09309

 Tabela 99: Cyclopentene e suas coordenadas cartesianas

Tabela 100: N-methylpyrrolidine e suas coordenadas cartesianas

	C1	-2,12991	0,000314	-0,0153
	N2	-0,7164	-0,00402	-0,35593
	C3	0,023675	-1,15683	0,167968
	C4	0,022616	1,162294	0,141478
700	C5	1,49355	-0,78033	-0,07075
1CH3	C6	1,501316	0,774939	-0,03485
	H7	-2,61742	-0,88321	-0,43194
12,13 4 N 3 10,11	H8	-2,61432	0,882709	-0,44019
	H9	-2,29966	0,004576	1,076024
16,17 6 5 14,15	H10	-0,16951	-1,292	1,247693
H_2C — CH_2	H11	-0,28177	-2,07378	-0,34048
	H12	-0,25741	2,061566	-0,41147
	H13	-0,20055	1,340318	1,208801
	H14	1,824031	-1,1434	-1,04519
	H15	2,149669	-1,22015	0,68119
	H16	1,903051	1,181099	-0,96402
	H17	2,111177	1,168105	0,779803

	C1	0,09373	1,445428	0,233311
	H2	0,159305	2,466388	-0,15096
	H3	0,092228	1,519314	1,326887
	C4	1,300965	0,615554	-0,22036
	C5	-1,20761	0,774731	-0,22618
7 0 13,14	C6	1,135812	-0,84202	0,199533
H ₂ C 6 [°] CH ₂	C7	-1,23648	-0,68829	0,202861
	08	-0,09317	-1,40568	-0,28351
	H9	2,229625	1,007428	0,204838
H ₂	H10	1,400468	0,663287	-1,30987
	H11	-1,28408	0,82424	-1,31749
	H12	-2,08027	1,286953	0,189753
	H13	-2,10965	-1,20506	-0,19773
	H14	-1,26954	-0,7606	1,299332
	H15	1,15723	-0,92172	1,29579
	H16	1,93152	-1,46722	-0,20748

Tabela 101: Tetrahydropyran e suas coordenadas cartesianas

Tabela 102: Pyridine e suas coordenadas cartesianas

	N1	0,013042	-1,41518	-0,00045
	C2	-1,13822	-0,73032	0,00116
	C3	1,151641	-0,70967	-0,00078
2 N 3	C4	-1,20263	0,659938	-0,0004
,HC ∑CH	C5	1,189975	0,681108	0,001264
°	C6	-0,0127	1,380378	-0,00127
, HC CH	H7	-2,04866	-1,32098	0,002349
	H8	2,072592	-1,28362	-0,00342
	H9	-2,16284	1,160106	-3E-06
	H10	2,14082	1,198588	0,006159
	H11	-0,02157	2,463591	-0,0018

Tabela 103: Furfural e suas coordenadas cartesianas

0	01	-0,24456	-1,00662	-0,00742
	C2	0,259019	0,271868	-0,01039
HC C 6 11	C3	-0,77551	1,173422	-0,0007
[™] // H	C4	-1,59342	-0,89443	0,000939
HCCH 9 4 3 8	C5	-1,9749	0,415643	0,008599
	C6	1,684267	0,474051	-0,00428
	O7	2,523281	-0,41745	0,011404
	H8	-0,67559	2,247353	0,000553
	H9	-2,98673	0,786225	0,017601
	H10	-2,1443	-1,82031	-0,00122
	H11	1,980114	1,535937	-0,01385

C1	1,245907	-0,7725	-0,22842
C2	1,292659	0,691052	0,228656
C3	-1,29266	-0,69106	-0,22865
C4	-1,24591	0,772503	0,228405
C5	0,04739	1,460438	-0,23032
C6	-0,04738	-1,46043	0,230334
H7	2,118059	-1,31643	0,147215
H8	2,197695	1,177731	-0,14789
H9	-2,1977	-1,17774	0,147903
H10	-1,30345	0,81149	1,32308
H11	0,07948	2,488494	0,143701
H12	-0,0493	-1,51963	1,325674
H13	1,303415	-0,81148	-1,3231
H14	1,353538	0,727533	1,323358
H15	-1,35354	-0,72756	-1,32335
H16	-2,11805	1,316423	-0,14726
H17	0,049307	1,519655	-1,32565
H18	-0,07948	-2,48849	-0,14368
	C1 C2 C3 C4 C5 C6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18	C11,245907C21,292659C3-1,29266C4-1,24591C50,04739C6-0,04738H72,118059H82,197695H9-2,1977H10-1,30345H110,07948H12-0,0493H131,303415H141,353538H15-1,35354H16-2,11805H170,049307H18-0,07948	C11,245907-0,7725C21,2926590,691052C3-1,29266-0,69106C4-1,245910,772503C50,047391,460438C6-0,04738-1,46043H72,118059-1,31643H82,1976951,177731H9-2,1977-1,17774H10-1,303450,81149H110,079482,488494H12-0,0493-1,51963H131,303415-0,81148H141,3535380,727533H15-1,35354-0,72756H16-2,118051,316423H170,0493071,519655H18-0,07948-2,48849

Tabela 104: Cyclohexane e suas coordenadas cartesianas

Tabela 105: Cyclopentanone e suas coordenadas cartesianas

	01	2,129188	0,001261	-0,06044
	C2	0,915003	0,002536	0,020195
	C3	0,034627	-1,22367	0,183191
_	C4	0,02934	1,237928	-0,06574
O	C5	-1,35423	-0,74918	-0,27047
l	C6	-1,39835	0,725843	0,186903
7,8 3 2 4 9,10	H7	0,444177	-2,08334	-0,34773
H_2C CH_2	H8	0,021848	-1,46869	1,253262
11,12 5 6/ 13,14	H9	0,373115	2,006562	0,629056
	H10	0,140438	1,643665	-1,07741
	H11	-2,1667	-1,3446	0,145901
	H12	-1,42249	-0,80685	-1,36077
	H13	-1,6273	0,772836	1,25494
	H14	-2,15492	1,309554	-0,33821

