
CECÍLIA ROMARO

ESTUDOS EM MODELOS DE REDES CORTICAIS
STUDIES IN CORTICAL NETWORK MODELS

Ribeirão Preto
2020



CECÍLIA ROMARO

ESTUDOS EM MODELOS DE REDES CORTICAIS
STUDIES IN CORTICAL NETWORK MODELS

Tese apresentada à Faculdade de Filosofica

Ciências e Letras de Ribeirão Preto da Univer-

sidade de São Paulo para obtenção do Título

de Doutor em Ciências.

Ribeirão Preto
2020



CECÍLIA ROMARO

ESTUDOS EM MODELOS DE REDES CORTICAIS
STUDIES IN CORTICAL NETWORK MODELS

Tese apresentada à Faculdade de Filosofica

Ciências e Letras de Ribeirão Preto da Univer-

sidade de São Paulo para obtenção do Título

de Doutor em Ciências.

Área de Concentração:

Física Aplicada à Medicina e Biologia

Orientador:

Antônio Carlos Roque da Silva Filho

Co-orientador:

José Roberto Castilho Piqueira

Ribeirão Preto
2020



     

Romaro, Cecília
    Studies in Cortical Network Models. Ribeirão Preto, 2020.
    178 p. : il. ; 30 cm

    Tese  de  Doutorado  apresentada  à  Faculdade  de
Filosofia, Ciências e Letras de Ribeirão Preto / USP. Área
de concentração: Física Aplicada à Medicina e Biologia.
    Orientador: Roque da Silva Filho, Antônio Carlos
    Co-orientador: Castilho Piqueira, José Roberto. 

   1. Somatosensory cortex model.  2. Mean-field potential.
3. Metastability  behavior.       4. Rescaling  neuron  network.
5. Phase transition.



I dedicate this work to all people
who, in some way, act for a better
world.



ACKNOWLEDGMENTS

The author is the recipient of PhD scholarships from the Brazilian Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES, grant number 88882.378774/2019-01).

The author is thankful to NeuroMat for the scientific and stimulating environment; Profes-
sor Piqueira, who had a contribution in completion of this work beyond his imagination; her
friend, “academic and life assistant” Angela, for always telling her the truth; her friend and
“husband” Julia Maria, who stood by her side through parties and tears; and the author’s sister,
“big little” Cinthia, for actually being her sister.



“I’m late! I’m late! For a very important
date! No time to say hello, goodbye! I’m
late! I’m late! I’m late!”
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RESUMO

Esta tese apresenta-se em cinco capítulos-artigos resolvendo de forma simples problemas e
perguntas não triviais na neurosciencia computacional.

O primeiro capítulo apresenta uma reimplementação do modelo de Potjans-Diesmann (PD)
para a microcircuitaria cortical local e uma técnica de redimensionamento do número de neurônios
do modelo capaz de manter as probabilidades de conexões e o comportamento da atividade da
rede mesmo quando redimensionada para 1% do tamanho original.

O segundo capítulo, baseado no potencial de campo médio, explica formalmente o método
de redimensionamento e apresenta um novo método de corrigir e compensar a atividade dos
neuronios da borda em redes com extensão espacial sem introduzir conexões toroidais e/ou
oscilaçôes.

O terceiro capítulo introduz extensão espacial ao modelo PD, soluciona o problema de
borda e estuda a resolução espacial (topográfica) da atividade da rede como um reflexo da
resolução estrutural.

O quarto capítulo, baseado em transição de fase e metaestabilidade, inovadoramente estuda
o falso estado estacionário e o tempo de duração da atividade em redes que não recebem entrada
externa forçada capaz de mantê-las ativas.

