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RESUMO 

 

KONELL, H.G. Avaliação da U-Net na Segmentação de Tratos de Curta Extensão: 

Transferência para Rotina Clínica de Imagens em Ressonância Magnética. 2023. 

Dissertação (Mestrado em Física Aplicada à Medicina e Biologia) – Faculdade de Filosofia, 

Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto – SP, 2023. 

Estudos em conectividade estrutural cerebral requerem estratégias de segmentação de 

tratos precisas. A rede neural U-Net é altamente reconhecida pela sua capacidade em tarefas de 

segmentação de imagens, em especial no delineamento de tratos de longa extensão utilizando 

dados de alta qualidade de Imagens Ponderadas em Difusão (DWI). Contudo, tratos de curta 

extensão, associados a diversas doenças neurológicas, colocam desafios específicos à essas 

redes, especialmente com aquisições de dados em ambientes clínicos. 

O objetivo deste trabalho foi avaliar a capacidade da rede U-Net na segmentação de 

tratos de curta extensão utilizando dados de DWI adquiridos em diferentes condições 

experimentais. Para isso, foram conduzidos três treinamentos diferentes com um total de 350 

indivíduos saudáveis e 11 tratos da substância branca, incluindo comissura anterior, posterior e 

hipocampal, fórnix e fascículo uncinado. No primeiro experimento, o modelo foi treinado 

exclusivamente com dados de alta-qualidade do Projeto de Conectoma Humano (HCP). O 

segundo experimento foi focado em imagens de indivíduos saudáveis adquiridos em um 

hospital local, representando uma típica aquisição de rotina clínica. No último experimento, 

uma abordagem híbrida foi empregada, combinando imagens de ambos os conjuntos de dados. 

Por fim, o melhor modelo foi testado em 10 pacientes com epilepsia do hospital local e em 10 

indivíduos saudáveis adquiridos em um scanner de uma empresa diferente.  

Os resultados do terceiro experimento mostraram notável aumento na performance do 

modelo em comparação com os outros experimentos. Especificamente, os tratos curtos do 

conjunto de dados do hospital local alcançaram pontuações Dice entre 0.60 e 0.75. Intervalos 

similares foram obtidos para os dados do HCP no primeiro experimento, e um aumento 

substancial para os dados do hospital local que nesse experimento apresentaram pontuações 

entre 0.37 e 0.50. Esse progresso se manteve mesmo aplicando o método em dados de pacientes 

com epilepsia e em scanners com diferentes aquisições.  

Esses resultados indicam que utilizar conjuntos de dados de diferentes fontes, junto com 

uma padronização das imagens, aumenta significativamente a capacidade de generalização da 

rede neural. É importante, contudo, reconhecer que essa performance está intrinsicamente 

ligada à composição dos conjuntos de dados de treinamento, validação e teste. Além de que, 

tratos pequenos e com maior nível de curvatura adicionam maior complexidade devido sua 

estrutura particular. Apesar dos resultados promissores, é necessário ter precaução ao extrapolar 

essa aplicação a dados adquiridos em circunstâncias distintas, seja em dados de maior qualidade 

ou analisando tratos de curta ou longa extensão.   

 

Palavras-chave: 1. Segmentação da Substância Branca, 2. Tractografia, 3. Aprendizado 

Profundo, 4. Imagens ponderadas em difusão, 5. Tratos de Curta Extensão 

 

 

 

 



ABSTRACT 

 

KONELL, H. G. Assessment of U-Net in the Segmentation of Short Tracts: Transferring 

to clinical MRI routine. 2023. Dissertation (M. Sc. In Physics Applied to Medicine and 

Biology) – School of Philosophy, Scienced, and Letters of Ribeirão Preto, University of São 

Paulo, Ribeirão Preto – SP, 2023. 

Accurately studying structural connectivity requires precise tract segmentation 

strategies. The U-Net network has been widely recognized for its exceptional capacity in image 

segmentation tasks. It has demonstrated remarkable results in segmenting large tracts using 

high-quality diffusion-weighted imaging (DWI) data. However, short tracts, which are 

associated with various neurological diseases, pose specific challenges, particularly when 

considering the DWI data acquisition within clinical settings. 

The objective of this work was to evaluate the capability of the U-Net network in 

segmenting short tracts using DWI data acquired in different experimental conditions. To 

accomplish this, we conducted three different types of training experiments with a total of 350 

healthy subjects and 11 white matter tracts, including anterior, posterior, and hippocampal 

commissure, fornix, and uncinated fasciculus. In the first experiment, the model was 

exclusively trained using high-quality data from the Human Connectome Project (HCP) dataset. 

The second experiment focused on images of healthy subjects acquired from a local hospital 

dataset, representing a typical clinical routine acquisition. In the third experiment, a hybrid 

training approach was employed, combining images from the HCP and local hospital datasets. 

Finally, the best model was also tested in unseen DWIs of 10 epilepsy patients of the local 

hospital and 10 subjects acquired on a scanner from another company. 

The outcomes of the third experiment demonstrated a notable enhancement in 

performance when contrasted with the preceding trials. Specifically, the short tracts within the 

local hospital dataset achieved dice scores ranging between 0.60 and 0.75. Similar intervals 

were obtained with HCP data in the first experiment and a substantial improvement compared 

to the scores of 0.37 and 0.50 obtained with the local hospital dataset at the same experiment. 

This improvement persisted when the method was applied to diverse scenarios, including 

different scanner acquisitions and epilepsy patients. 

This outcome strongly indicates that the fusion of datasets from various sources, coupled 

with resolution standardization, significantly fortifies the neural network's capacity to 

generalize predictions across a spectrum of datasets. It's crucial, however, to recognize that the 

performance of short tract segmentation is intricately linked to the composition of the training, 

validation, and testing data. Moreover, the segmentation of shorter and intricately curved tracts 

introduces added complexities due to their intricate structural nature. Although this approach 

has shown promising results, caution is essential when extrapolating its application to datasets 

acquired under distinct experimental conditions, even when dealing with higher-quality data or 

analyzing long or short tracts.  

 

Keywords: 1. White Matter Segmentation, 2. Tractography, 3. Deep Learning, 4. 

Diffusion Weighted Images, 5. Short Tracts 
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1 INTRODUCTION 

 

This section offers an overview of the essential concepts that underpin the development 

of this research. It begins by delving into brain anatomy, with a specific emphasis on the 

intricate structure of white matter (WM) and its fiber connections. We explore magnetic 

resonance imaging principles, focusing on diffusion-weighted imaging, detailing the 

acquisition process and the methods used to generate a representation of WM fibers through 

signal modeling, a technique known as tractography.  

Furthermore, this chapter serves as a gateway to essential concepts within the realm of 

artificial intelligence, machine learning, and deep learning. It intricately explores the 

intersection of neural networks in both biological brains and computer systems, providing 

valuable insights into their operations. Particular attention is directed towards the convolutional 

neural networks, U-Net, which hold a central role in our research endeavors. This chapter 

concludes by framing the research problem and providing a final contextualization for our 

study. This comprehensive groundwork sets the stage for a deeper exploration of our research 

objectives and methodologies. 

 

1.1 BRAIN AND WHITE MATTER  

Our perception, cognition, interpretation, and response to the world around us are all 

orchestrated by the brain – an intricate masterpiece within our body. This complex structure can 

be partitioned into three fundamental units: the brainstem, the cerebellum, and the cerebrum 

(Figure 1 – a). The brainstem serves as a vital link connecting the spinal cord to the brain, and 

regulates many automatic body functions, including heart rate and breathing.  Nestled in the 

lower posterior region of the brain, the cerebellum assumes the role of motor control, 

coordination, and balance. The cerebrum stands as the largest and most sophisticated 

component, intricately intertwined with intellectual activities and governing a wide spectrum 

of body functions (BEAR; CONNORS; PARADISO, 2015). 
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Figure 1 - (a) The brain divisions: cerebrum, brain steam and cerebellum. (b) The four lobes of the brain: frontal 

lobe, parietal lobe, occipital lobe, and temporal lobe. (c) Visualization of brain gray and white matter in coronal 

view. 

 
Source: Adapted from (BEAR; CONNORS; PARADISO, 2015). 

The cerebrum is partitioned into left and right hemispheres by a profound fissure known 

as the great longitudinal fissure. These hemispheres are interconnected through a specialized 

nerve fiber bundle called the corpus callosum.  Within each hemisphere, four principal lobes—

frontal, parietal, temporal, and occipital—carve out specific domains of functionality (Figure 1 

– b).  

The frontal lobe takes the reins of voluntary movements, speech, and intellectual 

functions. Parietal lobes shoulder the responsibility of perception and interpretation of sensory 

inputs. Temporal lobes play a pivotal role in memory consolidation, auditory processing, and 

organizational tasks. Lastly, the occipital lobes diligently oversee all aspects related to visual 

processing. Also, in the inner brain, we have some structures, including the hippocampus, 

constituting the basal nuclei which coordinates the information exchange across various brain 

regions. Surrounding and protecting these intricate brain components, the cerebrospinal fluid 

(CSF) fills the cavities and ventricles (BEAR; CONNORS; PARADISO, 2015).  
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The brain's surface is a marvel of intricate wrinkles, displaying sulci, fissures, and 

elevated regions nestled within the troughs known as gyri. This remarkable expanse is the 

cerebral cortex, commonly referred to as gray matter, which encompasses neuron cell bodies, 

dendrites, myelinated and unmyelinated axons, glial cells, and capillaries. 

Beneath this cerebral cortex, serving as an intricate connective web linking diverse 

cortical regions, resides a white-colored region aptly labeled the "white matter" (Figure 1 – c). 

While sharing a composition akin to that of gray matter, their distinction lies in the ratio of cell 

bodies to myelinated axons. Gray matter predominantly houses cell bodies, bestowing the tissue 

with its characteristic gray hue. In contrast, WM is rich in myelinated axons, which imparts the 

tissue its distinctive white coloration. 

Enveloped in myelin, bundles of axons form the WM, assuming a central role as a vital 

conduit for transmitting neural signals across diverse regions of gray matter. Axons sharing 

similar destinations tend to converge, forming expansive bundles aptly referred to as WM tracts. 

These tracts can be classified according to their connectivity in three main groups of fibers: 

projection, association and commissural fibers as represented in Figure 2 (WAKANA et al., 

2004; WYCOCO et al., 2013). 

Figure 2 - Representation of the three main groups of white matter fibers: association fibers, commissural fibers, 

and projection fibers. 

 
Source: (MARIEB; HOEHN, 2012). 
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Projection fibers serve as the bridges connecting the cortex with lower brain regions and 

the spinal cord. This class of fibers neatly divides into efferent fibers, responsible for conveying 

information away from the cortex, and afferent fibers, tasked with ferrying sensory data towards 

the cortex. Among the notable examples are the corticospinal tract, corticothalamic tract, 

auditory radiation, and thalamic radiation. 

Association fibers, on the other hand, forge connections between discrete cortical 

regions within the same cerebral hemisphere. These fibers exhibit a spectrum of ranges, 

spanning both long-distance and short-range varieties, with the latter encompassing intriguing 

U-shaped configurations. Notable among the extensive pathways are the cingulum, arcuate 

fasciculus, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus, while the 

shorter pathways comprise the fornix and uncinate fasciculus. 

Concluding this intricate neural network are the commissural fibers, often referred to as 

transverse fibers. This network of fibers plays an indispensable role in seamlessly connecting 

the two hemispheres of the brain. Noteworthy exemplars within this category include the corpus 

callosum, anterior commissure, posterior commissure, and hippocampal commissure 

(BULLOCK, 2022). 

 In general, the long-range connections are comprised of commissural, projection, and 

association fibers that connect distant brain regions and facilitate the transfer of multimodal 

sensory information from subcortical nuclei to sensory and association cortices. Whereas short-

range connections are comprised of fibers that connect neighboring cortical regions within 

lobes, presenting higher levels of curvature than other tracts (SALADIN, 2012; OYEFIADE et 

al., 2018). In a more quantitative way, the differentiation between long, medium, and short 

fibers can be made by is length size, with short fibers presenting a length < 40 mm and long 

fibers >150 mm (BAJADA et al., 2019).  

 

1.1.1 SHORT TRACTS AND NEUROLOGICAL DISORDERS 

The short fibers connect brain areas in close physical proximity with each other, linking 

WM regions as the uncinate fasciculus, that connects the frontal and anterior temporal lobe, the 

anterior commissure, that links the two olfactory bulbs, the fornix, connecting the hippocampus 

to the mammillary bodies, and posterior commissure, linking the hemispheres of the brain in 

the mesencephalon (MAGRO et al., 2012; CATANI et al., 2002). The short-range fibers are the 

majority of WM connections and have been associated with several neurological and 
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psychiatric diseases, such as schizophrenia, Alzheimer’s disease, epilepsy and multiple 

sclerosis (ANAND; DHIKAV, 2012; YOSHINO et al., 2020; WU et al., 2022).  

The anterior commissure (AC) is a vital interhemispheric WM structure in the brain, 

located in the anterior region of the third ventricle. It facilitates communication between the left 

and right cerebral hemispheres, particularly in olfactory. Abnormalities or lesions in the AC 

have been associated with various neurological and psychiatric conditions (MOON et al., 2008). 

For example, in schizophrenia, it has been linked to symptoms like disorganized thinking and 

hallucinations, highlighting its role in interhemispheric communication deficits (ÇAVDAR et 

al., 2021). In epilepsy, structural issues in the AC can contribute to an increase of seizures 

(FELON et al., 2021). 

The posterior commissure (PC), located at the epithalamus, is related to visual and 

pupillary reflexes, including the pupillary light reflex and near reflex (OZDEMIR; 2014). 

Clinical studies and animal models have highlighted its significance, particularly in cases of 

abnormalities or lesions leading to conditions like light-near dissociation in pupils and visual 

impairments due to midbrain lesions. Beyond its physiological role, the PC also holds 

importance as a landmark in neuroanatomy, used for quantitative assessment of brain 

morphology (PRAKASH; NOWINSKI, 2006; CHOI et al., 2013). Its precise location serves as 

a valuable reference point for neurosurgeons and radiologists when navigating the brain, 

contributing to safer and more accurate surgical interventions and diagnostic procedures. 

