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RESUMO

ROSA, K.C.F. Modelo de riscos não proporcionais com um termo de fragilidade: Apli-
cação em dados de melanoma. 2021. 59 p. Dissertação (Mestrado – Mestrado Profis-
sional em Matemática, Estatística e Computação Aplicadas à Indústria) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Em análise de dados de sobrevivência, comumente o tradicional modelo de riscos proporcionais
de Cox é ajustado aos dados devido à fácil interpretação das covariáveis sobre a taxa de falha.
A principal vantagem deste modelo é a fácil interpretação, a menos que a razão de riscos não
variem ao longo do tempo. No entanto, em diversos problemas a suposição de proporcionalidade
de uma determinada covariável pode não ser válida, e neste caso, uma abordagem adequada é
necessária. Em estudos clínicos é comum uma fração de pacientes não apresentar o evento de
interesse (óbito/ recorrência), mesmo se acompanhados por um longo período de tempo, o qual
são chamados de imunes ou de fração de curados. Na literatura há diversos modelos de longa
duração que contemplam tais situações. Neste trabalho, propomos um modelo de riscos não
proporcionais com um termo de fragilidade multiplicativo na função de risco a fim de controlar a
heterogeneidade não observável das unidades em estudo com a possibilidade de longa duração.
Consideramos uma extensão do modelo log-log generalizado dependente do tempo utilizando
a distribuição de fragilidade Power Variance Function (PVF) como alternativa para modelar
dados de análise de sobrevivência no contexto de riscos não proporcionais na presença ou não de
pacientes imunes ao evento de interesse. Estudos de simulações e uma aplicação a dados reais
indicam que o modelo proposto pode ser uma ferramenta importante no contexto de riscos não
proporcionais.

Palavras-chave: Análise de sobrevivência, Distribuição PVF, Fração de cura, Melanoma, Mo-
delo de fragilidade, Modelo de riscos não proporcionais, Modelo log-log generalizado dependente
do tempo.





ABSTRACT

ROSA, K.C.F. Non-proportional hazards model with a frailty term: Application with a me-
lanoma dataset. 2021. 59 p. Dissertação (Mestrado – Mestrado Profissional em Matemática, Es-
tatística e Computação Aplicadas à Indústria) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2021.

In the modeling of survival data, commonly, the traditional semiparametric Cox regression
model is fitted to the dataset due to its ease of interpretation, as long as the hazard rates for two
individuals do not vary over time. However, in some situations, the proportionality assumption
of the hazards can not be valid. In medical studies, it is expected that a fraction of units do not
become susceptible to the event of interest (death or recurrence), even if a sufficiently large time
was accompanied, e.g., the so-called long-term survivors. There are several cure rate models
available in the literature. Here, we propose the generalized time-dependent complement log-log
(CLL) model with a power variance function (PVF) frailty term introduced in the hazard function
to control the amount of unobservable heterogeneity in the sample the possibility of long-term
survivors. The maximum likelihood estimation procedure reaches the parameter estimation, and
we evaluate the performance of the proposed models using Monte Carlo simulation studies. The
proposed model’s practical relevance is illustrated by applying a dataset on patients diagnosed
with skin cancer in the state of São Paulo, Brazil.

Keywords: Frailty model, Generalized time-dependent log-log model, Long-term survivors,
Melanoma, Non-proportional hazards model, Power variance function (PVF) distribution, Sur-
vival Model.
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CHAPTER

1
INTRODUCTION

In oncology, clinical outcomes are fundamental for all healthcare providers and public
policies. Commonly, the researchers’ main interest is to estimate the survival rates, as overall
survival, cancer-specific survival, or disease-free survival. This information can be obtained based
on the cancer type and patient features, such as the gender, age at diagnosis, clinical stage of the
disease, education level, type of treatment, and other available information in medical records.
In 2018 were expected, approximately 6,000 new cases of melanoma in Brazil, according to the
Brazilian National Institute of Cancer (INCA) (Coordenação de Prevenção e Vigilância, 2017);
whereas, according to the International Agency for Research on Cancer (IARC), approximately
7,000 new cases were reported (IARC, available at gco.iarc.fr). Approximately 2,000 deaths
per year are attributable to melanoma in Brazil (Coordenação de Prevenção e Vigilância, 2017;
ERVIK et al., 2020).

In the context of survival analysis, the traditional semiparametric Cox regression model
(COX, 1972) is often fitted to censored survival data to evaluate the effect of covariates in the
hazard rate, which assumes that it is constant over time. In practice, the covariate effects may
change over time, and the Cox model may not be adequate. It is common in a clinical study
where prognostic factors, such as treatment, disappear with time. As mentioned in Calsavara
et al. (2020), some types of tumors may respond well to chemotherapy/radiotherapy initially,
but the cancer cells may develop some tolerance to the treatment through genetic mechanisms,
resulting in loss of the treatment effect over time. A problem to fit a Cox regression model can
be inadequate and wrong conclusions can be made. As observed in Schemper (1992), the Cox
model has undoubtedly been used in many problems, proportionality assumptions are violated,
and consequences for the results.

In practice, the Cox regression model is commonly fitted to the dataset, and the propor-
tionality assumption is assessed through Schoenfeld residuals (SCHOENFELD, 1982; PETTITT;
DAUD, 1990; GRAMBSCH; THERNEAU, 1994). Klein and Moeschberger (2003) suggest
plotting the log of the cumulative hazard functions against time and checking for parallelism. In
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the literature, there are several graphical methods for the assessment of this assumption. Eight
graphical methods for the detection of assumption violations have been proposed by Hess (1995).
If departures of the assumption are detected, we can consider some possible workarounds, such
as the redefinition of covariates, model stratification by a covariate with a non-proportional
hazard, fitting a non-proportional hazard model, and so on.

There are several approaches to deal with non-proportional hazards, as the nonparametric
accelerated failure time model proposed by Prentice (1978) and Kalbfleisch and Prentice (2011),
Etezadi-Amoli and Ciampi (1987) considered the hybrid hazard model. In contrast, Louzada-Neto
(1997), Louzada-Neto (1999) proposed the extension of hybrid hazard models, the generalized
time-dependent logistic (GTDL) model proposed by Mackenzie (1996) and extended by Milani
et al. (2015) for the gamma frailty model approach. Recently, Calsavara et al. (2020) extended
the GTDL model considering a power variance function (PVF) frailty model and incorporating
covariate in the effect term. These models have been applied successfully to problems in which
all subjects are susceptible to the event of interest. However, in several situations, some subjects
will not fail during the follow-up because the units are long-term survivors or immune to the
event of interest. In this sense, the long-term survival models consider such situations and have
been extensively studied by several authors. The mixture model proposed by Boag (1949) and
modified by Berkson and Gage (1952) is the most popular model, where the population survival
function is S(t) = p+(1− p)S0(t), such that p ∈ (0,1) is the the long-term survivors, and S0(t)

is a proper survival function for susceptible patients. The exponential and Weibull distributions
are common choices for S0(t). Nevertheless, other distribution can be considered.

The use of traditional models in survival analysis and the long-term survival models
can be extended to capture the effects of unobserved covariate that were not incorporated in the
model, such as genetic factors, environmental or information that was not considered in planning.
Hougaard (1991) showed the advantages of considering two sources of heterogeneity (observable
and unobservable) in a model. A way to quantify the unobservable heterogeneity is employing
frailty models, in which a random effect is considered (multiplicatively or additive form) in the
hazard function to represent the information that cannot be or has not been observed. The random
effect also allows the assessment of covariate effects that were not considered. If an important
covariate is omitted from the model, the amount of unobservable heterogeneity will increase,
affecting the model parameters’ inferences. To include a random effect can help to alleviate
this problem (CALSAVARA et al., 2020). Frailty models have been studied by several authors
Clayton (1978), Vaupel, Manton and Stallard (1979), Andersen et al. (2012), Hougaard (1995),
Sinha and Dey (1997), Oakes (1982). Other authors as Aalen (1988), Hougaard, Myglegaard and
Borch-Johnsen (1994), Price and Manatunga (2001), Peng, Taylor and Yu (2007), Yu and Peng
(2008), Calsavara, Tomazella and Fogo (2013), Calsavara et al. (2017) have considered cure rate
models with frailty terms. Recently, Calsavara et al. (2020) proposed a non-proportional hazards
frailty model with the possibility of long-term survivors in patients diagnosed with melanoma in
the state of São Paulo, Brazil.
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Another way to modeling the long-term survivors is through defective models recently
proposed by Balka, Desmond and McNicholas (2009), Balka, Desmond and McNicholas (2011),
Rocha et al. (2016), Rocha et al. (2017a), Rocha et al. (2017b), Scudilio et al. (2019) and
Calsavara et al. (2019a), Calsavara et al. (2019b). Defective distributions are obtained from
standard distributions by changing the domain of the latter’s parameters so that their survival
functions are limited to p ∈ (0,1) (CALSAVARA et al., 2019b). An advantage of this model
is the ability to accommodate or not cure fractions depending only on shape parameter value,
which is very interesting in terms of the flexibility and capacity to model different types of data
sets.

