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Resumo

MACHADO, L. F. Avaliação do risco de osteoporose, com foco na

mandíbula, utilizando radiografia panorâmica dentária e modelos de

inteligência artificial. 2023. 103 f. Tese (Doutorado - Programa de

Pós-Graduação em Física Aplicada a Medicina e Biologia) - Faculdade de Filosofia,

Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto -

SP, 2023.

A osteoporose é uma doença sistêmica que provoca perdas na densidade mineral

óssea (DMO) que eventualmente causam fraturas ósseas graves. Por ser uma doença

silenciosa, muitos são diagnosticados apenas após a fratura. Várias estratégias de

diagnóstico oportunistas baseados em imagens estão sendo investigados na literatura

em combinação com modelos de inteligência artificial (IA). O presente estudo

propõe uma análise de imagens de radiografia panorâmicas odontológicas (PAN)

focada na mandíbula usando modelos de inteligência artificial para avaliar o risco

de osteoporose. Para este fim, desenvolvemos inicialmente uma ferramenta de

segmentação automática da mandíbula para imagens PAN usando um conjunto de

algoritmos de aprendizado profundo. Para desenvolver este modelo de segmentação

mandibular, usamos dois conjuntos de dados: um conjunto de dados interno

preparado com 393 imagens PAN anotadas manualmente por um especialista e um

conjunto de dados públicos composto por 116 imagens previamente anotadas. As

arquiteturas U-Net e HRNet foram consideradas individualmente e no formato de

ensemble com e sem pós-processamento de segmentação. Com esta abordagem,

alcançamos o melhor desempenho de segmentação mandibular na literatura com

98,2%, 97,6%, 97,2%, precisão, semelhança de dados e interseção sobre união,

respectivamente. No segundo momento deste estudo, usamos esse algoritmo para

vii
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extrair a região de interesse (ROI) mandibular de 380 imagens PAN de pacientes

que também realizaram exame de densidade mineral óssea (BMD). Esses pacientes

foram organizados em dois grupos de acordo com os critérios de diagnóstico da

OMS: saldáveis e risco de doença (osteopenia e osteoporose). Treinamos o modelo

EfficientNetV2-L usando I) as imagens PAN completas como entradas e depois II) a

ROI de segmentação da mandíbula como entrada para separar esses dois grupos.

Observamos que o modelo usando a segmentação da mandíbula obteve melhor

acurácia e recall (73,9% e 83,0%) do que os modelos treinados com a imagem inteira,

o que indica ganhos consideráveis com o uso dessa abordagem focada na mandíbula.

Palavras-chave: 1. Osteoporose. 2. Avaliação de risco. 3. Radiografia Panorâmica

Dentaria 4. Modelos de Inteligência Artificial



Abstract

MACHADO, L. F. Mandible-focused osteoporosis risk assessment using

dental panoramic radiography and artificial intelligence models. 2023.

103 f. Thesis (Ph.D. - Postgraduate Program in Physics Applied to Medicine and

Biology) - Faculty of Philosophy, Sciences and Literature, University of São Paulo,

Ribeirão Preto - SP, 2023.

Osteoporosis is a systemic disease that provokes bone mineral density (BMD) losses

that eventually cause severe bone fractures. Since it is a silent disease, many are

diagnosed only after fractures. Several opportunistic image-based diagnoses are

being investigated in combination with artificial intelligence (AI) models in the

literature. The present study proposes a mandible-focused dental panoramic X-ray

image (PAN) analyses using artificial intelligence models to assess the osteoporosis

disease risk. To accomplish that, we initially developed an automatic mandible

segmentation for PAN images using an ensemble of deep learning algorithms. To

develop this mandible segmentation model, we used two datasets: an in-house

dataset (IHD) prepared with 393 PAN images manually annotated by a specialist

and a third-party dataset composed of 116 images previously annotated. U-Net

and HRNet architectures were considered individually and an ensemble format

with and without segmentation post processing. With this approach we achieved

the best mandible segmentation performance in the literature with 98.2%, 97.6%,

97.2%, accuracy, dice similarity, and intersection over union, respectively. In the

second moment of this study, we used this algorithm to extract the mandible image

region of interest (ROI) from PAN images from 380 PAN images from patients who

also underwent bone mineral density (BMD) examination. Those patients were

organized into two groups according to WHO criteria for diagnosis: healthy (no

ix
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signs of osteoporosis) and disease risk (osteopenia and osteoporosis). We trained

the EfficientNetV2-L model using I) the entire PAN images as inputs and II)

the mandible segmentation ROI to separate these two groups. We observed that

the model using the mandible segmentation achieved better accuracy and recall

(73.9% and 83.0%) than the models trained with the entire image, which indicates

considerable gains of using this mandible-focused approach.

Key-words: 1.Osteoporosis. 2.Risk Assessment. 3.Dental Panoramic Radiography.

4.Artificial Intelligence Models.
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Chapter 1

Introduction

I n 1985, Röntigen experiments using X-Rays allowed the creation of images from

inside the body. It was such a breakthrough since it made possible to see

and analyze internal parts of the human body without opening the patient. It

also gave birth to other important fields of Physics and Medicine: Medical Physics

and Radiology. Medical images appeared as an innovative source of information to

analyze the human health status. Today, with the up rise of Artificial Intelligence

(AI), we might be experiencing a comparable breakthrough: the combination of

Medicine and AI to amplify the capabilities of the clinical practice.

In the last decades, we have experienced the appearance AI in a virtually

every field of knowledge, science and technological application. The success

of artificial intelligence has a direct correlation with an overall increasing of

computational processing power at low costs. Another fundamental reason for that is

the exponential increasing of the amount of data stored by our appliances in general.

This scenario allowed the former gradient-based learning algorithms to became the

so-called deep learning algorithms.

Medicine can certainly be heavily impacted by AI given its standardized

approach to collect patient information (clinical data) and to store it for taking

decisions. Such data have been accumulated over the decades in every clinical

institution. This scenario is very favorable to the use of AI techniques to investigate

different diagnosis, prognosis, analyses, and automation opportunities that was not

possible before.

In the present study, we used AI to investigate alternatives to improve the

diagnosis of a disease that is impacting worldwide as the life expectancy increases:

1



1 - Introduction 2

the osteoporosis. Osteoporosis is a silent disease that affects bone mineral density

levels. Its silent action is the major explanation why the disease is mostly diagnosed

only after a fraction occurrence. Those fractures can lead to comorbidity and even

death in the long run. Osteoporosis majorly affects the elder population and is

already seen as epidemic especially in developing countries, such as Brazil, where this

population grows rapidly. This combination of late diagnosis and a rapid growth of

the population at risk results in a growing socioeconomic impact for those countries.

As alternatives to prevent or alleviate the socioeconomic impacts of such

epidemic, many diagnoses, prevention, and intervention strategies have been studied

over the past decades. Most of them are focusing on the usage of medical images

techniques already available in the ongoing clinical practice such as X-Rays, CT,

MRI, Ultra-Sound, Dental Panoramic X-ray (PAN) and so on.

PAN images have gained special attention since it is a cheap image modality

and largely available worldwide. Further, many studies have already found

correlations between some oral structures and the osteoporosis diagnosis, being

mandible the oral structure more useful to assess osteoporosis condition. For that

reason, many studies have proposed artificial intelligence algorithms to assess bone

health status directly from PAN images. Some of them have used the entire image,

while others have focused on a rectangular shape regions of interest (ROI) covering

the inferior cortical mandibular bone. None of them, though, have investigated the

potential gain of using the entire mandibular bone ROI to assess the osteoporosis

risk with deep learning experiments.

In this study, we present a mandible-focused osteoporosis risk assessment

study where we used deep learning algorithms to automatically extract mandible

segmentation ROI from PAN images and used it to predict the disease risk. This

study is organized in five chapters, being the current introduction the first one. The

second chapter brings a contextual introduction of the disease, from the clinical

definition to its socioeconomic impact. Next, in the third chapter, we cover the

foundations of the AI and the deep learning algorithms used. Also, we go over the

published applications of AI to assess osteoporosis through PAN images as to have an

understanding of the current state of the problem. The fourth chapter is dedicated

to the development of a deep-learning-based automatic mandible segmentation tool.
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This chapter is mostly written according to the published version of this study.

The Fifth chapter brings the final experiments: the usage of entire PAN image

and mandible segmentation only in a deep learning experimentation set to diagnose

osteoporosis risk. These last two chapters have their own results, discussion and

conclusion sessions that precisely cover all the goals of the study.



Chapter 2

Osteoporosis: clinical,
socioeconomic, and practical
aspects.

O steoporosis is one of the diseases of the century. It causes a systematic

damage to the skeletal structure that leads to several bone injuries. With

high incidence in women over 55 y.o. and in man over 65 y.o., osteoporosis is already

considered an epidemic by many authors. High osteoporosis incidence rates come

along with high morbidity rates and high treatment costs, especially to developing

countries, which are experiencing a rapid elderly population growth. For those

reasons, lots of scientific effort and public health politics must be spent on improving

osteoporosis diagnosis, related fracture prevention, and disease management. In

this chapter, we will go over some basic concepts, diagnosis strategies and their

limitations, as the new proposed approaches to enhance osteoporosis pre-treatment

and fracture prevention.

2.1 The disease

Osteoporosis is a silent and chronic disease that affects the entire skeletal

system making bones fragile and prone to serious injuries. Such injuries, in many

cases, are the very first indication of the disease’s presence. At the same time, it may

also be an indication of how late the disease is being perceived since some fractures

may cause serious morbidity and eventually death. Bone frailty is caused by a

mineral loss process that inevitably leads to bone tissue micro-architecture damage.

4
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Figure 2.1: Distal forearm, hip, and radiographic vertebral fracture incidence
increase with age, for men (left) and women (right). Adapted from
[Sambrook e Cooper 2006]. 1

This deterioration process is also enhanced by an unbalance between bone mass

decreasing rate and the body’s bone-recovering capacity [Sambrook e Cooper 2006,

Lorentzon e Cummings 2015, Sozen, Ozisik e Basaran 2017].

The incidence of osteoporosis is described by fracture incidence rates

according to site, gender, age, and ethnicity. The most common fractures associated

with osteoporosis are hip, vertebral, and wrist fractures. The fact that age is the

most prominent condition causing an exponential increase of osteoporosis fracture

incidence is widely reported in many studies (Fig. 2.1). It may happen given

the natural bone content loss and an increasing number of falls associated with

ageing. Additionally, studies also converge to a perceived higher incidence of

osteoporosis related fractures (ORF) in white population and women (especially

post-menopausal). In white population, over 50% of women and 20% of man,

older than 50 years old, will experience some ORF [Sambrook e Cooper 2006,

Christodoulou e Cooper 2003, Burge et al. 2007].
1In this analysis, it is counted only the vertebral fractures identified by imaging studies.

Although it is known that over 85% of vertebral fractures do not come to medical attention
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Hip fractures, although not the most common, are the most burdensome

fracture type, with women being the majorly affected group. In women, the lifetime

risk of hip fracture is greater than the lifetime risk of developing breast cancer.

Also, 3% of the annual incidence of hip fractures occur in women over 85 years old.

Next, incidence and prevalence of vertebral fractures are the highest, although only

over a third of all vertebral fractures come to specialists’ attention. Some of those

fractures result from fall, but most result from routine activities. Their prevalence

is the same in men and women. Lastly, wrist fracture, the third most common ORF.

They happen mainly in women, being half of them older than 85 years old. In men,

their incidence is low and there is no perceived increase with age, as we can verify

in Fig. 2.1 (left) [Sambrook e Cooper 2006, Christodoulou e Cooper 2003].

The lifestyle burden experienced by those who suffer osteoporosis related

fractures is undeniable. A study carried by WHO and the World Bank measured

the disabilities and patient deaths incurred by many diseases allowing a comparison

between their burden in Europe through a single loss index. This report showed that

osteoporosis causes more losses than hypertension, Parkinson’s, multiple scleroses,

and all the cancer diseases considered, except lung cancer. Patients who undergo

hip fractures, for example, need to be admitted to hospital with serious morbidness,

disabilities, and even mortality possibly coming as a result of this fracture. Hip

fractures has 10 to 20% mortality rate in the first year after the fracture, with

highest death risk in the first 6 months. However, few of those deaths are directly

credited to the fracture itself [Sambrook e Cooper 2006, Kanis et al. 2008].

The risk of fracture incidence, of almost all types, is considerably high in

individuals with low bone density, notably, elderly people and those who suffer any

bone mineral loss disease, such as osteoporosis. For adults who suffered a fracture,

there is also a considerable risk of undergoing another fracture of a different type.

Elderly people are the fastest growing group worldwide according to the age-adjusted

population growth rates published in the 2017 United Nations Report on global

population ageing (Fig. 2.2). If the age-adjusted hip fracture rate remains constant,

some models predict that the number of hip fractures will rise from 1.7 million in

1990 to 6.3 million in 2050. It all adds to the conclusion that the overall ORF

[Christodoulou e Cooper 2003].
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Figure 2.2: World (top) and Brazil (bottom) Population pyramids estimated
in 1950 and 2017, and the predicted one for 2050. Adapted from: https: //
population. un. org/ ProfilesOfAgeing2017/ index. html Accessed on April
23rd, 2021. The green and purple bars refer to the elderly group. It is possible to
notice that those bars become larger from 1950 to 2050.

numbers will increase in the coming decades and so the economic burden associated

with that [Sambrook e Cooper 2006, Economic e Affairs 2017].

2.2 Socioeconomic burden

Many studies tried to evaluate the costs originated from osteoporosis fracture

management in some countries, continents, and even in the entire world. Such

assessment is complex since some other fractures, such as vertebral and wrist

fractures, have not been economically evaluated and reported as much as hip

fractures. This last one is the most burdensome ORF type. Hip fractures have

much higher chances to provoke temporal or permanent disabilities, longer and costly

hospitalizations, and to demand more aftercare than any other ORF. Henceforth,

hip fractures related numbers are more available in the literature and many ORF

economic reports emphasize particularly those fracture costs.