	O1	-2,09557	-0,02313	-0,03648
	C2	-0,87234	0,016893	0,008109
_	C3	-0,03194	1,221939	0,026151
O II	C4	1,262637	0,873973	-0,00046
l	C5	0,053051	-1,19443	0,042614
7 3 2 6 11,12	C6	1,4743	-0,61296	-0,03697
HC CH ₂	H7	-0,43595	2,225256	0,043873
8 \\ 5 / 9,10 HCCH-	H8	2,092932	1,57031	-0,00851
	H9	2,116035	-0,93566	0,787537
	H10	1,984933	-0,89708	-0,9625
	H11	-0,11751	-1,7405	0,974111
	H12	-0,19017	-1,86981	-0,77932
HC CH ₂ 8/	H7 H8 H9 H10 H11 H12	-0,43595 2,092932 2,116035 1,984933 -0,11751 -0,19017	2,225256 1,57031 -0,93566 -0,89708 -1,7405 -1,86981	0,043873 -0,00851 0,787537 -0,9625 0,974111 -0,77932

 Tabela 106:
 2-cyclopentenone e suas coordenadas cartesianas

Tabela 107: N-methylpyrrole e suas coordenadas cartesianas

H1 2,443095 1,008924 -0,16648 C2 2,078715 -0,00034 0,016381 N3 0,62182 0,004426 -0,02498 C4 -0,17784 1,119391 -0,00846 C5 -0,16972 -1,11681 -0,00949 C6 -1,49513 0,707849 0,008571 HC CH H8 2,470555 -0,6621 -0,75616 H8 2,470555 -0,6621 -0,75616					
$\begin{array}{ccccccc} C2 & 2,078715 & -0,00034 & 0,016381 \\ N3 & 0,62182 & 0,004426 & -0,02498 \\ C4 & -0,17784 & 1,119391 & -0,00846 \\ C5 & -0,16972 & -1,11681 & -0,00949 \\ C6 & -1,49513 & 0,707849 & 0,008571 \\ HC & CH & H8 & 2,470555 & -0,6621 & -0,75616 \\ H8 & 2,470555 & -0,66$		H1	2,443095	1,008924	-0,16648
N3 0,62182 0,004426 $-0,02498$ C4 $-0,17784$ 1,119391 $-0,00846$ C5 $-0,16972$ $-1,11681$ $-0,00949$ C6 $-1,49513$ 0,707849 0,008571 C7 $-1,48956$ $-0,71513$ 0,010653 HC CH H8 2,470555 $-0,6621$ $-0,75616$		C2	2,078715	-0,00034	0,016381
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N3	0,62182	0,004426	-0,02498
$\begin{array}{c c} & CH_3^{1,8,9} \\ & C5 \\ & -0,16972 \\ & -1,11681 \\ & -0,00949 \\ & C6 \\ & -1,49513 \\ & 0,707849 \\ & 0,008571 \\ & 0,010653 \\ & HC \\ & CH \\ & H8 \\ & 2,470555 \\ & -0,6621 \\ & -0,75616$		C4	-0,17784	1,119391	-0,00846
C6 -1,49513 0,707849 0,008571 N 5 11 C7 -1,48956 -0,71513 0,010653 HC CH H8 2,470555 -0,6621 -0,75616	₂ ÇH ₃ ^{1,8,9}	C5	-0,16972	-1,11681	-0,00949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C6	-1,49513	0,707849	0,008571
HC CH H8 2,470555 -0,6621 -0,75616	10 4 N 5 11	C7	-1,48956	-0,71513	0,010653
	нс сн	H8	2,470555	-0,6621	-0,75616
H_{C}^{12} H_{C}^{13} $H_{$	12 \\ // 13 HCCH	H9	2,4369	-0,33742	0,991196
H10 $0,25651$ $2,106532$ $-0,01413$	6 7	H10	0,25651	2,106532	-0,01413
H11 0,269604 -2,1014 -0,01714		H11	0,269604	-2,1014	-0,01714
H12 -2,35992 1,353555 0,015489		H12	-2,35992	1,353555	0,015489
H13 -2,34833 -1,36881 0,016167		H13	-2,34833	-1,36881	0,016167

Tabela 108: Benzene e suas coordenadas cartesianas

	C1	-1,29626	-0,51383	-0,00116
	C2	-0,20292	-1,37891	-0,00051
	C3	-1,09338	0,865331	0,000824
H ⁷	C4	1,093383	-0,86533	-0,00083
8 2 C 3 9	C5	0,202917	1,378909	0,000508
нс́ ' ∕сн	C6	1,29626	0,513825	0,001167
10 11	H7	-2,30341	-0,91421	0,00195
HC 6 CH	H8	-0,36075	-2,45131	0,003713
H ¹²	H9	-1,94333	1,537765	-0,00079
	H10	1,94333	-1,53777	0,000796
	H11	0,360746	2,451309	-0,00371
	H12	2,30341	0,914205	-0,00193

	C1	-0,66952	1,300971	0,050577
	C2	0,660461	1,304016	-0,05721
	C3	-1,49402	0,039669	0,122597
	C4	1,496902	0,049867	-0,10448
0.11	C5	-0,69205	-1,18665	-0,33099
H ₂ ,"	C6	0,696746	-1,18921	0,318119
7 1 C 5 13,15	H7	-1,20607	2,245698	0,089798
	H8	1,187996	2,252696	-0,11692
	H9	-1,84747	-0,10227	1,152629
² ⁴ ⁶ ⁶ ⁶ ⁴ ^{10,12}	H10	1,886127	-0,08261	-1,12245
	H11	-2,39905	0,153713	-0,48371
	H12	2,379495	0,17102	0,532556
	H13	-1,23554	-2,10507	-0,09359
	H14	0,576963	-1,18739	1,407391
	H15	-0,57896	-1,15808	-1,4207
	H16	1,245367	-2,0997	0,063317