Here, we propose a different way to model lifetime data under non-proportional hazards
and possibly a cure fraction of the population. In addition, we included a frailty term on the
baseline hazard function to deal with possible heterogeneity due to unobserved covariates. In the
next section, we show the motivation of the proposed model using a real cancer dataset.

1.1 Motivation

The proposed model is motivated by a real medical dataset. It is part of a study of skin
cancer in 6752 patients diagnosed melanoma in the state of São Paulo, Brazil. Melanoma is one
of the best known by the population, but skin carcinomas are more incidents than melanoma.
The survival of patients with melanoma is worse due to its potential for metastatic dissemination.
In general, patients in the clinical stages I or II are treated with surgery, and most of them will be
alive after ten years of follow-up, while patients with clinical stages advanced other therapies are
conducted, and its prognosis is worse due to its potential for metastatic dissemination.

The patients were enrolled in the study from 2000 to 2014, with follow-up conducted
until 2018. They were followed after the diagnosis, and the death due to cancer was defined as the
event of interest. Patients with lost follow-up or died due to other causes in the follow-up period
were characterized as right-censored observations. All records were provided by the São Paulo
Oncocenter Foundation (FOSP), and they can be downloaded in http://www.fosp.saude.sp.gov.br.
The hospital cancer registry (RHC/FOSP) started its activities in 2000, intending to register
cancer cases treated in the state. Currently, 77 hospital cancer registries are active, and every
three months, the records send the datasets. The FOSP is a public institution connected to the
State Health Secretariat, which assists in preparing and implementing healthcare policies in
Oncology. As mentioned by Andrade et al. (2012), these policies serve as an instrument for
oncology hospitals to prepare their protocols and improve care practices.

The melanoma data set considered in this project was also initially studied by Calsavara
et al. (2020), where they evaluated only the effect of surgery covariate in a lifetime using a
non-proportional hazards model with a frailty term. In our study, the goal was to assess the
effect of surgery and other observed covariates available in the record, such as gender and
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age at diagnostic on specific survival. A total of 414 patients were removed from the sample
due to missing values on the covariates observed, leaving 6752 patients in the study. Of the
6752 patients, 5981 (88.6%) underwent surgery and 771 (11.4%) did not, 3417 (50.6%) were
female and 3335 (49.4%) male, 2201 (32.6%) were younger (≤ 50 years-old) and 4551 (67.4%)
older (> 50 years-old). A total of 1914 (28.3%) events occurred during the follow-up period:
Approximately 18.54 years was the maximum observation time, and the median follow-up time
was 5.19 years.

In the literature, the overall melanoma-specific survival after ten years may vary from 24%
to 88% (GERSHENWALD et al., 2017). Figure 1 shows the estimated overall melanoma-specific
survival obtained by Kaplan-Meier estimator (KAPLAN; MEIER, 1958) for the melanoma
dataset. The 5-, 10-, 15- and 18-year specific survival rates were 0.706, 0.629, 0.598 and 0.591,
respectively. We observe the presence of long-term survivors, as expected.
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Figure 1 – Estimated melanoma-specific survival obtained by Kaplan-Meier estimator for melanoma
dataset.

We provide in Figure 2 the estimated survival function for each observed covariate.
According to the estimated survival curves, patients in the surgery group have a better prognosis,
as expected, since most of the patients were in the early stage of the disease and these patients
are normally treated with surgery; better survival rates are associated with young female patients.
In addition, there is evidence of long-term survivors for each observed covariate.

In melanoma skin cancer, there are several relevant information about the patients that
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Figure 2 – Estimated survival curve obtained via Kaplan-Meier estimator for melanoma dataset (left
panel) and plot of log cumulative baseline hazard rates versus time on study (right panel).

could be considered in the analysis, as Breslow thickness1, ulceration2 and Mitotic rate3, as well

1 Breslow thickness is the single most important prognostic factor for clinically localized primary
melanoma. Breslow thickness is measured from the top of the granular layer of the epidermis (or, if
the surface is ulcerated, from the base of the ulcer) to the deepest invasive cell across the broad base of
the tumor (dermal/subcutaneous) as described by Breslow.

2 Ulceration is an integral component of the AJCC/UICC staging system and an independent predictor
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as the environment and genetic factors. However, due to several reasons, significant covariates
were not observed or can not be observed.

Figure 2 also shows a plot of log cumulative baseline hazard rates against time (follow-up
period) for the surgery, gender, and age at diagnosis. According to Klein and Moeschberger
(KLEIN; MOESCHBERGER, 2003), if the proportionality assumption holds, then these curves
should be approximately parallel, with constant vertical separation between them. The plots
suggest non-proportional hazards for the surgery covariate. In particular, the proportionality is
questionable before 5 years, as also observed in Calsavara et al. (2020). Thus, to fit the traditional
Cox model to this dataset can not be adequate.

In this sense, given the structure of the dataset is necessary adequate modeling to deal
with long-term survivors and non-proportional hazards, as well as incorporating unobserved
information in the modeling, once those significant covariates were not observed, such as Breslow
thickness, ulceration, and Mitotic rate (BERTOLLI et al., 2019; FONSECA et al., 2020).

1.2 Objectives
The main goal is to evaluate the effect of the surgery in the lifetime adjusted by age at

diagnosis and gender; quantify the amount of unobserved heterogeneity due to lack of relevant
clinical information, and estimate the long-term survivors.

The traditional semiparametric Cox regression model and the long-term survival models
are essential models in the survival analysis, and several variations of these models have been
proposed in the literature to lead with this real problem. However, our strategy is to consider the
generalized time-dependent complement log-log (CLL) model by including a scale parameter
(λ ), as well as a power variance function frailty term in the modeling, which is an extension of
the model proposed by Milani, Diniz and Tomazella (2014).

The dissertation is organized as follows: Chapter 2 a brief review of the concepts
of survival analysis is presented, the Cox regression model, and the idea of frailty model.
Furthermore, the non-proportional hazard model focuses on the generalized time-dependent
complement log-log model, and the maximum likelihood estimation is presented. In Chapter 3
is presented the new non-proportional hazard model with a PVF frailty term, and its properties
are discussed. To finalize this chapter, a simulation study is presented to analyze the asymptotic
properties of maximum likelihood estimators under different sample size scenarios. In Chapter 4
we apply the proposed model to the real melanoma cancer dataset. Finally, in Chapter 5 we
discuss the conclusions of this dissertation and some proposals for future work.

of outcome in patients with clinically localized primary cutaneous melanoma.
3 Multiple studies indicate that mitotic count is an important prognostic factor for localized primary

melanoma since it represents tumor cells division.
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CHAPTER

2
BACKGROUND

2.1 Introduction
This chapter aims to briefly present background about survival analysis and the traditional

semiparametric Cox regression model and its frailty model version. Furthermore, the non-
proportional hazard model focuses on the generalized time-dependent complement log-log
model, and the maximum likelihood estimation is presented.

2.2 Survival analysis
The main interest in survival analysis is to estimate the time until an event of interest.

For instance, in clinical studies, it is common for researchers to have an interest in estimate the
lifetime of patients in different types of treatments, the time until the disease recurrence, and so
on. However, in survival data is expected the presence of incomplete observations, the so-called
censored observations. Indeed, a proportion of units are expected, which are not susceptible to
the event of interest (death or recurrence). The presence of censoring in the sample impossible to
apply standard statistical for analyzing such data. Therefore, appropriate techniques are needed
that take into account partial information. There are some kinds of censoring, as type I and II
censoring, random censoring, left or interval censoring, etc.

According to Klein and Moeschberger (2003), the type I censoring (or right-censoring)
occurs when the event is observed only if it occurs before some prespecified time. Type II
censoring occurs when a study with n units continues until the failure of the first r individuals,
where r is some predetermined integer (r < n). The random censored observation, unlike the
others, occurs when the unit leaves the study without having experienced the event of interest. In
practice, the random censoring observation is a more typical case. Interval censoring is a more
general type of censoring that occurs when the lifetime is only known to occur within an interval
(L, R], where L denotes the left endpoint and R for the right endpoint. Such interval censoring
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occurs when patients in a clinical trial or longitudinal study have a periodic follow-up, and the
patient’s event time is only known to fall in an interval.