To glance at those expenses, some cost estimates related to ORF treatment

https://population.un.org/ProfilesOfAgeing2017/index.html
https://population.un.org/ProfilesOfAgeing2017/index.html
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Country Number of
Fractures in
2018

Number of
Fractures in
2022

Percentage
increase
(2018-2022)

Argentina 141,164 151,457 7.3%

Brazil 413,564 471,445 14,0%

Colombia 64,938 75,485 16.2%

Mexico 220,573 256,701 16.4%

Total 840,239 955,088 13,7%

Table 2.1: Number of osteoporosis related fractures for four Latin American
countries in 2018 and 2022. Adapted from [Aziziyeh et al. 2019]. Notes: 1 -
These estimates were not adjusted to account for variations in population size. 2
- The numbers of fractures in 2022 are predictions of the study.

and after-treatment will be listed. In 1990, the direct and indirect worldwide

costs associated with hip fractures were estimated at US$ 34.9 billion and are

expected to increase to US$ 82.7 billions in 2025, and to US$ 131.5 billions in

2050 [Johnell et al. 1997]. The 2005 estimate of the annual cost with ORF in United

States of America was at US$ 17 billion, and it was expected to rise to US$ 25 billions

in 2025. Canada spent over US$ 3.6 billions in 2014 with direct medical costs related

to ORF. Lastly, that annual expense for 27 countries in the European Union in 2010

was estimated to be US$ 34.5 billion [Burge et al. 2007, Aziziyeh et al. 2019].

Additionally, a very detailed study was carried out by Aziziyeh et al (2019)

to estimate the burden of osteoporosis in adults aged 50-89 y.o. in the four most

populous Latin American countries: Brazil, Mexico, Colombia, and Argentina.

The authors considered almost all the practical financial aspects present when

someone suffers a fracture: patient productivity losses, drug and surgical treatment,

examinations, and hospitalization costs. The study reports a total annual cost of

osteoporosis related fractures for those four countries of US$ 1.17 billion in 2018.

Brazil alone accounted for US$ 310 million. The total four country expenses are

expected to increase to US$ 1,51 billion a year by 2026, if no intervention is taken,

with Brazil reaching the mark of US$ 400 million a year.

Aziziyeh et al (2019) also reported the number of fractures registered in
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the year 2018 and made predictions about the fracture number increase for each

country in the year of 2022, as we can see in table 2.1. Brazil is the leading

country in number of fractures (including hip) and Argentina the country with

highest population adjusted ORF cost. Those numbers must certainly worry

specially the developing countries (where Brazil lies), once their elderly population

are the ones with highest increase rates observed. Larger elderly group means

higher ORF incidence, higher health care investments, higher outpatient care

demand, higher productivity losses, and larger osteoporosis socioeconomic burden

[Christodoulou e Cooper 2003, Aziziyeh et al. 2019].

Odén et al (2012) assessed the overall number of hip fractures occurred

in 58 countries in the year 2010. The authors computed 2.32 million fractures

for all causes. From that amount, 50% were associated with osteoporosis and

were considered avoidable if the patient’s bone mineral densities were corrected

by preventive therapies [Odén et al. 2015]. That being said, it is of paramount

importance to assess the disease at an early stage and introduce fracture preventive

therapies. That certainly sounds obvious. But why is it not that simple to achieve

that now? In the next session, we will discuss the key element for all that: the

diagnosis.

2.3 Diagnosing the unseen

Since 1994, the principal measure for assessing bone mineral quality and

for diagnosing osteoporosis has been the bone mineral density (BMD, the amount

of bone mass per volumetric or area unit). The BMD’s role in the osteoporosis

assessment is like blood pressure when diagnosing vascular diseases. Although, BMD

is not the only factor to determine the presence of osteoporosis or osteopenia, BMD

information is also largely used as a powerful biomarker for fracture risk assessment

and for monitoring treated and untreated patients. Nowadays, many other disease

and fracture risk correlated features, such as age and gender, are used to improve

osteoporosis management [Kanis et al. 2008, Compston, McClung e Leslie 2019].

The gold standard evaluation for assessing BMD is the Dual Energy X-ray

Absorptiometry (DXA) because it is very sensitive to calcium, which bone is
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the most important source. In this examination, some radiation doses are

used to assess the bone density from peripheral skeletal parts and from the

whole skeleton. DXA measures areal BMD (g/cm3), information that explains

over two-thirds of bone strength variance. Additionally, DXA measurements

can be performed at different sites of human skeleton and yield different BMD

contents, allowing different conclusions about patient’s bone quality. Alongside

DXA, some other BMD assessment tools with comparable performances, such as

quantitative ultrasound and quantitative computed tomography, were developed and

are sometimes considered. However, those alternative techniques are not adopted

as much as BMD by the various geographic-specific guidelines [Kanis et al. 2008,

Compston, McClung e Leslie 2019].

Two indexes are derived from DXA BMD measurements: T-score and

Z-score. T-scores is the number of standard-deviations (SD) that a given

subject’s BMD differs from the healthy young-adult women BMD average value.

It means the difference between the BMD reference value and the subject’s BMD

is measured in SDs. This SD is the standard deviation value of the reference

population BMD distribution. Z-score, similarly, is the number of SDs that

separates a subject’s BMD from the average BMD of a population with same

age and sex. In 1994, WHO defined T-score criteria to diagnose osteoporosis

in postmenopausal women and in men over 50 y.o. according to central DXA

T-score results. Table 2.2 brings BMD, T-score values, and the associated diagnosis

[Kanis et al. 2008, Compston, McClung e Leslie 2019].

WHO definitions expressed in table 2.2 appear to be very straightforward

for diagnosing osteoporosis or assessing risk of fractures. However, many subjects

experience ORF even having T-scores out of those predefined ranges, meaning high

specificity, but low sensitivity. Another important aspect of osteoporosis is that

it is an underdiagnosed disease. Many have, but only a few know. And from

those who know, most got to know it only after an ORF. This happens mainly

because osteoporosis is a silent disease, i.e., it shows no visible signs until a fracture

occurs. In general, osteoporosis diagnosis tends to be verified only after fracture

occurrence, in its late stage. Additionally, DXA equipment scarcity contributes to

osteoporosis underdiagnosis, since DXA is the principal mean for BMD assessment,
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Diagnosis Subject BMD compared to
reference value (rv)

Interpreted T-score

Healthy BMD ≥ (rv - 1 ∗ SD) higher than -1

Osteopenia BMD < (rv - 1 ∗ SD) & BMD >
(rv - 2, 5 ∗ SD)

between -2.5 & -1

Osteoporosis BMD ≤ (rv - 2, 5 ∗ SD) less than -2.5

Severe
osteoporosis

BMD ≤ (rv - 2, 5 ∗SD) with one
or more frailty fractures.

less than -2.5 with
fractures

Table 2.2: WHO bone health indications according to T-scores using as reference
healthy young women average BMD [Kanis et al. 2008]. BMD: Bone Mineral
Density of a subject; SD: Standard Deviation; rv: average BMD of the reference
population - healthy young adult women.

the major indicator of the disease according to WHO. Considering all that,

additional strategies have been considered to improve osteoporosis management

[Compston, McClung e Leslie 2019, Kanis 2007].

2.3.1 Screening and risk prediction

After many estimations of the economic and social burden reported in

successive studies across the world, attention was drawn to the development of

diagnosis, prevention, management, and surveillance solutions. Probably, the easiest

solution was to prescribe preventive treatment for everyone in a risk group, such as

menopause women or elderly people. Test everyone on that risk group with DXA

and use WHO criteria. However, those simple solutions do not compose the set of

methods currently in use [Kanis 2007].

Screening is considered effective only when high risk subjects can be selected.

BMD/DXA screening on groups like women at menopause and elderly people, appear

to be appealing since bone mass density knowledgeably decay in such scenarios,

making them a reasonable target group for BMD-based screening. Besides the high

costs for screening, BMD assessment is not indicated for large-scale screening since

it has low sensitivity (WHO criteria) and because DXA is not largely available

in most countries. Additionally, menopause patients have shown low continuance
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with treatment. It all adds up to a correspondingly low return on investments

for screening women in menopause. With elderly people, some interventions are

considered even without screening, for every elderly subject, given the fracture risk

exponential growth with age. However, such procedures are not widely adopted

because the criteria and the screening method vary from guideline to guideline

[Kanis 2007].

In this scenario, opportunistic screening and case-finding strategies appear as

alternatives to large-scale screening. In this case, patients are verified for presenting

some risk factors and then guided for further assessment. To support that strategy,

two groups of tools have been developed: Osteoporosis prediction and fracture

risk assessment tools. Those tools have been considered to decide which patient

should go for BDM evaluation, preventive treatment, or even if the subject have

osteoporosis. Using such tools seemed to be more precise and efficient than gross

screening when it comes to finding high risk patients. Some reports support that this

approach saves over 55% BMD tests by dismissing those who do not need further

attention [Kanis 2007].

Osteoporosis prediction tools (OPT) have focused on diagnosing the present

risk of osteoporosis. Patients found with high risk would be directed to BMD

examination so it could be verified if positive or not. Those tools combine several

types of risk factors and output a score that indicates the presence of osteoporosis.

BMD/T-score comes after that evaluation to confirm or dismiss the diagnosis.

OPT tools like ABONE, DOEScore, HAQ, NOF, ORAI, OSIRIS, OST(A), POST,

SCORE, and SOFSURF were developed focusing specifically high sensitivity results

(precisely identifying those patients who do not have the disease). Those tools

reported high sensitivities ranging 78 to 100%, and low specificities ranging 18 to

58%. The low specificity indicates the necessity of BMD assessment (high specificity

test) of those patients pointed to have high risk of disease to close the diagnosis

[Kanis 2007].

2.3.2 Fracture risk assessment tools

Fracture risk assessment (FRA) tools compose the other group of tools

developed to improve osteoporosis general management. Those tools were designed
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to assess the osteoporosis main outcome, the fracture, rather than the presence of

the disease itself. Their authors considered assessing such risk more demanding

and achievable than closing a precise diagnosis of the disease. in those tools, BMD

measurements may or may not be present, it comes in as any other risk factor.

Many of those well-validated fracture risk factors have been combined to produce

useful subject fracture risk detection tools. Those tools intend to establish practical

thresholds for defining risky subjects, dismiss healthy ones, speedup prevention, and

improve current group or geographic-specific intervention guidelines [Kanis 2007].

The most widely established tool for FRA is known as FRAX (Fracture

Risk Assessment Tool, figure 2.3) with over 33,5 million fracture risk assessments

performed up to the moment and acknowledged by WHO [Kanis]. This tool

has been incorporated into clinical practice in many countries especially because

it allows calibrations by including target population specific fracture rates and

overall mortality index. FRAX considers age, sex, body-mass, previous fracture,

glucocorticoid usage, secondary osteoporosis, rheumatoid arthritis, parental hip

fracture, cigarette smoking, alcohol intake, and femoral neck BMD or T score

(optional). That information was gathered over many meta-analysis, reviews,

and nine international prospective cohorts. FRAX authors combined all those

parameters in a risk assessment function that yields two highly valuable prognostic

info: 10-year major osteoporotic fracture (clinical vertebrae, hip, forearm,

proximal humerus) and 10-year hip fracture risk [Compston, McClung e Leslie 2019,

Kanis 2007, Kanis].

Additionally to FRAX, there is the Garvan Fracture Risk Calculator (GFRC)

and QFractureScores-2016 (QFS) tools which were validated with at least one

independent cohort. GFRC, differing from FRAX, necessarily needs BMD measures,

plus 5 other risk factors, to output 5 or 10-year risks for general and hip fracture

occurrence. In the other hand, QFS do not rely on BMD assessments whatsoever,

but demands 30 clinical/demographic information, most of them being disease

related, to predict 1-10-year risk for hip and general fracture. Many other cohort

studies were carried out to evaluate combinations of risk factors for predicting

fracture risk (non-osteoporotic fracture, ORF, and hip fracture), however most
1
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Figure 2.3: Screenshot from FRAX questionnaire at [Kanis]. FRAX tool is in
fact a questionnaire where one can fill clinical and demographic information in
combination or not with BMD measures. Note: FRAX can only make predictions
for people 40 y.o. and over.

of them could not be evaluated and validated in different cohorts and some are

case-control studies [Compston, McClung e Leslie 2019, Kanis 2007].

FRAX indeed offered a useful tool for FRA with a wide range of applicability

given the wide variety present in the cohorts used. However, some validations are

yet to be carried out for men and some ethnic group not covered by the study so far.

The FRAX validations results also pointed out that FRA can be carried without

BMD measures, which is useful especially in places with no DXA equipment in their

facilities. Nevertheless, the presence of BMD can improve the performances assessed

by gradient risk and receiver operating characteristic (ROC) curve [Kanis 2007].
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2.4 Current image-focused trends to improve
osteoporosis management

Alongside those described achievements, other research efforts have been put

to develop cheaper, direct or indirect, methods to assess BMD and to identify other

promising osteoporosis or fracture predictors, hence, improving both the diagnosis

and fracture risk assessment. Many of those efforts have relied on various imaging

techniques, from various parts of the skeleton, searching for possible radiological

markers [Cruz et al. 2018].

Heel X-ray scans were used for separating osteoporotic from control

patients [Harrar et al. 2012]; Trabecular features calculated from right femur

X-Ray images showed notable accuracy when separating normal and risky from

diseased patients [Sapthagirivasan e Anburajan 2013]; Mandible cortical width

measured from dental panoramic X-ray were used to diagnose low spinal and

femoral neck BMD [Kavitha et al. 2013]; Joint hip ROI extracted from regular

hip radiographs were combined with clinical features to improve osteoporosis

diagnosis [Yamamoto et al. 2020]; Image texture features extracted from spinal

CT were used for separating osteoporotic (with fracture) from non-osteoporotic

(without fracture) patients [Valentinitsch et al. 2019]; Mechanical and topological

Bone measurements extracted from quantitative MRI scans from femoral neck were

evaluate for predicting osteoporosis related fractures in post-menopausal women

[Ferizi et al. 2019]. Some of those images are illustrated in figure 2.4.