Tabela 109: Cyclohexene e suas coordenadas cartesianas

Tabela 110: Benzene e suas coordenadas cartesianas

	C1	-1,29626	-0,51383	-0,00116
	C2	-0,20292	-1,37891	-0,00051
	C3	-1,09338	0,865331	0,000824
H ⁷	C4	1,093383	-0,86533	-0,00083
8 2 C 3 9	C5	0,202917	1,378909	0,000508
нс́ ' ∕сн	C6	1,29626	0,513825	0,001167
10 11	H7	-2,30341	-0,91421	0,00195
HC 6 CH	H8	-0,36075	-2,45131	0,003713
H ¹²	H9	-1,94333	1,537765	-0,00079
	H10	1,94333	-1,53777	0,000796
	H11	0,360746	2,451309	-0,00371
	H12	2,30341	0,914205	-0,00193

	H1	-2,61282	-0,00352	1,063943
	C2	-2,39845	-0,00009	-0,02003
	N3	-0,97155	0,001067	-0,31187
	C4	-0,31597	-1,2076	0,19439
	C5	-0,31402	1,209535	0,194296
1010	C6	1,151862	-1,25904	-0,22357
2 CH3	C7	1,154147	1,257567	-0,22376
	C8	1,899669	-0,00147	0,229299
11,12 ⁴ N ⁵ 13,14	H9	-2,86325	-0,88381	-0,4623
H ₂ C CH ₂ 15,16 17,18	H10	-2,86462	0,887565	-0,45269
	H11	-0,84991	-2,07674	-0,19803
H ₂ C 8 CH ₂	H12	-0,38446	-1,25228	1,298967
H ₂ ^{19,20}	H13	-0,38169	1,257357	1,298942
2	H14	-0,84498	2,079731	-0,20063
	H15	1,203503	-1,34782	-1,31406
	H16	1,612855	-2,15638	0,199215
	H17	1,618279	2,154392	0,19679
	H18	1,205941	1,343679	-1,31439
	H19	1,977183	-0,00086	1,323056
	H20	2,921391	-0,00219	-0,15948

Tabela 111: N-methylpiperidine e suas coordenadas cartesianas

Tabela 112: Cyclohexanone e suas coordenadas cartesianas

		01	-2,27885	0,001117	-0,383
		C2	-1,14704	0,002618	0,079762
		C3	-0,39136	1,279607	0,371813
	-	C4	-0,39655	-1,27631	0,373711
	0	C5	1,005754	1,262868	-0,28396
	l	C6	0,999633	-1,26545	-0,28467
8,9 3	^C 4 10,11	C7	1,786091	-0,00354	0,082045
H ₂ C		H8	-0,27143	1,349579	1,45987
12,13	14,15	H9	-0,98366	2,134242	0,042605
		H10	-0,99412	-2,12833	0,047043
	$H_2^{16,17}$	H11	-0,27667	-1,34368	1,461746
2	-	H12	0,880436	-1,31911	-1,37176
	H13	1,544844	-2,16198	0,018651	
		H14	1,552989	2,158542	0,019196
		H15	0,888544	1,314363	-1,37163
		H16	2,751288	-0,00611	-0,43102
		H17	1,999436	-0,00521	1,157069

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		O1	2,354258	-0,00053	-0,10715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C2	1,131338	0,025259	0,021411
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	C3	0,381014	1,286371	-0,0361
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O II	C4	-0,95956	1,317592	0,030646
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C5	-1,8169	0,091105	0,102483
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 3 2 7 14,15 HC 2 CH ₂	C6	-1,06446	-1,16876	-0,33614
$\begin{array}{c} HC_{4} & 5 & CH_{2} \\ HC_{4} & 5 & CH_{2} \\ H_{2}^{10,11} & H8 & 0.965852 & 2.197117 & -0.10859 \\ H9 & -1.46542 & 2.278864 & 0.03334 \\ H10 & -2.17528 & -0.01361 & 1.136033 \\ H11 & -2.71473 & 0.239192 & -0.50356 \\ H12 & -1.63367 & -2.06307 & -0.07578 \end{array}$		C7	0,330137	-1,2297	0,295138
$\begin{array}{c} 4 \\ H_2 \\ H_2 \\ H_1 \\ H_2 \\ H_1 \\ H_2 \\ H_1 \\ H_1 \\ H_1 \\ H_2 \\ H_1 \\ H_1 \\ H_1 \\ H_2 \\ H_1 \\ H_1 \\ H_2 \\ H_1 \\ H_2 \\ H_1 \\ H_2 \\ H$	HC 5 CH2	H8	0,965852	2,197117	-0,10859
H_2 H10 -2,17528 -0,01361 1,136033 H11 -2,71473 0,239192 -0,50356 H12 -1,63367 -2,06307 -0,07578	4 C 10.11	H9	-1,46542	2,278864	0,03334
H11 -2,71473 0,239192 -0,50356 H12 -1 63367 -2 06307 -0 07578	H ₂	H10	-2,17528	-0,01361	1,136033
H12 _1 63367 _2 06307 _0 07578		H11	-2,71473	0,239192	-0,50356
1112 1,05507 2,00507 0,07570		H12	-1,63367	-2,06307	-0,07578
H13 -0,9577 -1,15934 -1,42541		H13	-0,9577	-1,15934	-1,42541
H14 0,239128 -1,31128 1,386717		H14	0,239128	-1,31128	1,386717
H15 0,898312 -2,09482 -0,05017		H15	0,898312	-2,09482	-0,05017

