• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.58.2021.tde-30112022-184955
Document
Author
Full name
Hian Nivaldo Parize
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2021
Supervisor
Committee
Muglia, Valdir Antonio (President)
Bohner, Lauren Oliveira Lima
Gonçalves, Thais Marques Simek Vega
Tirapelli, Camila
Title in Portuguese
Análise comparativa da exatidão de modelos para próteses fixas obtidos por fluxo analógico e digital
Keywords in Portuguese
Exatidão dos dados
Manufatura aditiva
Materiais para moldagem odontológica
Modelos dentários
Abstract in Portuguese
Justificativa: A manufatura aditiva representa uma ferramenta fundamental no fluxo de trabalho digital e permite a obtenção de modelos para próteses fixas com exatidão dentro da faixa aceita clinicamente (<120 µm). Entretanto, não há consenso na literatura quanto qual tecnologia de manufatura aditiva apresenta melhor exatidão para modelos odontológicos. Objetivo: Avaliar a exatidão de modelos odontológicos obtidos por fluxo digital (escaneamento intraoral) e manufatura aditiva, em comparação com fluxo analógico. Materiais e Métodos: Um manequim odontológico contendo elementos dentais artificiais íntegros e com preparo de coroa total e faceta serviu de modelo mestre. Foi utilizado um escâner intraoral (TRIOS, 3Shape) para obtenção do grupo modelo digital (MD). Em seguida, os arquivos digitais foram enviados para manufatura aditiva com processamento digital da luz (DLP) (The Hunter, FlashForge) e jateamento de material (PLJ) (Eden 500 V, Stratasys). O fluxo analógico consistiu na moldagem com silicone de adição (Express XT, 3M ESPE) e modelagem com gesso tipo IV (MG) (FujiRock, GC America). A digitalização dos do modelo mestre e dos modelos físicos dos grupos experimentais foi realizada com escâner laboratorial (inEos X5, Dentsply Sirona). As análises quantitativa e qualitativa da veracidade e precisão da arcada completa e dos preparos dentais para coroa total nos elementos 21, 25 e 26 e faceta no elemento 11 foram realizadas com programa de engenharia reversa (Geomagic Control X 2018, 3D Systems). Resultados: Na análise do arco completo, diferenças significativas foram observadas para os quatros grupos para veracidade (p<0,001) e precisão (p<0,001). Entretanto, nenhuma diferença significativa na veracidade foi encontrada entre MG e os MD (p=1,000) e entre DLP e PLJ (p=1,000). MG, DLP e PLJ presentaram menor precisão em relação à MD. Na análise qualitativa, menores discrepâncias foram apresentadas por MG e MD. Com exceção de PLJ, todos os grupos apresentaram regiões com discrepâncias de baixa intensidade na análise de preparo dental individualizado. Conclusão: Os grupos MG e MD apresentaram superior exatidão e padrão semelhante de discrepâncias, enquanto os grupos DLP e PLJ apresentaram resultados inferiores e semelhantes entre si. O nível de discrepância dos grupos experimentais se enquadrou dentro da faixa clinicamente aceita de exatidão (<120 µm), sendo necessário estudos clínicos para comprovar os achados.
Title in English
Comparative analysis of the accuracy of models for fixed prostheses obtained by analog and digital workflow
Keywords in English
Additive manufacturing
Data accuracy
Dental impression materials
Dental models
Abstract in English
Rationale: Additive manufacturing represents a fundamental tool in the digital workflow and allows to obtain dental casts for fixed prostheses with accuracy within the clinically accepted range (<120 µm). However, there is no consensus in the literature as to which additive manufacturing technology has greater accuracy for dental casts. Aim: To evaluate the accuracy of dental casts obtained by intraoral scanning, digital light processing printing (DLP), and material jetting (Polyjet) compared to analog impression. Materials and Methods: The master model understood a typodont containing intact artificial dental elements and with full crown and veneer preparation. An intraoral scanner (TRIOS, 3Shape) was used to obtain the digital model group (MD). The digital files were sent to additive manufacturing with digital light processing (DLP) (The Hunter, FlashForge) and material blasting (PLJ) (Eden 500 V, Stratasys). The analog workflow was obtained by polyvinyl siloxane (Express XT, 3M ESPE) impression and poured with type IV plaster (MG) (FujiRock, GC America). The digitization of the master model and physical models of the experimental groups was performed with a laboratory scanner (inEos X5, Dentsply Sirona). Quantitative and qualitative analyzes of the trueness and precision of the complete arch and dental preparations for full crown in elements 21, 25, and 26 and veneer in element 11 were performed with reverse engineering software (Geomagic Control X 2018, 3D Systems). Results: In the analysis of the complete arch, significant differences were observed for the four groups for trueness (p<0.001) and precision (p<0.001). However, no significant difference in trueness was found between MG and MD (p=1,000) and between DLP and PLJ (p=1,000). MG, DLP, and PLJ were less accurate than MD. In the qualitative analysis, smaller discrepancies were presented by MG and MD. With the exception of PLJ, all groups presented regions with low-intensity discrepancies in the analysis of abutment teeth. Conclusion: The MG and MD groups had higher accuracy and a similar pattern of discrepancies, while the DLP and PLJ groups had lower and similar results to each other. The level of discrepancy of the experimental groups was within the clinically accepted range of accuracy (<120 µm). Clinical studies are required to confirm these findings.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-12-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.