The hippocampal commissure (HC) connects the two fornixes. Its function is intimately 

linked to memory, emotional and learning processing. The hippocampus relies on this 

commissure to facilitate the exchange of information between its right and left hemispheric 

counterparts. Studies have revealed that disruptions or damage to the HC is related to memory 

disorders, like Alzheimer's disease, and neuro-immunological diseases, as Multiple Sclerosis 

(ANAND; DHIKAV, 2012; HEINE et al., 2020). In Alzheimer's, the degeneration of these 

connections can contribute to profound memory impairments and cognitive decline. 

Furthermore, abnormalities in the HC have been associated with epilepsy, where its role in 

synchronizing and regulating neural activity is compromised, potentially leading to seizure 

generation (SPENCER et al., 1987; KALAIVANI; SUNDARESWARAN; 2019).  

The fornix (FX) is a bundle of WM fibers that connects the hippocampus to various 

regions of the brain. By facilitating the communication between these regions, FX takes part in 

the formation and retrieval of memories, as well as the regulation of emotions. Studies have 

unveiled its involvement in memory disorders such as Alzheimer's disease, where FX 
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degeneration can contribute to severe memory deficits and cognitive decline (THOMAS; 

KOUMELLIS; DINNEN, 2011). Similarly, abnormalities or damage to this tract have been 

associated with epilepsy, potentially leading to seizures by disrupting the synchronization of 

neural activity (KUZNIECKY et al., 1999; CONCHA et al., 2010). 

The uncinate fasciculus (UF) serves as a WM tract that connects the frontal and temporal 

lobes of the brain, being associated to language and emotional processing. Alterations in the UF 

have been linked to language impairments, such as aphasia, which can significantly impact an 

individual's ability to communicate effectively (HARVEY et al., 2013). Additionally, 

disruptions in this tract have been associated with mood disorders, like schizophrenia, 

depression, and posttraumatic stress disorder (PTSD), and dementia diseases, such as 

Alzheimer’s and Parkinson’s (KUBICKI et al., 2002; YASMIN et al., 2008; BHATIA et al., 

2018; KOCH et al., 2017; DI TELLA et al., 2020).  

 

1.2 NUCLEAR MAGNETIC RESONANCE AND DIFFUSION IMAGING 

Magnetic Resonance Imaging (MRI) stands as a remarkable imaging modality that 

grants us the capacity to visualize and delve into an array of soft tissue attributes within the 

body. The foundation of this potent technology lies at the intersection of three fundamental 

physics principles: nuclear, magnetic, and resonance.  

The "nuclear" facet refers to the manipulation of the nucleus in the hydrogen atoms, i.e., 

1H. This manipulation transpires within the framework of a high-intensity magnetic field, 

compared to earth magnetic field, typically 1.5 or 3 Tesla in the clinical scanners. The second 

facet, "magnetic," stems from the magnetic field itself, which exerts its influence upon the 

atomic nuclei. It's within this magnetic milieu that the protons of hydrogen atoms align and 

interact. 

Resonance, the third key component, comes to the need to synchronize the 

radiofrequency of an oscillating magnetic field with the precessional frequency of certain spins 

nuclei within the tissue (Larmor frequency). These pulses perturb the protons from their initial 

equilibrium magnetization state. The protons will then return to their equilibrium magnetization 

state releasing energy that is detected by the receiver coil (MR signal) and compose the Nuclear 

Magnetic Resonance (NMR) phenomenon.  

One last key component to be able to reconstruct the image is the magnetic field 

gradients. This is because, besides we obtain NMR signal, we still do not have the spatial 

information to allocate a position to the different signals. The gradients have a linear spatial 



23 

 

pattern to codify the magnetization frequency according to the spatial position. For that, pairs 

of coils are placed in each spatial direction (x, y, z) having identical properties, however they 

are applied in distinct moments and in different directions. With these gradients is possible to 

select the slice plane (selection gradient), alter the phase of spins (phase gradient) and encode 

the frequency signal (readout gradient) as demonstrated in Figure 3.  

Figure 3 - Representation of spatial, phase, and frequency encoding in a typical MRI sequence. 

 

Source: (MANDAL, 2006). 

Local magnetic interactions are characteristic of each tissue, producing different rates 

of magnetization recovery. Commonly referred as relaxation times, this magnetization can be 

decomposed in longitudinal (T1) and transverse (T2) processes. 

The T1 relaxation refers to the recovery of magnetization along the longitudinal 

direction, and the T2 relaxation characterize the loss of phase coherence in transverse plane. 

These relaxation times are characteristic for each tissue based on the local magnetic 

interactions. Tissues with fast molecular motion, such as CSF, blood and edemas, present longer 

T1 and T2 relaxation times. Soft tissues, for example gray and white matter, fat and muscle 

have shorter T1 and T2 values, producing the basic contrast mechanism of MR.  

  Not only are relaxation times mechanisms for contrast in MRI, but there are also other 

factors that affect the detected signal intensity. These factors include motion, occurring at 

various scales, from the macroscopic level, such as in angiography, to the microscopic level, as 

seen in diffusion-weighted imaging (DWI). 

Water is present in all our body, but principally in our brain, and to traverse the intricate 

pathways of our tissues, it employs the diffusion. This phenomenon involves the molecular and 
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particulates motion within a medium, driven by the random energy of thermal agitation, often 

referred to as Brownian movement. In 1885, it was formulated the Fick’s first law of diffusion, 

were states that the diffusive process drives from higher concentration to areas with lower 

concentration, defining the diffusion coefficient (equation 1). 

𝐹 =  −𝐷
𝜕𝐶

𝜕𝑥
      (𝐸𝑞. 1) 

With the negative sign highlighting that the flow is in the opposite direction to the 

increasing concentration and D is the diffusion coefficient. If there is no preferential diffusion 

direction (isotropic diffusion), the global behavior can be described as the derivate of the first 

law in time: 

𝜕𝐶

𝜕𝑡
= 𝐷 (

𝜕2𝐶

𝜕𝑥2
+ 

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
) = 𝐷∇2𝐶      (𝐸𝑞. 2)   

Which is equivalent to the Gaussian distribution, were P is the probability of a 

displacement X at time t: 

𝑃(𝑋, 𝑡) =
1

√𝐷4𝜋𝑡
exp (−

𝑋2

4𝐷𝑡
)      (𝐸𝑞. 3) 

However, if instead of describing the process in terms of a concentration, we describe 

as a probability of finding a particle in a position in time, the mean square dynamic displacement 

will take the Gaussian form: 

〈𝑅2〉 = ∫ 𝑅2𝑃(𝑅, 𝑡)𝑑𝑅 = 6𝐷𝑡
+∞

−∞

      (𝐸𝑞. 4) 

In which R is the net vector distance travelled by the molecule in time t. If we also 

consider the random nature of the process, we will obtain that for n random displacements of 

constant length 𝜉 in an interval time 𝜏: 

〈𝑅2〉 =  6𝐷𝑡 =
𝑡

𝜏
𝜉2    → 𝐷 =

𝜉2

6𝜏
      (𝐸𝑞. 5) 

This description explains the relationship of the diffusion coefficient and the 

displacement of the molecule at a given time t (TOFTS, 2018). However, for molecules within 

a living tissue other factors has to be taken in count in order to interpret these measurements. 
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Through the Stokes-Einstein relation (equation 6) we understand that the diffusion also depends 

on temperature (T), viscosity of the solution (𝜂), and hydrodynamic radius of the molecule (𝑅), 

as depicted in equation 6 (SEIBERLICH et al., 2020). 

𝐷 =
𝑘𝑏𝑇

6𝜂𝑅
       (𝐸𝑞. 6) 

𝑘𝑏 is the Boltzmann’s constant. Within our brain, the isotropic diffusion characterizes 

the behavior of CSF, a relatively homogenous fluid. However, the brain's architecture comprises 

several elements—such as membranes and axonal fibers—that introduce constraints to 

molecular movement. As a result, molecules develop directional preferences, leading to a 

phenomenon where the diffusion becomes favored in specific directions. This variant is known 

as anisotropic diffusion and can be characterized by a fractional anisotropic coefficient (FA) 

(Figure 4). 

Figure 4 - Demonstration of regions with anisotropic diffusion and isotropic diffusion. (a) FA map, (b) color-

coding FA map, (c) zoom region in FA map with blue square in fiber region and green square in CSF region, (d) 

representation of the signal in blue and green highlighted regions. 

 



26 

 

Source: (GEVA; CORREIA; WARBURTON, 2011). 

In an anisotropic media, the probability of the molecular displacements still follows a 

multivariate Gaussian distribution over time. However, in that case the diffusion is described 

as a 3x3 tensor matrix, proportional to the variance of the Gaussian distribution. The mobility 

constraints can take on varying degrees of restriction. When water molecules encounter a 

singular direction for movement, their displacement becomes confined by barriers within the 

environment. On the other hand, hindered movement allows diffusion but with a favored 

direction, albeit without complete confinement. 

In the brain, the random movement of water molecules depends on many factors 

including limitations imposed by cellular membranes, neural fibers, and macromolecules. 

Notably, the presence of white matter exacerbates the constriction and directionality of water 

movement, owing to the aligned orientation of nerve fiber tracts. Armed with this 

understanding, it becomes feasible to design MR scanner sequences tailored to capture the 

distinctive diffusion traits of water within tissues. This tailored approach facilitates the 

investigation of WM characteristics and properties. 

 

1.2.1 DWI ACQUISTION 

DWI is a technique that detects and amplifies the signal reduction resulting from the 

erratic motion of water protons within tissues (BASSER; JONES, 2002). This enhancement of 

diffusive attenuation is achieved through the utilization of pulsed magnetic field gradients. 

These gradients introduce a linear magnetic field disparity in a specific direction, which allows 

the differentiation of molecules with isotropic and anisotropic diffusion. 

Even before MRI scanners, Stejskal and Tanner proposed the pulsed gradient spin echo 

(PGSE) sequence that introduced the diffusion weighting in NMR acquisition in 1965 

(STEJSKAL; TANNER, 1965). In its simplest instantiation, this sequence incorporates short 

gradient pulses (with a duration denoted as δ, a certain amplitude labeled as G and separated by 

a diffusion time interval Δ). These gradient pulses, referred to as diffusion gradients, are 

administered prior to and after the application of the refocusing RF pulse in a spin echo 

sequence. Figure 5 represents the idea of Stejskal and Tanner in a current sequence.  
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Figure 5 - Conventional 'Stejskal-Tanner' spin echo pulse sequence for DWI acquisition, with slice selection and 

diffusion sensitive gradients (shaded) applied along one physical dimension. 

 

Source: Adapted from (HAACKE, et al., 1999). 

Upon implementing this sequence, the initial application of gradients results in the 

accumulation of a phase shift, determined by the positions and movements of water molecules 

over the course of its duration. Following this, a 180º pulse serves to invert the phase, while the 

second gradient prompts another phase shift equal in magnitude to the initial one. Consequently, 

if the water molecules remain static their phase shifts would bear opposing signals, effectively 

nullifying each other. Yet, if the water molecules are in motion within the time interval Δ, these 

shifts diverge, leading to a reduction in echo amplitude due to partial refocusing (HAACKE et 

al., 1999).  

This property is quantified through the diffusion coefficient, representing the extent of 

diffusion occurring within the tissue, specifically in the gradient direction employed during the 

acquisition. The intricate architecture of brain fibers gives rise to anisotropic and impeded water 

diffusion within white matter tissues. Consequently, depending on the orientation of the 

diffusion gradient, the directionality of fiber bundles, fasciculi, and tracts, i.e. WM regions can 

be observed (Figure 6).  
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Figure 6 - (a) Anatomical representation of the fiber regions. (b) FA map showing regions of known white 

matter tracts. Colors code the fiber directionality. 

 

Source: (WYCOCO et al., 2013). 

The mathematical representation of the DWI signal is outlined in equation 7. Besides 

the DWI image is strongly dependent on diffusion, the signal also depends on the transverse 

relaxation time, T2, of the underlying tissue. So, if the aim is to measure the diffusion 

coefficient, a minimum of two acquisitions with different diffusion weightings is necessary, one 

acquired without diffusion weighting and the other acquired with diffusion weighting.  

𝑆 =  𝑆0 ∙ 𝑒−𝑏𝐷       (𝐸𝑞. 7) 

Where 𝑆 is the measured diffusion-weighted signal and 𝑆0 is the measured signal 

without the diffusion gradients application, in other words, with b=0. The exponential 

attenuation is a result of the interaction between the b-factor defined by the pulse sequence and 

the diffusion coefficient D as a property of the sample, achieved through their multiplication. 

The b value is related to the strength, interval and duration of the diffusion weighted gradients, 

as defined in equation 8. 

𝑏 =  𝛿2𝐺2∆2 (∆ −
𝛿

3
)      (𝐸𝑞. 8) 

When employing a higher b value, the resulting image exhibits heightened contrast, 

accentuating the distinctions between regions with higher diffusivity, for example the 

ventricles, resulting in darker regions in the DW image, and lower diffusivity. With these 

equations, we can obtain the diffusion coefficient for a specific direction as follows: 
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𝐷 =
log (

𝑆0

𝑆 )

𝑏
        (𝐸𝑞. 9) 

If 𝑆, 𝑆0 are known for every voxel in the image, applying a voxel-wise calculation using 

equation 7 yields a diffusion map (Figure 7). Within this map, each voxel's value represents the 

average diffusion coefficient of the enclosed tissue, evaluated along the diffusion gradient's 

applied direction. It is worth noting that the resulting diffusion map possesses an intensity scale 

that is flipped in comparison to the DWI employed for its generation. Regions characterized by 

increased mobility of water molecules along the direction of diffusion sensitization manifest as 

darker areas on the diffusion-weighted image, while they exhibit a vibrant brightness on the 

diffusion map (e.g., CSF). 

Figure 7 - (a) DWIs highlighting the signal difference between CSF region and white matter region with 

different diffusion gradient orientations indicated by the dashed line in each case. (b) Diffusion maps in the same 

orientations as in (a), hypersignal can be observed in isotropic high diffusion areas, such as CSF. (c) Schematic 

representation of the diffusion signal through orientation and strength variations of the diffusion gradient in the 

multi-shell acquisition approach.  