Tabela 113: 2-cyclohexenone e suas coordenadas cartesianas

Tabela 114: Fluorobenzene e suas coordenadas cartesianas

	F1	-2,28633	-0,00087	0,003757
	C2	-0,92123	-0,00027	-0,00231
F	C3	-0,25878	-1,21605	-0,00321
	C4	-0,26062	1,216054	-0,00189
	C5	1,135261	-1,20618	-0,00125
	C6	1,133566	1,206788	-5,5E-05
	C7	1,832026	0,00065	0,004144
5 C 12 6	H8	-0,82029	-2,14171	-0,00258
н	H9	-0,8243	2,140297	-0,00693
	H10	1,673842	-2,1459	0,000843
	H11	1,671359	2,147129	-0,00334
	H12	2,915005	0,002002	0,00558

Tabela 115: Chlorobenzene e suas coordenadas cartesianas

	Cl1	-2,2663	-0,00033	-0,00255
	C2	-0,49309	0,001408	0,002107
CI	C3	0,179199	-1,21345	0,004077
	C4	0,180114	1,215594	0,005044
⁸ HC ² CH	C5	1,5723	-1,2063	-0,00135
10 1 11	C6	1,573597	1,204985	0,000581
HC , CH	C7	2,27046	-0,0012	-0,00262
³ C ⁻ ⁶ H ¹²	H8	-0,37052	-2,14537	0,011119
	H9	-0,3683	2,148427	0,003492
	H10	2,106764	-2,14828	-0,00222
	H11	2,110498	2,145851	-0,00445
	H12	3,353251	-0,00137	-0,01174

	N1	1,711917	0,000017	-0,00122
	C2	0,241168	0,002052	-0,01046
	C3	-0,43073	-1,217	-0,02672
NO ₂	C4	-0,43123	1,220376	0,00792
	C5	-1,81952	-1,20971	-0,01642
	C6	-1,8205	1,209213	0,019166
10 11	C7	-2,51326	-0,00084	0,007815
HC 7 CH	H8	0,122177	-2,1446	-0,04887
	H9	0,120715	2,14883	0,020594
	H10	-2,3591	-2,14796	-0,02845
	H11	-2,36218	2,14619	0,043094
	H12	-3,59615	-0,00122	0,023508
	O13	2,299346	1,078689	-0,04014
	O14	2,2926	-1,08192	0,053993

Tabela 116: Nitrobenzene e suas coordenadas cartesianas

Tabela 117: P-benzoquinone e suas coordenadas cartesianas

	C1	1,435477	-0,00016	0,00646
	C2	-1,43547	0,000157	-0,00651
O II	C3	0,668136	-1,26741	0,013731
	C4	0,669775	1,267624	0,011865
нс сн	C5	-0,66978	-1,26762	-0,01186
11 12	C6	-0,66814	1,267406	-0,01372
HC 2 CH	O7	2,661443	-0,00082	-0,00944
$\prod_{i=1}^{12}$	08	-2,66144	0,000817	0,009453
Ö	H9	1,246855	-2,18343	0,013859
	H10	1,249722	2,182772	0,020337
	H11	-1,24973	-2,18277	-0,02028
	H12	-1,24687	2,183426	-0,01381

	C1	2,422156	0,003367	0,001669
	C2	0,913342	0,009976	-0,00424
	H3	2,81659	-0,70008	-0,73463
	C4	0,187648	1,205019	-0,00145
² CH ₃ ^{1,14,15}	C5	0,200924	-1,19555	-0,00205
	C6	-1,20742	1,198389	0,00126
9 4 C 5 10	C7	-1,19063	-1,20753	0,001218
	C8	-1,90255	-0,00856	0,00181
	H9	0,718589	2,151163	-0,00427
6 C 12 7	H10	0,744138	-2,13459	-0,00547
H ''	H11	-1,74989	2,137096	-0,00015
	H12	-1,72053	-2,15303	0,000148
	H13	-2,98606	-0,01592	-0,00008
	H14	2,809364	-0,30677	0,977515
	H15	2,827022	0,991442	-0,22234

Tabela 118: Toluene e suas coordenadas cartesianas

Tabela 119: Anisole e suas coordenadas cartesianas

	C1	-0,50559	-1,3035	0,0041
	C2	-1,85844	-0,99161	0,001678
	C3	-2,27901	0,340601	-0,0023
	C4	-1,32604	1,353069	-0,00077
	C5	0,03821	1,055926	0,00219
	C6	0,449419	-0,27894	-0,0001
H [°]	O7	1,756628	-0,67724	-0,00869
10 ² HC 1 C CH ₂	C8	2,776212	0,326799	0,002894
	H9	-0,17049	-2,33403	0,006075
	H10	-2,58862	-1,79241	0,002224
3 5	H11	-3,33496	0,580758	-0,00696
п	H12	-1,6358	2,391651	-0,001
	H13	0,759563	1,860662	0,004598
	H14	2,716757	0,939205	0,90654
	H15	3,721356	-0,21084	-0,00957
	H16	2,710589	0,968888	-0,87858

	N1	-1,56505	-0,01157	-0,17427
	C2	-0,18251	-0,00423	-0,0695
	C3	0,559304	-1,20812	-0,06515
	C4	0,545766	1,204001	0,017406
	C5	1,948723	-1,19225	-0,0257
	C6	1,935674	1,20009	0,058795
*CH ₃	C7	2,655513	0,0073	0,033881
H I	C8	-2,29911	1,235578	-0,01466
$13 \stackrel{6}{=} \begin{array}{c} C \\ 4 \\ \end{array} \stackrel{2}{=} \begin{array}{c} N \\ C \\ H_{2} \\ \end{array} $	C9	-2,29522	-1,23504	0,138122
	H10	0,052166	-2,16153	-0,10811
	H11	0,029987	2,152458	0,052512
7 C 3 H ¹²	H12	2,482514	-2,13608	-0,03867
	H13	2,457001	2,149221	0,122102
	H14	3,738301	0,010295	0,062861
	H15	-1,92079	1,998281	-0,69688
	H16	-3,35876	-1,04814	0,006238
	H17	-3,34347	1,061354	-0,26671
	H18	-2,01256	-2,04872	-0,53256
	H19	-2,24869	1,631406	1,009779
	H20	-2,12924	-1,57161	1,170097