In survival data each observation is denoted by (ti,δi), where ti denotes the time until the
failure or censoring and δi is the censoring indicator variable, that is, δi = 0 if the observed time
is censored and δi = 1 otherwise, i = 1, . . . ,n. Let T > 0 be a random variable representing the
time until the occurrence of the event of interest with density function f (t). The density function
is defined as the limit of the probability of a subject fails in the interval of time [t; t +∆t] as
follows

f (t) = lim
∆t→0

P(t ≤ T < t +∆t)
∆t

,

and its cumulative function is

F(t) = P(T ≤ t) =
∫ t

0
f (u)du.

The function of major interest in survival analysis is the survival function. It represents
the probability of an individual survival at least until the time t and it is given by

S(t) = P(T ≥ t) =
∫

∞

t
f (u)du = 1−F(t).

The survival function properties are: S(t) is nonincreasing function; S(0) = 1 and
limt→∞ S(t) = 0. When the last property is satisfied the survival function is said proper sur-
vival function.

Another important function in survival analysis is the hazard function and it provides the
instant rate of fail. This function represents the chance of a subject will fail in the time t +∆t,
with t→ 0 and it is defined as

h(t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

.

The hazard function can have several shapes, and the most studied cases are: constant,
decrease, increase, unimodal, and bathtub shaped.

Its cumulative hazard function is given by

H(t) =
∫ t

0
h(u)du.

Some useful relations between them are

f (t) = −dS(t)
dt

S(t) = exp{−H(t)}

h(t) =
f (t)
S(t)

.
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2.3 Kaplan-Meier estimator
In the literature there are some estimators of survival function. The most important

non-parametric estimator and used in the practice is the Kaplan-Meier estimator (KAPLAN;
MEIER, 1958) and it is given by

Ŝ(t) = ∏
j: t j<t

(
n j−d j

n j

)
= ∏

j: t j<t

(
1−

d j

n j

)
, (2.1)

where t(1) < t(2) < .. . < t(k) are the k distinct and ordered fail times; d j the number of fails in
t( j), j = 1, . . . ,k; n j represents the number of units at risk in time t( j), i.e., subjects who have not
failed or were not censored until the moment instantly previous to t( j).

As mentioned by Klein and Moeschberger (2003), the Kaplan-Meier estimator is a step
function with jumps at the observed event times. The size of these jumps depends not only
on the number of events observed at each event time ti but also on the pattern of the censored
observations before ti. According to Kaplan and Meier (1958) the estimator in (2.1) is the
maximum likelihood estimator of S(t). In this sense, the Kaplan-Meier curve is widely applied
to verify the goodness-of-fit of the proposed parametric survival models.

2.4 Cox regression model
In the modeling of survival data, commonly, the traditional semiparametric Cox re-

gression model (COX, 1972) is fitted to dataset in order to evaluate the effect of covariates
x> = (x1, . . . ,xp) in the lifetime. This model is often considered due to its ease of interpretation,
as long as the hazard rates for two individuals do not vary over time. The Cox regression model
assumes that.

h(t | x) = h0(t)g(x>β ), (2.2)

where h0(t) is an arbitrary (non-negative) baseline hazard function, g(x>β ) is a non-negative
function with g(0) = 1, often taken as exp{x>β}, and β = (β1, . . . ,βp)

> ∈ Rp is an unknown
p-dimensional parameter.

In general, estimates of β are obtained by the partial likelihood method, but it will not be
addressed here. We refer the interested readers to Klein and Moeschberger (2003).

The basic assumption for its use is that failure rates, of any two individuals, are constant
over time, i.e, the ratio of the hazard function (2.2) for two individuals, i and j, with i 6= j does
not depend of the time, as follows

τ(t;xi,x j) =
h0(t)exp{x>i β}
h0(t)exp{x>j β}

= exp{β (x>i −x>j )}.

However, there are situations where the covariate effects may change over time, and the
traditional Cox regression model may not be adequate. In practice, the covariate effects may
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change over time. For instance, in a clinical study, prognostic factors, such as treatment may
disappear with time. As mentioned in Calsavara et al. (2020), some types of tumors may respond
well to chemotherapy/radiotherapy initially, but the cancer cells may develop some tolerance to
the treatment through genetic mechanisms, resulting in loss of the treatment effect over time. A
problem to fit a Cox regression model can be inadequate and wrong conclusions can be made.
As observed in Schemper (1992), the Cox model has undoubtedly been used in many problems
in which proportionality assumptions are violated, with consequences for the results.

In practice, one usually fits a Cox proportional hazards model and assesses the proportion-
ality assumption based on the so-called Schoenfeld residuals (SCHOENFELD, 1982; PETTITT;
DAUD, 1990; GRAMBSCH; THERNEAU, 1994). Klein and Moeschberger (2003) suggest
plotting the log of the cumulative hazard functions against time and checking for parallelism.
In the literature, there are several graphical methods for the assessment of this assumption. If
departures from the assumption are detected, we can consider possible workarounds, such as
the redefinition of covariates, model stratification by a covariate with a non-proportional hazard,
fitting a non-proportional hazard model, and so on.

2.5 Frailty model

The concept of frailty provides a convenient way of introducing unobserved heterogeneity
and associations into models for survival data. In the univariate time scenario, the role of frailty
is to measure a possible heterogeneity to identify the influence of covariates that were not
incorporated in the model, such as genetic factors, environmental or information that was not
considered in planning (CALSAVARA et al., 2020).

The multiplicative frailty model is an extent of Cox proportional hazards model, where
the individual hazard depends of an unobservable random variable V , called frailty, which acts
multiplicatively on the baseline hazard function. The hazard function of the ith individual with
the frailty term vi multiplicative is given by

hi(t;vi,xi) = vih0(t)exp{x>i β}. (2.3)

The conditional hazard function (2.3) is smaller than baseline for vi < 1; greater than
the baseline hazard function for vi > 1 and when vi = 1 the frailty model reduces to the Cox
regression model (2.2). Due to how the random effect acts on the hazard function, natural frailty
distribution candidates are supposed to be non-negative, continuous, and time-independent. The
frailty distribution widely used in practice is the gamma distribution with mean 1 and variance θ ,
as it permits easy algebraic treatment. However, other choices can be considered, as log-normal,
positive stable, power variance function distributions.

For simplicity let us consider the model (2.3) without the presence of the covariates.
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Thus, the survival function of an individual conditional on the frailty V = v is

S(t;vi) = S0(t)vi,

where S0(·) denotes the baseline survival function.

In order to eliminate the unobserved quantities, the random effect can be integrated out.
Thus, marginal survival function is given by

S(t) = EV [S(t;v)] =
∫

∞

0
S(t;v) fv(v)dv = Lv [− logS0(t)] ,

where fv(·) is the probability density of the corresponding frailty distribution, S0(·) is the baseline
survival function, and Lv[·] denotes the Laplace transform of frailty distribution.

2.6 Non-proportional hazard model
In the literature, there are several approaches to lead with non-proportional hazards and

long-term survivors. Here we focus on a non-proportional hazards model proposed by Milani,
Diniz and Tomazella (2014) which also allows a proportion of units non-susceptible to the event
of interest without requiring an extra parameter, which is an advantage over traditional cure rate
models.

2.6.1 Complementary log-log hazard model

Let T > 0 be a random variable representing the failure time and h0(t) the instanta-
neous failure rate or baseline hazard function. According to Milani et al. (MILANI; DINIZ;
TOMAZELLA, 2014), the complementary log-log hazard function (CLL) is given by

h0(t;x) = exp{−exp(αt +x>β )}, (2.4)

where α is a measure of the time effect, x> = (1,x1, . . . ,xp), and β>=(β0,β1, . . . ,βp) are the
sets of covariates and their regression coefficients, respectively.

The cumulative hazard function H(t;x) and survival function S(t;x) are, respectively, as
follows

H0(t;x) =
∫ t

0
exp{−exp(αy+x>β )}dy

and

S0(t;x) = exp
(
−
∫ t

0
exp
{
−exp(αy+x>β )

}
dy
)
. (2.5)

The ratio of the hazard function for two individuals, i and j, with i 6= j where i, j =

1, . . . ,n, with different covariate vectors is given by

τ(t;xi,x j) =
h0(t;xi)

h0(t;x j)
=

exp{−exp(αt +x>i β )}
exp{−exp(αt +x>j β )}

= exp{−exp(αt)[exp(x>i β )− exp(x>j β )]}. (2.6)
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The time effect does not disappear in (2.6). Consequently, the non-proportionality be-
comes evident. Note that if α = 0, the model is a proportional hazards model.

As mentioned by Milani et al. (MILANI; DINIZ; TOMAZELLA, 2014), the behavior
of the hazard function (2.4) depends on the value of α . When α > 0, it decreases; when α < 0
it is increasing, and when α = 0, the hazard function is constant over time. Due to the hazard
function’s shape, the model (2.4) is indicated for the modeling phenomenon with monotone
failure rates.