O quinto capítulo contém a caracterização da rede de neurônios do córtex somatossensorial
primário do rato em termos do levantamento estatístico dos parâmetros. Em seguida, um mod-
elo do córtex somatossensorial utilizando o neurônio estocástico de Galves-Löcherbach (GL) é
construido com base nos parâmetros levantados. No fim do capítulo, apresenta-se um método
para substituição de neurônios determinísticos do tipo integra-e-dispara com vazamento por
neurônios GL em modelos de redes de neurônios.

Palavras-Chave – modelagem do córtex somatossensorial, potencial de campo médio, metaesta-
bilidade, redimensionamento de rede neuronal, transição de fase.



ABSTRACT

This thesis consists of five chapter-articles, each proposing simple solutions to nontrivial
questions and problems in computational neuroscience.

The first chapter presents a reimplementation of the Potjans-Diesmann (PD) model of the
local cortical microcircuitry, and a rescaling method for the number of neurons in the model
that is capable of maintaining both the connection probabilities and the behavior of the network
activity even when rescaled to 1 % of original size.

The second chapter, based on mean field potential, formally explains the scaling method
and presents a new method to correct and compensate for the activity of boundary neurons in
networks with spatial extension without introducing toroidal connections and/or oscillations.

The third chapter introduces spatial extension to the PD model, solves the boundary prob-
lem, and studies the spatial (topographic) resolution of the network activity as a consequence of
the structural resolution.

The fourth chapter, based on phase transition and meta-stability, innovatively studies the
false steady state and activity lifetime in networks that do not receive forced external input to
keep them active.

The fifth chapter contains a characterization of the primary somatosensory cortex network
of the rat in terms of a statistical survey of the parameters. It also presents a model of the
somatosensory cortex using the stochastic Galves-Löcherbach (GL) neuron, which was con-
structed based on the somatotopic parameters raised. At the end of the chapter, a method for
replacing deterministic leaky integrate-and-fire neurons by GL neurons in neural network mod-
els is presented.

Keywords – somatosensory cortex model, mean-field potential, metastability behavior,rescaling
neuron network, phase transition.



INTRODUCTION

Understanding the brain is challenging, given both its complex mechanisms and inaccessi-

bility. Every year new pathways, channels, proteins, and other mechanisms are discovered, but

how these components interact at the system level remains a mystery (Markram et al., 2015; Yin

and Wang, 2016; Lisman and Raghavachari, 2006; Diekman et al., 2013; Antunes et al., 2016).

A strong mathematical research line appeared in the early XX century to explain the neuron

behavior. The Hodgkin-Huxley (HH) (Hodgkin et al., 1952) and leaky integrate-and-fire (LIF)

(Lapicque, 1907) models are some of the most classic and oldest mathematical models of neu-

rons, and pools of these neurons were put together in attempts to study their collective behavior.

However, it was only with the advancement of computational resources that the study of neuron

networks was able to develop further (De Schutter, 2008). In silico simulation studies started

to provide a quantitative framework for integrating disparate pieces of evidence from in vivo

and in vitro experiments into coherent predictive models that can be used to investigate brain

function.

Biologically detailed computational modeling became an excellent research tool to explain

brain mechanisms and to propose supporting experiments in vivo (Markram et al., 2015; Mazza

et al., 2004; Bower and Beeman, 2012). At the same time, simplified neurons became a study

subject to understand the dynamics of neuron networks (Galves and Löcherbach, 2013; Pot-

jans and Diesmann, 2014a; Brunel, 2000). These techniques are being largely adopted by re-

search groups worldwide such as the Allen Institute for Brain Science (AIBS) (Jones et al.,

2009) (https://alleninstitute.org/what-we-do/brain-science/), the Hu-

man Brain Project (HBP) (Markram, 2012) (https://www.humanbrainproject.eu/

en/), the NEST initiative (Gewaltig and Diesmann, 2007) (https://nest-initiative.

org/), and the Research, Innovation and Dissemination Center for Neuromathematics (Neuro-

Mat) (https://neuromat.numec.prp.usp.br/). In this scenario, three neural simu-

lators stand out today:

The NEURON simulator (Carnevale and Hines, 2006) (https://neuron.yale.edu/

neuron/) allows modeling of networks of neurons with detailed neuronal morphologies, and

different ion channels and neurotransmitter receptors. Developed at Yale University, NEU-

RON is the most widely used simulator of its type, both in university labs and large research

groups, including AIBS and HBP. It is an excellent software for the construction and simula-

tion of biologically-detailed neuron networks, although it requires a large amount of machine

https://alleninstitute.org/what-we-do/brain-science/
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/
https://nest-initiative.org/
https://nest-initiative.org/
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processing time.