Those studies point out that imaging techniques will play a remarkable role

in osteoporosis management. Not just for detecting fracture, where using images

are imperative, but also for predicting fractures and osteoporosis diagnosis itself.

Additionally, all the cited studies’ methodology relies heavily on a set of trending

mathematical, statistical, and technological tools called artificial intelligence (AI),

which is one or the cornerstones of the study being presented, and which will be

covered in the next chapter.

The medical images just referenced sound very attractive for tackling

osteoporosis diagnosis and fracture prediction tasks for two reasons: first, almost
1
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Figure 2.4: A set of examples of images and sites currently being investigated
for improving osteoporosis management. In a) Femural quantitative MRI
for topological analysis [Ferizi et al. 2019]; b) Calcaneous X-ray used for
texture analysis [Harrar et al. 2012]; c) Lumbar spine X-ray ROI used in deep
learning [Zhang et al. 2020]; d) Hip joint area radiograph used in deep learning
[Yamamoto et al. 2020]; e) Femural neck X-ray for extracting trabecular features
[Sapthagirivasan e Anburajan 2013]; f) DXA produced images for radiomics
extraction [Rastegar et al. 2020]; and g) Dental panoramic radiographs used in
deep learning [Lee et al.].

every health care facility in the world have an imaging equipment available; and

second, patients regularly take those records as follow-up routine for a variety of

abnormalities. Across all those image types and imaged sites mentioned above, we

will now pay a especial attention to the imaging modality and site that composes

the core of the present study: the dental panoramic radiography and the mandible
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bone.

2.4.1 Dental panoramic radiography (PAN) in osteoporosis
management

From all those images mentioned earlier, dental panoramic radiography

(PAN) shows some remarkably interesting advantages. Firstly, PAN scan equipment

is widely available, it includes developing and poor countries where DXA equipment

is considerably rare given its high cost. Brazil is the country with the largest amount

of PAN scans in the world. Further, PAN images are largely used for dental primary

screenings and routine examinations, and it is even promoted by the International

Guide to Prescription Radiographs. This fact makes PAN a perfect candidate source

of information for opportunistic screening of bone related conditions. MRI, CT and

regular X-ray imaging modalities, or even DXA, do not share all those qualities

altogether [Watanabe, Watanabe e Tiossi 2012].

The relationship between age, systemic osteoporosis, and changes in quantity

and quality of maxilla and mandible bones has been already reported in the

literature. PAN images, beyond teeth, catch information from both mandible and

maxilla bones alongside other important facial supporting structures. Although,

its main usage had been tooth evaluation, in the last decades, it has been used

to evaluate bone density quality. Since it pictures bone structures, it can reveal

bone radiolucency, thinning and erosion and, for that reason, has been investigated

for assessing bone mineral density loss [Watanabe, Watanabe e Tiossi 2012].

Additionally, BMD, a major factor for detecting osteoporosis, was already measured

through periapical intraoral radiographs using aluminum densitometric scale and is

already used in a commercial system [WATANABE et al. 2008]. Those finds enforce

the expectation of the contributions of PAN images for osteoporosis management.

Klemetti (1994) proposed a classification of bone quality based on three

indices measured over patterns observed on endosteal margin of mandibular

cortical [Klemetti, Kolmakov e Kröger 1994]. After Klemettis’s study, several

other research proposed additional radiomorphometric indices for that purpose

[Watanabe, Watanabe e Tiossi 2012]. Fractal analysis has been used to evaluate

morphological patterns of jawbones overtime and more recently has been
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Figure 2.5: ROI used to leverage mandible bone on PAN images in AI-based
studies.

considered for separating healthy from osteoporotic patients [Franciotti et al. 2021].

Radiomics, has been correlated with bone microarchitectural features in CT

and radiographic images for assessing bone quality and osteoporosis screening

[Valentinitsch et al. 2019, Ollivier et al. 2013]. Another, recent study proposed a

PAN-mandible-based image index (W-Index), which is calculated using the oblique

line and the mandibular ramus image regions, to separate different BMD level patient

groups achieving prominent results [Watanabe et al. 2022]. Those studies precisely

point out the value of mandible analysis for assessing osteoporosis.

Furthermore, some studies have performed artificial intelligence analysis over

dental panoramic images for detecting osteoporosis [Lee et al., LING e YANG 2020,

Lee et al. 2020, Sukegawa et al. 123]. Since mandible is the oral structure in the

PAN image containing the most valuable information for assessing osteoporosis

condition, those studies tried different strategies to leverage the mandible bone image

region. They used either the entire PAN image (Figure 2.5 b)), a rectangular ROI

containing the inferior cortical mandible bone (Figure 2.5 a) and c)), or a rectangular

shape containing only the left inferior cortical bone (Figure 2.5 d)). Those studies
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have achieved considerably high performances (up to 84.0% accuracy) but with room

for improvements. Furthermore, no study have used the entire mandible outline as

ROI for training their deep learning algorithms. This was not possible certainly

because it is a time-consuming procedure for a large number of images. Further,

there is no such tool for automated mandible segmentation openly available to make

this task feasible.

In this study, we present an osteoporosis risk assessment trial using artificial

intelligence algorithms trained over the mandible-only PAN image ROI. To that end,

we firstly developed a deep-learning-based mandible bone segmentation model for

PAN images. Then, we used this model to extract the mandible ROI and used it

to train deep learning algorithms to predict the osteoporosis risk and compare this

approach with using the entire PAN image for the same task. In the next chapter,

we provide a deep explanation on the artificial intelligence existent strategies and

the deep learning concepts, how to train a model and how to improve it. Then,

In Chapter 4, we will present the entire process to develop the automatic mandible

segmentation algorithm that we proposed to leverage PAN mandible information

for osteoporosis risk assessment. Lastly, in Chapter 5, we present the final AI

experiments that evaluate the usage of a mandible ROI PAN image strategy for

the osteoporosis risk assessment task.



Chapter 3

Artificial intelligence in
Medicine

Medicine is certainly one of the fields of human knowledge that most need

constant growth. Although man has an enormous understanding about the human

body and its relationship with external agents (drugs, radiation, temperature, ...),

tons of questions remain open. From primary care, analysis of early symptoms,

up to tertiary and quaternary care, with tumor grading and recurrence prediction.

Indeed, the available knowledge is far more incomplete than we usually imagine and

demands constant improvement.

With the appearance of medical imaging techniques, e.g., X-ray in 1985,

Medicine took a huge step in its treatment power. It became capable of evaluating

the inner conditions of the human body without opening it. Later, it became the

field known as Radiology. At a comparable level, at this very moment, we are

experiencing a new breakthrough in Medicine: the prominent usage of Artificial

Intelligence (AI), a set of computational methods and algorithms, to help diagnose

and predict outcome as well as to personalize treatment decisions in the clinical

practice. Further, the development of medical technologies powered by AI is giving

birth to a new field called augmented Medicine, i.e. the improvement of clinical

practice with intelligent medical devices [Briganti e Moine 2020]. In the coming

topics we will be going into some fundamental concepts on AI and its two principal

trends: Machine Learning and Deep Learning.

20
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3.1 What is artificial intelligence?

After more than 60 years of development, Artificial Intelligence, a.k.a. AI,

is now a reality. Many systems surrounding us make use of such technology and

many more are yet to come. But what is AI after all? According to the first

researcher to name it in 1955, John McCarthy, it is about developing machines that

behaves as if they were intelligent. Behind this definition is the perception that

an outstanding intelligence is one of the remarkable abilities that separates humans

from the rest of beings. Making human-like machines meant making human-like

intelligent machines. Human intelligence is associated with the capability of learn

by repetition, perceive underlying patterns on things, scenes, behaviors and sounds,

knowledge transposition, deduction, intuition, and logical elaboration. Hence, a

system said to be intelligent should have those capabilities.

In the search to achieve AI systems (computer algorithms) many strategies

took place such as understanding how brain works and mimicking it, optimization of

problem-solutions, and comprehending high level human thinking through cognitive

sciences. The developed AI systems share some important aspects: they learn from

data, the more data the more accurate the solution; the algorithms have a huge

versatility, they are not problem specific; learned knowledge can be transferred from

task to task; many learn strategies became possible given the relentless growth in

computational power.

As it grown AI became a term to refer to a diverse collection of computational

methods that are applicable to a even large variety of activities. The large areas

of AI include natural language processing, i.e., identifying, reading, and classifying

human written language; voice recognition, i.e., processing and classifying audio

signals; image recognition, i.e., patterns, objects, scenes, and faces detection and

classification on digital images; and many others including Machine Learning and

Deep Learning, the AI techniques used in this study. Fig. 3.1 represents a conceptual

map that points out the principal areas and branches of artificial intelligence.

With such a spectrum of techniques and approaches, AI spread in our daily

lives through several applications like internet search engines, virtual secretary,

intelligent recommender systems (for songs, movies, TV series, products, scientific
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Figure 3.1: AI areas and branches scheme. Adapted from
(https://shorturl.at/iyDX5).

papers, etc.), face recognition, and even the futuristic self-driving cars.

3.1.1 Why and how AI is in Medicine?

In Medicine it is not different, artificial intelligence is gaining relevance

and acceptance as it proves its power and versatility to solve or help to solve

a large variety of clinical demands. AI medical applications intend to improve

diagnosis and prognosis, reduce disease complications, offer less invasive assessments,

reduce repetitive physician work, and reduce hospitalization length. To mention

a few, cardiology, pulmonary medicine, endocrinology, neurology, and radiology,

are examples of fields in Medicine that is currently making use of AI solutions

[Briganti e Moine 2020, Hameed et al. 2021, Chan et al. 2018].

The ongoing technological boom is certainly one of the reasons for this

escalating AI usage in medicine. For example, the popularization of wearable

technology (e.g., smart watches, wristband, etc.) that generates on-time patient

data (e.g., blood pressure, body temperature, heartbeat, etc.) allowed the patient

monitoring field to keep adhering to AI solutions. Such patient-data can be analyzed

by AI algorithms present in the devices itself or in the cloud, and produce hourly or

daily health reports to be evaluated by health practitioners [Briganti e Moine 2020].
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Next, we must acknowledge the huge breakthrough AI caused and continue

to cause in Radiology and Medical Imaging Analysis in general. By this

we refer to cancer and other diseases diagnosis through image (computational

tomography (CT), Magnetic Resonance Imaging (MRI), X-ray, ...), histopathology

imaging diagnosis, detection of diseased or anomalous anatomy, and automation

of time-consuming (manual, user-dependent) tasks such as image segmentation,

registration, fusion, and classification. In fact, radiology is a rich soil for AI methods.

This happens because image data acquisition and storage is mandatory in clinical

radiology and abundant data is the foundation necessary for AI methods to succeed

[Hameed et al. 2021].

In the future sections we will go over the practical details of learning

algorithms, Machine Learning, Deep Learning, and the principal applications of

those techniques as computer aided diagnosis systems.

3.2 Learning algorithms

We can understand the concept of learning with a quite simple example.

Imagine you want a friend of yours to recognize your mother at the supermarket.

You start to write down many traits and features of her face, and he will try to

figure out in his mind which traits he should focus more to find your mother. What

a challenging task, is not it? A way around would just give him some pictures of

your mother. Your friend would instantly elect some key features that could help

spot your mother at the supermarket and would do that without much trouble. This

is learning. Learning by examples rather than by clearly stated rules.

When an algorithm can reproducing a decision after "viewing" some examples

of the decision being made instead of being taught the rules explicitly, we can say

that the algorithm is learning. This is the intelligent behavior we expect algorithms

to achieve in machine learning. Most of the tasks that algorithms are classically set

to learn are tasks that demand a lot of experience to execute it such as house

pricing, credit card fraud detection, insurance calculation, cancer classification,

disease diagnosis, face recognition, etc.
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Figure 3.2: Machine learning experiment stages (training and testing) and
elements (a).

3.2.1 Machine learning

Machine Learning (ML) is a subfield of AI that covers the learning algorithms

that can learn tasks by examples. Let us consider the house pricing example. In

this case the task is giving the right price to a house. The examples are composed

of set of house features (constructed area, number of bedrooms, number of floors,

etc.) and the price for this house according to a specialist. In the case of cancer

classification, the task is diagnosing the cancer type. The examples are composed

of a set of cancer features (tumor size, location, cell type, etc.) and the cancer

classification for those features.

The ML experiments occur in two stages: training and testing (Figure 3.2).

Training is the process where the algorithm will extract intelligence from data

examples, it will fit a mathematical function f(x) to explain the data examples,

Figure 3.2, a). Testing is the stage where the quality of the final learned function

f(x) is tested over unseen data examples, Figure 3.2, b). The ML experiments are

basically composed by I) a dataset (data examples), from which the algorithm will

learn; II) the ML algorithm itself; III) the intelligence, which is the function f(x) with

its weights, the mathematical function that is being fitted over the data examples

during training stage; IV) a quality metric, that measure the quality of fit of the

function so far fitted; and V) the optimizer that changes the intelligence function

weights towards a higher quality metric, Figure 3.2, a). Some ML experiments may

show some variance from this structure given some problem-specific subtleties, but

in general those elements are always present.
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3.2.1.1 Learning paradigms

ML algorithms are characterized according to the learning process used

to train it. Supervised Learning is the learning process where it is given

labeled examples to train the algorithm. A labeled example, in the case of

cancer classification, is the one that contains the cancer features and the cancer

classification. Unsupervised Learning is the learning style where the algorithm does

not have the labels for each example, only their features. This learning style is

used generally when the task is not classifying a given sample, but finding an

underlying classification pattern. In the case of cancer classification, it would mean

having many cancer cases, each one with its specific set of features, but without

knowing what class each one of them really belongs to. The algorithm aim would

be to group or to cluster those cancer samples in groups that could reflect an

underlying classification, i.e., would be finding a meaningful classification metric

for the examples. Transfer Learning is another learning style that has became

extremely popular. This modality of learning used when there is little example data

to train a ML model in a given task, for example car picture classification. Then,

it is used a ML model previously trained in a different dataset, e.g., ImageNet,

and different tasks, e.g., general image classification, to solve the intended task, car

picture classification. This is possible when the ML model used in both tasks are the

same and the tasks share some similarities. Reinforcement Learning is the fourth

learning pillar of ML. Reinforcement learning sets the learning algorithm to work in

a trial-and-error approach under a reward-penalization system where it reinforces

the desired decisions or behaviors of the algorithm and penalizes undesired solutions.