The survival function is proper for α ≤ 0, but when time effect α is positive, the CLL
model naturally becomes an improper distribution, which is useful for the modeling of survival
data in the presence of a surviving fraction. The long-term survivors is calculated as the limit of
the survival function (2.5) when α > 0, given by

p(x) = lim
t→∞

S(t;x) = lim
t→∞

exp
(
−
∫ t

0
exp
{
−exp(αy+x>β )

}
dy
)
∈ (0,1). (2.7)

An advantage of the CLL model over traditional cure rate models is that it does not assume
the existence of the long-term survivors and neither requires an extra parameter. Moreover, the
CLL model has an inconvenient constraint on the hazard function imposed by the 0≤ h0(t;x)≤ 1,
for all t > 0.

Figure 3 plots the baseline hazard and survival functions for different parameter values
for the CLL model considering a group variable as the covariate. As previously mentioned the
hazard function is constraint on unit interval.
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Figure 3 – Baseline hazard (left panel) and survival (right panel) functions from the extended CLL model.
The parameter values used are: Group1, α = 2, β0 = 0, and β1 =−1; Group2, α =−2, β0 = 0,
and β1 =−1; and Group3, α = 0, β0 = 0, and β1 =−1. The subscript numerals indicate the
values of the fixed covariates.
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2.7 Maximum likelihood estimation
There are several non-parametric approaches in survival analysis to estimate the survival

function, cumulative hazard function, among other interest functions. However, our focus here
is to fit parametric models to the observed data. The maximum likelihood estimation is widely
used in statistical to estimate parameters of statistical models. The maximum likelihood method
allows to incorporate the incomplete observations commonly observed on survival datasets, and
it has excellent properties for large samples. The contribution of censored observations to the
likelihood function is given by the survival function, while the complete observations contribute
to the density function.

Let us consider the situation when the time to event is not completely observed and it is
subject to right censoring. Let δi the censoring indicator variable, that is, δi = 0 if the observed
time is censored and δi = 1 otherwise, i = 1, . . . ,n. The observed dataset is D = (t,δ ,X), where
t = (t1, . . . , tn)

> are the observed lifetimes, δ = (δ1, . . . ,δn)
> are the censoring indicators, and X

is a matrix containing the covariate information. Consider that Tis are independent and identically
distributed random variables with survival, hazard and density functions specified, respectively,
by S (·;ϑ ,x), h(·;ϑ ,x) and f (·;ϑ ,x), where ϑ denotes a vector of unknown parameters. We
suppose that T is independent of the censoring time. Under non-informative censoring the
likelihood function of ϑ is

L(ϑ ;D) ∝

n

∏
i=1

[ f (ti;ϑ ,xi)]
δi[S(ti;ϑ ,xi)]

1−δi

∝

n

∏
i=1

h(ti;ϑ ,xi)
δiS(ti;ϑ ,xi).

The corresponding log-likelihood function, `(ϑ) = logL(ϑ ;D), is given by

`(ϑ) ∝

n

∑
i=1

δi log f (ti;ϑ ,xi)+
n

∑
i=1

(1−δi) logS(ti;ϑ ,xi).

The maximum likelihood estimator is the value of ϑ that maximizes L(ϑ) or equivalently
its log-likelihood function `(ϑ). The estimators are found by solving the system of equations

U(ϑ) =
∂`(ϑ)

∂ϑ
= 0.

Commonly, due to the complexity of the equations, the maximum likelihood estimator
does not have a closed expression. Thus, it is necessary to use numeric methods. There are many
routines available for numerical maximization in the literature. We used the optim routine in the
R software (R Core Team, 2020) for numerical maximization with the L-BFGS-B optimization
method.

The asymptotic properties of maximum likelihood estimators are needed to obtain the
confidence intervals and to test hypotheses about the model parameters. Under certain regularity
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conditions, ϑ̂ has asymptotic multivariate normal distribution with mean ϑ and variance and
covariance matrix Σ(ϑ̂), which is estimated by

Σ̂(ϑ̂) =

{
−∂ 2`(ϑ ;D)

∂ϑ∂ϑ
>

∣∣∣∣∣
ϑ=ϑ̂

}
.

Thus, an approximate 100(1 − α∗)% confidence interval for ϑi is(
ϑ̂i− zα∗/2

√
Σ̂ii, ϑ̂i + zα∗/2

√
Σ̂ii
)

, where Σ̂ii denotes the ith diagonal element of the inverse

of Σ̂ and zα∗ denotes the 100(1−α∗) percentile of the standard normal random variable.

In the CLL model, the long-term survivors p(x) is calculated as a function of the esti-
mated parameters. Due the complexity of integral in (2.7), numerical integration is necessary,
as adaptive quadrature of functions of one variable (GANDER; GAUTSCHI, 2000). We con-
sidered the integrate function available in R software to approximate the integral once it has no
analytical solution. In addition, to estimate the standard error and confidence interval of p(x),
the non-parametric bootstrap technique can be used. For more details, please see Davison and
Hinkley (1997).
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CHAPTER

3
EXTENDED COMPLEMENTARY LOG-LOG

HAZARD MODEL WITH A FRAILTY TERM

3.1 Introduction
This chapter aims to propose a new family of non-proportional hazard survival models

with a frailty term and the possibility of long-term survivors. This new family is obtained by
adding an extra parameter (λ ) in the CLL model and a frailty term in the hazard function to
quantify the amount of unobserved heterogeneity.

3.2 Extended complementary log-log hazard model
As previously mentioned in Section 2.6, the complementary log-log hazard function

(CLL) is given by

h0(t;x1) = exp{−exp(αt +x>1 β )}, (3.1)

where α is a measure of the time effect, x>1 = (1,x11, . . . ,x1p), and β>=(β0,β1, . . . ,βp) are the
sets of covariates and their regression coefficients, respectively.

As previously mentioned, the CLL model does not assume the existence of the long-term
survivors, and neither requires an extra parameter to estimate the cure rate. Moreover, it has an
inconvenient constraint on the hazard function 0≤ h0(t;x1)≤ 1, for all t > 0.

Due the limitation on the hazard function on unit interval, we propose to incorporate
a scale parameter λ > 0 into the hazard function (3.1) in order to became the model more
realistic. Thus, the evolution of the CLL model to the extended CLL model is due to the inclusion
multiplicative of λ in (3.1), which the hazard function does not limited in the interval [0,1].
Therefore, the extended complementary log-log model (or extended CLL model) is given by

h0(t;x1) = λ exp{−exp(αt +x>1 β )}, (3.2)
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where λ > 0 is the scale parameter, α is a measure of the time effect, x>1 = (1,x11, . . . ,x1p), and
β>=(β0,β1, . . . ,βp) are the sets of covariates and their regression coefficients, respectively.

Its corresponding cumulative hazard function H(t;x1) and survival function S(t;x1) are,
respectively, as follows

H0(t;x1) =
∫ t

0
λ exp{−exp(αy+x>1 β )}dy (3.3)

and

S0(t;x1) = exp
(
−
∫ t

0
λ exp

{
−exp(αy+x>1 β )

}
dy
)
. (3.4)

As does the CLL model, the ratio of the hazard function in the extended CLL model for
two individuals is also time-dependent, as follows

τ(t;x1i,x1 j) =
h0(t;x1i)

h0(t;x1 j)
=

λ exp{−exp(αt +x>1i
β )}

λ exp{−exp(αt +x>1 j
β )}

= exp{−exp(αt)[exp(x>1i
β )− exp(x>1 j

β )]}, (3.5)

for i 6= j where i, j = 1, . . . ,n, with different covariate vectors.

The survival function is also proper for α ≤ 0 and improper when time effect α is
positive. The long-term survivors, when α > 0 is

p(x1) = lim
t→∞

S(t;x1) = lim
t→∞

exp
(
−λ

∫ t

0
exp
{
−exp(αy+x>1 β )

}
dy
)
∈ (0,1). (3.6)

The shape of the hazard function (3.2) takes the same forms of the CLL model (3.1),
as previously mentioned. However, it is not limited to unit intervals. Also note that the usual
CLL model (3.1) is obtained if λ = 1. Figure 4 plots the baseline hazard and survival functions
for different parameter values for the extended CLL model considering a group variable as the
covariate.