The NEST simulator (Morrison et al., 2005; Gewaltig and Diesmann, 2007) (https://

nest-simulator.org/) allows modeling of large networks of simplified neurons. It does

not allow the direct introduction of morphology, ion channels and neurotransmitter receptors,

but allows parallel and distributed simulation inboard build up in order to save machine time.

The Brian simulator (Goodman and Brette, 2009) (https://briansimulator.org/)

has inboard differential equation solvers and other facilities to simulate spiking neural networks.

Brian is an easy install simulator, given it is a Python package. It is not as fast as NEST, but it is

more plastic. Neither Brian nor NEST allow the direct introduction of morphology or physical

characteristics of neurons.

Although great advancement has been achieved, it seems that computational resources still

pose a limiting factor to simulate, process, and understand detailed models of large networks

(Markram et al., 2015; Towns et al., 2014). This limit is being pushed further and further away

as computational resources become more powerful and cheaper, and this both supports and

inspires the work done in this thesis.

This thesis starts by presenting a re-implementation of the Potjans-Diesmann (PD) model

(Potjans and Diesmann, 2014a) in NetPyNE/NEURON (Dura-Bernal et al., 2019b; Carnevale

and Hines, 2006) (http://www.netpyne.org/), a high-level Python interface to the NEU-

RON simulator. The PD model, originally implemented in NEST (Gewaltig and Diesmann,

2007), is an eight-cell population model which reproduces the neuronal connectivity under a

1 mm2 area of cortical surface in full scale (the model has 77,169 neurons). The PD model

generates spontaneous activity with population-specific firing rates similar to those observed

experimentally (de Kock and Sakmann, 2009; Sakata and Harris, 2009; Swadlow, 1989). The

re-implementation of the PD model in NetPyNE/NEURON allows the use of more detailed

neuron models with multicompartmental morphologies and multiple realistic biophysical ion

channels. Additionally, some analyses can be provided automatically.

Due to the required memory and processing power to re-implement the PD model in NEU-

RON (Carnevale and Hines, 2006), a rescaling method was developed to scale down the model

to variable levels, down to the lowest level of 1%. The method allows to decrease the number

of connections to 10−4 of the original number still maintaining characteristics of network ac-

tivity behavior compatible with experimental data: mean population firing rate, synchrony and

irregularity (Romaro et al., 2018, 2020a).

The re-scaling method introduced here can be applied not only to the PD model but to

random neuron network models in general, e.g. the Brunel model (Brunel, 2000). This method

https://nest-simulator.org/
https://nest-simulator.org/
https://briansimulator.org/
http://www.netpyne.org/


is further explored in chapter 2, and both a detailed mathematical explanation based on mean

field potential and a list of the method limitations are presented there. Based on the re-scaling

method, networks with spatial extension are considered in chapter 2 and a boundary solution

method is introduced. The boundary solution method is able to correct and compensate the

lack (or excess) of connections at the boundary in order to reestablish the correct activity of

boundary-neurons and core-neurons.

The boundary solution method was developed because it was needed in the construction

of a model of the primary somatossensory cortex exhibiting somatotopy, the main subject of

Chapter 3.