This game-like setting appears as a suitable alternative where the algorithm would

need an infinite number of "if-then" statements to apprehend the desired behavior,

i.e., vehicle self-driving.

3.2.1.2 Machine learning tasks

Another way of characterizing ML algorithms is according to the style of the

task it is being tried to solve with ML. Before we introduce the types of tasks ML

is used to solve it is necessary to state that ML training and testing are entirely

mathematical (i.e., numerical) process. In other words, for every problem one
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Figure 3.3: Classical machine learning tasks.a) Classification, b) Regression, c)
Anomaly detection, d) Clustering, e) Transcription, and f) Machine translation.

intends to solve with ML it is necessary to codify the problem into numbers because

all the features and information from the examples will be used inside a numerical

equation yi = f(xi). Where yi is the ith output generated by the algorithm, f is the

ML algorithm, and xi is the vector of quantitative features that describe the sample

or example ith.
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Classification is one the most common ML tasks. The output y of the

ML algorithm is categorical. In the learning process, the ML algorithms strive

to find a logical/numerical decision boundary in the feature space. After finding

such boundary any new sample will be classified according to it. Example: Cancer

grading or cancer type classification, Figure 3.3, a). Regression is another very

popular ML task. In regression the outcome is not a qualitative value (i.e., a class),

but a continuous value. The learning process in regression is to define a fitting

function that can explain the training data examples. An example of regression is

house pricing, Figure 3.3, b). Anomaly Detection is the task where the ML algorithm

receives an amount of data and scans it to identify anomalies, unusual or atypical

samples. It means that the algorithm will identify the probability distribution

that the regular data belongs to. In this way, the ML algorithm can point a

strange behavior when it differs from the original data distribution. An example

of anomaly detection is credit card fraud detection, Figure 3.3, c). Clustering is the

ML task that intends to identify underlying patterns, classifications, trends, over

an amount of unlabeled data. It is mostly related to unsupervised learning. An

example of clustering would be the clusterization of articles or papers in a dataset

to identify major trending topics, Figure 3.3, d). Transcription is the task where the

algorithm must learn to receive an unstructured type of data (e.g., an image), and

transcribe it into a discrete and structured form of output (e.g., text). An example of

transcription is optical character recognition, Figure 3.3, e). In Machine Translation

task the input is already structured sequence of symbols in some language and the

algorithm must learn how to correctly codify the input into another structured

sequence of symbols. An example is the translation from English to Portuguese,

Figure 3.3, f) [Goodfellow, Bengio e Courville 2016].

3.2.2 Deep learning

Deep learning (DL) is a term in machine learning that comprehends a

group of ML algorithms that derive from neural networks. DL was initially

presented in the form of graph transform networks using gradient-based learning.

Its efficiency was verified in the handwritten digit recognition task. The strongest

point in neural networks was and still is the ability to perform automatic learning
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rather than relying on hand-designed heuristics which is the basis of many other

traditional learning approaches [LeCun et al. 1998]. The combination of larger

neural networks (multiple layers), the backpropagation algorithm, the abundance

of many types of data, and the expressive growth of the computational power

allowed deep learning to rise and become one of the most powerful set of

tools when it comes learning algorithms to perform human tasks. Since then,

DL became state-of-the-art in many tasks such as image classification, object

recognition, object detection, and image, video, audio, and speech processing

[Lecun, Bengio e Hinton 2015, Goodfellow, Bengio e Courville 2016].

3.2.2.1 Neural Networks

A neural network is a mathematical algorithmic formulation that tries

to mimic the way brain learns according to cognitive sciences. Mathematically

speaking, it is a function f(x) composed of a set of neurons that correctly associate

an input x to an specific output y. A neural network with a single neuron (Figure

3.4, a) is equivalent to a linear regression (y = ax + b). The neuron multiplies its

input by a weight factor (wi), adds a bias factor (bi), and passes this result or not

through an activation function (gi). This is how an individual neuron works.

A collection of neurons defines a layer. A neural network composed of

a layer of neurons is equivalent to a logistic regression (Figure 3.4, b). This

network can receive not just a single feature number (x), but a feature vector

(x = {x0, x1, x2, x3, x4}). Each feature vector component (xi) is processed by an

individual input layer neuron and its output is forwarded to the output neuron (y)

that performs a weighted summation, adds a bias factor, and applies an activation

function over the result.

When a series of layers are stacked as in a fully-connected approach it creates

a Multi-Layer Perceptron (MLP). MLP can be understood as the first generation of

neural networks and composes a group of networks called feedforward neural network,

Figure 3.4, c. This nomination has to do with the idea that the input information

is propagated through the network only in a single direction. Those networks can

certainly learn much more complex input-output relationships than the linear or

logistic regression neural nets (Figure 3.4, c). It happens given the presence of
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Figure 3.4: Neural networks basic definitions. a) Single neuron functioning
like linear regression. b) One-layer neural network. Works similar to logistic
regression. c) Multi-layer perceptron. The first popularized neural network
architecture.

hidden layers that allows higher levels of abstraction for data representation. The

MLP and Feedforward nets correspond to the basis of all neural networks concepts

latter developed [Goodfellow, Bengio e Courville 2016].
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3.2.2.2 The learning mechanism: the backpropagation algorithm

The learning process of a neural network happens by interactively updating

the weights and bias associated with each neuron in the network, Figure 3.4, a.

But how to update those weights and bias? Well, they must be updated into the

direction that minimizes the loss function, L(w,b). Loss function is a mathematical

formula to measure the error of input-output (x → y) association for a given set of

weights (w) and bias (b). In this way, it is possible to calculate new weight and bias

values by deriving L(w,b) according to each wi and bi and calculating new values

for wi and bi that minimizes L(w,b) using a predefined learning rate (α).

wi = wi − α
∂L

∂wi

(3.1)

bi = bi − α
∂L

∂bi
(3.2)

The learning rate (α) defines how fast w and b change toward the

minimization of L(w,b), at each iteration. Those equations compose the gradient

descent method, also known as the backpropagation algorithm in the context of neural

networks. This amazingly simple code constitutes the basis for all the powerful

learning algorithms used in deep learning sciences.

3.2.2.3 The introduction of the convolution: The Convolutional Neural
Network

Feedforward networks achieved impressive results at its time, but still had

some limitations related to the amount or dimensions of the input data. Feedforward

could only take one-dimensional vector features, meaning that it could not process

daily life images, since they originate from very large input vectors. If we convert

an image of 256 x 512 pixels, for example, into a flattened one-dimension feature

vector it would yield a 131072-unit vector. A network receiving such an input vector

would demand an overwhelming number of neurons (weights and bias) and it means

a substantial number of parameters to be optimized in the learning process, which

demands a lot of computational power and training time. This limit held neural

networks to be effectively used over images for a time until a turning-point concept

came into scene: the convolution.
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Convolution is a mathematical operation where a filter of dimensions fx x

fy walks over an image convolving the image, region by region as in Figure 3.5.

The filter is a mask, which is a set multiplying factor for every pixel in the filter,

numbers in red in the yellow pixel selection, Figure 3.5. At each filter position, it

performs the multiplication of the filter weighting factors by the image pixel values,

then they are summed up into a single number. This single number is the new pixel

of the resulting convolved image. Every filter generates a feature channel, and for

a set of n filters (f0, f1, f2, ..., fn) a feature volume with depth n is generated. A

similar convolutional operation can be performed over this output feature volume.

The difference is that the filter would have fx x fy x n, with n being the number of

feature channels in the feature volume.

The usage of image convolution gave birth to the class of networks known as

Convolutional Neural Networks (CNN). Those nets can receive as an input two and

three-dimensional input images. Convolutional layers allowed CNN to operate over

larger input data (e.g., images) with much less parameters to be optimized. CNNs,

beside convolutional layers, contain other types of layers such as max-pooling layers,

which perform dimension reduction, and fully connected layers, which operate in a

feedforward manner similarly to MLP, Figure 3.6.

3.2.2.4 Neural network architectures

Since the introduction of image convolution in a neural network structure an

huge number of increments, layer types, activation functions, ways of information

propagation inside the net, were developed to enhance training time, performance,

and task adaption. This process gave birth to a wide variety of neural network

architectures that keep growing as new tasks are being tackled with neural networks.

Some of the classical neural network’s architectures and the most important

ones are shortly presented:

• LeNet5, seven layers, 60K parameters to optimize, used sigmoid function as

the activation function, and was used for hand-written digit recognition;

• AlexNet, eleven layers, 60M parameters to optimize, used for image

classification on ImageNet dataset;
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Figure 3.5: Image convolution on deep learning applications. It illustrates the
convolution process over a regular image.

• VGG-16, sixteen convolutional layers, 138M parameters to optimize, used in

the image recognition task on ImageNet dataset;

• ResNets, implemented in thirty and fifty-layer sizes, introduced the usage of

skip connections (feed a layer with outputs from whatever previous layer in

the architecture, different from feedforward concept). This allowed really deep

nets to be trained without gradient vanishing or explosion. From now and on

we have true deep learning architectures. It used ReLU activation function,

and the 1 x 1 convolution;

• Inception or GoogLeNet, twenty-seven layers, combined convolutional and
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Figure 3.6: Convolutional neural network example. It is illustrated the
architecture of a CNN for handwritten digit recognition task. The input is
an image of 28 x 28 x 1 and the output is a 10-unit vector containing the
probabilities of the input figure being one of those index numbers. Font: Sumit
Saha. A Comprehensive Guide to Convolutional Neural Networks − the ELI5
way. www.towarddatascience.com

pooling layers of different sizes simultaneously in a single block, the learning

algorithm would learn which type of layer would better fit the model, while

the other types would be reduced to identity;

• MobileNet, designed for environments with short computing resources,

introduced the concept of depth-wise separable convolution which is much

faster than the regular convolution;

• U-Net, the first architecture proposed for medical image segmentation,

made use of the skip connection and a u-shaped architecture for initially

encoding the image information and secondly decoding such information

[Lecun, Bengio e Hinton 2015, Goodfellow, Bengio e Courville 2016].

Those architectures can be graphically represented as the one in Figure 3.6.

Many other architectures are being developed by the deep learning community every

day to suit its necessities as deep learning is being considered to solve new tasks.
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Additionally, the development of new architectures is also triggered by the necessity

to achieve higher performances in tasks already known.

3.2.3 Setting and fine-tuning a machine learning/deep
learning experiment

A machine learning experiment requires identifying and translating the task

into a machine learning frame. Next, data separation is mandatory. The data

must be separated in three parts: Training, validation, and testing dataset. Then,

choosing a network architecture (when using deep learning) which is associated with

the task itself. Lastly, fine-tuning the model.

Before define fine-tuning, the concept of bias and variance error must be

introduced. Bias error is the difference between the accuracy expected by a human

performing the task in question and the accuracy of the learning algorithm in the

task. For example, in the task of image recognition, human performance is generally

100%. If the algorithm is scoring 75% in this task, the bias error is 25%. Bias error is

a measure of a systematic error. Variance error is the difference between the learning

algorithm performance on training set and its performance on the validation set.

Variance error is a measure of how much the performance of the algorithm cannot be

generalized to different data. In other words, the variance error tells if the algorithm

is overfitting on the training data, if the algorithm learned too many training data

traits to a point that it cannot be accurate over new data.

Now, the definition: fine-tuning is the process of optimizing bias-variance

trade-off. It is a general principle in machine learning. In other words, it

is desirable to improve the algorithms performance over the training data to a

human-comparable level, but it cannot be so that the algorithm will not be able

to succeed over new data. If a neural network trains for a sufficiently large number

of steps it will overfit. It will start to perform very well over the training data, but

not so well over the validation data. Validation set is used to guide the improvements

on the model so we do not keep a model that is overfitting.

In practice, fine-tuning a machine learning application implies in adjusting

all the aspects of the experiment: the data used for training, validation, and testing;

the number of layers and the architecture itself; and the usage of regularization
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techniques;

When dealing with deep learning problems some settings occur:

1. High Bias Error: It means a training data problem. A solution might be

bigger networks (more layers and or units), training for longer periods, trying

different optimization algorithms, and different architectures. That will lead

to good performances in the training set, meaning a low bias.

2. High Variance Error: validation set problem. More data, regularization

methods (L1, L2, and Dropout), as well as different architectures might solve

the issue.

3. Bias-Variance Trade-off : We may want to reduce bias error, keeping the

variance low. Or vice versa. In the deep learning era, large networks and big

data tend to be enough solutions for both bias and variation errors.

After fine-tuning is done, testing dataset (unseen data) is used to measure

an overall final performance of the network. The testing set is a data not used in

the deep learning model development but to evaluate its final performance.

With all those concepts on artificial intelligence (IA), machine learning (ML),

and deep learning (DL) now introduced, we can better understand the solutions

so far proposed for osteoporosis management on the literature regarding artificial

intelligence, and more specifically deep learning. In the next session we will point

out some approaches present on the literature and their specificity.

3.3 AI in the osteoporosis scenario

With such versatility and attractive results, AI has been extensively used

in medicine to tackle a variety of clinical tasks, as we mentioned in the beginning

of this chapter. In osteoporosis management scenario, the focus of the present

work, we can find many studies covering it [Wani e Arora 2020, Cruz et al. 2018].