 

Source: Adaptation from (TOFTS; DOWELL; CERCIGNANI) and 3rd MRtrix3 Workshop (TOURNIER et al., 

2019).   

Diffusion, however, is a three-dimensional phenomenon encompassing both direction 

and shape. To delve deeper into the directional behavior of water molecules, we can expand our 

study by obtaining diffusion-weighted images with encoding gradients applied along various 

axes. This acquisition strategy, involving the collection of diffusion-weighted images from 
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different directions while maintaining a constant b-factor, is named a single shell acquisition. 

This simple method captures the essence of a Gaussian diffusion distribution. Typical b-factor 

value used for single shell approach in brain exams is around 1000 s/mm².  

In order to obtain a better characterization of the microscopic diffusion a multi-shell 

acquisition is used (Figure 7 – c). In this acquisition approach, several b-values and diffusion 

gradient directions are used in a same long acquisition. Yet, as we venture into higher b-values, 

the diffusion pattern assumes a non-Gaussian quality. This alteration brings forth distinct signal 

representations that elucidate the intricate displacement patterns of water molecules within 

diverse cerebral contexts (TOURNIER; MORI; LEEMANS, 2012). 

 

1.2.2 MODELING INTRAVOXEL DIFFUSION 

A diverse array of models exists to expound upon intravoxel diffusion in living tissues. 

Diffusion Tensor (DT) is the first and most consecrated model in literature. Basser et al. (1994) 

introduced a method involving multivariate linear regression to compute the diffusion 

coefficient as a tensor (BASSER; MATTIELLO; LEBIHAN, 1994). This process entails 

utilizing a non-diffusion weighted image alongside six or more diffusion-weighted 

measurements along noncollinear directions. The introduction of diffusion weighting is 

accomplished by concurrently applying diffusion gradients along combinations of the three 

physical axes. 

In scenarios where the minimum number of diffusion-weighted images are acquired to 

define D—namely along the x, y, and z axes, as well as xy, xz, and yz—Equation 7 transforms 

into: 

𝑆 =  𝑆0 ∙ 𝑒−𝑏 𝒈𝒕 ∙𝐷⃡  ∙ 𝒈        (𝐸𝑞. 10) 

The resulting signal (𝑆) along the diffusion gradient applied (𝒈) is equal now to the non-

DW signal (𝑆0) multiplied by the exponential of the b-value and the apparent diffusion tensor 

(𝐷⃡ ). The diffusion tensor is a 3x3 matrix characterizing the displacement in three axes:  

𝐷⃡ = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]        (𝐸𝑞. 11) 

The diagonal elements signify diffusivities along these axes, and the off-diagonal 

elements denote correlations between them. This model requires a minimum of six DW image 
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acquisitions to derive tensor parameters. Consequently, the 'apparent diffusion tensor' name 

hinges on the specific directions employed during the experimental procedure, determined by 

the equipment used. From the diagonalization of the tensor, three eigenvalues (𝜆1, 𝜆2, and 𝜆3) 

along with their corresponding eigenvectors (𝜺1, 𝜺2, and 𝜺3) can be derived as demonstrated in 

equation 12. The eigenvalues are ordered with the decreasing of the eigenvector (𝜆1> 𝜆2 > 𝜆3) 

in way that 𝜺1 represents the principal direction of diffusivity.  The combination of eigenvalues 

and eigenvector is unique for each DT model, characterizing the diffusion properties of the 

tissue of interest.  

𝐷⃡ = (
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) (

𝜺1

𝜺2

𝜺3

)        (𝐸𝑞. 12) 

These parameters allow for the interpretation of the DT model as an ellipsoid, 

representing the diffusion pattern within each voxel (Figure 8). The principal axis of this 

ellipsoid and its configuration correspond to the primary diffusion direction and the extent of 

anisotropy within each voxel. 

Figure 8 - (a) Intra-voxel diffusion modeling using the diffusion tensor model. (b) Representation of the fiber 

whiting the voxel as an ellipsoid. 

 

Source: a – Elaborated by the Author, b - (ALEXANDER et al. 2007). 



32 

 

A compelling visualization method involves combining color-encoded anisotropy 

information with ellipsoidal representation, as depicted in Figure 8 – a. These colors mirror the 

principal direction of diffusion, aligned with the first eigenvector of the tensor (𝜺1). In a 

customary convention, the colors green, blue, and red correspond to the antero-posterior, 

cranio-caudal, and latero-lateral directions, respectively. The eccentricity of the ellipse conveys 

the degree of anisotropy inherent in the diffusion process. 

Besides the DT establishment as the conventional model, it presents certain limitations 

and weaknesses. The model struggles to differentiate multiple fiber orientations within a single 

voxel (TOURNIER et al., 2004), leading to suboptimal fits of diffusion data, as exemplified in 

Figure 9. This becomes particularly relevant as about one-third of white matter voxels harbor 

crossing fibers (BEHRENS et al., 2007). Decreasing the reliability of the model and further 

structure integrity analysis. 

Figure 9 - Representation of the crossing fiber problem in DT model. 

 

Source: 3rd MRtrx3 Workshop (TOURNIER et al., 2019).   

In response to these limitations, several alternative models have been proposed being 

classified in two main groups: those that seek characterize the signal through q-space and those 

that attempt to estimate the fiber orientations. Each of these approaches presents their own 

limitations. Methods based in q-space, which suppose infinitesimally short diffusion pulses, 

requires a significant extension of the acquisition protocol, restricting their applicability for 

routine clinical practice.  
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In contrast, the strategies that attempts to recover the fiber orientations directly are more 

practical, aiming recover the Fiber Orientation Distribution (FOD) as a continuous distribution, 

instead of a discrete interpretation (TOURNIER, 2004). The idea behind this approach is that 

the signal in a voxel is composed by the sum of each fiber population, what can be expressed 

as a linear combination (Figure 10 – a). 

Figure 10 - (a) How fiber crossing problem can be modeled. (b) Spherical harmonic representation. (c) 

Constrained Spherical Deconvolution solution. 

 

Source: 3rd MRtrx3 Workshop (TOURNIER et al., 2019).   

 One way to deal with this issue is to use spherical harmonics (Figure 10 – b). A first 

approach would be considering the fiber populations, having one dedicated tensor to each of 

them. In this way, it becomes possible to resolve a voxel containing two distinct fiber 

populations through the utilization of a two-tensor model (equation 13 – first part). This strategy 

extends the multitensor concept, where each fiber population is denoted up its own diffusion 

tensor, by increasing the number of fiber populations to infinity. Mathematically speaking, the 
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sum becomes an integral over the distribution of fiber orientations (equation 13 – second part), 

which allows the problem to be written as a spherical deconvolution operation, represented in 

Figure 10 – c.  

𝑆(𝒈, 𝑏) =  ∑ 𝑓𝑛𝑒
−𝑏𝒈𝑫𝑛𝒈

𝑁

𝑛=1

  →   𝑆(𝒈) =  ∫𝐹(𝒖)𝑅(𝒈 ∙ 𝒖)𝑑𝒖
𝒖

        (𝐸𝑞. 13)  

Where 𝐹(𝒖) is the fODF and 𝑅(𝒈 ∙ 𝒖) is the fiber response containing the 

corresponding spherical harmonics. Yet, this results in a fiber orientation density function 

(fODF) with positive and negative amplitudes, with the negative values being an outcome of 

the susceptibility to noise. To address this, constrains based on prior knowledge about this type 

of distribution is applied leading to our final result, and to the name of this technique: 

Constrained Spherical Deconvolution (CSD) (JEURISSEN et al., 2014).   

Figure 11 compares the DT model and CSD, highlighting the refinement of signal 

interpretation obtained with the fiber orientation distribution, by solving the crossing fibers 

problem.  

Figure 11 - Comparison between diffusion tensor model (a) and constrained spherical deconvolution model (b). 

 

Source: Elaborated by the Author.  
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1.2.3 TRACTOGRAPHY 

After the characterization of intravoxel diffusion is possible to delineate the path taking 

by axonal fibers in the brain generating a three-dimensional visualization of reconstructed brain 

fiber tracts. Fiber tracking or tractography is the only non-invasive technique for study brain 

structural connectivity in vivo. There is a range of algorithms to reconstruct the computational 

visualization of the fibers, also called streamlines, and they can be separated in deterministic or 

probabilistic groups (SEIBERLICH et al; 2020). 

Deterministic algorithms are the simplest and basically involves tracing the supposed 

preferred directions of the fibers until a defined stopping point is reached (Figure 12). Together 

with diffusion tensor model, one of the widely adopted and robust tractography techniques is 

the fiber assignment by continuous tracking (FACT) method (MORI et al., 1999). This 

technique continuously connects voxels utilizing angle and anisotropy thresholds to determine 

the endpoints of the streamlines. The deterministic concept originates from the trajectory that 

is sole settled for the given seed point.  

Figure 12 - Simplified representation of how tractography algorithms work. 

 

Source: (JEURISSEN et al., 2019). 

However, the low signal-to-noise (SNR) of DWI leads to noise in response functions 

estimation and the tracking process propagate this error. Also, the fibers configurations, such as 

curving, diverging, and crossing can produce similar signals bringing ambiguity to tracking and 

decreasing the reliability of the tractography as the presence of spurious false positive 

connections becomes prominent. Probabilistic algorithms were developed with the objective to 

solve many of these issues through estimate a pathways distribution instead of a unique gauge.  
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The probabilistic approach relies on fODF, in which each step follows a random 

orientation conducted by the local fiber probability density function (PDF) resulting in a 

distribution of likely pathways, rather than only one streamline (Figure 13). In 2010, it was 

proposed the iFOD2 algorithm using a 2nd order integration strategy, being capable of tracking 

with high accuracy in fiber crossing and highly curved regions (TOURNIER; CALAMANTE; 

CONNELY, 2010). Instead of straight-line steps, the algorithm uses curved arcs in which the 

underlying FOD amplitudes are sampled through trilinear interpolation. In this concept, the 

more probable path is where the amplitudes are larger, but it may also follow the smalls ones, 

as long it remains above the FOD amplitude threshold all the path. 

Figure 13 - Visual comparison of deterministic (a) and probabilistic (b) tractography algorithms 

executions from a seed point. 

 

Source: 3rd MRtrx3 Workshop (TOURNIER et al., 2019).   

These algorithms enable to reconstruct comprehensive and more reliable whole-brain 

tractographies, which can subsequently be refined to isolate specific brain tracts and 

connections. 

 

1.2.4 TRACT SEGMENTATION 

Recognized brain tracts, based on anatomical information (WAKANA et al., 2007), can 

be isolated from whole-brain tractogram through track selection. These pathways can 

experience structural changes in different diseases and as part of the aging process, offering a 

wide range of clinical applications.  



37 

 

Tracts segmentation is useful to study specific brain connections and through diffusion 

MRI it is possible to analyze several distinct properties and characteristics of the WM, and also 

its tracts diversity (Figure 14). Fractional anisotropy, mean diffusivity, volumetry, number of 

streamlines, are some of the parameters that is possible to extract for WM integrity 

investigation. 

 

Figure 14 - Visualization of 72 tracts of white matter in the human brain.  

 

Source: (WASSERTHAL; NEHER; MAIER-HEIN, 2018). 

In practice, tracts segmentation is performed using regions-of-interest (ROIs) in which 

is known that the tract of interest is passing through a region as exemplified in Figure 15. These 

ROIs are defined as AND, OR and NOT operators, with the usage being dependent of the 

characteristic trajectory of each specific tract (JEURISSEN et al., 2019). For example, if the 

streamlines enter the inclusion regions, they are considered anatomically plausible, if not they 

are discarded.  The exclusion ROIs can be used to discard not wanted fiber tracts. This strategy 

is called virtual dissection and is the more stablished method in literature for tracts 

segmentation. Although, there are several limitations with this approach since relies in prior 

anatomical knowledge.  
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Figure 15 - Multiple fiber bundle trajectories (right) are virtually dissected from a whole‐brain tractogram (left), 

using tract selection. As an example, part of the cingulum bundle pathways (green) is dissected from the whole‐

brain tractogram using two circular “AND” gates (white). 

 

Source: (JEURISSEN et al., 2019). 

While virtual dissection remains the established gold standard, ongoing efforts are 

directed toward the exploration of automatic and semi-automatic approaches. These strategies 

aim to decrease the time-consuming nature of the process and reduce operator-dependent 

variability and can be classified into three main categories: ROI-based, clustering-based, and 

direct segmentation techniques. 

ROI-based approaches employ anatomical priors to delineate regions of interest, which 

in turn assist in guiding the fiber segmentation process. An intuitive method for implementing 

this approach is through atlas-based tractogram filtering, which entails two key steps. First, the 

atlas containing streamline bundles is registered to the subject's data. Second, streamlines that 

do not entirely reside within a single bundle mask after registration are subsequently filtered 

out. As an example, Wassermann and his collaborators employed a Freesurfer parcellation 

method to delineate and characterize distinct WM tracts within the brain (WASSERMANN et 

al., 2016). However, atlas-based methods struggle to account for anatomical variability among 

subjects, potentially resulting in inaccuracies. Additionally, changes in the anatomical shape of 

fiber bundles, due to factors like brain tumors, hinder the effectiveness of standard atlases.  

Clustering-based techniques in the context of WM tractography involve grouping 

individual fibers into coherent clusters by assigning labels to them (GARYFALLIDIS et al., 

2012). These clusters serve as representations of the underlying WM structure, making the 

complex data more manageable. Fibers that either belong to small or insignificant clusters or 

do not share similar properties with the bundles of interest can be systematically removed. The 

key to employing standard clustering algorithms for streamline clustering lies in defining an 



39 

 

appropriate distance metric between the streamlines. While the concept of proposing distance 

metrics is relatively straightforward, the challenge arises in identifying the most suitable metric 

for streamlines, given the variety of WM structures and tractography data characteristics. 