3.3 Extended complementary log-log frailty hazard model
The multiplicative frailty model is an extension of the proportional hazards model

introduced by Cox (COX, 1972), where the unit’s hazard function depends on a non-negative
unobservable random variable V , which acts multiplicatively on the baseline hazard function.
From the extended CLL model (3.2), the hazard function of the ith individual with the frailty
term vi is given by

hi(t;vi,x1i) = vih0(t;x1i) = viλ exp{−exp(αti +x>1i
β )}. (3.7)

The conditional hazard function (3.7) is smaller than baseline for vi < 1; greater than
the baseline hazard function for vi > 1 and when vi = 1 the frailty model reduces to the CLL
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Figure 4 – Baseline hazard (left panel) and survival (right panel) functions from the extended CLL model.
The parameter values used are: Group1, α = 2, λ = 4, β0 = 0, and β1 =−1; Group2, α =−2,
λ = 4, β0 = 0, and β1 =−1; and Group3, α = 0, λ = 4, β0 = 0, and β1 =−1. The subscript
numerals indicate the values of the fixed covariates. (For interpretation of the references to
color in this figure legend, the reader is referred to the online version of this article.)

model (3.1). Due to how the random effect acts on the hazard function, natural frailty distribution
candidates are supposed to be non-negative, continuous, and time-independent. The gamma and
inverse Gaussian distributions were considered in Milani et al. (MILANI; DINIZ; TOMAZELLA,
2014) with mean 1 and variance θ for the random effect. However, other choices can be
considered, as log-normal, positive stable, power variance function distributions.

In this work, we consider the family of power variance function (PVF) distributions, as it
presents as a particular case the gamma, inverse Gaussian, and positive stable distributions. The
PVF distribution was suggested by Tweedie (TWEEDIE, 1984) and derived independently by
Hougaard (HOUGAARD, 1986). Let V be a random variable following a PVF distribution with
parameters µ , ψ and γ with density function written as (WIENKE, 2011)

f (v; µ,ψ,γ) = e−ψ(1−γ)( v
µ
− 1

γ
) 1
π

∞

∑
k=1

(−1)k+1 [ψ(1− γ)]k(1−γ)µkγΓ(kγ +1)
γkk!

×v−kγ−1 sin(kγπ),

where µ > 0, ψ > 0 and 0 < γ ≤ 1.

We use the restriction E[V ] = µ = 1, such that V[V ] = µ2

ψ
= 1

ψ
:= θ , where θ is inter-

pretable as a measure of unobserved heterogeneity following the historical definition of frailty
originally introduced by Vaupel et al. (VAUPEL; MANTON; STALLARD, 1979).

In order to eliminate the unobserved quantities, the random effect can be integrated out.
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Thus, marginal survival function is given by

S(t;x1) = EV [S(t;x1,v)] =
∫

∞

0
S(t;x1,v) fv(v)dv = Lv [− logS0(t;x1)] ,

where fv(·) is the probability density of the corresponding frailty distribution, S0(·) is the baseline
survival function, and Lv[·] denotes the Laplace transform of frailty distribution.

The unconditional survival and hazard functions in the PVF frailty model are expressed
by, respectively,

S(t;x1) = exp
{

1− γ

γθ

[
1−
(

1+
λθ

1− γ

∫ t

0
exp
{
−exp(αy+x>1 β )

}
dy
)γ]}

(3.8)

and

h(t;x1) =
λ exp

{
−exp(αt +x>1 β )

}[
1+ λθ

1−γ

∫ t
0 exp

{
−exp(αy+x>1 β )

}
dy
]1−γ

. (3.9)

Henceforth, we will refer to the model in which the survival function is shown in (3.8),
as the extended CLL PVF frailty model, CLL PVF frailty model, or CLL PVF model. Note that
the traditional CLL model (3.2) is obtained as θ → 0. If λ = 1 and θ → 0 the model (3.1) is
derived. Besides, the CLL PVF model is flexible because it includes many other frailty models
as special cases. For instance, when γ → 0, the CLL gamma frailty model is obtained. The CLL
inverse Gaussian is derived if γ = 0.5. The CLL positive stable frailty is a special case of the
CLL PVF model in which some asymptotic considerations are necessary to show this fact. We
refer the interested readers to Wienke (WIENKE, 2011).

The hazard function in (3.9) depends on the time; consequently, the CLL PVF model is
also of non-proportional hazard. As does the CLL model, the CLL PVF model allows positive
values for the time effect (α > 0). Thus, the corresponding long-term survivors is

p(x1) = lim
t−→∞

S(t;x1)

= lim
t−→∞

exp
{

1− γ

γθ

[
1−
(

1+H0(t;x1)
θ

1− γ

)γ]}
∈ (0,1), (3.10)

where H0(·;x1) is given by (3.3).

If parameter α is estimated to be positive, then the cure fractions for the CLL and
CLL PVF frailty models can be obtained from (3.6) and (3.10), respectively. If parameter α is
estimated to be negative, then there is no cure rate according to the two models, and functions
(3.4) and (3.8) are proper survival functions.

A novel contribution of this work is also to incorporate explanatory variables in the
extended CLL model (3.2) and CLL PVF frailty (3.7) models through parameter α , which is a
more reasonable approach because it can directly reflect the effect of a treatment. As mentioned
by Calsavara et al. (CALSAVARA et al., 2019b) if a treatment effect is good in a specific group,
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then some patients will be cured, and the estimate for α will be α > 0; otherwise, if the treatment
is not sufficient, the estimate will be α < 0, which to lead a non cured. Besides, it allows the
intersection between the survival curves, which is commonly observed in clinical trials. Given
this capacity, the extended CLL (3.2) and CLL PVF frailty (3.9) models are more flexible than
standard approach (3.1) proposed by Milani, Diniz and Tomazella (2014).

As previously mentioned, explanatory variables are incorporated in the proposed models
through of the effect time parameter α and in the traditional way in the hazard function with
a set of two-covariate vectors, x1 ∈ Rp and x2 ∈ Rq+1, such that x> = (x>1 ,x

>
2 ) ∈ Rw is a w-

dimensional covariate vector, where w = p+q+1. Importantly, parameter α can be estimated to
be positive or negative. In this way to guarantee α ∈ R, we use an identity link function, such as

α(x2i) = x>2i
α,

where x>2i
= (1,x2i1,x2i2, . . . ,x2iq) and α> = (α0,α1, . . . ,αq) are the sets of covariates and their

regression coefficients, respectively. As suggest by Calsavara et al. (CALSAVARA et al., 2020)
if the researcher has prior knowledge about the variables that can be associated to long-term
survivors they suggest link this subset variables to the α parameter.

An advantage of the proposed models, extended CLL and CLL PVF frailty models, over
alternative models is the lack of assumption about long-term survivors’ existence. Besides, the
models allow that the time effect values lead to proper or improper distribution.

The CLL model (3.1) does not allow a flexible parametric fit for modeling phenomenon
with non-monotone failure rates such as the unimodal and the bathtub-shaped failure rates
commonly observed in biological studies and reliability. In this sense, the proposed model (3.9)
has an advantage over the usual CLL model to accommodate monotone, and non-monotone
failure rates can be applied in several problems in lifetime data analysis. The shape of the hazard
and the survival functions obtained from CLL PVF frailty considering different parameter values
are shown in Figure 5.

It is worth mentioning that the proposed model has intercept in the two components, α0,
and β0, which leads to optimization problems, probably due to the non-identifiability of model
parameters. In this sense, we will consider throughout the work intercept only in the component
α .
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Figure 5 – Baseline hazard (left panel) and survival (right panel) functions from the CLL PVF frailty
model. The parameter values used are: Group1, α0 = 1, α1 = 2, λ = 1, β0 = 0, β1 = 0.3,
γ = 0.7, and θ = 2; Group2, α0 = 1, α1 = −2, λ = 4, β0 = 0, β1 = 1, γ = 0.7, and θ = 1;
Group3, α0 =−1, α1 =−2, λ = 2, β0 = 0, β1 = 1, γ = 0.7, and θ = 0.5; Group4, α0 =−0.05,
α1 = 0.1, λ = 4, β0 = 0, β1 = 1, γ = 0.9, and θ = 0.5; The subscript numerals indicate the
values of the fixed covariates. (For interpretation of the references to color in this figure legend,
the reader is referred to the online version of this article.)

3.4 Inference

Let us consider the situation when the time to event is not completely observed and it
is subject to right censoring. Let T > 0 be a random variable representing the time until the
occurrence of the event of interest. Let δi the censoring indicator variable, that is, δi = 0 if the
observed time is censored and δi = 1 otherwise, i= 1, . . . ,n. The observed dataset is D= (t,δ ,X),
where t = (t1, . . . , tn)

> are the observed lifetimes, δ = (δ1, . . . ,δn)
> are the censoring indicators,

and X is a matrix containing the covariate information. Consider that Tis are independent and
identically distributed random variables with survival and hazard functions specified, respectively,
by S (·;ϑ ,x1,x2) and h(·;ϑ ,x1,x2), where ϑ denotes a vector of unknown parameters. We
suppose that T is independent of the censoring time. Under non-informative censoring the
likelihood function of ϑ is

L(ϑ ;D) ∝

n

∏
i=1

h(ti;ϑ ,x1i,x2i)
δiS(ti;ϑ ,x1i,x2i).

