• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.59.2021.tde-06122021-154654
Document
Author
Full name
Julio Godeli Neto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2021
Supervisor
Committee
Poletti, Martin Eduardo (President)
Cardoso, Simone Coutinho
Cunha, Diego Merigue da
Marques, Paulo Mazzoncini de Azevedo
Title in Portuguese
Mamografia digital por dupla energia usando simulação Monte Carlo: otimização da quantificação da morfologia de microcalcificações e componentes do tecido mamário
Keywords in Portuguese
Dupla-energia
Mamografia digital
Otimização
Quantificação
Simulação
Abstract in Portuguese
A técnica de mamografia por dupla energia, que consiste na combinação de imagens mamográficas convencionais, pode ser utilizada para realçar, suprimir e quantificar características da mama, que indiquem precocemente a formação de carcinomas. O objetivo deste trabalho é o estudo e a otimização de imagens mamográficas geradas por dupla energia, para a verificação e quantificação de microcalcificações e frações de tecido glandular. As simulações computacionais das imagens produzidas por um mamógrafo digital completo, foram realizadas a partir do código PENELOPE (Penetrarion and Energy Loss of Positrons and Electrons) adaptado. O modelo geométrico implementado permite considerar diferentes espectros, modelos de mama e detectores de imagem. As adaptações do código PENELOPE para geração de imagens e cálculos de grandezas dosimétricas foram devidamente validadas. As imagens simuladas passaram por um pré-processamento para correção de espalhamento, o qual foi capaz de reduzir até 95% da contribuição dos feixes espalhados. O ruído propagado pelas imagens combinadas foi estudado e corrigido através da aplicação de um filtro mediana. Esta técnica foi capaz de reduzir até 60% do ruído propagado e a melhor ponderação de doses para a combinação das imagens foi encontrada. Após isso, as imagens mamográficas já processadas, foram devidamente combinadas e otimizadas. Para esta etapa, fantomas de calibração foram simulados. Com enfoque no realce de microcalcificações, foi encontrada uma região ótima de combinações de energias, centralizada em 28 e 44 kVp. Já para a acurácia de quantificação, foi encontrada uma região ótima centralizada em 28 e 75 kVp, com a qual, foi obtida uma exatidão superior à 93%. Já para a fração glandular, praticamente todas as combinações de energias se mostraram ótimas, com uma acurácia superior à 90%.
Title in English
Digital dual-energy mammography using Monte Carlo simulation: optimization of the quantification of microcalcifications morphology and breast tissue components
Keywords in English
Digital mammography
Dual-energy
Optimization
Quantification
Simulation
Abstract in English
The dual-energy mammography imaging technique, which consists of the combination of two conventional mammographic images, can be used to enhance, suppress and quantify breast characteristics that indicate early cancer formation. This work aims to study and optimize the dual-energy images for the verification and quantification of microcalcifications and glandular tissue fractions. Computer simulations of images generated by a digital mammography system were performed using an adapted PENELOPE code (Penetrarion and Energy Loss of Positrons and Electrons). The implemented geometric model allows to consider different spectra, breast models and image detectors. The PENELOPE code adaptations for image generation and calculations of dosimetric quantities were properly validated. The simulated images underwent a pre-processing for scattering correction, which was able to reduce up to 95% of the scattered beam contribution. The noise propagated in the combined images was studied and corrected through the application of a median filter. This technique was able to reduce up to 60% of the propagated noise and an optimum dose weighting for the combination of images was found. After that, the mammographic images, already processed, were properly combined and optimized. For this step, calibration phantoms were simulated. Focusing on the microcalcifications enhancement, an optimal region of energy combinations was found, centered at 28 and 44 kVp. As for the quantification accuracy, an optimal region centered at 28 and 75 kVp was found, in which, was obtained an accuracy higher than 93%. For glandular fraction estimation, practically all energy combinations proved to be excellent, with an accuracy greater than 90%.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-01-07
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.