Recobundles tool is an atlas-based approach, where fiber clusters are registered in a 

simplified streamline bundle atlas and distant streamline are pruned (GARYFALLIDIS et al., 

2018). However, the inherent limitations of atlas-based approaches can potentially impact the 

accuracy of such methods. Also, these methods rely on bundle similarity, consequently, only 

addressing certain tracts of interest. 

On the other hand, direct methods aim to obtain the segmentation directly from the 

volumetric data, without involving intermediate processes. Notable examples of automated 

WM bundle segmentation, include TRACULA, which reconstructs 42 bundles using prior 

anatomical knowledge of brain structures (YENDIKI et al., 2011); AFQ, identifying 25 bundles 

through waypoint ROIs (YEATMAN et al., 2012); and TractSeg, a novel convolutional neural 

network-based approach directly segmenting 72 tracts using FOD peaks (WASSERTHAL et 

al., 2018).  

The mentioned studies have highlighted the strengths of their approaches in evaluating 

brain disorders across different age groups. However, these tools have specific technical 

limitations. AFQ primarily analyzes central fiber tract data, potentially missing valuable 

marginal information and limiting quantitative measurements. TRACULA and TractSeg were 

trained on data from healthy young and middle-aged adults, requiring careful evaluation for 

accuracy in children and older patients. Also, the impact of data quality and acquisition 

variations on WM segmentation remains uncertain, as validation studies have typically used 

relatively small cross-sectional datasets (ANDICA et al; 2023). 

Nevertheless, artificial intelligence (AI) can help to enhance automatic and direct 

segmentation methods used in medical imaging and neuroscience research. AI offers benefits 

such as automated feature extraction, reduced manual intervention, integration of multimodal 

data, handling variability across subjects and pathological conditions, enabling real-time 

processing, and efficiently scaling to process large datasets. These AI-driven strides can be used 

as a tool to elevate the accuracy and efficiency of WM segmentation, addressing some 

challenges in the field, such as the reproducibility of tractography segmentation. 
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1.3 ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP LEARNING 

AI refers to the capabilities of the machine to perceive its environment and takes some 

actions in the tentative to succeed in specific objectives. Elaine Rich's definition succinctly 

captures this concept: "Artificial Intelligence is the study of how to make computers do things 

at which, at the moment, people are better" (ERTEL, 2017). 

Planning, learning, natural language processing and perception are some central 

problems of AI research. For the machine be capable of problem solving and learning, such as 

human minds, approaches like statistical methods, mathematic optimization, logic, and 

probabilities are used. Thereby, AI encompasses any approach that empowers computers to 

mimic human behaviors or make decisions autonomously, tackling intricate tasks with minimal 

or no human intervention. This is reached by developing algorithms that iteratively learn from 

training data, where it can be found hidden insights and patterns without being explicitly 

programmed, given birth to ‘machine learning’ (ONGSULEE, 2017).  

Machine Learning (ML) is a subfield of artificial intelligence. Basically, this is the result 

of pattern recognition studies and computational learning theory, in which algorithms are 

constructed in a way that they can learn and make predictions based on data exposition. ML 

methods encompass four primary categories: supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning. Notably, supervised learning constitutes the 

majority of ML techniques, accounting for roughly 70 percent, with unsupervised learning 

comprising 10 to 20 percent (ONGSULEE, 2017; JANIESCH; ZSCHECH; HEINRICH, 2021). 

Supervised learning algorithms are constituted by datasets with labeled examples, so 

given an input you already know the output desired (Figure 16). This knowledge enables the 

algorithm to learn by comparison. Through classification, regression, prediction or gradient 

boosting, the machine can search for patterns to predict the label on unseen data. This technique 

is normally used for data classification and prediction. Following the logic, unsupervised 

learning does not have historical labels, thus there is no template for the machine compare. For 

that situation, the purpose is to explore data and uncover inherent structures or characteristics, 

such as grouping similar data point.  
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Source: Enjoy Algorithms. 

In summary, we can divide the ML in three main layers:  the input layer (comprising 

data for information extraction), the hidden layer (housing the learning algorithm itself), and 

the output layer (yielding predictions). These ML algorithms are often referred to as "shallow 

learning" due to their single hidden layers and linear processing units which constrain the 

learning.  

If we deepen the ML algorithms, so they contain more than one hidden layer, we have 

the deep learning (DL). A key feature of DL is the stacking of numerous layers with nonlinear 

processing units, where the output of one-layer feeds into the next. This architecture allows for 

the extraction of multiple hierarchical levels of data features or representations. 

In this way, for more complex tasks, such as object recognition and bioinformatics, deep 

learning super-pass the machine learning algorithms. For example, given a certain image a deep 

neural network can extract different characteristics of the image in each hidden layer. Using as 

input the image pixels, the first layer can identify the edges of the picture by comparing colors 

or brightness of the neighbors’ pixels. In the second layer, the corners and contours can be 

detected using the edges description. More specific details that characterize certain object in 

the image can be found in the third layers. By the end, the objects in the input image can be 

recognized (HAO; ZHANG; MA, 2016).  

Now, let's envision the initial layer as a composition of numerous processing units 

intricately connected to the subsequent layer via multiple connections. Each connection bears 

a weight, dictating its activation or deactivation, and the outcome of one layer becomes the 

Figure 16 – Example of supervised algorithms. 
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input for the next, repeating through several layers until a final output emerges. By renaming 

these processing units as neurons and the connections as synapses, we arrive at a simplified 

representation of the intricate network of connections within the brain (KROGH, 2008). 

Artificial Neural Networks (ANN) are one of the most successful methods of deep learning. 

Inspired by the biological model proposed by David H. Hubel and Torsten Wiesel in 1959, ANN 

can be conceptualized as cascading models akin to various types of brain cells (HUBEL; 

WIESEL, 1959). By employing algorithms that emulate the functioning of neurons, we endow 

the network with the capacity to “learn” and solve a wide array of problems, thereby forging a 

bridge between the human cognition and machine intelligence. 

 

1.3.1 NEURAL NETWORS IN THE BRAIN AND IN THE MACHINE 

The human brain is composed by approximately 100 billion nerve cells, creating 

intricated neural networks responsible for awareness, associations, thoughts, consciousness, 

and the ability to learn. A neuron is formed by dendrites, a cell body, an axon, and the terminal 

axon. The cell body of the neuron can store electrical signals, loaded by incoming electrical 

impulses from other neurons through dendrites. The more electrical signals come in, the higher 

the voltage, and if this voltage exceeds a certain threshold, the neuron will fire sending a spike 

over the axon and the synapses (ERTEL, 2017).  

The synapses are responsible for create the connections between neurons. However, 

there is a small gap among the terminal axons of one neuron and the dendrites of the other one. 

This small gap is filled with neurotransmitters, that can be ionized when a voltage is applied 

and then transport the signal through the gap, but this conductivity depends on many factors. 

Therefore, are not the neurons who are adaptive, but the synapses by changing their 

conductivity. Intuitively, a synapse is made stronger proportional to the electrical current, than 

the ones that are used often obtain an increasingly higher weight. And the ones that are not has 

a decreased conductivity.   

Mathematically speaking, this activation potential corresponds to the summation of the 

weighted output values (𝜔𝑗𝑖) of all incoming connections (𝑥𝑖). To see what information will 

pass to the other neuron (𝑥𝑗), an activation function (𝑓) is applied on the neighboring neurons 

as output over the synaptic weights (equation 14).  

𝑥𝑗 = 𝑓 (∑𝜔𝑗𝑖𝑥𝑖

𝑛

𝑖=1

)      (𝐸𝑞.  14) 
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As we can see in Figure 17 – a, this expression represents one neuron and compose one 

processing unit in the model. In a neural network there are several hidden layers consisting of 

various neuron units (Figure 17 – b). Understanding that the adaptive process primarily occurs 

within the synapses, the learning aspect of the algorithm unfolds through the weighted 

connections. When a particular feature is deemed crucial for accurate predictions, its 

corresponding information is assigned a higher weight. For the model learn to cognize which 

connection is important for a specific task, we need to train or teach them (MENG; HU; 

ANCEY, 2020). 

Figure 17 - (a) Representation of a biological neuron and the mathematical interpretation of them. (b) How this 

works for more than one neuron in brain and in the machine. 

 

Source: (MENG; HU; ANCEY, 2020). 

The learning agent is essentially defined as a function that translates a feature vector 

into either a discrete class value or a real number. Its primary objective is to discover an efficient 

data representation in the form of a function that optimally categorizes new data. This function 

is not predefined or hard-coded; instead, it evolves dynamically throughout the learning phase, 

adapting to the training data and are also nominated as cost-loss functions. During this learning 

process, the agent receives the output label, allowing it to fine-tune its mapping from the feature 

vector to the function value to achieve optimal classification (ERTEL, 2017; CURRIE et al., 

2019). 
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Assessing the quality of this mapping relies on the concept of similarity, which hinges 

on minimizing the distance between the training samples and the model's predictions within the 

feature space. To approximate functions based on data points, various mathematical techniques 

come into play, including polynomial interpolation, spline interpolation, and the method of least 

squares. Using the least squares, the idea is to look for a function that minimizes the squared 

error given a pair of training vectors forming by the input 𝒒 and the target 𝒕 (equation 15). 

𝐸(𝝎) = ∑(𝝎𝒒𝑝 − 𝒕𝑝)2

𝑁

𝑝=1

= ∑ (∑𝜔𝑖𝑞𝑖
𝑝 − 𝑡𝑝

𝑛

𝑖=1

)

2𝑁

𝑝=1

      (𝐸𝑞. 15) 

The gradient, as a vector of all partial derivatives of the error function, points in the 

direction of the strongest rise of the error function in the space of the weights. And to reach the 

minimum, we follow the direction of the negative gradient. So, the weights are going to change 

for each new training example following the equation 16. 

∆𝜔𝑗 = −
𝜂

2

𝜕𝐸

𝜕𝜔𝑗
= −𝜂 ∑ (∑𝜔𝑖𝑞𝑖

𝑝 − 𝑡𝑝

𝑛

𝑖=1

)

𝑁

𝑝=1

𝑞𝑗
𝑝       (𝐸𝑞. 16) 

Where 𝜂 is the learning rate. By replacing the output neuron for applied example training 

we obtain the delta rule: 

∆𝜔𝑗 = −𝜂 ∑(𝑡𝑝 − 𝑦𝑝)

𝑁

𝑝=1

𝑞𝑗
𝑝       (𝐸𝑞. 17) 

Thus, for every training example the difference between the target 𝑡𝑝 and the actual 

output of the network 𝑦𝑝 is calculated for the given input 𝒒𝑝.  

For more than two layers of neurons, the delta rule is expanded into the backpropagation 

algorithm, the most-used neural model for learning, due to their versatility for arbitrary 

approximation tasks. In this case, it is applied a nonlinear sigmoid function (equation 18) as 

activation function that allows the network to have more than two layers.  

𝑓(𝑥) =
1

1 + 𝑒−𝑥
       (𝐸𝑞. 18) 

Using the sigmoid function as activation the weights are changed proportionally to the 

negative gradient of the quadratic error function summed over the output neurons for the 

training pattern p: 
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𝐸𝑃(𝜔) =
1

2
∑ (𝑡𝑘

𝑝 − 𝑥𝑘
𝑝)

2

𝑘𝜖𝑜𝑢𝑡𝑝𝑢𝑡
  ,    ∆𝑝𝜔𝑗𝑖 = −𝜂

𝜕𝐸𝑝

𝜕𝜔𝑗𝑖
      (𝐸𝑞. 19) 

Whitin the equation, the outputs of the neurons of the next deeper layer occur 

recursively. By multiple applications of the chain rule, we obtain the backpropagation learning 

rule: 

                                                 ∆𝑝𝜔𝑗𝑖 = 𝜂𝛿𝑗
𝑝𝑥𝑖

𝑝,

𝛿𝑗
𝑝

= {

𝑥𝑗
𝑝(1 − 𝑥𝑗

𝑝)(𝑡𝑗
𝑝 − 𝑥𝑗

𝑝)       𝑖𝑓 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛

𝑥𝑗
𝑝(1 − 𝑥𝑗

𝑝)∑𝛿𝑘
𝑝

𝑘

𝜔𝑘𝑗         𝑖𝑓 𝑡ℎ𝑒 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛
       (𝐸𝑞. 20)   

The factor (1 − 𝑥𝑗
𝑝
) creates the symmetry, for the output neurons, the factor (𝑡𝑗

𝑝 − 𝑥𝑗
𝑝
) 

takes care of the weight change proportional to the error. For the hidden neurons, the value 𝛿𝑗
𝑝
 

of neuron j is calculated recursively from all changes 𝛿𝑘
𝑝
 of the neurons of the next higher level.  

After calculating the output of the network (forward propagation) for a training example, 

the approximation error is calculated. This error is the initial point for the backward propagation 

to alter the weights backward from layer to layer, more details can be found in 

(VOUTSADAKIS, 2014). The whole process in applied to all training examples and repeated 

until the weights do not change in a predefined value, or the time limit is reached. A 

representative scheme of the process in depicted in Figure 18.   

Figure 18 - Schematic representation of the learning process in training with backpropagation algorithm.  
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Source: (CURRIE et al., 2019). 

A variety of ANNs architecture have emerged over time, were each one becomes more 

suitable for specific data types, such as time series or images. The variation in architecture 

mostly remains in the types of layers, neural units, and connections they use. Examples are 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoder and 

generative adversarial neural networks (GANs) (JANIESCH; ZSCHECH; HEINRICH, 2021). 

The CNN is a feedforward neural network (transmit data in one direction) that can extract 

features from data using several convolutional layers. And its advantages of local connections, 

weighting sharing and downsampling dimension reduction, make this one of the most 

representative algorithms in the deep learning field.  

The CNN architecture is inspired by the animal visual cortex, where individual neurons' 

responses to stimuli can be approximated through a convolution operation (HAO; ZHANG; 

MA, 2016). This operation plays a vital role by reducing the number of free parameters, 

enhancing model generalization, and making them particularly effective for tasks involving 

grid-like data such as images. 