The corresponding log-likelihood function, `(ϑ) = logL(ϑ ;D), is given by

`(ϑ) ∝

n

∑
i=1

δi logh(ti;ϑ ,x1i,x2i)+
n

∑
i=1

logS(ti;ϑ ,x1i,x2i).

Thus, for the extended CLL regression model the log-likelihood function for
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ϑ = (α,λ ,β )> is

`(ϑ) = −λ

n

∑
i=1

∫ t

0
exp
{
−exp

(
x>2iαy+x>1iβ

)}
dy

+ log(λ )
n

∑
i=1

δi−
n

∑
i=1

δi exp
(

x>2iαti +x>1iβ
)
, (3.11)

and for the CLL PVF frailty regression model the log-likelihood function for ϑ = (α,λ ,β ,θ ,γ)>

is

`(ϑ) = −(1− γ)
n

∑
i=1

δi log
[

1+
θλ

(1− γ)

∫ t

0
exp
{
−exp

(
x>2iαy+x>1iβ

)}
dy
]

+
n

∑
i=1

1− γ

γθ

(
1−
[

1+
θλ

(1− γ)

∫ t

0
exp
{
−exp(x>2iαy+x>1iβ )

}
dy
]γ)

+ log(λ )
n

∑
i=1

δi−
n

∑
i=1

δi exp
(

x>2iαti +x>1iβ
)
. (3.12)

We numerically maximize the log-likelihood functions (3.11) and (3.12) to obtain the
maximum likelihood estimates (MLEs) of parameters. There are many routines available for
numerical maximization in the literature. We used the optim routine in the R software (R Core
Team, 2020) for numerical maximization with the L-BFGS-B optimization method. In the
numerical maximization, we also considered the integrate function to solve the integral (adaptive
quadrature of functions of one variable) in the likelihood function once it has no analytical
solution.

The asymptotic properties of maximum likelihood estimators are needed to obtain the
confidence intervals and to test hypotheses about the model parameters. Under certain regularity
conditions, ϑ̂ has asymptotic multivariate normal distribution with mean ϑ and variance and
covariance matrix Σ(ϑ̂), which is estimated by

Σ̂(ϑ̂) =

{
−∂ 2`(ϑ ;D)

∂ϑ∂ϑ
>

∣∣∣∣∣
ϑ=ϑ̂

}
.

Thus, an approximate 100(1 − α∗)% confidence interval for ϑi is(
ϑ̂i− zα∗/2

√
Σ̂ii, ϑ̂i + zα∗/2

√
Σ̂ii
)

, where Σ̂ii denotes the ith diagonal element of the inverse

of Σ̂ and zα∗ denotes the 100(1−α∗) percentile of the standard normal random variable.

The asymptotic normality assumption of MLEs holds only under certain regularity
conditions, which are not easy to assess with our models. In the next section, we describe a
simulation study performed to determine whether the usual asymptotic of the MLEs holds. Many
authors have performed simulations to assess the asymptotic behavior of MLEs, especially when
the analytical investigation is not trivial (MILANI; DINIZ; TOMAZELLA, 2014; CALSAVARA
et al., 2019a; CALSAVARA et al., 2019b; CALSAVARA et al., 2020).
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3.5 Simulation study
In this section, we performed a simulation study in order to evaluate the performance

of MLEs of the CLL PVF frailty (3.9) and extended CLL (3.2) models parameters considering
different sample sizes. We also introduce two regression parameters in the effect time parameter
α , that is, α(x) = α0 +α1x, where α0 is the intercept and α1 is the associated group variable.
As previously mentioned, we did not incorporate the intercept in the other component due
to the optimization problems. Thus, we will have just the regression coefficient β associated
with the x variable. In addition, we considered an exponential distribution with the rate τ for
the censoring times, in which τ is set to control the proportion of right-censored observations.
Datasets (ti,δi,xi) from the CLL PVF frailty model and extended CLL model are generated
using the following steps.

1. Determine the desired parameter values ϑ = (α0,α1,λ ,β )
> (extended CLL model) or

ϑ = (α0,α1,λ ,β ,θ ,γ)
> (CLL PVF frailty model);

2. For the ith subject, draw Xi ∼Bernoulli(0.5) and U∗i ∼ Uniform(0,1);

3. Determine the long-term survivors pi(xi) according to the desired model;

4. Draw Ci ∼ Exponential(τ), where τ is set to control the proportion of right-censored
observations;

5. If u∗i < pi(xi), set t∗i = ∞; otherwise, generate T ∗i from the CLL or CLL PVF frailty model,
i.e., t∗i as the root of S(t∗i ;ϑ) = 1−u′, where U ′ ∼ Uniform(0,1− pi(xi));

6. Let ti = min{t∗i ,ci};

7. If ti = t∗i , set δi = 1; otherwise δi = 0;

8. The dataset for the ith subject is {ti,δi,xi}, i = 1, . . . ,n.

We carried out an extensive Monte Carlo simulation considering sample sizes
n = 100,200,300,500 and 1000. For each combination of parameter values and sample size, we
computed average MLEs of the parameters, their standard deviations (SDs), root mean square
errors (RMSEs) of the MLEs of the parameters, and the empirical coverage probabilities (CPs)
of 90% and 95% confidence intervals. The R software (R Core Team, 2020) was performed in
all simulations with 1000 Monte Carlo runs. The L-BFGS-B algorithm of maximization was
considered to estimates the parameters, which is an option of the optim function in R. In our
simulation studies, we fixed the parameter γ→ 0 (CLL gamma frailty model) for all fitted models
in order to corroborate with the results obtained in the application section.

Table 1 provides the results of the simulation studies of the CLL gamma frailty and
extended CLL models. According to the results, the average estimates were close to fixed values
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as the sample size increased. Consequently, the bias gets to 0, regardless of the model parameters.
The RMSEs and SDs decreased to 0 as the sample size increased. Besides, they are closer (RMSEs
and SDs) when the sample size was n ≥ 300. Empirical CPs for all parameters, regardless
of the model, appeared to be reasonably close to the nominal level with increasing sample
size. Considering the scenario of n = 1000, the empirical distributions of parameter estimates
are shown in Figure 6. The plots indicate that the normal distribution provides reasonable
approximations for estimator distributions.

Table 1 – Average of maximum likelihood estimates (AMLE), square roots of the mean squared errors
(RMSEs), and standard deviations (SDs) of the maximum likelihood estimates, and empirical
coverage probabilities (CPs) of 90% and 95% confidence intervals for the simulated data.

CLL frailty model Extended CLL model
α0 α1 λ β θ α0 α1 λ β

n 0.11 −0.09 2 1.1 1.5 0.18 −0.13 1.15 1.00
AMLE 0.127 -0.104 2.035 1.077 1.330 0.186 -0.131 1.181 0.988
RMSE 0.045 0.043 0.731 0.149 0.685 0.033 0.040 0.238 0.142

100 SD 0.042 0.041 0.730 0.148 0.664 0.033 0.040 0.236 0.141
CP(90%) 0.918 0.926 0.872 0.907 0.892 0.922 0.906 0.907 0.903
CP(95%) 0.971 0.969 0.912 0.948 0.944 0.964 0.961 0.948 0.942

AMLE 0.118 -0.096 2.022 1.088 1.422 0.183 -0.13 1.166 0.988
RMSE 0.028 0.027 0.523 0.106 0.474 0.022 0.026 0.163 0.095

200 SD 0.026 0.026 0.522 0.105 0.468 0.022 0.026 0.163 0.095
CP(90%) 0.923 0.921 0.897 0.891 0.902 0.899 0.911 0.907 0.912
CP(95%) 0.966 0.960 0.928 0.951 0.953 0.951 0.956 0.953 0.951

AMLE 0.116 -0.095 2.017 1.096 1.436 0.181 -0.129 1.159 0.999
RMSE 0.023 0.023 0.435 0.088 0.408 0.018 0.021 0.135 0.080

300 SD 0.022 0.022 0.435 0.088 0.403 0.018 0.021 0.135 0.080
CP(90%) 0.893 0.892 0.879 0.877 0.891 0.904 0.892 0.895 0.892
CP(95%) 0.940 0.943 0.921 0.942 0.934 0.958 0.945 0.944 0.944

AMLE 0.115 -0.094 1.991 1.093 1.442 0.181 -0.130 1.157 0.997
RMSE 0.017 0.017 0.319 0.063 0.308 0.014 0.016 0.105 0.057

500 SD 0.017 0.016 0.319 0.063 0.303 0.014 0.016 0.104 0.057
CP(90%) 0.895 0.904 0.884 0.914 0.888 0.887 0.894 0.875 0.915
CP(95%) 0.950 0.960 0.938 0.960 0.940 0.945 0.942 0.939 0.957

AMLE 0.112 -0.092 2.004 1.097 1.480 0.180 -0.130 1.154 0.998
RMSE 0.011 0.011 0.226 0.046 0.216 0.010 0.011 0.071 0.042

1000 SD 0.011 0.011 0.226 0.046 0.215 0.010 0.011 0.071 0.042
CP(90%) 0.902 0.902 0.889 0.893 0.888 0.886 0.878 0.892 0.890
CP(95%) 0.953 0.949 0.947 0.950 0.941 0.940 0.939 0.950 0.950
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Figure 6 – Histogram of MLEs of parameters for sample size n = 1000 and the fixed parameter value (red
line). Left panel: CLL gamma frailty model. Right panel: Extended CLL model.
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CHAPTER

4
APPLICATION

In this chapter, we consider a real cancer dataset to illustrate the applicability of the
proposed models. We fitted the extended CLL and CLL PVF frailty models and their particular
models to the melanoma cancer dataset and compared them with survival curve estimates obtained
using the Kaplan-Meier estimator. We provide the MLEs, standard error, 95% confidence
interval estimates for the parameters, and AIC criterion value. Estimates of the 95% percentile
bootstrap confidence interval for the long-term survivors’ parameters were obtained using the
nonparametric bootstrap technique with 100 bootstrap samples.