Tabela 120: N,N-dimethylaniline e suas coordenadas cartesianas

Tabela 121: 2,5-norbornadiene e suas coordenadas cartesianas

	C1	0.000961	0.00562	1 2567
	CI	0,000801	-0,00505	1,5507
	C2	0,001225	1,122593	0,277053
	C3	-0,00179	-1,12401	0,268965
	H4	-0,894	-0,00852	1,981337
H ₂ ^{8,9}	H5	0,898223	-0,00787	1,977409
	C6	1,241502	0,667118	-0,52046
14 6 CH 4 12	C7	1,241066	-0,66586	-0,52236
	C8	-1,23975	0,66963	-0,5195
	H9	0,003018	2,156289	0,614557
7 H ₁₃	C10	-1,24319	-0,66293	-0,52253
	H11	-0,00621	-2,16095	0,596704
	H12	1,93	-1,33471	-1,01994
	H13	1,927949	1,337408	-1,01997
	H14	-1,9318	-1,32994	-1,02295
	H15	-1,92673	1,342862	-1,01432

	N1	-1,56649	-1,07774	-0,0004
	C2	-2,38484	0,030841	0,000285
	C3	-1,62113	1,168229	0,00003
	C4	-0,24783	0,750698	-0,00043
16	C5	-0,24997	-0,67317	-0,00047
. Н ¹⁰ Н ¹²	C6	0,932724	-1,41833	-0,00012
	C7	2,131403	-0,71943	0,000276
	C8	2,15687	0,689829	0,000169
	C9	0,982679	1,42733	-0,00022
7 C13 N H	H10	-1,88912	-2,03246	0,001204
п 10	H11	-3,45711	-0,08289	0,001715
	H12	-1,99358	2,180794	0,001131
	H13	0,914437	-2,50188	0,000128
	H14	3,065636	-1,26853	0,001159
	H15	3,112026	1,202064	0,000642
	H16	1,01371	2,511075	-0,00029

Tabela 122: Indole e suas coordenadas cartesianas

Grupo Probe

Tabela 123: Methy isothiocyanate e suas coordenadas cartesianas

	C1	2,404028	0,045646	0,001749
	N2	0,990977	-0,09291	-0,00423
N = C = S	C3	-0,17722	-0,03092	-0,00156
H-C	S4	-1,78791	0,019874	0,000973
5,6,7	H5	2,691409	0,901485	-0,61169
	H6	2,863369	-0,85874	-0,398
	H7	2,754092	0,201282	1,022548

Tabela 124: Trans-2-butenal e suas coordenadas cartesianas

	01	2,463941	-0,24758	0,00208
	C2	1,390014	0,332243	-0,00094
0 ¹	C3	0,093318	-0,33042	-0,00258
	C4	-1,03768	0,388384	-0,00052
6 HC 7	C5	-2,4188	-0,16483	0,001132
3CH	H6	1,357189	1,439026	-0,00228
HC.	H7	0,086777	-1,41644	-0,00387
⁸ 4 CH ₃	H8	-0,952	1,473916	0,001135
⁵ 9-11	H9	-2,42419	-1,25499	-0,00374
	H10	-2,97328	0,197538	-0,87033
	H11	-2,96716	0,189296	0,879917

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C1	-2,42171	-0,88934	-0,19598
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C2	-1,63613	0,375565	0,009938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C3	-0,30797	0,550766	0,035612
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C4	0,687872	-0,58936	-0,12297
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁶ CH ₃	C5	1,745145	-0,30972	-1,20429
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C6	1,359432	-0,9403	1,218963
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C7	0,2653	1,936505	0,242862
$\begin{array}{c} H9 & -3,14229 & -0,76414 & -1,01072 \\ H10 & -3,0079 & -1,13407 & 0,696795 \\ H11 & -2,25321 & 1,260231 & 0,160792 \\ H12 & 0,136045 & -1,47583 & -0,43987 \\ H13 & 1,280895 & -0,0399 & -2,15609 \\ H14 & 2,358793 & -1,19963 & -1,36808 \\ H15 & 2,415782 & 0,502499 & -0,91301 \\ H16 & 2,008784 & -1,81211 & 1,102205 \\ H17 & 0,613608 & -1,1751 & 1,982138 \\ H18 & 1,975289 & -0,11696 & 1,590062 \\ H19 & 0,998058 & 1,957741 & 1,054968 \\ H20 & -0,51982 & 2,655935 & 0,48089 \\ H21 & 0,785855 & 2,290074 & -0,65242 \\ \end{array}$		H8	-1,80156	-1,75345	-0,4325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H (112	H9	-3,14229	-0,76414	-1,01072
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H10	-3,0079	-1,13407	0,696795
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8,9,10 5	H11	-2,25321	1,260231	0,160792
19,20,21H131,280895-0,0399-2,15609H142,358793-1,19963-1,36808H152,4157820,502499-0,91301H162,008784-1,812111,102205H170,613608-1,17511,982138H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242	7 CH3	H12	0,136045	-1,47583	-0,43987
H142,358793-1,19963-1,36808H152,4157820,502499-0,91301H162,008784-1,812111,102205H170,613608-1,17511,982138H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242	19,20,21	H13	1,280895	-0,0399	-2,15609
H152,4157820,502499-0,91301H162,008784-1,812111,102205H170,613608-1,17511,982138H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H14	2,358793	-1,19963	-1,36808
H162,008784-1,812111,102205H170,613608-1,17511,982138H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H15	2,415782	0,502499	-0,91301
H170,613608-1,17511,982138H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H16	2,008784	-1,81211	1,102205
H181,975289-0,116961,590062H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H17	0,613608	-1,1751	1,982138
H190,9980581,9577411,054968H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H18	1,975289	-0,11696	1,590062
H20-0,519822,6559350,48089H210,7858552,290074-0,65242		H19	0,998058	1,957741	1,054968
H21 0,785855 2,290074 -0,65242		H20	-0,51982	2,655935	0,48089
		H21	0,785855	2,290074	-0,65242