 

1.3.2 U-NET AS A CONVOLUTIONAL NEURAL NETWORK  

In the field of medical image segmentation, one CNN highlights between all models 

available. The U-Net was introduced by Ronneberger and his collaborators in 2015 and has 

become widely adopted (RONNENBERGER; FISCHER; BROX, 2015). This network is 

characterized by its U-shaped design (Figure 19), which consists of a contracting path (encoder) 

and an expansive path (decoder).  
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Figure 19 - Typical U-Net network architecture composed by a contracting path and an expansive path. 

 

Source: (RONNENBERGER; FISCHER; BROX, 2015). 

The contracting path takes on a standard CNN architecture, that is composed basically 

by three main types of layers: convolutional layer, pooling layer, and fully connected layer 

(Figure 20). The convolutional layer enhances the input features and reduces the noise by 

performing a scalar product calculation between the weights associated with each neuron and 

the region of the input volume connected to it. This layer focuses on learnable kernels, where 

each kernel convolves across the spatial dimensions of the input to generate 2D activation maps 

(O’SHEA; NASH, 2015). 
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Figure 20 - CNNs process. The input tensor is passed through a 3x3 kernel, producing several feature maps by 

the application of an activation function. After, the max pooling is used to reduce the size of the feature map that 

is finally flattened. 

 

Source: (CURRIE et al., 2019). 

The pooling layer subsamples the input data by dividing it into smaller regions and 

applying certain functions within each region. This operation helps reduce the number of 

parameters and dimensionality in the representation. By doing so, it effectively reduces the 

computational complexity of the model, making it more manageable and efficient. 

The fully connected layer serves as the link between the information extracted in the 

previous layers and the final output, which is responsible for producing class scores based on 

the activations. This layer plays a crucial role in aggregating and processing the learned features 

to make decisions regarding classification or regression tasks. 

More specifically, the contracting path of the U-Net is composed of the repeated 

application of two 3x3 convolutions together with the rectified linear unit (ReLU) activation 

function and followed by a 2x2 max pooling operation. These layers progressively reduce the 

spatial dimensions of the feature maps while increasing the number of feature channels, as 

represented in Figure 19. Thereby, the encoder concentrates its efforts on acquiring abstract, 

high-level representations of the input data. 

Now, the different part came in the expansive path, involving the unsampling of the 

feature maps through 2x2 convolution, transposed convolutions, effectively halving the number 

of features. This result is then concatenated with the corresponding cropped feature map derived 
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from the contracting part. Following this concatenation, two consecutive 3x3 convolutions are 

applied, each accompanied by a ReLu activation function.  The decoder aims to recover spatial 

information and fine details lost during the downsampling in the encoder path. 

At the final layer, a 1x1 convolution is used to map each component feature to the 

desired number of classes in the original size of the image.  The output of this layer represents 

the segmented mask, where each pixel is assigned a class label or probability score. 

The U-Net architecture is particularly well-suited for medical image analysis tasks, such 

as organ segmentation, cell detection, and tumor identification, due to its ability to handle small 

datasets effectively and produce precise segmentation maps (YIN et al., 2022). 

 

1.4 PROBLEM DEFINITION 

Tractography is the computational representation of the white matter pathways obtained 

through diffusion magnetic resonance imaging (BASSER; JONES, 2002; JEURISSEN et al., 

2019). To accurately study the brain structural connectivity with tractography, it is crucial to 

have precise tract segmentation strategies. White matter segmentation enables the identification 

and characterization of both healthy and abnormal brain microstructures in vivo, providing 

valuable insights for diagnosis, treatment, and surgical planning (ESSAYED et al., 2017; 

BHATIA et al., 2018; BASSEL et al., 2020; WENDE; HOFFMANN; MEIXENSBERGER, 

2020; YANG et al., 2021). However, the reliability of this type of analysis is highly dependent 

on the accurate tract delineation, which demands time, anatomical, and imaging processing 

knowledge. This, in turn, dampens the prospects of reproducibility due to potential variations 

in delineation methodologies across different researchers. In response, automatic segmentation 

strategies have been actively investigated to address and enhance these constraints (COVER et 

al., 2018; ANDICA; KAMAGATA; AOKI, 2023). 

Besides virtual dissection remains as the current gold standard, using a combination of 

inclusion and exclusion of ROIs, automatic approaches are being explored further to decrease 

time-consuming and variability across operators (NEHER et al., 2015; POULIN et al., 2019; 

SCHILLING et al., 2021; SINGH et al., 2022). These methods can be categorized in three types: 

ROI-based; clustering-based and direct segmentation. ROI-based approaches utilize anatomical 

priors to define ROIs that guide the segmentation of the fibers (ZHANG et al., 2020; 

WASSERMANN et al., 2010). Clustering-based techniques rely on grouping fibers into 

coherent clusters by assigning labels to them (GUEVARA et al., 2012; VÁZQUEZ et al., 2020). 

On the other hand, direct methods aim to obtain the segmentation directly from the volumetric 



50 

 

data, without involving intermediate processes (DYRBA et al., 2013; GONZÁLEZ-VILLÀ et 

al., 2016). While ROI-based methods are the most used, the advent of artificial intelligence has 

opened new possibilities for direct segmentation, offering improved reproducibility.  

Deep learning methods have already demonstrated significant application in dMRI and 

great potential in tractography segmentation (POULIN et al., 2019; ZHANG et al., 2022; 

GHAZI; AARABI; SOLTANIAN-ZADEH, 2023). When it comes to automated bundle 

segmentation using deep learning, these approaches can be divided into two main groups based 

on the input data of the network: voxel-based and streamline-based. In voxel-based approaches, 

the segmentation is predicted using the orientation information derived from the fiber tracts 

(REISERT et al., 2018; LI et al., 2020). On the other hand, streamline-based approaches obtain 

bundle segmentation by utilizing pre-defined fiber features (LIN et al., 2019; ZHANG et al., 

2020; PERETZKE, et al., 2023). 

The U-Net network stands out as the most widely used and renowned architecture in 

CNNs for segmentation tasks (RONNENBERGER; FISCHER; BROX, 2015). Its unique 

capability to process entire imaging volumes and produce segmentation maps at the output has 

contributed to its popularity. When applied to the segmentation of specific tracts, this technique 

has shown exceptional results, especially when dealing with large tracts and high-quality DWI 

data (WASSERTHAL; NEHER; MAIER-HEIN, 2018; DONG et al., 2019; LIU et al., 2022, 

TCHETCHENIAN et al., 2023).  

In the study conducted by Wasserthal et al. (2018), stacked 2D U-Net models were 

employed in a supervised manner to automatic segment tracts, considered the state of the art in 

direct white matter segmentation. Nevertheless, while the technique excelled in larger tracts, its 

performance with shorter tracts was less satisfactory. Additionally, the training dataset was 

sourced from high-quality data, which poses a limitation when attempting to generalize the 

model to clinical data marked by lower quality, thereby impacting the predictive accuracy of 

the model. 

The success of automatic segmentation techniques has been particularly notable for 

larger tracts, such as the corticospinal tract and corpus callosum (WASSERTHAL et al., 2017; 

COVER et al., 2018; PERETZKE et al., 2023). However, shorter tracts, including the fornix 

and anterior commissure, have posed a challenge for neural networks, and have received less 

exploration in recent years. These shorter tracts are associated with various neurological 

diseases; for instance, Alzheimer's disease affects the uncinate fasciculus, hippocampus, and 

anterior commissure (SHU et al., 2013; MORI; AGGARWAL, 2014; KIUCHI et al., 2009), 
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while epilepsy is linked to abnormalities in the hippocampus, fornix, and uncinate fasciculus 

(DIEHL et al., 2008; CONCHA et al., 2010; KALAIVANI; SUNDARESWARAN, 2019). 

Moreover, the anterior and posterior commissures serve as essential landmarks in neurosurgery 

(PRAKASH; NOWINSKI, 2006; CHOI et al., 2013; LIU; DAWANT, 2015), further 

emphasizing the need to automate the segmentation of these shorter tracts for clinical 

applications. 

While deep learning methods have shown impressive performance, there are several 

factors that complicate the generalizability of these strategies, especially when it comes to 

hospital acquisitions. Most existing studies in the field of white matter tract segmentation have 

primarily focused on the Human Connectome Project (HCP) dataset. When these methods have 

been applied to clinical acquisitions, they often utilize datasets from patients with specific 

neurological diseases or downgrade the high-quality data to match the clinical acquisition 

settings (DONG et al., 2019; LIU et al., 2022).  

The quality of images obtained during routine hospital procedures tends to differ from 

high-quality images that constitute the majority of public datasets. This discrepancy poses a 

significant challenge, primarily due to time constraints imposed by clinical workflows. 

Moreover, the variability in image acquisition protocols, preprocessing pipelines, and brain 

anatomy adds further complexity, as these factors can greatly impact the resulting tractography 

(RHEAULT et al., 2020; SCHILLING, et al., 2021 - (b)). Consequently, addressing these 

challenges becomes essential to ensure the effectiveness and reliability of deep learning 

techniques in a clinical setting. 

The main objective of this work was to evaluate the capability of the U-Net network in 

segmenting short tracts using DWI data acquired in different experimental conditions. Five 

short tracts were studied, including anterior, posterior, and hippocampal commissure, fornix, 

and uncinated fasciculus. The reference segmentation was obtained using a semi-automatic 

ROI-based method and applied to a cohort of 175 subjects from HCP, as well as an additional 

175 subjects from a local hospital. This approach facilitated the training and assessment of the 

U-Net neural network using conventional clinical images, seeking for its implementation in the 

standard workflow of the HCFMRP image processing service. 

 

Considering our previous comments, some key points can be reinforced: 

• Although significant advancements have been made in automatic segmentation 

techniques, it remains crucial to test their effectiveness on clinical images. This is 
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because there exists a noticeable disparity between the high-quality images found in 

public datasets and the ones obtained during routine clinical procedures. 

• Deep learning approaches have demonstrated successful segmentation results for large 

tracts. However, short tracts present a greater challenge and require further exploration 

and development. 

• Factors such as the number of diffusion directions, b values, image resolution, and 

preprocessing pipelines can significantly influence the outcomes of tractography. These 

variables contribute to variations in the resulting tractography results and warrant 

careful consideration in the analysis process. 

 

1.4.1  SPECIFIC OBJECTIVES 

The objectives of this study were delineated into six distinct questions, all of which are 

comprehensively addressed within the pages of this dissertation. These questions serve as the 

guiding framework for the research and subsequent findings, providing a structured and 

systematic exploration of the research problem. 

• To what extent can U-Net effectively segment short tracts characterized by substantial 

curvature while preserving segmentation accuracy? Discussion – Paragraph 2 

• Can U-Net consistently deliver accurate predictions when applied to clinical data? 

Discussion – Paragraph 4 and 7 

• How does the composition of the training dataset influence the performance of the 

testing set? Discussion – Paragraph 5 

• What are the key findings regarding the transfer of a segmentation model trained on 

clinical data to high-quality data, and what do these findings reveal about domain shift? 

Discussion – Paragraph 5 and 6 

• What is the significance of using both lower quality and higher quality data in training 

the neural network, and how does it impact segmentation performance? Discussion – 

Paragraph 7 

• What strategies are recommended to improve the performance of segmentation 

models, particularly for short tracts, when dealing with diverse datasets in clinical 

applications? Discussion – Paragraph 8 
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This dissertation is structured to comprehensively address the specific objectives of our 

research. We initiated with an introductory chapter that establishes foundational concepts, 

beginning with an exploration of brain anatomy, with a special focus on the intricate white 

matter structure and its fiber connections. This chapter also delves into the principles of 

magnetic resonance imaging, emphasizing diffusion-weighted imaging, elucidating the 

acquisition process and techniques employed to model white matter fibers through tractography. 

Furthermore, we investigate the convergence of neural networks in both the human brain and 

computer systems, with particular attention to the U-Net convolutional neural network, which 

holds pivotal relevance to our study. We then culminate this chapter with a precise problem 

statement framing our research. 

In the subsequent methodology chapter, we delve deeper into the intricacies of our 

research approach. This includes a comprehensive discussion of the dataset employed, the 

image pipeline processing techniques utilized, definitions of network parameters, and an 

elucidation of the training process along with the statistical analysis methodology. 

The results chapter serves as a focal point where we showcase the outcomes achieved 

through the execution of three distinct experiments. This chapter provides an extensive 

exploration of the U-Net model's performance in the segmentation of short tracts, as well as its 

potential clinical applications. 

Finally, the dissertation concludes with a comprehensive discussion section, wherein we 

contextualize the findings in relation to the specific objectives outlined in our research. This 

section facilitates a thorough understanding of the implications of our work and leads to a 

substantial overall conclusion, summarizing the key contributions and insights gained from our 

research endeavors. 
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2 METHODOLOGY 

 

The research involved distinct DWI acquisition methods for 350 subjects from HCP and 

local hospital datasets: HCP utilized 1.25 mm isotropic resolution with 270 gradients, while the 

hospital had 2 mm isotropic resolution with 32 gradients. The data preprocessing pipeline 

included essential motion and distortion corrections. Subsequently, the diffusion signal 

underwent fitting using the CSD model, enabling the extraction of posterior peaks for input into 

the neural network. Through a semi-automatic approach, we meticulously generated reference 

binary masks for seven shorter and four larger white matter tracts. We employed the U-Net 

network for generating probability maps based on fiber orientation distribution peaks, similar 

to Wasserthal et al. (2018). To assess the network's prowess in automating short tract 

segmentation, we conducted three distinct training experiments: exclusive utilization of HCP 

data, use of local hospital data only, and a fusion of both datasets. Performance evaluation was 

carried out using Dice score metrics, utilizing unseen data from both HCP and the local hospital 

dataset. The workflow depicted in Figure 21 offers a visual overview of the process. 
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Figure 21 - Methodology workflow. First, we preprocess the DWI data and extract the peaks imaging, 

representing the diffusion directions, using the CSD method. The 3D images are sliced in coronal, axial and 

sagittal views, and then used as input in the 2D U-Net network. The resulting probability maps obtained from 

each view are concatenated and merged by taking the mean along the last dimension to generate the final 

segmentation output. The result prediction is compared with the ground truth using Dice score. 

 

Source: Elaborated by the Author. 