4.1 Melanoma cancer data

The melanoma data are part of a study about skin cancer where the 6752 patients
diagnosed with melanoma in the state of São Paulo, Brazil, were included in the study between
2000 and 2014, with follow-up conducted until 2018. The event of interest was defined as death
attributed to cancer; a total of 1914 (28.3%) events occurred during the follow-up period. The
overall melanoma-specific survival is shown in Figure 1. The goal was to assess the impact of
observed covariates on specific survival and the long-term survivors using the proposed models.
The estimated survival functions for each observed covariate are shown in Figure 2.

Melanoma is one of the best known by the population, but skin carcinomas are more
incidents than melanoma. Worldwide, the staging system proposed by the American Joint
Committee on Cancer (AJCC) is commonly used for melanoma and other solid tumors. The
early clinical stages (I or II) have been associated with a better prognosis once it corresponds to
the melanoma limited to the skin, and these patients are typically treated with surgery. In the
early stages, the vast majority will be alive after ten years of follow-up. Patients in the clinical
stages III the surgery is associated with radiotherapy, or some modality of systemic treatment
such as immunotherapy or targeted therapies (EGGERMONT; DUMMER, 2017). Clinical stage
IV has the worst prognosis once it corresponds to metastatic disease. Some of these patients may
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undergo surgery at some time, but they will more likely need systemic treatment (PUZA et al.,
2019). In our study, 4313 (72.1%) of the patients who underwent surgery were in stage clinical I
or II, while 529 (68.6%) patients who did not undergo surgery were in stage clinical III or IV. As
there is an association between the surgery and disease stage (clinical stage), we will take into
account only the treatment variable as the covariate and age at diagnosis and gender variables.

This dataset was initially studied by Calsavara et al. (2020), where they evaluated only
the effect of surgery on the hazard function using a non-proportional hazards model with a
frailty term. Recently, Molina et al. (2021) and Rodrigues et al. (2021) also considered the same
data set, but in both papers, the main goal was to assess the effect of the clinical stage on the
melanoma-specific survival instead of the surgery variable.

As mentioned in Chapter 2, the proportionality assumption is questionable for surgery
covariate according to the plot of log cumulative baseline hazard rates against time (follow-
up period) as shown in Figure 2. In Figure ?? we provide in Figure 7 a plot of standardized
Schoenfeld residuals against time for these covariates obtained from the fitted Cox regression
model. The results of proportional hazards assumption testing for the fitted Cox regression model
(GRAMBSCH; THERNEAU, 1994) are displayed in Table 2; they provided strong evidence that
the surgery variable had a non-constant effect over time, while the age at diagnosis and gender
there is evidence of effect constant over time.
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Figure 7 – Standardized Schoenfeld residuals+β̂ for the covariate surgery (left panel), age at diagnosis
(middle panel) and gender (right panel) plotted from fitted Cox model.

Table 2 – Test of proportional hazards assumption.

Variable ρ χ2 p-value
Surgery 0.287 150 <0.0001
Age at diagnosis 0.002 0.008 0.926
Gender -0.030 1.680 0.195

To evaluate the observed covariates’ effect in the hazard function and the effect time, we
fitted the extended CLL and CLL PVF frailty models to the dataset. For illustrative purposes, we
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link parameter α to covariates through an identity link function. Thus,

α(xi) = α0 + xiα1,

where xi indicates the covariate associated to the patient for i = 1, . . . ,6752; and α> = (α0,α1)

represents the regression coefficients. The results of the fitted extended CLL and CLL PVF
frailty models are given in Table 3. Notice that the estimate of γ is close to zero indicating that
a CLL gamma frailty model can be considered. In this sense, we also fitted to the dataset the
main special cases, CLL inverse Gaussian (γ = 0.5) and gamma (γ → 0) frailty models, and the
results are given in Table 4. According to the AIC value, the CLL gamma frailty model seems to
be the better choice among the four models.

The results suggest a significant surgery effect in the lifetime regardless of the model, as
the 95% confidence interval the β does not include 0. Besides, the time effect measure differs
between groups (α0 and α1 are significant), except age at diagnosis. Note that α̂0 > 0 and
α̂0 + α̂1 > 0 in the four models, which means that the distributions were improper, leading to
long-term survivors in the three observed covariates.

As mentioned previously, of the four fitted models, the CLL gamma frailty model gave
the best fit according to the AIC value. However, the CLL PVF frailty model can also be
considered once the difference between AIC values is slight and the parameter estimates are
similar.

Considering the AIC criterion, max `(·) values, and the number of parameters in the
model, we select the CLL gamma frailty as our working model. Accordingly, we focused
exclusively on an interpretation of CLL gamma frailty model parameters. Note that θ̂ = 1.492,
which indicates a reasonable degree of unobserved heterogeneity in the sample when surgery is
considered in the model. The amount of estimated unobserved heterogeneity when the age at
diagnostic and gender are considered independently in the model is θ̂ = 2.213 and θ̂ = 2.111,
respectively.

In addition, the estimated time effects were α̂0 = 0.114; CI(95%) = [0.083;0.145] in the
no surgery group and α̂0 + α̂1 = 0.029; CI(95%) = [0.022;0.038] in the surgery group. These
estimates evidence that the time effect is not the same in both groups. As the time effects are
positive, the model suggests that there are long-term survivors, as can be seen in the estimated
proportions, p̂0 = 0.278; bootstrap CI(95%) = [0.236;0.323] (no surgery) and p̂1 = 0.616;
bootstrap CI(95%) = [0.560;0.629] (surgery).

For the age at diagnosis, the estimated time effects α̂0 = 0.084; CI(95%) = [0.064;0.104]
in the younger patients and α̂0 + α̂1 = 0.102; CI(95%) = [0.070;0.133] in the older patients.
As the time effect are both positive, the model suggests that there are long-term survivors; the
estimated proportions are, p̂0 = 0.662; bootstrap CI(95%) = [0.629;0.686] (younger patients)
and p̂1 = 0.556; bootstrap CI(95%) = [0.509;0.575] (older patients). The estimated time effects
for the gender were: α̂0 = 0.078; CI(95%) = [0.061;0.096] in the female patients and α̂0 +
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α̂1 = 0.126; CI(95%) = [0.090;0.164] in the male patients. As the time effects are positive the
estimated proportions are p̂0 = 0.650; bootstrap CI(95%) = [0.607;0.679] (female patients) and
p̂1 = 0.532; bootstrap CI(95%) = [0.496;0.570] (male patients).

Overall, the models reasonably fit Kaplan-Meier curves. However, the CLL frailty model
enables quantifying unobserved heterogeneity, which is of great importance in clinical practice,
once those significant covariates were not observed, such as Breslow thickness, ulceration, and
Mitotic rate.

Table 3 – Maximum likelihood estimate (MLEs), standard error (SE), 95% asymptotic confidence intervals
(CI), AIC value obtained for the extended CLL and CLL PVF frailty models categorized by
surgery, age and gender fitted for the melanoma dataset.