Somatotopy is the topographic organization of somatic sensory pathways – touch and pro-

prioception – in the primary somatosensory cortex (S1, located in the post-central gyrus) (Bear

et al., 2020). That is, the mapping of neighboring areas of the skin to neighboring areas in the

cortex, e.g. two sensors in the skin close together activate in the cortex two groups of neurons

that are close together. Many models have been proposed to reproduce and explain the mecha-

nisms and effects of the topographic organization in S1, including the re-organization properties

following some lesion (Ramachandran, 1998; Bear et al., 2020). A property of the somatotopic

maps is the direct proportionality between the cortical area allocated to represent a body sur-

face and the sensitivity of this surface. In other words, the higher the sensitivity of a body area,

the higher the cortical area allocated to process it (Bear et al., 2020). However, none of these

models explored the influence of the connectome on the resolution of the topographic map in

S1.

In chapter 3, adjustments are introduced in the PD model in order to adapt it to describe

the somatosensory cortex and allow a study of the role of network structure and activity on

the topographic organization and spatial resolution of inputs. These adjustments include the

introduction of spatial locations for the neurons and consideration of distance-dependent con-

nectivity to integrate anatomical and physiological data. This leads to a model that accounts for

the topographic pattern of connections. The objective is to shed some light on the question of

how the parameters of the topographic connections relate to the local activity patterns in specific

cortical layers.

Work on cortical network models raised other questions that were studied during the period

of this doctorate and resulted in chapters 4 and 5.

One of these questions is how to characterize the lifetime of active states in a network in

the absence of external input. In the context of the Galves-Löcherbach (GL) model (Galves and

Löcherbach, 2013), André has recently proved (André, 2019b) that for finite one-dimensional



lattices of continuous GL neurons with hard threshold rate function (Ferrari et al., 2018), in

the sub-critical regime where the leak rate γ is smaller than a critical value γc the lifetime

of the active state is finite but the exit time from this state is exponentially distributed. In

chapter 4, a computational version of the finite lattice model considered by André is described

together with extensions of the model to two- and three-dimensional square lattices and linear

and sigmoidal rate functions. The simulation studies confirm the rigorous results obtained by

André and provide evidence that they also hold in the extended settings considered (Romaro

et al., 2019).

Another question is related to the common practice of using data from a mix of different

cortical areas and animals in the construction of a model for a specific cortical area from a

given animal. For example, the PD model uses data from the primary somatossensory, motor

and visual cortices of rat and rabbit (Potjans and Diesmann, 2014a). To address this problem, in

chapter 5 a statistical survey of parameters from the connectome of the primary somatosensory

cortex of the rat is made. This allowed the construction of a model of the primary somatosensory

cortex of the rat with GL neurons.

References are presented at the end of each chapter, except for introduction references,

which are presented in the References section. Chapter 1 was developed in collaboration with

Fernando Najman and Salvador Dura-Bernal. Chapter 4 was developed in collaboration with

Fernando Najman and Morgan Andre.



CONCLUSION

This thesis focused on modeling neuronal networks and some mathematical tools and pro-

prieties needed to do so.

The thesis proposed new approaches to known, yet limited, topics such as rescaling the net-

work size while maintaining the first and second order statistics with the objective of decreasing

machine time or increasing network details, and solving the boundary problem without loss of

activity for spatially extended networks with topographic pattern of connections (Chapters 1

and 2).

A correlation between spatial resolution in activity and the standard deviation of the Gaus-

sian distribution was utilized to propose a scheme for the construction of a network with topo-

graphic pattern of connections. This is the subject of Chapter 3.

The thesis also shows that the metastable phase transition depends on the spike-waste rate,

and not on the network connectivity pattern (Chapter 4).

Lastly, the thesis presented a network model for the primary somatosensory cortex based

on the GL stochastic neuron (Galves and Löcherbach, 2013). The network model was able to

reproduce the biological average firing rate per layer, self-sustained activity without external

input, and two activity states and the shift between them by a one-step interference in Layers

L4e and L5e. This network also presented asynchronous activity and neurons with regular and

irregular behaviour inside the same layer.
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