2.1 IMAGING DATA AND PREPROCESSING 

A total of 370 subjects were selected for the experiments, encompassing participants from 

HCP, PPMI (PARKINSON PROGRESSION MARKER INITIATIVE, 2011) and the Clinic 

Hospital of Ribeirao Preto, Brazil. DWIs acquired from the HCP dataset had an isotropic 

resolution of 1.25 mm. These images were acquired with 270 diffusion gradient directions, 

consisting of 3 b-values (1000, 2000, and 3000 s/mm²), accompanied by 18 b=0 images with 

acquisition duration around 60 minutes (Glasser et al., 2013). PPMI dataset is composed by 

DWIs with an isotropic resolution of 2 mm, with 64 diffusion gradient directions, 1 b-value 

(1000 s/mm²) and 1 b=0 image, with a total acquisition time of 13 minutes (PARKINSON 

PROGRESSION MARKER INITIATIVE, 2011). On the other hand, the DWIs from the local 

hospital dataset (CAAE - 08219712.7.0000.5407) had an isotropic resolution of 2 mm. They 

were acquired with 32 diffusion gradient directions, including 1 b-value (1000 s/mm²) and 1 

b=0 image, with an acquisition time of 6 minutes and 30 seconds for healthy subjects and 10 

minutes for epilepsy subjects (PINTO; SANTOS; SALMON, 2021). Table 1 and 2 provides a 

comprehensive comparison of the principal characteristics between the different datasets.  
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Table 1 - Dataset specifications for HCP and Local Hospital. 

Source: Elaborated by the Author. 

Table 2 - Dataset specifications for healthy subjects acquired in different hospital and epilepsy patients acquired 

in the local hospital. 

Source: Elaborated by the Author. 

 
Public Dataset 

Human Connectome Project  

(HCP) 

Local Hospital Dataset 

Clinical Hospital of Ribeirão 

Preto (HCRP) 

Subjects 175 (102 women) 175 (91 women) 

Age 26 – 30 years 18 – 83 years 

Images DWI and T1w (3T) DWI and T1w (3T) 

DWI Images 

Metric size 145x174x145 mm 128x128x72 mm 

Voxel size 1.25x1.25x1.25 mm 2x2x2 mm 

b values 1000, 2000, 3000 s/mm² 1000 s/mm² 

Diffusion gradients 270 directions 32 directions 

Scan acquisition 

time 
60 min 6 min 30 sec 

 Healthy Subjects 

Different Hospital  

Epilepsy Patients 

Local Hospital 

Subjects 10 (5 women) 10 (4 women) 

Age 57 – 72 years 26 – 66 years 

Images DWI and T1w (3T) DWI and T1w (3T) 

DWI Images 

Metric size 116x116x72 mm 128x128x60 mm 

Voxel size 2x2x2 mm 2x2x2 mm 

b values 1000 s/mm² 1000 s/mm² 

Diffusion gradients 64 directions 32 directions 

Scan acquisition 

time 
13 min 10 min  
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The HCP images came preprocessed using a minimal pipeline, which involved distortion 

correction, motion correction, and eddy current correction (GLASSER et al., 2013). For the 

images obtained from the PPMI dataset and the local hospital, the same pipeline using MRtrix3 

(TOURNIER et al., 2019) together with FSL software (SMITH et al., 2004) was applied. 

In MRtrix3 package we converted the raw bvecs and bvals files, in NIFTI format, of each 

subject to MRtrix3 image format (.mif) that combines this three information into one, consisting 

of a text header, with data stored in binary format within the same file. Data was pre-processed, 

correcting for noise (VERAART et al., 2016), image distortions (eddy current-induced 

distortion correction and motion correction, using FSL’s tools) (ANDERSSON; 

SOTIROPOULOS, 2016) and bias correction (B1 field inhomogeneity correction) using ANTS 

(TUSTISON et al., 2010). This pipeline follows a similar procedure of a previous work in our 

lab (PINTO; SANTOS; SALMON, 2021). 

After that, the images were registered to MNI standard space using the MNI152 template 

(FONOV et al., 2009) using the anatomical images, resulting in a dimension of 182x218x182. 

Then CSD method (TOURNIER; CALAMANTE; CONNELLY, 2013) was employed to 

modelling the diffusion signal. And using the peak extraction function available in MRtrix3, 

the input image (peaks image) was obtained, in which each volume corresponds to the x, y & z 

component of each peak direction vector in turn. The images were then cropped to a size of 

144x144x144 voxels, ensuring utmost care to avoid the removal of any brain tissue during the 

cropping process. 

 

2.2 CONVOLUTIONAL NEURAL NETWORK 

The utilized architecture for this study was the 2D U-Net, originally proposed by 

Wasserthal et al. (2018) depicted in Figure 22. In this case, the input to the network consisted 

of a 2D image with dimensions of 144x144 voxels and 9 channels representing the component 

of each peak direction vector (x, y, z) extracted from the SH coefficients. The initial 3x3 

convolution operation generates 64 feature maps while preserving the original image 

dimensions, followed by the application of the ReLU activation function. Subsequently, the 

image undergoes downsampling through a max-pooling operation, resulting in a 72x72 image 

size with 64 channels. Another 3x3 convolution operation is employed, doubling the number of 

feature maps to 128. Afterward, downsampling reduces the image dimensions to 36x36. This 

repetition continues until we reach the bottleneck, where we attain a 9x9 image size, enriched 

with 1024 feature maps. In the expansive path, the opposite takes place. The image size expands 
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through 2x2 “up-convolutions” while concurrently reducing the number of feature maps. 

Additionally, the feature maps from the expansion phase are concatenated with their 

corresponding feature maps from the contracting path. The output is a single-channel map 

containing the voxel probabilities for a specific tract, with the same spatial resolution as the 

input. 

Figure 22 - U-Net network architecture used for training. 

 

Source: Adapted from (WASSERTHAL; NEHER; MAIER-HEIN, 2018). 

In this way, the last layer of the U-Net utilized a sigmoid activation function instead of 

SoftMax. To keep the size of the output unchanged, SAME padding was used. To convert these 

probabilities into binary segmentations, a thresholding approach was applied. The threshold 

value was set to half of the maximum intensity of the prediction. 

To overcome the computational and memory requirements of the 3D U-Net, the images 

were sliced into three different orientations: axial, coronal, and sagittal. Consequently, three 

separate networks were trained, with one dedicated to each orientation. The resulting 

probability maps from each network were then concatenated along the last dimension, resulting 

in an image with dimensions of 144x144x144x3, containing three predictions per voxel per 

tract. The final segmentation was obtained by taking the mean along the last dimension, as 
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demonstrated the best performance in literature (WASSERTHAL; NEHER; MAIER-HEIN, 

2018). 

Although a second training using the output of the first training as input was initially 

considered, a practical evaluation led to the decision to utilize only one training per view, as the 

original study suggests that the second neural network is optional (WASSERTHAL; NEHER; 

MAIER-HEIN, 2018). 

 

2.3 TRAINING 

The binary cross-entropy loss was used for training the network. ReLU activation functions 

were utilized for the intermediate layers, while a sigmoid activation function was applied to the 

last layer. To optimize the training process, a learning rate of 0.002 was chosen. The Adamax 

optimizer was utilized for parameter updates. Additionally, dropout regularization with a 

probability of 0.4 was implemented to prevent overfitting. In order to strike a balance between 

prediction accuracy and training time, the number of epochs was determined by conducting 

experiments. In an attempt to reduce the computational cost, the number of epochs and 

performance of the model were evaluated, with 130 epochs chosen as the optimal value. The 

validation dataset was utilized to fine-tune the hyperparameters of the network, ensuring 

improved performance. 

We conducted three different types of training experiments. In the first experiment, we 

exclusively trained the model using 100 subjects for training and 15 for validation of the HCP 

dataset, which consists of high-quality data. This training involved employing multi-shell multi-

tissue CSD and utilizing all gradient directions available in the dataset. To evaluate the 

performance of the trained model, we conducted tests on two separate sets of unseen subjects. 

The first test was performed on 60 unseen subjects from the HCP dataset, ensuring that the 

model was evaluated on data that it had not been trained on. Additionally, we performed a 

second test on 60 unseen subjects from the local hospital dataset, which presented different 

characteristics compared to the HCP dataset. 

For the second experiment, we focused on the images obtained from the local hospital 

dataset, with a typical clinical routine acquisition. Equally 100 subjects were used for training 

and 15 for validation. These images had a b-value of 1000 s/mm², one b=0 image, and 32 

diffusion gradient directions. To evaluate the performance of the trained model in this 

experiment, we used the same test dataset as in the first experiment. 
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In the third experiment, we employed a training approach that combined images from 

both the HCP and local hospital datasets. To ensure compatibility, we downgraded the HCP data 

to match the characteristics of the hospital dataset. This allowed for consistency in terms of data 

characteristics. Consequently, all training data had a b-value of 1000 s/mm², one b=0 image, 

and 32 diffusion gradient directions. To ensure diversity and representativeness in the training 

set, we randomly sampled the images from both datasets. In each experiment, three independent 

models were trained for each tract, resulting in a total of 99 models.  

To evaluate the model's performance in the third experiment, we conducted tests on three 

separate sets of unseen subjects. The first test involved 60 subjects from the HCP dataset, also 

downgrading the resolution. The second test was performed on 60 subjects from the local 

hospital dataset. Lastly, we conducted a test on a mixed dataset consisting of 60 randomly 

combined subjects from both HCP and local hospital datasets considering 30 subjects from each 

dataset. 

In the third experiment, we aimed to evaluate the generalizability of our approach. We 

expanded our predictions to include data from ten healthy subjects obtained from a different 

scanner, openly accessible from PPMI. Additionally, we incorporated data from ten epilepsy 

patients sourced from the local hospital (see Table 2). These two samples introduced variations 

in spatial resolutions and gradients, encompassing both healthy and diseased brains. 

 

2.4 STATISTICAL ANALYSIS 

To assess the training progress and evaluate the model's performance, we relied on the Dice 

score, a well-established metric in medical image segmentation (TAHA; HANBURY, 2015). 

This score offers a quantitative measure of the overlap between the predicted and ground truth 

segmentations, offering valuable insights into the accuracy of the segmentation results. By 

utilizing the Dice score, we were able to precisely quantify the model's performance and gauge 

the effectiveness of our segmentation approach. 

The Dice score can be calculated using the following equation: 

𝐷𝑖𝑐𝑒 =  
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
      (𝐸𝑞. 21) 

Where |𝐴 ∩ 𝐵| represents the intersection of the predicted and ground truth segmentations, 

|𝐴| the number of pixels in the predicted segmentation and |𝐵| the number of pixels in the 

ground truth segmentation. This formula yields a score value between 0 and 1, where 1 indicates 
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perfect overlap between the predicted and ground truth segmentations, and lower values 

indicate less accurate segmentation. 

 

2.5 REFERENCE SEGMENTATIONS 

To generate the reference binary masks first we preprocessed the DWI images using 

MRtrix3 (TOURNIER et al., 2019). Fiber orientation distribution was extracted via multi-shell 

multi-tissue CSD for the HCP dataset and standard CSD for the local hospital dataset. 

Subsequent steps involved probabilistic tractography using the iFOD2 algorithm, followed by 

image registration to a standardized space to delineate exclusion and inclusion ROIs for specific 

tract segmentation. To refine segmentation accuracy, a thorough manual inspection was 

conducted. The conversion of streamlines into binary masks was achieved through the 

utilization of two MRtrix3 functions – tckmap and maskfilter –, as visually depicted in Figure 

23. 

Figure 23 - Example of anterior commissure tract-specific binary mask generation workflow. 

 

Source: Elaborated by the Author. 

For each subject, we generated reference binary masks encompassing seven short white 

matter tracts: UF and FX for both hemispheres, as well as AC, PC, and HC. In addition, we 

included four larger tracts, corticospinal tract (CST) and inferior fronto-occipital fasciculus 

(IFO/IFOF) for both the left and right sides, to facilitate comparison with existing literature and 

validate our work. These reference binary masks served as ground truth labels, enabling 

thorough evaluation and validation of our segmentation approach. 
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Continue 

2.5.1 TRACTOGRAPHY GENERATION 

To extract the fODF, a multi-shell multi-tissue CSD method was utilized for the HCP 

dataset. On the other hand, for the local hospital dataset, which only consisted of one b-value 

shell, a standard-CSD method was employed. Subsequently, anatomically constrained 

probabilistic tractography using iFOD2 algorithm (TOURNIER et al., 2010) was performed for 

the entire brain. This process generated a total of 1 million fibers. For seeding, random 

placement of seeds within the brain mask was utilized. The streamlines were then cropped at 

the gray matter-white matter interface to ensure accurate delineation (SMITH et al, 2012). 

 

2.5.2 ROIS DEFINITION 

To segment the whole brain tractography into specific tracts, we employed a semi-

automatic approach by defining exclusion and inclusion regions of interest. The ROIs were 

defined in the MNI space to ensure consistency and reproducibility across subject 

segmentations, following the methods outlined by Stieltjes et al. 2013 and Pinto et al., 2021. 

Table 3 and Figures 24-30 summarize the criteria used for ROI definition in each tract selection. 

Inclusion ROIs are highlighted in green, while exclusion ROIs are denoted in red. The 

segmentation process was made by a technician with over 3 years of experience in anatomical 

image segmentation. 

For tracts where inclusion and exclusion ROIs were not explicitly defined in the 

literature, such as the posterior commissure and hippocampal commissure, we relied on 

anatomical descriptions as a reference. This allowed us to establish a basis for accurately 

segmenting these tracts. 

Table 3 - Inclusion and Exclusion criteria of ROIs for each tract selection. 

Tract Inclusion Criteria Exclusion Criteria 

AC 

1. In the mid-sagittal plane, positioned 

below the corpus callosum and above the 

cerebral peduncle, specifically within 

the anterior section of the third ventricle. 

2. Place identical ROIs in the center of 

both the left hemisphere and the right 

hemisphere. 

1. Reside within the temporal-frontal 

division but deviate from the 

expected trajectory of the AC tract. 

2. Extend towards regions beyond 

the anterior-to-middle section of the 

brain, including the occipital part. 
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HC 

1. Utilize the anatomical landmarks of 

the end of the corpus callosum and the 

fornix to precisely define the regions. 