CNNs were used for screening osteoporosis and osteopenia through lumbar and hip

radiography [Zhang et al. 2020, Yamamoto et al. 2020]. Hip fracture prediction was

performed for post-menopausal women using age, bone mineral density, clinical and
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lifestyle factors [Ho-Le et al. 2017]. Deep learning models were used to detect and

classify bone fractures in X-ray images [Lindsey et al. 2018, Pranata et al. 2019].

Machine learning algorithms were trained with bone vibroacoustic response signals

to assess patient bone quality [Scanlan et al. 2018]. MRI images were used for

training Machine Learning algorithms to predict frailty fractures [Ferizi et al. 2019].

In face of these findings that correlate dental panoramic X-rays (PAN) with

osteoporosis, some studies in the literature performed analyzes using PAN images

to improve osteoporosis detection [Lee et al., LING e YANG 2020, Lee et al. 2020,

Sukegawa et al. 123]. In [Lee et al.], the authors trained simple fast-forward

convolutional neural networks and used rectangular ROIs to extract the region below

teeth on PAN images (Figure 2.5 a)) to separate normal from osteoporotic patients

according to Klemetti’s criteria. Their algorithm trained very well without any

further procedure (e.g., transfer learning or data augmentation), and they achieved

a 98.5% accuracy. In [LING e YANG 2020], the authors claim to have used the entire

PAN images (Figure 2.5 b)) of 108 patients to train a deep learning architecture using

ImageNet pre-training to separate osteoporotic from normal subjects. This study

reportedly achieved 92.0% accuracy. However, the authors provided no information

regarding the patient demographics, data separation, deep learning architecture, or

the criteria used to define osteoporosis. That makes it hard to situate and compare

this study’s contributions for this task. In [Lee et al. 2020], the authors tested the

improvements of using pre-trained weights and partial fine tuning with a VGG-16

in the task of separating normal (including osteopenia) from osteoporosis patients.

In this study, they also used a rectangular ROI containing the mandible inferior

border (Figure 2.5 c)) to crop the original PAN images before feeding the deep

learning algorithms. They achieved 84.0% accuracy with the best model (VGG-16

+ transfer learning + partial fine-tuning). Lastly, in [Sukegawa et al. 123], the

innovation brought by the study relied in the usage of a single-side rectangular ROI

2.5 c)), the usage of deep learning ensembles (using Efficienet and ResNet variations)

and in the combination of deep learning models with clinical parameters (age, height,

and mass) in a mixed model. Despite the architectural improvements in the machine

learning strategies used there was no improvements in the accuracy (84.5%) for the

task if compared to [Lee et al. 2020].
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The present study assessed the osteoporosis risk using the EfficientNetV2

architecture pre-trained with ImageNet weights and trained with the mandible

segmentation extracted from PAN images. We investigated the osteoporosis risk

assessment looking at the PAN images in two different approaches: considering the

entire PAN image and the mandible-segmentation ROI. In the next chapter, we will

describe the entire workflow used to develop the automatic mandible segmentation

model used to extract mandible regions from PAN images. And in the Chapter

5 we will present our final thesis experiments, the AI models trained for assessing

osteoporosis risk using the mandible-segmentation ROI on PAN images. These next

two chapters contain methodology, results, discussion, and conclusion sessions to

fully cover our thesis goals.



Chapter 4

Deep-learning-based automatic
mandible segmentation algorithm

In this chapter, we will discuss in detail the workflow and experiments

performed for developing a deep-learning-based segmentation algorithm for

contouring mandible on dental panoramic X-ray images. This study was already

published. For more details check this reference [Machado et al. 2023].

4.1 The patient group and image dataset

Two image datasets were used: an in-house prepared dataset (IHD) and a

third-party publicly available dataset (TPD) [Abdi e Kasaei 2017]. The IHD was

prepared using 362 patients treated in the Dentistry Department of Hospital das

Clinicas da Faculdade de Medicina de Ribeirao Preto (HCFMRP), who at some point

needed PAN images for monitoring oral health. All those patients were imaged using

the Sirona scan ORTOPHOS XG-3D/Ceph 60-90 kVp. PAN images had 2432x1272

pixel resolution with 32-bit gray-level-intensity depth. To be included in the study

the subject should: be an oral patient from the referred healthcare institution, have

image(s) available and with diagnosis-quality, have clinical data available, and have

mandible segmentation performed by the specialist collaborator in the present study

(Figure 4.1, a). Forty-one patients were excluded given some file corruption that

caused some mismatch between PAN image and manual segmentation. A total of

321 patients were included. This sample contained a wide range of age [10.68 y.o.,

97 y.o.], representative gender distribution (190 men and 131 women) (Table 4.1),

and patients with varied clinical conditions (partial to complete endentulous mouth

38
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Figure 4.1: Dental panoramic X-ray, manual segmentation, and binary
segmentation mask for in-house dataset (IHD, a) and third- party dataset (TPD),
b). The binary mask sets 1 for mandible and 0 elsewhere.

and patients with implant). The segmentation was done by a dental radiologist

with more than 30 years of experience using the Segment Editor module of the

image processing software 3DSlicer (4.11 version) [Fedorov et al. 2012]. Some of the

patients included had two or more different PAN images that were also manually

segmented. We end up with IHD composed of 393 image/manual segmentation pairs.

All this data was used under the approval of the HCFMRP’s ethics committee.

A third-party dataset (TDP) originally used and published by Abdi et

al (2015, 2017) was considered. This dataset is composed of 116 PAN images

(1250x2900 pixels), each one containing two manual segmentations drawn by

different dental radiologists (Figure 4.1, b). Those images were acquired using

the Soredex CranexD digital panoramic X-ray scanner at Noor Medical Imaging

Center, Qom, Iran. The subjects belonging to this dataset cover a wide variety

Table 4.1: Age and gender description of in-house dataset (IHD) patients
included in the study.

Gender N Image
Pairs

Age at
image (y.o.)

Min Age
(y.o)

Max Age
(y.o)

(%)

Male 190 253 69.06 ± 13.48 10.68 97.00 59.19

Female 131 140 57.66 ± 12.49 20.00 91.17 40.81

Overall 321 393 64.89 ± 14.22 10.68 97.00 100
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of dental conditions from healthy, to partial and complete edentulous cases

[Abdi, Kasaei e Mehdizadeh 2015, Abdi e Kasaei 2017]. Those manual specialist

segmentations were fused into a single segmentation (as displayed in Figure 4.1, b)

through absolute voting criterion (i.e., the final segmentation image contains only

pixels that were marked as mandible regions on both specialists’ segmentations).

Those unified segmentation masks were paired with each respective PAN image.

TPD and IHD datasets were combined to train, validate and test our automatic

segmentation model.

4.2 The deep learning models

We considered two deep learning architectures to tackle this segmentation

problem: U-Net and HRNet architectures. U-Net is defined as an encoder-decoder

architecture that progressively reduces image resolution through convolutional

sequences and, later, up-samples it back to the original resolution. As it is

up-sampled backward, previous resolution/layer information (skip connection) is

added to recover image high-resolution details [Ronneberger, Fischer e Brox 2015].

HRNet (High-Resolution Net) has recently shown impressive results on semantic

segmentation, human pose estimation, and visual recognition in public benchmarks,

e.g., COCO dataset1. HRNet performs segmentation by passing the image through a

series of convolutional streams at the same time it keeps the high-resolution stream,

three lower-resolution streams in parallel, and exchanges information repeatedly

among all the resolution levels in a fully connected approach [Wang et al. 2020].

4.2.1 UNet

Figure 4.2, a) presents U-Net elements. U-Net was designed to receive a

256x512x1 input image and output a same-resolution image segmentation mask.

This architecture is composed of two main parts: The encoder and the decoder side.

The encoder is composed of 4 encoding convolutional blocks (ci, i = 1, 2, 3, 4) that

contain two same-padded, 3x3, convolution that doubles the number of channels

C (which is 32, at c1 ) and a 2x2 max-pooling that halves the input. The fifth
1https://paperswithcode.com/task/semantic-segmentation

https://paperswithcode.com/task/semantic-segmentation
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stage (c5) is a transition layer, it does not down-sample its input, but convolutes it

and doubles its number of channels. Every convolution block in the first half of the

model outputs two image blocks: the max-pooling-halved block and the image block

before max-pooling. This last block is the information saved from each level that

will be used in the second half of the model to recover high-resolution information

through skip connections. The second half of the model is the decoder side. It is

composed of four decoding convolutional blocks (ci, i = 6, 7, 8, 9). Each of those

blocks is composed of an up-sampling (transposed convolution) that doubles the

input resolution and halves the input number of channels; a concatenating layer

that adds the up-sampled block and the same-depth encoder-side image block (skip

connection); and two same-padded, 3x3, convolutions. The last image block is set

to have the same input resolution, but two feature channels. Each feature channel

brings the probability of each pixel belonging to class 0 (background) or 1 (mandible

segmentation mask).

4.2.2 HRNet

HRNet architecture is presented in Figure 4.2, b). It was implemented

according to the definitions in [Wang et al. 2020] with very few modifications.

Similarly to U-Net, the input image resolution is 256x512x1 pixels and the same

resolution for the output segmentation mask. The input image passes by two

successive down-sampling convolutions (followed by batch-normalization and ReLU

activation) that halves the initial resolution to 128x256, and then to 64x128 (1/4

of the initial resolution). At the same time, it increases the number of feature

channels to C/4, and then to C/2 (with C = 64). This 64x128x16 image block

is streamed through the main component of the HRNet architecture. The main

component is composed of four forward convolutional stages (si , i = 1, 2, 3, 4.) and

four parallel different resolution streams (rj, j = 1, 2, 3, 4.). Each stage comprises

four bottleneck-convolution blocks and an additional convolution to a transition

layer/block. The bottleneck comprises of a 1x1, 64-channel convolution, a 3x3,

16-channel convolution, and another 1x1, 64-channel convolution. The transition

layers are responsible for concatenating all the resolution streams’ output by adding

the channels but unifying the final resolution to the respective stream resolution
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level by up-sampling or down-sampling the stream’s previous output blocks. In the

first stage, there is only one stream, with only the 1/4 resolution (r1 ) stream and

C feature channels (Figure 4.2, b).

At the end of the first stage, a down-sampling convolution halves the

resolution doubles the number of feature channels (2C), and creates another stream

with the halved resolution. The same happens at the end of the second stage and

third stage. At the end of the fourth stage, we have four parallel streams with four

different resolutions. The outputs of those resolution streams are concatenated into

a final output head at the 1/4 resolution with 15C channels. This final head is up-

sampled twice to 1/2 resolution and C/2 channels, and then to the original 256 x

512 pixels resolution with two feature channels, similar to the U-Net model.

4.2.3 Models’ additional setting

Both U-Net and HRNet were trained using Adam optimizer and sparse

categorical cross-entropy loss function. The original implementation of HRNet

architecture uses C = 64, but considering the available computational resources,

it was used C=32. Next, in the originally proposed architecture, the up-sampling

operation is carried out as bilinear interpolation, using the nearest neighbor

interpolator. However, we decided to use a more sophisticated up-sampling

operation, the transposed convolution, as implemented in the TensorFlow software

package, for it offers a smoother up-sampled output.

4.2.4 Models’ Implementation

All the deep learning algorithms described here were implemented using the

TensorFlow library (2.8.0 version), an open-source library for deep neural networks

implementation (Abadi et al., 2016). Additionally, the CUDA library (11.6 version)

was used to accelerate the model training step through GPU parallel processing

(NVIDIA et al., 2020).
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Figure 4.2: U-Net (a) and HRNet (b) Architectures. Both U-Net and HRNet
3x3 convolutions, and HRNet bottleneck are same-padded layer operations. HRNet
bottleneck is a series os 1x1xC, 3x3xC/4, and 1x1xC convolutions, with C = 32.
Argmax is a function that reduces the 256x512x2 input to a 256x512x1 output by
keeping the layer index (0 or 1) holding the highest value for each pixel.
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4.3 Metrics

Three metrics that are frequently used to evaluate performances of

segmentation algorithms were considered: Accuracy (ACC), Dice Similarity Index

(DICE), and the Intersection over Union (IoU) measure. Those three metrics are

the most used ones for evaluating segmentation algorithm performances and will

allow us to compare our results with previous studies. Here is the mathematical

definition of those three metrics:

ACC(Predicted, True) =
TP + TN

TP + TN + FP + FN
(4.1)

DICE(Predicted, True) =
2TP

2TP + FP + FN
(4.2)

IoU(Predicted, True) =
TP

TP + FP + FN
. (4.3)

Predicted refers to the predicted segmentation mask and True to the true

specialist’s segmentation mask. It is important to recall that using deep learning

algorithms for image segmentation means predicting each pixel individually as

foreground or background. This idea is present in the rates used to calculate the

similarity indexes above: TP, true positive rate, the number of pixels correctly

classified as foreground; TN, true negative rate, the number of pixels correctly

classified as background; FP, false-positive rate, means the number of pixels

misclassified as foreground; and FN, false-negative rate, the number of pixels

misclassified as background. For ACC, DICE, and IoU metrics, 1 indicates the

perfect performance and 0 the worst one.

4.4 Dataset separation and data augmentation
(DA)

The 393 image/segmentation mask pairs were stratified for training,

validation, and testing models according to the following separation: 253/70/70

(64%/18%/18%, train/validation/test) sets. Following the same proportion, the

TPD dataset was separated in 76/20/20 (train/validation/test). The respective
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sets from both datasets were concatenated into a single train, validation, and test

datasets (329/90/90), as illustrated in Figure 4.3. Data augmentation (DA) is the

generation of extra and diverse data from a particular dataset to fit more complex,

generalized, and accurate models. We used three image augmentation operations

to generate extra data: horizontal and vertical random flip, random rotation, and

random contrast (this last one only over gray-scale images) (Figure 4.4). Every

image/segmentation-mask pair passed through the augmentation routine in such

a way that the mask experienced the same transformations of the image, except

for the random contrast. We applied data augmentation only over the training

dataset and generated three different transformed datasets (329 pairs each) that

were combined with the original image training dataset. Hence, the final augmented

training dataset contained 1316 image/segmentation-mask pairs. Validation (90)

and test (90) sets remained the very same original images for all the models tested

here since they represent the exact real-world images that deep learning algorithms

should learn to segment.