Tabela 125: (E)-3,4-dimethyl-2-pentene e suas coordenadas cartesianas

Tabela 126: 2,5-dihydrofuran e suas coordenadas cartesianas

	O1	-0,006	-1,19472	-0,00121
	C2	1,179036	-0,3711	0,000631
.0.	C3	-1,18225	-0,36129	0,000659
8,9 3 2 6,7 HaC CHa	C4	0,6681	1,038762	-0,00032
$\langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $	C5	-0,65836	1,045324	-0,00037
нс̀—с́н	H6	1,78592	-0,5996	-0,88399
11 5 4 10	H7	1,783316	-0,59861	0,887415
	H8	-1,78837	-0,58356	0,887362
	H9	-1,79119	-0,58415	-0,88383
	H10	1,322563	1,899963	-0,00045
	H11	-1,3034	1,913533	-0,00047

	01	-0,00015	-0,9707	0,000772
	C2	1,130094	-0,15135	0,000115
$7 \qquad 0 \qquad 6$	C3	-1,12925	-0,15262	-5,2E-05
	C4	0,664818	1,258733	-0,0002
3 / / 2	C5	-0,6661	1,258004	0,000288
,нс̀—с́н	06	2,234839	-0,60549	-0,0004
9548	O7	-2,23383	-0,6059	-0,00054
	H8	1,350839	2,091607	-0,00047
	H9	-1,35504	2,088535	0,000851

Tabela 127: Maleic anhydride e suas coordenadas cartesianas

Tabela 128: Pyridine e suas coordenadas cartesianas

	N1	0,035946	-1,41366	0,002118
	C2	-1,12474	-0,74807	0,000464
	C3	1,161417	-0,69111	-0,00092
$_{3}$ N_{1}^{1} $_{2}$	C4	-1,21274	0,640507	-0,00198
8 HC CH7	C5	1,178487	0,699897	-0,00058
	C6	-0,03501	1,378544	-0,0002
¹⁰ HC CH 9	H7	-2,02512	-1,35353	-0,00102
6C H11	H8	2,090923	-1,25136	-0,00498
	H9	-2,17926	1,128006	-0,00078
	H10	2,120555	1,232609	0,002762
	H11	-0,06317	2,461223	0,008434

Tabela 129: 2-methylpyrazine e suas coordenadas cartesianas

	N1	0,216163	-1,19339	0,001742
	C2	0,8614	-0,01903	0,000303
	C3	0,137577	1,179103	0,002702
	N4	-1,1955	1,213504	-0,00041
$_{6}$ $^{1}N_{2}$ $^{7}CH_{3}$	C5	-1,82484	0,036121	-0,00161
13 HC C 8,9,10	C6	-1,11726	-1,16095	0,000724
12	C7	2,361238	-0,04085	-0,00272
	H8	2,73834	-0,45974	0,934377
4	H9	2,771714	0,961365	-0,12662
	H10	2,727762	-0,67605	-0,81127
	H11	0,654154	2,133305	0,003896
	H12	-2,90892	0,047381	-0,00684
	H13	-1,6364	-2,11344	0,000716

	C1	-1,93788	0,002256	-0,04408
	C2	-0,61899	0,002833	0,028447
	C3	0,429149	-1,09622	0,060429
	C4	0,438928	1,096945	0,060078
	C5	1,522111	-0,00437	-0,10066
	H6	-2,49568	-0,92624	-0,084
H₂Ċ—Ċ、	H7	-2,4966	0,93068	-0,07956
8,9 ² 3 ² 6,7	H8	0,363006	-1,84176	-0,73067
1	H9	0,473461	-1,61327	1,019857
	H10	0,487884	1,621174	1,015304
	H11	0,38012	1,836723	-0,7368
	H12	1,984134	-0,00754	-1,08503
	H13	2,303777	-0,0084	0,655606

Tabela 130: Methylenecyclobutane e suas coordenadas cartesianas

Tabela 131: 1,3-dioxane e suas coordenadas cartesianas

	C1	1,356244	-0,00181	0,181032
	O2	0,720702	1,171477	-0,27829
	03	0,717041	-1,17461	-0,2772
	C4	-0,63334	1,245647	0,204857
5 0 1 78	C5	-0,63619	-1,24264	0,205895
	C6	-1,40983	0,001387	-0,21458
	H7	1,377466	-0,00088	1,282628
H_2C O 2	H8	2,364823	-0,00231	-0,22617
H_2^4	H9	-1,06002	2,156095	-0,21331
9,10	H10	-0,61838	1,339743	1,299438
	H11	-0,62393	-1,3298	1,301014
	H12	-1,06433	-2,1523	-0,21258
	H13	-2,39973	0,001244	0,249699
	H14	-1,53914	-0,00224	-1,30005

Tabela 132: Malononitrile e suas coordenadas cartesianas

	C1	0,000343	0,83588	0,000363
	C2	1,217151	0,025273	-0,00041
	C3	-1,21658	0,02415	-0,00317
	N4	2,187096	-0,59158	0,000103
	N5	-2,18775	-0,59084	0,001104
	H6	0,002254	1,489555	-0,87649
	H7	-0,0032	1,475593	0,887283

	C1	0,008006	0,504251	0,420526
$H_{3}C - 0 + CH_{3}$	C2	0,853916	1,64249	-0,12054
	O3	-1,04976	0,307526	-0,49802
	O4	0,730526	-0,69149	0,682225
	C5	1,544419	-1,19576	-0,3778
	C6	-2,11838	-0,50485	-0,00914
	H7	-0,4096	0,757152	1,401356
	H8	1,155907	1,452925	-1,15095
H CH ₃	H9	1,745725	1,778294	0,493497
7 2	H10	0,268637	2,562162	-0,09985
	H11	0,982962	-1,28085	-1,3124
	H12	1,873573	-2,18537	-0,06346
	H13	2,425284	-0,56913	-0,54064
	H14	-2,93727	-0,41158	-0,72127
	H15	-2,45758	-0,15476	0,972456
	H16	-1,82153	-1,55393	0,069292