Place one ROI on the left and another on 

the right side, ensuring they align within 

the sagittal plane. 

2. In the coronal plane, position the 

ROIs above the third ventricle to 

accurately delineate the hippocampal 

commissure regions. 

1. Fibers that are from corpus 

callosum and fornix. 

2. Any fibers extending into the 

occipital lobe. 

 

 

 

 

 

PC 

1. The posterior commissure is 

positioned posterior to the anterior 

commissure. 

2. The PC is situated near or slightly 

anterior to the pineal gland within the 

third ventricle and can be visualized 

better in the sagittal plane. 

1. Fibers that extend toward regions 

outside the expected anatomical 

boundaries of the PC, including the 

cerebral peduncle, parietal lobe, or 

cerebellum. 

FX 

1. In the coronal slice select the body of 

fornix. 

2. In the axial slice, select the region 

corresponding to the hippocampal 

fimbria, aligning it with the level of the 

cerebral peduncles and covering the 

hippocampus. 

1. Cross between the hemispheres of 

the brain. 

2. Fibers from hippocampal 

commissure. 

UF 

1. Select the most posterior coronal 

slice where the temporal and frontal 

lobes distinctly separate, usually found at 

the anterior portion of the fornix in the 

mid-sagittal view. 

2. For each hemisphere, designate ROIs 

within the temporal and frontal lobes. 

1. Fibers from corpus callosum. 

2. Reside within the temporal-frontal 

division but are not considered part of 

the UF tract. 
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CST 

1. Cerebral peduncle in the midbrain 

area. 

2. Primary motor cortex or precentral 

gyrus. 

1. Traverse between the hemispheres 

of the brain. 

2. Reside near the cerebral peduncle 

but are not considered part of the CST 

tract. 

IFO 

1. In the coronal slice extending into the 

occipital regions, designate both ROIs 

for each hemisphere. 

2. In the coronal slice where the tract 

gathers or bunches, identify the ROI 

located at the posterior edge of the genu 

of the corpus callosum. 

1. Extend towards parietal regions. 

2. Belonging to corpus callosum 

3. Are not considered part of the IFO 

tract. 

Source: Elaborated by the Author. 

Figure 24 - ROIs for Anterior Commissure segmentation. 

 

Source: Elaborated by the Author. 
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Figure 25 - ROIs for Hippocampal Commissure segmentation. 

 

Source: Elaborated by the Author. 

 

Figure 26 - ROIs for Posterior Commissure segmentation. 

 

Source: Elaborated by the Author. 
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Figure 27 - ROIs for Fornix segmentation. 

 

Source: Elaborated by the Author. 

Figure 28 - ROIs for Uncinate Fasciculus segmentation. 

 

Source: Elaborated by the Author. 
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Figure 29 - ROIs for Corticospinal Tract segmentation. 

 

Source: Elaborated by the Author. 

Figure 30 - ROIs for Inferior Fronto-Occipital segmentation. 

 

Source: Elaborated by the Author. 

2.5.3 MASK GENERATION 

To generate binary tract masks from the final sets of streamlines, we utilized the tckmap 

function in conjunction with the maskfilter function available in MRtrix3 (Figure 31). This 

combination allowed us to achieve a smoother and more refined result. These binary masks 

now serve as reference segmentations and are used for training and testing of the proposed 

segmentation approach. Utilizing these masks, we ensure a reliable and standardized basis for 

evaluating the performance of the segmentation method. 
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Figure 31 - Specific tracts visualization: anterior and posterior commissure (a), fornix (b), uncinate fasciculus 

(c), hippocampal commissure (d), corticospinal tract (e), and inferior fronto-occipital fasciculus (f). 

 

Source: Elaborated by the Author. 
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3 RESULTS 

 

By exploring three different training scenarios, we aimed to evaluate the performance and 

generalization capabilities of our segmentation approach under varying data conditions, 

including both high-quality and routine clinical acquisition settings. For that, we separate the 

results into qualitative and quantitative to demonstrate better the impacts of the different 

conditions in public and local hospital datasets. Moreover, we extended our investigation by 

subjecting the final experiment to a separate dataset originating from an alternative hospital 

routine and epilepsy patients, to see the transferability of the training networks to different 

scanners and non-healthy brains. 

 

3.1 MANUAL QUALITY CONTROL AND CLEAN-UP 

Following the semi-automatic approach, we conducted a thorough manual inspection of 

the individual results. Any remaining spurious streamlines were carefully addressed by 

implementing new exclusion ROIs (Figure 32). Given the need for precise and accurate 

placement, the exclusion ROIs had to be manually drawn for each individual subject rather than 

employing the same ROIs across all subjects. The percentages of subjects that needed manual 

additional exclusion ROIs are exhibit in Table 4.  

Table 4 - Percentages of subjects with additional exclusion ROIs to remove spurious streamlines in manual 

quality control. 

Tract Public Dataset Local Hospital Dataset 

AC 31,3% 56,3% 

HC 57,4% 73,4% 

PC 51,9% 81,1% 

FX L 75,4% 80,6% 

FX R 73,1% 75,7% 

UF L 42,2% 70,3% 

UF R 36,3% 51,7% 

CST L 68,0% 77,1% 

CST R 56,6% 73,1% 

IFO L 26,3% 29,1% 

Continue 
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Tract Public Dataset Local Hospital Dataset 

IFO R 22,3% 25,7% 

Source: Elaborated by the Author. 

The higher percentages of additional corrections in all tracts using the images of the local 

hospital dataset detach the impact of quality in tractography segmentation. This outcome is 

partially a consequence of the registration process, which introduces deformations in the images 

to align them within a common spatial framework. Images with lower quality have more 

problems with this approach, bringing more necessity of manual quality controls in 

segmentation.  

Nevertheless, certain tracts like the CST, PC, FX, and HC present unique difficulties 

due to their specific anatomical locations and structures. The CST, being a lengthy tract, 

presents complexities, especially in accurately segmenting its lateral projections near the cortex. 

The proximity of the PC to the CST path further complicates matters as these fibers, along with 

those extending towards the cerebellum, tend to persist even when using exclusion ROIs to 

sever these connections. The fornix, characterized by a high curvature level and its central 

position within the brain, presents challenges in separating its fibers from those belonging to 

neighboring tracts. HC faces a similar dilemma, as it passes through the corpus callosum and 

resides at the crura of the fornix, making it particularly challenging to isolate it.  

In this way, the manual checkup ensures the effective removal of any undesired 

streamlines and reinforced the necessity of additional steps besides the automatic approach to 

improving the overall quality of the segmentation results.  
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Figure 32 - Example of the necessity of manual checkup for an adequate tract segmentation. (a) Anterior 

Commissure. (b) Left Fornix. 

 

Source: Elaborated by the Author. 

3.2 QUALITATIVE RESULTS 

In our qualitative assessment, we carefully selected a representative subject from both the 

test set of the public dataset and the local hospital dataset, ensuring their Dice scores were 

closest to the mean certifying the chosen subjects served as representative samples for their 

respective datasets. Although, before delving into this analysis, we provide an illustrative 

depiction of the effect of different experimental conditions (see Figure 33). This visual aid aims 

to facilitate a deeper understanding of how varying conditions can significantly affect the 

quality of information within the images.  
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Figure 33 - Comparison between two images acquired in two experimental conditions (above) and arising FA 

maps (bellow). 

 

Source: Elaborated by the Author. 

As depicted in Figure 34, we presented the 5 short tracts explored, displaying the left-side 

representation of those existing in both hemispheres, and the outcomes from the first experiment 

exhibited a commendable level of satisfaction. However, discernible challenges arose when the 

network was trained on a different dataset, as evident in the second experiment. The most 

visually compelling tract reconstructions emerged from the training involving both datasets, 

demonstrating enhanced fidelity when compared with ground truth. 
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Figure 34 - Qualitative results of one random subject from the public dataset for the first experiment (public 

dataset training), second experiment (local hospital dataset training) and third experiment (training with both 

datasets) (Dice Score). 

 

Source: Elaborated by the Author. 

The same aspects can be visualized for one subject with data acquired at the local hospital 

(Figure 35). Here, the tract reconstruction faced difficulties when exclusively trained on the 

public dataset, with the third experiment yielding the most favorable outcomes. Notably, short 

tracts with higher curvature levels exhibited greater difficulty in learning and maintaining 

continuity in predictions, as exemplified by the posterior commissure, fornix, and uncinate 

fasciculus. These tracts exhibited gaps in both boundary and curvature sections, underlining the 

intricacies of their representation. 
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Figure 35 - Qualitative results of one random subject from the local hospital dataset for the first experiment 

(public dataset training), second experiment (local hospital dataset training) and third experiment (training with 

both datasets) (Dice Score). 

 

Source: Elaborated by the Author. 

3.3 QUANTITATIVE RESULTS 

3.3.1 1ST EXPERIMENT 

The results of the first experiment are presented in Figure 36. For the public dataset, the 

short tracts achieved Dice scores ranging from 0.54 to 0.70, while the large tracts attained scores 

between 0.63 and 0.83. As expected, the long tracts exhibited higher prediction scores, as they 

are relatively easier to construct and do not have high levels of curvature. Despite CST being 

considered more challenging due to its lateral projections, the network successfully learned a 

significant portion of the tract, achieving impressive predictions of 0.75 for the left hemisphere 

and 0.83 for the right hemisphere. Among the short tracts, UF demonstrated the highest 

prediction scores, with 0.64 for the left hemisphere and 0.70 for the right hemisphere. This was 

followed by FX and AC, both achieving a score of 0.62. PC obtained the lowest scores, likely 

due to its shorter and thinner nature, which makes segmentation and consistent reference 

generation more challenging, particularly considering the anatomical variability across 

subjects. 
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Figure 36 - Dice score results for the training using only HCP data and testing in unseen subjects from the HCP 

dataset (a) and local hospital dataset (b) for each tract. (*) Results from literature (WASSERTHAL; NEHER; 

MAIER-HEIN, 2018). (+) Mean Dice score Training with Public Dataset. 

 

Source: Elaborated by the Author. 

When the network trained solely on HCP data was tested on the hospital acquisitions, a 

noticeable decline in performance was observed. While the long tracts still achieved scores 

above 0.61, the shorter tracts obtained lower Dice scores, ranging from 0.36 for AC, HC, and 

FX L. Additionally, there was a larger standard deviation in the predictions across the subjects. 

This drop in performance can be attributed to several factors. The hospital acquisitions typically 

have lower signal-to-noise ratio, more distortions, and artifacts that impact the image quality. 

These factors, in turn, affect the accuracy of the orientation information used by the network to 

make precise tract segmentation predictions. The reduced amount of information and higher 

levels of distortions in the preprocessing stage can contribute to the decreased performance 

observed when applying the network trained on HCP data to the hospital acquisitions.  

 

3.3.2 2ND EXPERIMENT 

The results of the second experiment demonstrated an average improvement of 32% in 

the predictions for the local hospital dataset compared to the first experiment (Figure 37). 

Specifically, AC, PC, left FX, and left UF achieved Dice scores of 0.50, while right FX obtained 

a score of 0.53. Additionally, HC and right UF achieved a score of 0.56. These scores indicate 

the challenges faced by the network in learning and accurately segmenting these short tracts, 

even when the training is based on the same type of data. Despite the overall improvement 

observed in the second experiment, the lower Dice scores for these short tracts highlight the 

difficulty in capturing their specific characteristics and accurately predicting their boundaries. 
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Figure 37 - Dice score results for the training using only local hospital data and testing in unseen subjects from 

HCP dataset (a) and local hospital dataset (b) for each tract. (+) Mean Dice score Training with Public Dataset. 

 

Source: Elaborated by the Author. 

When applying the trained network to the HCP dataset, a decrease in performance was 

observed. The long tracts experienced a relatively smaller decrease of 20%, while the short 

tracts exhibited a more significant decrease of 37%. These findings highlight the dependency 

of the training process on the quality of the input data. Although the HCP dataset is known for 

its higher-quality data, the network trained with data of lower quality from the local hospital 

dataset could not achieve high scores when applied to the high-quality HCP data. 

The performance of the trained network heavily relies on the information present in the 

training data. The network learns patterns and features from the input data to make predictions. 

Therefore, if the training data lacks certain information or exhibits specific characteristics, it 

becomes difficult for the network to generalize its predictions to unseen data. In the case of 

shorter and highly curved tracts, the intricacies of their structures pose additional challenges for 

accurate segmentation. The network may struggle to capture the fine details and variations in 

these tracts, leading to decreased performance and difficulty in generalizing predictions beyond 

the training data. 

Overall, these results emphasize the need for robust training approaches that can handle 

variations in data quality and effectively address the complexities associated with segmenting 

shorter and highly curved tracts. This was what led us to carry out the third experiment.  
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3.3.3 3RD EXPERIMENT 

By combining the datasets from the HCP and the local hospital, and standardizing the 

resolution, we aimed to leverage the strengths of both datasets and create a training environment 

that better encapsulates the characteristics of the tracts in question. This approach allowed us 

to mitigate some of the limitations encountered in the previous experiments and enhance the 

network's ability to generalize predictions across different datasets. As we can see in Figure 38, 

the scores obtained were higher compared with the first and second experiments for both 

datasets.  

Figure 38 - Dice score results for the training using both datasets and testing in unseen subjects from HCP 

dataset (a), local hospital dataset (b), and both datasets randomized (c) for each tract. (+) Mean Dice score 

Training with Public Dataset. 

 

Source: Elaborated by the Author. 

We observed an average enhancement of 10% in performance for the public dataset when 

contrasted with outcomes achieved through training solely on the same public dataset. Among 

the short tracts, particularly substantial improvements were evidenced for the FX, 0.70 for both 
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hemispheres and UF, 0.72 for the left and 0.75 for the right hemisphere. On the other hand, AC 

(0.62) and the right CST (0.84) exhibited relatively modest enhancements, yet these increments 

remained satisfactorily consistent with the values obtained during the first experiment. 