4.5 Model Improvements

Two strategies for improving the deep learning segmentation model outputs

were considered: The morphological refinement and the ensemble learning approach.

Both strategies were performed and evaluated over validation and test set.

4.5.1 Morphological refinement (MR)

Segmentation masks are binary image maps (0: background, 1: foreground),

as in Figure 1. Morphological operations are shape-based image processing steps

performed over binary label maps to change the label’s form, structure, borders,

etc. The most common ones are the erosion (reduces label map by its borders)

and dilation (increases label maps by its borders) operations. As an attempt

to correct minor imperfections, such as noisy borders, small-disconnected label

objects, and holes on the specialists’ segmentation and on the segmentations

predicted by the deep learning models, we proposed a morphological refinement

(MR) routine composed of two stages: I) island removal, i.e., detection and removal
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Figure 4.3: Datasets separation and combination. Total train (329), total
validation (90), total test set (90), a), and total augmented train (1316), b), are the
datasets used in the experiments with and without augmentation. Total Validation
and Total Test set (90 each), a), are composed of the very same images used to
validate and test all the models here developed.

Figure 4.4: Data augmentation operations applied over the original images. The
augmentation operations were applied simultaneously over each PAN image and
segmentation mask image. We augmented the original training dataset (a) three
times (b, c, and d) using random seeds which yielded three different augmented
datasets with 329 pairs each..
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of small-disconnected label objects; and II) border smoothing and hole filling, i.e., a

series of dilation and erosion operations to smooth out the predicted segmentation

masks’ borders and close label object holes. The morphological refinement was

implemented using the open-source SimpleITK package (2.1.1 version), a library for

digital image processing and analysis [Lowekamp et al. 2013]. MR was also used

on specialists’ segmentation maps, on both IHD and TPD, before training the deep

learning models.

4.5.2 Ensemble Learning

The ensemble is a technique used in machine learning when there are two

or more models available to solve a specific task. In semantic segmentation,

the segmentation models perform an individual prediction for every single pixel

(foreground or background). A set of n semantic segmentation models can be

combined into a single ensemble model. The final prediction for each pixel is a

decision made over the n predictions for each pixel. The rule can be an absolute

voting rule (a pixel is assigned as foreground if it has n foreground predictions),

a most voting rule (a pixel is assigned as its value according to the most frequent

prediction), or a sufficient voting rule (a pixel is assigned as foreground if it was

predicted as foreground a given number of times and above). After training the

individual segmentation models, we checked if we could benefit from an ensemble

model.

4.6 The experiments performed

A total of four segmentation experiments were performed combining

architectures and datasets: I) U-Net architecture using only the total dataset,

329/90/90 (train/validation/test) (Figure 4); II) U-Net architecture with the

augmented training set and total validation and test set, 1268/97/97. III) HRNet

architecture using only the original dataset, 329/90/90; IV) HRNet architecture

with the augmented training set, original validation, and test set, 1316/90/90. The

performance of the four trained models was evaluated with and without MR to verify

which model benefit from this additional image processing step. And V) an ensemble
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model composed of the best-trained models (I to IV) was built and evaluated on

total validation and test set. It was also checked if MR could improve the ensemble’s

final output segmentation.

4.7 Results

Numerical and visual results are presented for each of the four individual

models trained and for the composed ensemble. We developed four segmentation

models UNet, UNet + DA, HRNet, HRNet + DA. Those models were experimented

alone and with morphological refinement (MR). Latter, an ensemble model was

proposed with and without morphological refinement.

4.7.1 Deep learning segmentation only

Tables 4.2 presents the performances of the four models alone, without further

refinement. U-net and U-Net + DA models achieved the highest performances on

both validation and training sets, with U-Net achieving the highest ACC (98.19%),

DICE (97.27%), and IoU (97.21%) results on the test set. Table 4.2 also reviews

that all the models had excellent performances scoring above 95% in all metrics,

for validation and test sets. Data augmented models, U-Net + DA and HRNet +

DA, performed better on validation and test set than on training set. It happens

because the DA process introduces more complexity to the training set (as in Figure

4.4), naturally making validation and test set (real-world images) look "simpler". It

positively impacts the task goals since the validation and test set performances are

the most important ones since they define the model’s final quality. Further, for the

DA models here trained, validation and test sets are the ones that bring real-world

data type, distribution, and variability.

Figure 5 displays some segmentation results over two random PAN images

chosen from the test set, one from the in-house dataset (IHD) and the other from

the third-party dataset (TPD), to illustrate the quality of the results shown in Table

4.2, for each trained model. Every image/output segmentation pair displays its own

metrics results. Despite having all performances superior to 95% on validation and

test sets (for all three metrics), what should already be a relevant result, the other
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three models’ predictions still exhibit some imprecision.

Table 4.2: Performances of the four trained models for each dataset (training,
validation, and test set).

Performances (%)

Training Set Validation Set Test Set

Models ACC DICE IoU ACC DICE IoU ACC DICE IoU

U-Net 98.64 98.00 98.32 98.43 97.60 97.73 98.19 97.27 97.21

U-Net
+ DA

96.75 94.92 95.46 98.17 97.04 97.23 97.96 96.81 96.78

HRNet 98.45 97.81 97.63 98.01 97.02 96.48 97.73 96.65 95.87

HRNet
+ DA

96.15 93.94 93.80 97.65 96.26 95.70 97.60 96.27 95.61

ACC: Accuracy; DICE: Dice similarity index; IoU: Intersection Over Union; DA: Data
Augmentation. The orange highlight indicates the best performances for each metric and dataset.
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Figure 4.5: Segmentation output of the four algorithms for two images from the
test set, one from the in-house image dataset (IHD) and one from the third-party
image dataset (TPD). In Blue (a), the manual segmentation. In purple (b), the
predicted segmentation. In (c), the manual and predicted segmentation overlapped.
ACC (accuracy), DICE (dice similarity), and IoU (intersection over union)
metrics for each segmentation are displayed.
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Table 4.3: Performances of the four trained models for validation and test sets
after morphological refinement.

Performances (%)

Validation Set Test Set

Models ACC DICE IoU ACC DICE IoU

U-Net + MR 98.43 97.64 97.72 98.21 97.32 97.23

U-Net + DA + MR 98.20 97.11 97.26 97.99 96.88 96.83

HRNet + MR 98.06 97.21 96.52 97.78 96.81 95.89

HRNet + DA + MR 97.72 96.42 95.82 97.63 96.36 95.63

ACC: Accuracy; DICE: Dice similarity index; IoU: Intersection Over Union; DA: Data
Augmentation. MR: Morphological Refinement; All the models improved with MR.

4.7.2 Segmentation results after morphological refinement

Some other segmentation outputs exhibited small-disconnected label pieces,

small holes, and or noisy borders. Noisy borders were especially present on HRNet

based models. A morphological refinement (MR) routine, a post-processing step,

was tested to solve all those imprecisions on the output segmentations. MR was

conceived in two stages: I) an island removal routine to detect small and separated

amounts of pixels and to change them into background pixels (0). And II) a

sequence of two dilate and two erode (using ball structuring element with radius

= 5) operations to close holes and to smooth segmentation borders. Table 4.3

describes the numerical similarity metrics recalculated for validation and test sets

after applying morphological refinement on models’ segmentation outputs. Although

small, all the models had an improvement with MR. U-Net models improved up to

0.07%, while HRNet models had improved up to 0.16% if compared with results

before morphological refinement. HRNet + DA being the model that most benefited

with MR.

When looking at Table 4.3, the improvements made by MR, averaged over the

validation and training sets, look numerically small to justify MR. However, when
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we inspect some individual image cases it is easier to notice the positive impact

of such pre-processing step. Figure 4.6 illustrates four examples of PAN images,

two from IHD and two from the TPD dataset, that benefited from MR. In a), it is

easy to notice a mislabeled object region separated from the mandible. After MR,

this region disappears, an island removal effect and the similarity metrics point to

an improvement of 4.74 to 5.35% on DICE and IoU metrics, respectively. In b)

and d), it is also possible to notice the island removal effect. In b), however, the

similarity metrics point to a performance loss. This happens because the isolated

small label object is situated over the actual mandible region. Thus, removing it

implies reducing numerical similarity, while gaining, on the other hand, geometrical

homogeneity. In c), it is possible to verify another MR effect, the hole filling. A small

hole in the left superior side of the mandible region is filled with erosion operation,

thus improving similarity scores. In d), it is also possible to check how MR improves

noisy borders, which are mostly present on HRNet-based models.
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Figure 4.6: Examples of how morphological refinement improves the predicted
output of the developed algorithms. Island removal and smoothing border effects
can be observed in a), b) and d). In b), island removal causes a slight loss in
similarity metrics because the isolated piece is still placed over the actual mandible
region. In c), a small hole located at the left superior side of the mandible is closed
with MR. ACC (accuracy), DICE (dice similarity), and IoU (intersection over
union) metrics for each segmentation are displayed. IND: In-house image dataset;
TPD: Third-party image dataset.

4.7.3 The limitation of the single model approach

The UNet + MR model alone, the best model individually developed in

the present study, outperformed all the previously published studies’ results on

all similarity metrics available, it will be discussed in detail in the next session.

However, despite this impressive result, every model fails in some cases. Figure 7

brings three examples where UNet + MR model fails. As we can see in Figure 4.7,

when UNet + MR fails, the other models can offer better segmentation alternatives

(marked with green tick sign). It means that, when the UNet + MR’s output looks

too imprecise, one could count on the other models’ segmentation outputs for more

accurate segmentation. This is one of the advantages of developing many different
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Figure 4.7: Examples of alternative segmentations when the best-ranked
segmentation algorithm fails. In blue is the manual specialist’s segmentation. The
green outline is the segmentation contour after morphological refinement. ACC
(accuracy), DICE (dice similarity), and IoU (intersection over union) metrics for
each segmentation are displayed. The green tick sign points to the best alternatives
to the UNet + MR failed one.

segmentation models at the same time.

4.7.4 The ensemble approach

As we can observe in Figure 4.7, developing more than one segmentation

model offers the advantage of having additional segmentation guesses with precision

possibly superior to the best-ranked model. This fact is also the motivation for

the creation of ensemble models on machine learning. I.e., a collection of models

combined into a single model may achieve better performance than the individual
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Table 4.4: Performances of the ensemble model on total validation and test sets
with and without morphological refinement.

Performances (%)

Validation Set Test Set

Models ACC DICE IoU ACC DICE IoU

Ensemble 98.45 97.81 97.59 98.27 97.59 97.19

Ensemble + MR 98.45 97.82 97.59 98.27 97.60 97.18

ACC: Accuracy; DICE: Dice similarity index; IoU: Intersection Over Union; DA: Data
Augmentation. MR: Morphological Refinement; All the models improved with MR.

models. Here, we composed an ensemble with the four best individually trained

models: UNet + MR, UNet + DA + MR, HRNet + MR, HRNet + DA + MR

(Tables 4.3). To compute the final ensemble segmentation prediction, firstly, the

segmentation prediction for each one of those component models was acquired.

Then, it was counted the frequency (0 to 4) of each pixel was classified as foreground

across the four automatic segmentations. Lastly, the ensemble criterion was applied:

if a given pixel was marked as foreground two or more times, then, it was assigned

as foreground (1) in the final segmentation map, otherwise, it was assigned as

background (0), i.e., sufficient rule. This ensemble prediction was performed for

every image on the validation and test sets, and the similarity metrics were calculated

with and without using morphological refinement on the ensemble segmentation

output. The results are displayed in Table 4.4.

Both Ensemble and Ensemble + MR models outperformed the former

best-ranked model (UNet + MR) in ACC and DICE metrics. No considerable

difference was observed when using MR on the Ensemble model. Further, the

ensemble improvement was observed numerical and visually. The UNet + MR failed

segmentations in Figure 4.7 are considerably improved by Ensemble + MR (Figure

4.8). Ensemble + MR’s segmentation are the most accurate alternatives considering

the other four individual models (Table 4.3) and the Ensemble + MR (Table 4.4),

for the three UNet + MR failed segmentations in Figure 4.7.
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Figure 4.8: Ensemble + MR segmentation output for the UNet + MR
failed segmentations displayed in Figure 4.7. In blue is the manual specialist’s
segmentation. The green outline is the segmentation contour after morphological
refinement. ACC (accuracy), DICE (dice similarity), and IoU (intersection over
union) metrics for each segmentation are displayed.

4.8 Discussion

Assessing oral health through imaging studies has become both highly precise

and very common nowadays. Firstly, image scans experienced a quality enhancement

in the last decades, and, second, the relatively low-cost of such imaging scans (i.e.,

digital panoramic X-ray (PAN) scans) increased and facilitated their accessibility by

the general population. The facilitated access to oral images is fostering the usage

of such images in research that correlates oral structures’ conditions with systemic

diseases, which has been enhancing the already established perception of oral health

as a proxy for other body systems’ conditions.

The mandible is one of the oral structures that has been gaining special

attention since many studies had already associated some of its properties with

osteoporosis, a bone disease commonly under-diagnosed that affects the entire world

population [Allen et al. 2007, Alonso et al. 2011, Hastar, Yilmaz e Orhan 2011,

Kavitha et al. 2012]. Studies of such kind require precise manual mandible

segmentation and analysis, which is a time-consuming and training-required task.

In this context, automatic mandible segmentation (AMS) is highly desirable.