Tabela 133: Dimethylacetal e suas coordenadas cartesianas

Tabela 134: 2-methylthiophene e suas coordenadas cartesianas

	S 1	0,235145	-1,19632	-0,00198
$\begin{array}{c} & 1 & 6 & 10,11,12 \\ & & & \\ $	C2	-0,78809	0,22946	-0,00641
	C3	-0,01871	1,357271	-0,00468
	C4	1,386979	1,099445	0,001297
	C5	1,684584	-0,22876	0,00515
	C6	-2,27987	0,106374	0,00425
	H7	-0,44482	2,352454	-0,00365
	H8	2,140601	1,875441	0,006301
	H9	2,650216	-0,70956	0,006003
	H10	-2,64217	-0,52804	-0,80898
	H11	-2,73165	1,093892	-0,10525
	H12	-2,64384	-0,32582	0,939566

Tabela 135: Ethylene carbonate e suas coordenadas cartesianas

	C1	0,842348	-6,9E-05	-0,00109
	O2	0,080256	1,106723	-0,10931
0 ⁶	C3	-1,30807	0,753704	0,121189
	C4	-1,30939	-0,75346	-0,1194
,c,	O5	0,081196	-1,10702	0,105505
5 0 0 2	O6	2,041394	0,000121	0,001824
9,10 7,8	H7	-1,92597	1,311942	-0,57636
$H_2C - CH_2$	H8	-1,55749	1,016897	1,148726
	H9	-1,56579	-1,01933	-1,1449
	H10	-1,92283	-1,30919	0,584092
	S 1	0,000937	-0,56986	-0,05447
---	------------	----------	----------	----------
	C2	1,408746	0,617539	0,051846
	C3	-1,41686	0,613739	-0,10068
	C4	2,742407	-0,11953	0,031724
	C5	-2,73651	-0,12087	0,102429
6,7 8,9 Ho Ho	H6	1,294455	1,186893	0,975786
10,11,12 C 1 C 13,14,15	H7	1,334249	1,305985	-0,79155
H_3C^2 ² ³ ³ ^C H ₃	H8	-1,40562	1,133666	-1,06
	H9	-1,26078	1,34894	0,690364
	H10	2,82014	-0,82818	0,859508
	H11	3,562699	0,595316	0,126998
	H12	2,882166	-0,66709	-0,90287
	H13	-2,75941	-0,63084	1,067412
	H14	-2,90495	-0,86384	-0,68081
	H15	-3,56463	0,59164	0,074767

 Tabela 136: : Ethyl sulfide e suas coordenadas cartesianas

 Tabela 137: Fumaronitrile e suas coordenadas cartesianas

	C1	-0,48352	0,463846	-0,0007
5 3 NO	C2	0,483526	-0,46384	0,000762
	C3	-1,86121	0,111865	-0,0002
нс́=с́н	C4	1,861205	-0,11187	0,000193
7 1	N5	-2,98658	-0,14296	0,000162
CN 4 6	N6	2,986584	0,142961	-0,00021
	H7	-0,25844	1,524044	0,001575
	H8	0,258442	-1,52404	-0,00152

Tabela 138: Beta-butyrolactone e suas coordenadas cartesianas

	C1	1,065405	-0,00708	-0,03426
	C2	0,101341	1,156221	0,091678
0 ⁶	C3	-0,92009	0,073678	0,480602
1	O4	0,160466	-0,95874	0,32899
C 2 H 8	C5	-2,07004	-0,18409	-0,4525
4 O C	06	2,211892	-0,18446	-0,33081
C ₃ H ₇	H7	-0,0904	1,678333	-0,84522
	H8	0,371222	1,868351	0,869928
°H ^C H3	H9	-1,22324	0,088958	1,525769
- 10,11,12	H10	-1,73136	-0,21169	-1,49063
	H11	-2,80374	0,618558	-0,34513
	H12	-2,56104	-1,12927	-0,21331

	N1	0,288469	-0,00016	-0,18812
	C2	1,01492	1,255754	0,046535
	C3	1,01575	-1,25542	0,046806
3 1 4 5	C4	-1,02323	-0,00033	-0,03619
H ₃ C CN	N5	-2,18224	-0,00032	0,0587
2 CH3	H6	0,415215	2,09015	-0,31204
6,7,8	H7	1,947827	1,224333	-0,51424
	H8	1,240089	1,397189	1,108924
	H9	1,950494	-1,21834	-0,51143
	H10	0,420583	-2,09047	-0,31744
	H11	1,237572	-1,39955	1,109259

Tabela 139: Dimethylacyanamide e suas coordenadas cartesianas

Tabela 140: Allyl isothiocyanate e suas coordenadas cartesianas

Tabela 141: 1,3,5-triazine e suas coordenadas cartesianas

	N1	-0,194	-1,35374	0,00104
	C2	-1,20325	-0,48208	-0,00029
6 N 2	N3	-1,07543	0,844913	-0,00159
₀нс́́ ∕≻сн,	C4	0,183986	1,282516	0,000816
	N5	1,269419	0,509124	0,000318
5 N N 3	C6	1,01916	-0,80087	-0,00119
H ⁴	H7	-2,21031	-0,88513	0,003659
8	H8	0,338126	2,355964	0,002965
	H9	1,872896	-1,47031	-0,00105