The local hospital dataset exhibited a substantial enhancement of 15% when compared to 

outcomes derived solely from training with the local hospital dataset. Notably, these results 

closely paralleled those of the initial experiment involving the public dataset, as depicted in 

Figure 38 – b. AC (0.60), left FX (0.59), and left UF (0.61) showcased notable performance 

gains within the local hospital dataset compared to the outcomes of the second experiment with 

mean dice scores of 0.48, 0.49, and 0.49 respectively. Although the achieved results weren't 

identical to the public dataset's, their proximity underscores the efficacy of our approach in 

different acquisition settings. 

In the scenario where predictions were made using a combination of both datasets, the 

outcomes consistently surpassed those achieved solely with training on the public dataset from 

the first experiment, except for the right CST (Figure 38 – c). This outcome underscores the 

remarkable generalization capabilities of the neural network, notably pronounced for the short 

tracts. For instance, left FX achieved a high score of 0.66, HC scored 0.64, and left UF reached 

an impressive 0.67, exemplifying the network's robust performance across all three 

experiments. 

 

3.4 TRANSFERABILITY BETWEEN SCANNERS AND ACQUISITION SETTINGS 

The outcomes garnered from the dataset acquired on a distinct scanner were notably 

promising, exhibiting a slightly lower performance compared to those attained with the 

randomized dataset in the third experiment, similar to the behavior of the local hospital dataset 

result in the third experiment, as demonstrated in Figure 39 – a. Nonetheless, these results 

effectively underscore the network's generalization prowess, demonstrating its aptitude for 

generating predictions across varying acquisition settings and diverse scanners. 
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Figure 39 - Results for the dataset acquired on different scanner – healthy subjects (a) and in local hospital – 

epilepsy patients (b) using the network of the third experiment. (x) Mean Dice score Training with Both Datasets 

– Randomized. 

 

Source: Elaborated by the Author. 

In the case of epilepsy patients, our achievements surpassed the results obtained with 

the randomized dataset in the third experiment, as depicted in Figure 39 – b. Despite the 

exclusive training on healthy subjects, the inherent variability within the training data proved 

sufficient for the network to yield commendable predictions even in cases of brain diseases. 

This underscores the model's adaptability and robustness in accommodating variations and 

complexities across diverse clinical scenarios. 

The qualitative analysis displays the network's adeptness in reconstructing short tracts 

with remarkable fidelity across both datasets (Figure 40). Notably, the network exhibited 

proficiency in ensuring seamless continuity, devoid of gaps, and minimal disruptions in the 

tracts' boundaries or curvature. Thus, validating its precision in representing the structural 

details for datasets acquired in different conditions and with healthy and non-healthy brains. 
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Figure 40 - Qualitative results for the testing in data acquired in different scanners and a non-healthy brain for 

one random subject of each dataset (Dice Score). 

 

Source: Elaborated by the Author. 

3.5 RUNTIME 

Table 5 presents an overview of the time allocation associated with various stages of the 

process, including preprocessing, tractography generation, standard space registrations, and 

method predictions. One of the numerous advantages of automation is its capacity to yield 

time efficiencies, which is why we have delineated the time expenditure for each of these 

processes. 

The preprocessing, tractography generation, and registration procedures, conducted using 

MRtrix3 and FSL software, were executed on a machine equipped with a 1.80GHz Intel Core 

i7 processor with 8GB RAM. Conversely, the training and predictions were performed on a 

machine equipped with 2 Intel(R) Xeon(R) Gold 6130 CPU, 2.10GHz (16 cores x 2 threads 

per core) and 512GB RAM. The first and second experiment taken a mean time of 8 hours to 

train in one view, totalizing 24 hours to finish the total training for one specific tract. In 

contrast, the third experiment required a cumulative training time of 72 hours across all views. 

This was anticipated, as the number of training subjects had doubled, resulting in the extended 

duration. 
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Table 5 - Time consumption related with the preprocessing images, tractography generation, registration to 

standard space and predictions with the model for one subject.  

Process Public Dataset Local Hospital Dataset 

Preprocessing* 69 min 66 min 

Tractography 52 min 18 min 

MNI Registration 10 min 11 min 

Prediction with the proposed 

method 
1,6 min 1,6 min 

* Public dataset preprocessing refers to bias correction and multi-tissue multi-shell CSD modelling. Local hospital 

dataset preprocessing is referent to distortion, motion, Gibbs, eddy current corrections and CSD modelling.  

Source: Elaborated by the Author. 

As illustrated in Table 5, the most time-consuming phases were the data preprocessing 

(particularly peak extraction using CSD), accounting for approximately 84% of the total 

processing time. It's noteworthy that the segmentation prediction, executed after the training 

phase, is highly efficient, taking less than 2 minutes to generate predictions on new data. This 

timing includes the necessary preparations for testing data, such as cropping, slicing, tensor 

formatting, concatenating results from each viewpoint, and saving the final predictions. 
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4 DISCUSSION 

 

The automatic segmentation of white matter tracts is of great interest in the clinical 

setting. While deep learning methods have shown remarkable results in recent years, several 

steps are still necessary before this tool can be integrated into routine hospital practice. These 

steps include validation on more clinical-like datasets and the improvement of short tracts 

segmentation. 

When comparing our results with the literature, we obtained similar outcomes for long 

tracts such as the CST, and short tracts like AC, FX, and right UF when training and testing on 

public datasets (WASSERTHAL; NEHER; MAIER-HEIN, 2018). However, left and right IFO 

showed lower prediction scores (17%), which may be attributed to differences in factors such 

as data augmentation, number of epochs, reference segmentation generation methods, and 

number of the testing dataset. We also reported the segmentation of the HC and PC using deep 

learning, achieving dice scores comparable to other short tracts. This achievement underscores 

the effectiveness of U-Net in successfully segmenting short tracts characterized by significant 

curvature while maintaining a reasonable degree of segmentation accuracy. 

The predominant focus in white matter tract segmentation research has been on the HCP 

dataset with the clinical testing involving small datasets from patients with neurological 

diseases or data downgrading, potentially constraining the reliability and generalizability of the 

conclusions drawn (DONG et al., 2019; LIU et al., 2022). In our study, we aimed to bolster the 

dependability of our results and offer a more comprehensive insight into the capabilities and 

constraints of our proposed method by enlarging the sample size, encompassing a wider range 

of ages, and incorporating images from clinical acquisitions. 

Upon applying our segmentation model to clinical data, an anticipated reduction in 

performance was observed, attributed to the inherent lower quality of the data and the broader 

age range encompassed within clinical datasets. As Figure 33 illustrates, the distinction between 

data acquired outside the clinical routine and in a hospital daily setting is quite evident. For 

instance, comparing the SNR between the high-quality public dataset (47.54) and the clinical 

acquisition (37.60) reveals a substantial 21% decrease, highlighting the considerable quality 

gap between these data types.  

Furthermore, the clinical dataset encompasses a wider age range (18-83 years), unlike 

the narrower span of the HCP dataset (18-36 years). Considering the well-documented 

variations in healthy aging across various brain tracts, the expanded age diversity within the 
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clinical dataset introduces a broader spectrum of variability (PINTO; SANTOS; SALMON, 

2021).  This variability is likely a contributing factor to the observed higher standard deviation 

and potentially elucidates the decrease in performance. The neural network, lacking exposure 

to such variability during training, might encounter challenges in effectively accommodating 

the diverse age-related differences present in the clinical dataset. 

With this in mind, we made an interesting observation when we reversed this scenario 

and trained the model using clinical data, and then made predictions on high-quality data. 

Surprisingly, we obtained scores lower than the local hospital data and gaps in the visual 

segmentation reconstruction for the unseen public data. This finding emphasizes the limitations 

of the supervised learning approach, which relies on the combination of training, validation, 

and testing data type more than the availability and quality of the training data.  

When the model encounters data from scanners and acquisition sequences that are 

different from the training data, a domain shift occurs, leading to a reduction in performance. 

The decrease in performance when applying the model to high-quality data suggests that the 

model has learned specific features and patterns that are unique to the clinical dataset. These 

features may not be as relevant or applicable to high-quality data, leading to a decrease in dice 

scores. Highlight the challenges of transferring the segmentation model trained on one dataset 

to another dataset with different acquisition characteristics. 

By combining both lower quality and higher quality data, we can achieve better 

generalization for the neural network predictions, as evidenced by the resulting performance 

which consistently exceeded that achieved when training with only one type of dataset. This 

trend was particularly pronounced in the context of short tracts, which obtained the highest 

scores across all experiments. This heightened performance can be attributed to the broader 

variability encompassed during training, allowing the network to better adapt to diverse data 

scenarios. The method's adaptability is remarkably showcased in its application to images 

obtained from diverse scanners and epilepsy patients. 

The results derived from a dataset acquired using a different scanner exhibited significant 

promise, displaying a marginally lower performance in comparison to the outcomes of the third 

experiment. This minor reduction in performance can be traced back to variations in diffusion 

gradients. Precisely, the training data comprised only 32 directions, whereas the dataset in 

question featured 64 directions. This difference in directional information during both training 

and evaluation could explain the observed performance variation. 
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In the context of epilepsy patients, our achievements surpassed the results obtained in the 

third experiment, conducted with a random sample. This particular dataset, mirroring the 

acquisition traits of our training data by originating from the same hospital and spanning an age 

range of 26 to 66 years, produced scores well within the optimal performance range of the 

neural network. This validation emphasizes the model's accuracy in depicting the structural 

complexities inherent in datasets gathered under diverse conditions, capturing both healthy and 

non-healthy brain characteristics. 

This leads us to the conclusion that in order to make the application more viable in a 

clinical setting, the path forward involves training the model using MRI datasets that closely 

mimic real clinical scenarios, and whenever possible, incorporate authentic clinical data.  

In closing, our study focused on the application of deep learning for automatic short tracts 

segmentation, with a particular emphasis on clinical relevance. U-Net emerges as a great model 

for tract segmentation, especially when paired with a well-balanced approach to training, 

validation, and testing. Our findings indicated that the key to clinical applicability of deep 

learning segmentation lies in training the model on MRI datasets that closely resemble real 

clinical scenarios and incorporating authentic clinical data whenever possible. This research 

contributes to the ongoing efforts to enhance the reliability and applicability of deep learning-

based white matter tract segmentation in clinical settings. 

 

4.1 LIMITATIONS 

The segmentation of short white matter tracts presents unique challenges that are evident 

in our results, even when we matched both datasets. Besides the improved results, the dice 

scores still stay between 0.60 and 0.75. One of the major limitations in tractography is the lack 

of a definitive ground truth, which makes the generation of reference data for training and 

evaluation challenging.  

Short tracts pose additional challenges due to their complex and highly curved nature. For 

example, the PC and FX exhibit significant levels of curvature, making it difficult to 

consistently identify and segment these tracts across subjects. Similarly, the lateral part of the 

AC can vary in its detailed anatomical definition, further contributing to the difficulty in 

accurate segmentation.  

Another factor to consider is the registration process, which in the present work was used 

bring the images into a standard space for a faster segmentation. However, this process can 

introduce image deformations that may impact the generation of final tract masks. These 
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deformations can particularly affect the accuracy of segmenting short tracts, as their smaller 

size and intricate anatomical features are more susceptible to distortion. Impacting the resulting 

tract used as label.   

Lastly, it's important to underscore that the quantity of training examples has a direct and 

profound impact on the performance of AI systems. Increased data volume consistently yields 

superior generalization, reduced bias, enhanced model complexity, heightened stability, and 

greater robustness. 

 

4.2 DATA AVAILABILITY 

In recent years, the availability of code has greatly benefited the research field. However, 

many existing pipelines require multiple steps and advanced coding knowledge to understand 

and utilize effectively. Additionally, when dealing with diffusion magnetic resonance imaging 

and deep learning, training models can be computationally demanding, requiring substantial 

memory and GPU resources. This can result in lengthy runtimes, sometimes spanning weeks or 

months.  

To address these challenges, we aimed to optimize and develop an approach that offers a 

favorable cost-benefit ratio with shorter runtimes and an easier setup. Our focus was on creating 

an understandable and didactic Python code that can be utilized by researchers who are new to 

this area or do not possess advanced programming skills. We are pleased to share that our code 

is publicly available on GitHub at  

https://github.com/inbrainlab/Short-Tracts-Automatic-Segmentation.  

It can be easily employed to train new tracts or expand the dataset using Google 

Collaboratory. Furthermore, we have made the pre-trained weights accessible, allowing for 

transfer learning or making predictions on new data. 

 

 

 

 

 

 

 

https://github.com/inbrainlab/Short-Tracts-Automatic-Segmentation
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5 CONCLUSION 

 

Our study highlights both the potential and challenges associated with the automatic 

segmentation of white matter tracts for clinical applications. While deep learning methods show 

considerable promise, there are crucial steps to be taken before this technology can seamlessly 

integrate into routine medical practice. 

Many prior studies in WM tract segmentation have primarily focused on limited datasets, 

potentially hindering the generalizability of their findings. In contrast, our study sought to 

enhance the reliability of results by expanding the dataset, incorporating clinical acquisition 

images, and accommodating a wider range of age groups. 

When applying our segmentation model to clinical data, we anticipated a decrease in 

performance due to issues related to data quality and the broader age ranges present in clinical 

datasets. This observation underscores the inherent challenges of supervised learning and the 

necessity to address domain shifts when transferring models across datasets with varying 

acquisition characteristics. 

Through our findings, we observed the most significant score enhancements when 

augmenting the dataset with examples from various sources, all subjected to a standardization 

process to closely match the characteristics of the clinical dataset. As a result, we achieved 

elevated scores in the evaluation of short tracts, ranging between 0.61 and 0.69. Furthermore, 

in the transferability assessment, the network demonstrated elevated performance even when 

confronted with non-healthy brain data, experiencing only a minimal decline attributed to 

disparities in diffusion directions across different hospitals. 

In conclusion, automatic WM tract segmentation using AI holds immense promise for 

clinical applications and has the potential to significantly enhance reproducibility in the context 

of tractography segmentation. Nevertheless, continuous research efforts are imperative to tackle 

the complexities associated with short tracts, bolster the model's generalization capabilities, and 

fine-tune the techniques to achieve heightened accuracy and reliability across various clinical 

settings. 
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