Indeed, AMS, as well as general automatic imaging analyzes, can avoid fatigue,

user-variability, and clinical-hours waste, and facilitate mandible-related complex

imaging analyzes to be translated into clinical practice.
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Dental panoramic is the mainstay imaging technique for dental health

monitoring [Watanabe, Watanabe e Tiossi 2012]. For that reason, most of the

studies relating to mandible segmentation are based on PAN analyzes, for example.

Nonetheless, PAN images offer many drawbacks regarding its imaging structures

definition. As they are two-dimensional images, they suffer from superimposed

anatomical structures. In addition, all panoramic radiographs suffer vertical and

horizontal distortions that vary according to the anatomical position, variations in

the positioning of the patient, and low contrast on some soft-to-solid structures

interface. Furthermore, the distance from the focal object to the center of rotation

of the X-ray scan systems cause the anterior region in panoramic radiography to

undergo greater magnification [Zarch et al. 2011]. All those facts make both manual

and automatic mandible segmentation a challenge.

Four studies on AMS on PAN images were found in the

literature [Abdi, Kasaei e Mehdizadeh 2015, Naik et al. 2016, Hasan et al. 2016,

Cha et al. 2021], Table 4.5. In the present study, we developed a set of deep

learning-based algorithms combined with morphological refinements (Table 4.5 and

4.6) that achieved highly accurate performances for mandible segmentation on dental

panoramic X-ray images outperforming all the results described on Table 4.5. The

Ensemble + MR model achieved the highest performance on the test set: 98.27%,

97.60%, and 97.18%, for ACC, DICE, and IoU metrics, respectively.

All the previously published studies on AMS suffer from limitations that

impoverish the generalization of their results, Table 4.5 . The absence of toothless

patients, or patients with extended toothless regions in (Abdi et al., 2015) among

the developing and tested patient group makes it unfitted for mandible segmentation

on elderly people, where this condition is quite common making this algorithm

unfitted for osteoporosis studies. (Hasan et al., 2016) and (Naik et al., 2016) do not

output a segmentation that contains the whole mandible bone structure, which

imitates geometrical feature extraction and imposes information losses for pixel

intensity-based features extraction given the absence of some regions (e.g., superior

left and right mandibular ramus). Lastly, (Cha et al., 2021) results have limited

generalizability due to the small number of patients included in the study. Although

the authors used the transfer learning technique to overcome such a small patient
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Table 4.5: Performances of the ensemble model on total validation and test sets
with and without morphological refinement.

Study Performances (%) Limitations

ACC DICE IoU Other

(Abdi et al., 2015) – 93.22 – 94.681 Rely on a limited library of
already segmented images; and
did not consider complex cases:
Toothless patients or patients
with extended toothless regions.

(Naik et al.,
2016)

– – – 90.002 The final output is not the
complete mandible structure
segmentation, but stripes
containing mandible and lower
jaw edges.

(Hasan et al.,
2016)

– – – 92.003 The authors used a qualitative
criterion to evaluate
segmentation. Besides, the
final segmentations included
teeth and did not include left and
right mandibular ramus.

(Cha et al., 2021) – – 89.80 – A too-short number of patients.
Final segmentation is a mix of
the maxillary sinus, maxilla,
mandibular canal, mandible,
normal tooth, treated tooth,
and dental implants rather than
mandible alone.

1Specificity. The authors also expressed their performances in Sensitivity (94.44%). 2The
performance metric used by the authors is called Success Counts. It is a measure very specific to
the study’s method. 3This metric refers to the Percentage of correctly segmented images out of
the total amount of images tested. It is a qualitative criterion and, for that reason, has not much
precision when describing the performance of segmentation algorithms.

dataset, they achieved only 89.80% on the IoU metric for mandible segmentation,

which is a relatively low performance when it comes to semantic segmentation.

Additionally, its final segmentation included simultaneously oral structures other
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than mandible, which is uninteresting for mandible-specific studies and leads to the

same limitation in (Hasan et al., 2016; Naik et al., 2016), an incomplete mandible

structure segmentation coverage.

All the limitations pointed out for the studies previously published were

solved by the segmentation algorithms presented here. The performances of our

final segmentation algorithms show an improvement of 5.05% and 7.28% on DICE

and IoU, respectively. Besides, our results were the only ones performed over PAN

images from two different scan sources, and the ones using the largest dataset (509

image/segmentation pairs) among the AMS studies, which implies larger robustness

to age, gender, oral condition variability, and scan-related image differences. Finally,

the development of five deeply trained models (considering the ensemble) allows the

calculation of five segmentations simultaneously, which can be useful when the best

algorithm (Ensemble + MR) may fail.

4.9 Conclusions

We presented a set of deep learning-based algorithms to perform automatic

mandible segmentation with an unseen accuracy and robustness that outperformed

all the previously published results and offers a definite solution for AMS: the whole

mandible bone structure outline, excluding teeth and other unwanted structures.

Further, the large image and patient dataset, which included a wide range of age

and gender representativeness, as well as the presence of extreme cases (e.g. toothless

patients, treated teeth, dental implant, etc.) and different image sources enforce the

robustness of the reported set of algorithms. Next, the segmentation performed by

the presented algorithm is perfectly suitable for mandible-specific imaging studies

allowing both geometric and pixel intensity-based features. In addition, the level

of excellence achieved by the proposed methodology contributes significantly to the

translation of automatic imaging analysis tools into the clinical practice improving

imaging analyzes reproducibility and reducing human-related variability over such

analysis and diagnosis.

The mandible segmentation model developed in this section was the key for

the innovation proposed in this study. It was used to extract mandible region of
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interest from dental panoramic images used in the osteoporosis risk assessment study.

In the next chapter, we will go over the last experiments of this work that investigate

the improvements of this disease risk assessment using a mandible-focused ROI to

train the artificial intelligence models.



Chapter 5

Diagnosing osteoporosis risk
through dental panoramic
radiography using artificial
intelligence models

In Chapter 2, we described in detail the aspects related to osteoporosis

disease and its context. Chapter 3 describes what is Artificial Intelligence (AI)

and how it has bee used in medicine as an auxiliary tool for diagnosis and prognosis

of many diseases as well as the description of the logic behind the deep learning

algorithms. Chapter 4 describes the end-to-end development carried to train an

automatic mandible segmentation model, so that we could extract mandible image

region form PAN images. In the present chapter, we will cover the final part of

this investigation: an AI-based osteoporosis risk assessment focused on the entire

mandible ROI extracted from dental panoramic radiography.

5.1 Patient group and image data

For this study, we curated 309 patients clinically followed at the Hospital das

Clinicas da Faculdade de Medicina de Ribeirao Preto (HCFMRP) that had both

DXA exams and PAN images acquired and stored in the hospital registries. The

inclusion criteria: I) to have DXA exam for femoral-neck and spine site (Fig 5.1 a)

and b)), and at least one dental panoramic radiography acquired(Fig 5.1 c)); II)

the PAN image must have been acquired in period of at most six months before or

after the DXA exams. Patients were excluded from the study when: I) their DXA

61
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Figure 5.1: Set of patient exams used in the present investigation. In a), it is the
femur neck (hip region) DXA exam carried to measure the bone mineral density
(BMD) and from that the T and Z-scores. In b) is the same DXA exam, but for
the lumbar spine site (L1-L4). They are both Acquired at the same day. In c), we
have the dental panoramic X-Ray acquired in a period of at most 6 months apart
from DXA.

were incomplete, i.e. it did not contain BMD measures, or T-scores were missing for

either femur-neck or spine sites; II) The PAN and DXA were acquired with more

than six months apart. No gender or age restrictions were considered during either

patient including or excluding processes. Some patients had more than one set of

PAN and DXA exams eligible for the study as they were followed up for prolonged

period of time and were considered more than once in this study. Every eligible pair

of PAN image and DXA exams were counted as a different sample. The table 5.1

describes all the patient data considered in this study.
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Table 5.1: Complete description of the patient data used for osteoporosis risk
assessment.

Gender N Samples Age at DXA
(y.o.)

Min. Age
(y.o.)*

Max. Age
(y.o.)*

(%*)

Male 207 257 69.61 ± 13.97 20.0 90.00 67.63

Female 102 123 55.37 ± 12.96 22.00 88.70 32.37

Overall 309 380 65.00 ± 15.18 20.00 90.00 100

*The Min. Age, Max. Age and Percentage (%) were calculated for all the samples
(pair of DXA and PAN exams) included.

The DXA exams were acquired with two different machines. An Hologic

4500 W densitometer (Hologic Inc., Bedford, MA, USA) was used in the acquisition

of 333/380 exams. And a GE Prodigy Densitometer (General Electric Company,

Milwaukee, WI, USA) was used to acquire another 47/380 DXA exams. All the DXA

exams were acquired at the femoral neck and for the lumbar spine (L1-L4) meaning

that for each patient there were two bone density measures, two T1-scores, and two

bone health diagnosis. All the PAN images were acquired in the same radiography

scan used in the study presented in Chapter 3, the Sirona scan ORTOPHOS

XG-3D/Ceph 60-90 kVp, and the PAN images were acquired at a 2432x1272 pixel

resolution with 32-bit gray-level-intensity depth.

The major innovation of the present study relates to performing experiments

to assess osteoporosis risk using only the mandible image region extracted from the

original PAN images. To that end, we used the segmentation models developed in

the first phase of this study, which were presented in chapter 3 and was recently

published [Machado et al. 2023]. We extracted the mandible region for all the 380

PAN images included in the study creating a same-size data set composed only of

mandible-segmented image regions (Figure 5.2). Same size images but containing

only the mandible.
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Figure 5.2: Mandible image region extraction. In a), The original PAN image.
In b) The same PAN image, but containing only the mandible.

5.2 Disease risk: the outcome investigated

The goal of this study is to opportunistically access the osteoporosis risk in a

patient using a PAN image of such patient, either with the raw PAN exam or only

the mandible image region extracted from the image. So, before stepping into the

experiment we need to explicitly define our outcome variable.

All the patients had DXA assessments for two sites: femoral-neck and lumbar

spine. From now on, we are going to refer to those sites as femur and spine. For

each site, this exam outputs a bone mineral density measure (BMD, g/cm2) and

the equivalent T-score. The T-score was used in accordance with WHO criteria

(Table 2.2) to get a bone health diagnosis: healthy, osteopenia, and osteoporosis.

Osteopenia and osteoporosis diagnosis were grouped in a single group called disease

risk. This last one would contain all patients who would be considered either with

osteoporosis or in its intermediate state. This approach allowed us to treat this

investigation a binary classification problem: 0 - healthy, 1 - disease risk1. Having a

DXA for two sites means that we can have two bone health diagnosis for the same

patient and they can diverge. Table 5.2 bring the distribution of patient-samples

per diagnosis/site.

1The advantages of such an approach will be further analyzed in the results and discussions
session.
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Table 5.2: Complete description of the patient data used for osteoporosis risk
assessment.

DXA Site Healthy Osteopenia Osteoporosis Disease Risk*

Femur 142 193 45 238

Spine 164 116 100 216

*This is not a WHO diagnosis but rather the grouping of two sets of patients with
osteopenia and osteoporosis diagnosis so that we can use a binary classification
approach and simplify the problem.

5.3 The experiments

Since we had two BMD measures (i.e., two diagnoses) for each patient, the

deep learning experiments were set to achieve femur spine diagnosis separately. In

this way, we performed four experiments to evaluate our thesis:

1. Separate healthy from disease-risk patients, according to Femur diagnosis,

using the original PAN image;

2. Separate healthy from disease-risk patients, according to Femur diagnosis,

using the mandible image;

3. Separate healthy from disease-risk patients, according to Spine diagnosis,

using the original PAN image;

4. Separate healthy from disease-risk patients, according to Spine diagnosis,

using the mandible image;

As they are stated, the goal and the context of those experiments are

self-explained. We intend to investigate how well deep learning algorithms can

classify patients in healthy and osteoporosis disease risk (binary problem) according

to both femur and spine diagnosis (Table 5.2.In this way, we can evaluate which site’s

bone health (femur or spine) appears to be more correlated with the PAN image

findings. By performing the experiments with original PAN and with mandible

region only, we can investigate if we observe not just the general correlation between
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pan image and osteoporosis diagnosis, but if this bone health information is present

majorly in the mandible.

5.3.1 EfficientNetV2: The deep learning model used

For the current investigation, we opted to use the EfficientNNetV2 model for

all the experiments here performed [Tan e Le 2021]. It is a convolutional neural

network model that was published in 2021 that has scored 86.8% accuracy in

ImageNet dataset and 98.7% in CIFAR-10 dataset for image classification task2.

This model is promptly available in the TensorFlow model library version 2.10,

what makes it extremely practical to set up and run experiments.

TensorFlow also brings pre-trained weights built-in for all the models in its

model library. All the EfficientNetV2 model family (small, medium, and large) have

pre-trained weights for the ImageNet dataset. It means that our models will make

use of the knowledge learned in a different larger dataset. We had to make a few

adaptations, though. As the the classification task in the ImageNet dataset is a

problem of 1000 classes, the entire set of weights and model cannot be used. We

remove the head of the model so that we can adapt to our task. This is the gist of

transfer learning.

Figure 5.3 describes the architecture of the model we used for our

experiments. The first component is the EfficientNetV2-L (with image net

pre-trained weights) without ImageNet classification task head. The second part

is the a fully convolutional planar network to treat the EfficientNet output to an

output that fits the task (binary classification). Lastly is the output layer, a single

neuron that outputs a number in the range [0,1], which is the probability of the

input to belong the class 1 (disease risk).

5.3.2 Data separation, data imbalance, and data
augmentation

To understand the experimentation that we are going to present, we need to

pay especial attention to how we perform data separation, i.e., the number of samples

in train, validation, and test set. It is important to stress that we are managing a
2thttps://paperswithcode.com/paper/efficientnetv2-smaller-models-and-fasterext

URhttps://paperswithcode.com/paper/efficientnetv2-smaller-models-and-fasterL
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Figure 5.3: Deep learning experiment architecture used in this study. The
pre-trained model’s output is passed through a planar series of dense layers, and a
single number is output.

very imbalanced data (Table 5.2), i.e., the number of samples in each class are quite

different for both Femur and Spine diagnosis. We have much less image samples in

the healthy group. Henceforth, an effort will be carried out to separate the data

in a way that all the training datasets contain same amounts of each class, which

implies managing the data imbalance.