	C1	-1,04759	0,000125	0,000188
	O2	-0,04721	-0,96493	0,010143
	C3	0,961994	0,042664	0,004153
0 ² H ⁹	C4	-0,05554	1,154365	0,004651
	05	-2,22071	-0,19377	-0,00966
	C6	2,261385	-0,16305	-0,00796
⁴ H ₂ H ¹⁰	H7	-0,09151	1,782242	-0,88493
7,8	H8	-0,09658	1,773391	0,901244
	H9	2,666418	-1,16651	-0,01033
	H10	2,943479	0,675855	-0,01611

Tabela 142: Diketene e suas coordenadas cartesianas

Tabela 143: Pivalaldehyde e suas coordenadas cartesianas

	C1	-0,32605	0,026827	-0,00261
	C2	-1,05029	-0,42688	1,285172
	C3	-0,19591	1,549719	-0,04571
	C4	-1,09138	-0,50223	-1,23511
7,8,9 6 2 C H O	C5	1,036254	-0,64132	-0,00111
	06	2,106712	-0,07412	-0,00451
н₃с́—с́—"	H7	-1,11738	-1,51611	1,343597
10,11,12 1 5 16	H8	-2,06589	-0,02483	1,29378
4CH3	H9	-0,53329	-0,06736	2,177414
13,14,15	H10	-1,18625	2,009887	-0,01522
	H11	0,305486	1,878439	-0,95815
	H12	0,379754	1,920177	0,804684
	H13	-2,11096	-0,11099	-1,22809
	H14	-1,15037	-1,59355	-1,22942
	H15	-0,6113	-0,18925	-2,16543
	H16	1,000678	-1,75015	0,009038

Tabela 144: Isoprene e suas coordenadas cartesianas

	C1	1,583176	-0,91167	-0,00049
	C2	0,515677	-0,09969	-0,0031
	C3	-0,83359	-0,67593	0,001242
7 H ⁵ CH ₃ ¹¹⁻¹³	C4	-1,98233	0,007564	-0,0011
$1 C - C H_0$	C5	0,662804	1,399442	0,001099
	H6	1,471076	-1,99033	0,001975
6 H C →C	H7	2,594613	-0,52229	-0,00095
Ha Har	H8	-0,87247	-1,76263	0,005388
18 110	H9	-2,01322	1,090752	-0,00599
	H10	-2,93683	-0,50474	0,00333
	H11	1,713481	1,687976	-0,0343
	H12	0,216088	1,834754	0,900232
	H13	0,152809	1,848204	-0,85561

	C1	-0,26179	0,000059	-0,00068
	C2	-0,72555	1,32045	-0,63507
	C3	-0,72445	-1,20685	-0,83085
	C4	-0,74741	-0,11301	1,452965
^{7,8,9} ² CH ₂	N5	1,189769	-0,00073	0,008281
3	C6	2,354423	-0,00024	0,012661
H₃c—ç—ħ <u>≡</u> c∶	H7	-0,34646	1,414029	-1,6542
10,11,12 1 5 6	H8	-0,37595	2,174438	-0,05366
4 CH ₃	H9	-1,81595	1,343029	-0,66292
13,14,15	H10	-0,33547	-1,14737	-1,84881
	H11	-1,81456	-1,2192	-0,87311
	H12	-0,38428	-2,14037	-0,38065
	H13	-1,83835	-0,10812	1,468193
	H14	-0,38914	0,728542	2,047199
	H15	-0,39954	-1,04243	1,905834

Tabela 145: Tert-butyl isocyanide e suas coordenadas cartesianas

 Tabela 146: Ethyl cyanoformate e suas coordenadas cartesianas

	N1	2,877731	-1,04286	0,000645
	C2	1,909037	-0,42319	0,000645
	C3	0,706639	0,426946	0,000656
-	O4	-0,37583	-0,32652	-0,01183
Q ⁷ 8,9	C5	-1,68063	0,353658	-0,01916
H ₂	C6	-2,74377	-0,71748	0,016157
1 C 4 C 6 3 0 5 CH	O7	0,778346	1,629204	0,012291
2 10,11,12	H8	-1,72995	0,960119	-0,92322
	H9	-1,71913	1,007221	0,851941
	H10	-2,67889	-1,30814	0,93139
	H11	-2,66099	-1,38523	-0,84229
	H12	-3,723	-0,23499	-0,01577

	C1	0,768764	-0,71667	-0,7577
	C2	0,768173	-0,71363	0,758295
	C3	-0,7811	-0,70136	0,758119
14,15 7 HoCz 5 10	C4	-0,7813	-0,70203	-0,75819
CH ²	C5	-1,14708	0,560148	0,001272
	C6	1,157026	0,540107	-0,00094
CH ^C	C7	0,013708	1,536853	-0,00195
⁸ HC CH ⁹ 1 2	H8	1,414651	-1,24621	-1,44324
	H9	1,416713	-1,2354	1,447403
	H10	-1,43497	-1,21755	1,446846
	H11	-1,4381	-1,21859	-1,44333
	H12	-2,17772	0,891994	0,003509
	H13	2,193164	0,853303	0,003968
	H14	0,015804	2,172293	-0,89229
	H15	0,021332	2,179642	0,883743

Tabela 147: Quadricyclane e suas coordenadas cartesianas

18 Anexo de F- Imagens das interações do docking

ANFETAMINAS

Figura 116: Interação dos aminoácidos do docking do receptor com a 5-MAPB

Figura 117: Interação dos aminoácidos do docking do receptor com a 6-MAPB

Figura 119: Interação dos aminoácidos do docking do receptor com a 4-APB

Figura 120: Interação dos aminoácidos do docking do receptor com a 5-APB

Figura 121: Interação dos aminoácidos do docking do receptor com a 6-APB

Figura 122: Interação dos aminoácidos do docking do receptor com a 7-APB

CATINONAS

Figura 124: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 5-MAPB

Figura 125: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 6-MAPB

Figura 126: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 7-MAPB

Figura 127: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 4-APB

Figura 128: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 5-APB

Figura 129: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 6-APB

Figura 130: Interação dos aminoácidos do docking do receptor com as catinonas análogas a 7-APB