The data separation is illustrated in Figure 5.4. We defined the proportion

76%/12%/12% for train/validation/test sets. Initially, we performed data separation

for healthy and disease risk groups separately to later reunite them. Further, we

over-sampled an amount of image samples for the class with less images (healthy

group, check Table 5.2). Next, we applied an augmentation transformation (same

as in Figure 4.4) over those oversampled images. After, we added the augmented

data back to the respective sets. Finally, we added each class set to have a final

train, validation, and test sets.

The process illustrated in Figure 5.4 refers to Experiment 1. It is the data

separation according to Femur diagnosis using original PAN images. The same

approach was used to separate the data and correct class imbalance in the other three

experiments. Table 5.3 brings the data separation per image set (train, validation,

and test) and per diagnosis in both original and balanced data distribution.
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Figure 5.4: Data separation, oversampling and augmentation for Experiment I
- Femur diagnosis using complete PAN images. The other experiments used the
same data separation scheme.

5.3.3 Metrics and hyper-parameters

Four metrics were used to evaluate the performance of the model. Accuracy

(ACC), balanced accuracy (BACC), precision (PRE), and recall (REC). Following
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Table 5.3: Data separation for the Femur and Spine diagnosis distribution.

Dataset Diagnosis Train Validation Test

Classes∗ → 0 1 0 1 0 1

Original Femur 107 180 17 29 18 29

Balanced 180 180 29 29 18 29

Original Spine 124 164 20 26 20 26

Balanced 164 164 26 26 20 26

* The classes refer to the study groups: 0 - Healthy; 1 - Disease Risk. The data
was balanced using both oversampling and data augmentation technique as
illustrated in Fig. 5.4.

the mathematical formulation of each one of them:

ACC(ytrue, ypred) =
TP + TN

TP + TN + FP + FN
(5.1)

BACC(ytrue, ypred) =
1

nclasses

nclasses∑
n=1

TPn

TPn + FNn

(5.2)

PRE(ytrue, ypred) =
TP

TP + FP
. (5.3)

REC(ytrue, ypred) =
TP

TP + FN
. (5.4)

ypred refers to the predicted diagnosis by the model and ytrue is the patient’s

diagnosis according to the respective site DXA. nclasses refers to the number of

classes in the problem (2). The component rates are defined as follows: TP, true

positive rate, the number of samples/images correctly classified as disease risk group.

TN, true negative rate, the number of samples correctly classified as healthy ; FP,

false-positive rate, means the number of samples misclassified as disease risk ; and

FN, false-negative rate, the number of samples misclassified as healthy. For ACC,

BACC, PRE, and REC metrics, 1 indicates the perfect performance and 0 the worst.
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Balanced Accuracy3 is an important metric to use here given the reality of

data imbalance in the present study. BACC gives us a measure of how well the model

is doing without any bias coming from more frequent classes, which tend to be easier

to predict. Accuracy, when compared to BACC, tells us if the model is succeeding

better in one class or another. If BACC ≈ ACC, means the algorithm is performing

similarly on both classes. If BACC < ACC, means the model is predicting better

for the most frequent class, while if BACC > ACC, the model must be predicting

better in the least frequent class.

For all those experiments, the Adam optimizer and the binary-cross-entropy

loss function was used. All models were trained for 400 epochs and the best model

was selected by checking the validation accuracy (ACC) metric. During training,

we could only calculate accuracy (ACC), since the data imbalance was corrected

with data augmentation (Figure 5.4), ACC had same effect as BACC. However, in

the evaluation stage, we used BACC to evaluate the performance on test set and

compare the results for all the experiments.

3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_
accuracy_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
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5.4 Results

In this section, we are going to present the performances achieved by the

deep learning models for the Femur and Spine diagnosis using complete PAN and

mandible region image. Next, Table 5.4 brings the results for all the four experiments

described in session 5.3.

Let’s analyze the results per diagnosis. We will Look at Femur first (Exp. 1

and 2), Table 5.4. We can see that the deep-learning model obtained the same ACC

(0.723) using Complete PAN and Mandible Image and that the BACC is higher

for complete PAN (Exp. 1). However, for Exp. 1, BACC > ACC, which means

that the model performed better in the less frequent class (0, healthy) than in the

more frequent and more important class, the disease risk group (1). It can also be

observed by comparing the PRE and REC for Exp. 1 and 2. As we can see, Exp.

2 achieved higher REC (0.830) than Exp. 1 (0.660). It means that Exp. 2’s model

can detect more disease risk patients, making it better than Exp. 1’s model.

Now Looking at Spine diagnosis, we see that Exp. 4, in which we use

mandible image to separate healthy from disease risk patients, produced much better

Table 5.4: Deep Learning models’ performances for osteoporosis risk assessment.

Exp. # Diagnosis
site

Image Epochs∗ BACC ACC PRE REC

1 Femur Complete
PAN

213 0.744 0.723 0.860 0.660

2 Femur Mandible
Image

367 0.691 0.723 0.750 0.830

3 Spine Complete
PAN

62 0.556 0.543 0.630 0.460

4 Spine Mandible
Image

36 0.735 0.739 0.770 0.770

*This value points to the epoch in which the model achieved the highest validation
set BACC/ACC score during training. All the models were trained for 400 epochs.
BACC: Balanced Accuracy; ACC: Accuracy; PRE: Precision for class 1 - Disease
risk; REC: Recall for class 1 - Disease risk.
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results (BACC: 0.735, ACC: 0.739, PRE: 0.770, REC: 0.770) than the model trained

with Complete PAN image (BACC: 0.556, ACC: 0.543, PRE: 0.630, REC: 0.460),

for every metric used. Also, Exp. 4 achieved the highest Accuracy (0.739) among

the four experiments performed.

Another important result is the epoch in which the best result was achieved.

We can observe that the Deep-learning algorithm achieved the best performance for

Spine diagnosis faster (62 and 36 epochs) than for Femur Diagnosis (213 and 367

epochs). And that, for Spine diagnosis, Mandible Image experiment achieved the

best results faster (36 epochs) than Complete PAN image experiment (62 epochs),

while for Femur diagnosis, the opposite was observed.

Those results point to a correlation between the mandible region image and

the BMD levels assessed in both Femur and Spine sites, since the performances

for the models trained with Mandible Image were better than the performance of

the models trained with the entire image. Also, this correlation is better observed

for the Spine site, since the deep-learning models achieved their best performances

much faster for Spine diagnosis.

In the next session, we will discuss the presented results in contrast with

thesis questions and the results already published on the diagnosis of osteoporosis

using dental panoramic X-ray and deep learning models.
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5.5 Discussions

Dental Panoramic X-ray (PAN) imaging is proving to be a very promising

image modality to assess osteoporosis condition. Many studies have correlated oral

bone conditions, easily observed in PAN images, with BMD level changes, henceforth

the osteoporosis

diagnosis [Watanabe, Watanabe e Tiossi 2012, Klemetti, Kolmakov e Kröger 1994,

Franciotti et al. 2021, Valentinitsch et al. 2019, Ollivier et al. 2013,

WATANABE et al. 2008, Watanabe et al. 2022]. Mandible is one of the oral bones

that has gained considerable interest from researchers as such correlations continue

to be observed. Some studies have used PAN images in combination with deep

learning models to perform osteoporosis diagnosis. Let us briefly review the main

findings of such studies.

In a preliminary study, Lee et al (2019) trained convolutional neural networks

(fully convolutional without pre-training) using rectangular ROIs extracted from

the region below teeth on PAN images to separate old, post-menopausal (72.2 ±
8.5 y.) osteoporotic female from young, healthy (32.8 ± 12.1 y.) female patients

[Lee et al.]. In this study, the osteoporosis diagnoses were obtained using Klemetti

criteria [Klemetti, Kolmakov e Kröger 1994]. It achieved 98.5% accuracy for its best

model. The study group is very clearly separated not just by diagnosis, but also by

age and restricts itself to female group. The cropping strategy they choose is very

well directed by the Klemetti criteria that evaluate erosion in the inferior mandibular

cortex (border). It means that the deep-learning algorithms are reproducing a

classification that is intrinsically present in the image. It brings no new knowledge

in the scene of osteoporosis analysis through PAN images since the classification

criteria is already visible in the image. The algorithms in this study study are likely

just reproducing oral radiologists diagnoses rather than uncovering any underlying

relations between PAN images and osteoporosis disease.

Ling et al (2020) used the entire PAN images as inputs to their deep learning

models to separate osteoporotic from normal subjects [LING e YANG 2020]. This

study reportedly achieved 92.0% accuracy using transfer learning and leave-one-out

cross validation approach. The authors used only 108 patients in their entire
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analysis, but provided no further information on patient demographics, data

stratification nor the deep learning architecture used. The absence of such

information leaves no space for comparing their results with the ones available in

the literature.

Lee et al (2020) tested a variety of deep-learning models with dental

panoramic X-rays to achieve osteoporosis diagnosis according to WHO criteria

[Lee et al. 2020]. The patients were separated into non-osteoporosis (healthy and

osteopenia) and osteoporosis patients. The study does not explain which site was

used for BMD assessment. The authors evaluated the improvements obtained

by using transfer learning on the osteoporosis diagnosis task. The best model

achieved 84.0% ACC and 90.0% REC using transfer learning. Further, they

investigated which region of the image ROI they used contained the most relevant

information for deep learning algorithms to make their decisions. According to

authors, the right and left mandibular cortex were the most relevant part of the

images for the correct predictions, which is aligned with many previous studies.

However, they used only a rectangular PAN ROI containing only the mandibular

cortex for training the algorithms and producing an importance-based feature map.

Additionally, their conclusions were based on randomly spotted cases rather than an

average importance-based feature map of over all the predictions, what makes their

conclusions less generalized. Nevertheless, the image regions pointed by this study as

the most correlated with the osteoporosis (border of the mandibular cortical bone) is

in accordance with other studies that had defined radiomorphometric indices based

on those same regions, e.g., mandibular cortical index and Klemetti classification.

Sukegawa et al (2022) assessed osteoporosis diagnosis through pan images

using EfficientNet and ResNet deep learning models alone and as an ensemble

combined with clinical parameters (age, weight, and body mass index (BMI))

[Sukegawa et al. 123]. In this study, the authors also used a manually drawn

rectangular cropped region that covers the mandibular cortical bone. The

osteoporosis classification was obtained from Spine and Hip DXA using the WHO

criteria (Table 2.2). The group was divided in non-osteoporosis and osteoporosis,

with osteopenia being included in the non-osteoporosis group. The models achieved

83.2 and 71.6% (ACC and REC) for image-only single model approach and 84.5
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and 74.9% (ACC and REC) for ensemble combined with clinical features. This

study brings the innovation of combining clinical data with the AI model features

in an ensemble approach to perform osteoporosis if compared to [Lee et al. 2020].

However, despite the considerable improvements, the final performance is basically

the same (84.5% against 84.0%).

The present study brings the possibility of an evaluation using the

entire mandibular bone imaged in a dental panoramic X-ray as its greatest

innovation. The automatic mandible segmentation model developed in Chapter

4 ([Machado et al. 2023]) provides us with an image with same dimensions as the

original one but containing only the mandible bone. This segmentation model was

used to extract the mandible for every patient image in the present study. The

EfficientNetV2-L was used to separate patients with risk of disease from those who

did not have any risk of disease, according to two different DXA analyzes: femur-neck

and Spine. We tested the diagnosis performance of the algorithms for both complete

PAN images and the mandible-only image. The best models we trained achieved

73.9% ACC, and 83.0% REC. In our experiments we could also observe that the

models trained with mandible image achieved the best results, what indicates that

using mandibular segmentation ROI offer gains in comparison to use the entire PAN.

Further, since it contains the mandible image portion captured by the rectangles

used in the previous studies ([Lee et al., Lee et al. 2020, Sukegawa et al. 123])

and other important regions such as the oblique line and mandibular ramus

[Watanabe et al. 2022], it can be a better alternative to rectangular ROIs specially

as it can be automatically generated. We also identified a slightly better correlation

between the Spine diagnosis and the mandible, since the algorithms converged much

faster for Spine diagnosis. In fact, this is another originality brought by the present

analysis.

The short number of image-diagnosis samples was one limitation faced in this

research. Also, for the effect of a precise comparative between our results/approach

and the previous studies, we would have to reproduce the rectangular ROI extraction

and trained the same models under the same conditions so that we could directly

compare the ROI approach. However, this procedure would demand more time

and would possibly fall out of the scope of this study. An important difference
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on our study is that it focused on diagnosing the risk of the disease rather than

the disease alone. It means that our model can opportunistically identify patients

with osteoporosis or osteopenia. Those could be forwarded for DXA exams. This

approach leads us to a less precise tool but with a higher recall.
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5.6 Conclusions

We presented a carefully and detailed PAN-image mandible-focused analysis

for assessing the risk of osteoporosis using artificial intelligence. This study showed

that the mandible segmentation improves the accuracy of deep learning models

against the approach that uses the entire image. No previous study in the literature

carried out an investigation considering the entire mandible bone ROI on PAN

images. Further, this mandible segmentation was obtained automatically and

contains the same mandible rectangular ROIs used in previous studies with the

addition of other important regions for bone health assessment, such as the oblique

line and the mandibular ramus. Those facts make this approach a better alternative

to the rectangular ROIs. Certainly, a future study would complement our findings

by collecting more image data, performing hyper-parameter tuning for a better

architecture, ensemble combination, and exploring architectures that mix clinical

parameters (e.g., age, gender, weight, etc.) and the deep learning outcomes. Those

improvements can potentially yield performances superior to the ones published so

far for the osteoporosis diagnosis or for the osteoporosis risk assessment task.
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