Model Extended CLL CLL PVF frailty
CI 95% CI 95%

Parameter MLE SE Lower Upper MLE SE Lower Upper
α0 0.182 0.008 0.166 0.199 0.125 0.015 0.095 0.154
α1(Yes) -0.131 0.009 -0.149 -0.113 -0.094 0.014 -0.122 -0.066
λ 1.136 0.061 1.017 1.255 2.064 0.202 1.669 2.460
β(Yes) 0.969 0.024 0.922 1.016 1.143 0.032 1.080 1.206
γ - - - - 0.130 0.083 0.0001 0.294
θ - - - - 1.547 0.222 1.112 1.983
2max `(·) −13,404.36 −13,330.72
AIC 13,412.36 13,342.72

α0 0.118 0.007 0.105 0.131 0.084 0.010 0.064 0.104
α1(Older) 0.024 0.012 0.001 0.048 0.018 0.018 -0.017 0.053
λ 0.221 0.011 0.200 0.243 0.259 0.017 0.225 0.294
β(Older) -0.331 0.070 -0.468 -0.193 -0.550 0.127 -0.798 -0.302
γ - - - - 0.001 0.014 0.0001 0.028
θ - - - - 2.201 0.310 1.593 2.809
2max `(·) −13,950.93 −13,892.63
AIC 13,958.93 13,904.63

α0 0.112 0.006 0.101 0.123 0.078 0.009 0.060 0.096
α1(Male) 0.050 0.012 0.025 0.074 0.050 0.021 0.010 0.090
λ 0.216 0.009 0.199 0.234 0.253 0.014 0.226 0.280
β(Male) -0.518 0.074 -0.664 -0.372 -0.869 0.158 -1.179 -0.560
γ - - - - 0.002 0.025 0.0001 0.051
θ - - - - 2.108 0.293 1.534 2.682
2max `(·) −13,904.51 −13,846.07
AIC 13,912.51 13,858.07

Figure 8 shows the estimated survival and hazard functions from the extended CLL
and CLL gamma frailty models for each observed covariate. In both models, but more so in
the CLL gamma frailty model, the survival function estimates are close to the Kaplan-Meier
curves. Besides, the hazard function curves are higher for patients who did not undergo surgery,
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Table 4 – Maximum likelihood estimate (MLEs), standard error (SE), 95% asymptotic confidence intervals
(CI), AIC value obtained for the CLL Gamma and CLL IG frailty models categorized by surgery,
age and gender fitted for the melanoma dataset.

Model CLL Gamma frailty model CLL IG frailty model
CI 95% CI 95%

Parameter MLE SE Lower Upper MLE SE Lower Upper
α0 0.114 0.016 0.083 0.145 0.146 0.011 0.124 0.167
α1(Yes) -0.085 0.015 -0.114 -0.055 -0.112 0.011 -0.133 -0.090
λ 2.013 0.184 1.652 2.373 1.769 0.158 1.458 2.079
β(Yes) 1.139 0.031 1.079 1.199 1.094 0.030 1.036 1.152
γ - - - - - - - -
θ 1.492 0.197 1.107 1.878 1.565 0.318 0.942 2.188
2max `(·) −13,326.22 −13,348.52
AIC 13,336.22 13,358.52

α0 0.084 0.010 0.064 0.104 0.091 0.009 0.073 0.109
α1(Older) 0.018 0.018 -0.018 0.053 0.027 0.016 -0.005 0.058
λ 0.260 0.018 0.225 0.294 0.265 0.018 0.229 0.300
β(Older) -0.551 0.127 -0.800 -0.302 -0.512 0.114 -0.735 -0.288
γ - - - - - - - -
θ 2.213 0.311 1.604 2.821 2.662 0.518 1.646 3.678
2max `(·) −13,892.63 −13,899.32
AIC 13,902.63 13,909.32

α0 0.078 0.009 0.061 0.096 0.085 0.008 0.069 0.101
α1(Male) 0.048 0.020 0.008 0.088 0.057 0.018 0.022 0.092
λ 0.254 0.014 0.227 0.281 0.260 0.015 0.230 0.289
β(Male) -0.857 0.155 -1.161 -0.553 -0.783 0.132 -1.041 -0.524
γ - - - - - - - -
θ 2.111 0.293 1.538 2.685 2.575 0.504 1.587 3.564
2max `(·) −13,846.04 −13,853.00
AIC 13,856.04 13,863.00

mainly in the first five years of follow-up, regardless of models. In both models, the fitted hazard
functions decrease over time; the curves also cross over time. Such crossing can not occur in the
traditional CLL model (considering the effect time α equals in both groups) proposed by Milani
et al. (MILANI; DINIZ; TOMAZELLA, 2014) disadvantage. The inclusion of a covariate in the
α parameter allowed the quantification of each group of patients’ effect and allowed the curves
to cross, as can be seen in the estimated hazard function from the models in Figure 9.

We also fitted a full model considering all risk factors previously mentioned. The results
of the fitted proposed models are given in Table 5. According to the AIC criterion values,
frailty models seem to be the better choice. The smallest value occurred for the CLL gamma
frailty model. Among the observed covariates considered in the models, there is evidence that
surgery, age at diagnosis, and gender are important factors to explain the failure rate, as the 95%
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Figure 8 – Estimated survival curve obtained via Kaplan-Meier (black line) for melanoma dataset, and
estimated survival function according to extended CLL model (left panel) and CLL PVF frailty
model (right panel) for surgery (top panel), age at diagnosis (middle panel) and gender (bottom
panel).
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Figure 9 – Estimated hazard function according to extended CLL model and CLL gamma frailty model
for surgery (left panel), age at diagnosis (middle panel) and gender (right panel).

confidence interval of the coefficients β> = (β1,β2,β3) do not include 0, regardless of the fitted
models. There is a significant effect time only for the surgery covariate regarding frailty models,
which indicates that the effect time is different between groups (α0 and α1 are significant).
Considering the AIC criterion, max `(·) values, and the number of parameters in the model,
we select the CLL gamma frailty model as our working model. Note that θ̂ = 1.457, which
indicates a reasonable degree of unobserved heterogeneity in the sample. In addition, the effect
time in the no surgery group was α̂0 = 0.125; CI(95%) = [0.093;0.156] and α̂0 + α̂1 = 0.027;
CI(95%) = [0.015;0.038] in the surgery group. As the time effects are positive the model
suggests that there are long-term survivors.

The proposed frailty model allows quantifying the amount of unobserved heterogeneity,
which is of great importance in clinical practice. We tested the suitability of the frailty term in
the CLL frailty model using the likelihood ratio test given by, Λ = 2{`(ϑ̂)− `(ϑ̂ 0)}, where ϑ̂ 0

is the maximum likelihood estimator of ϑ̂ under the null hypothesis H, where H : θ = 0. Maller
and Zhou (MALLER; ZHOU, 1996) showed that the statistical distribution Λ is a mixture in
proportions 50%/50% of a chi-squared distribution with one degree of freedom and a point mass
at 0, that is P[Λ ≤ ξ ] = 0.5+ 0.5P[χ2

1 ≤ ξ ] under certain regularity conditions. We obtained
Λ = 58.45 (p-value< 0.0001), which provides evidence in favor of the inclusion of the frailty
term.

As mentioned previously, the CLL gamma frailty model gave the best fit according to
the AIC criterion value. However, the CLL PVF frailty model can also be considered once the
difference between AIC values is slight and the parameter estimates are similar.

The inclusion of the scalar λ in the traditional model (3.1), as well as in the extended
CLL frailty model (3.9) improved the flexibility of the model, as can be seen in the estimate
λ̂ 6= 1.

Figure 10 shows the estimated survival function according to the CLL gamma frailty
model for all combinations of covariates surgery, gender, and age at diagnosis. Table 6 shows the
estimated long-term survivors for all combinations of observed covariates. In general, patients
who have undergone surgery have better survival than those who did not undergo surgery, as
expected, since most patients who underwent this treatment had an early diagnosis. In addition,
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Table 5 – Maximum likelihood estimate (MLEs), standard error (SE), 95% asymptotic confidence intervals
(CI), AIC value obtained for the CLL PVF frailty model and their special cases categorized by
surgery, age and gender fitted for the melanoma dataset.

Model Extended CLL CLL PVF frailty
CI 95% CI 95%

Parameter MLE SE Lower Upper MLE SE Lower Upper
α0 0.184 0.010 0.165 0.203 0.135 0.015 0.105 0.165
α1(Yes) -0.145 0.010 -0.164 -0.125 -0.110 0.015 -0.139 -0.081
α2(Older) 0.007 0.007 -0.006 0.020 0.005 0.007 -0.009 0.018
α3(Male) 0.019 0.007 0.006 0.032 0.007 0.007 -0.007 0.021
λ 0.916 0.057 0.805 1.027 1.347 0.128 1.095 1.598
β1(Yes) 1.093 0.028 1.037 1.148 1.217 0.035 1.148 1.286
β2(Age) -0.143 0.031 -0.204 -0.083 -0.163 0.031 -0.225 -0.102
β3(Male) -0.213 0.029 -0.270 -0.156 -0.203 0.030 -0.262 -0.143
γ - - - - 0.329 0.126 0.082 0.576
θ - - - - 1.511 0.266 0.989 2.033
2max `(·) −13,279.22 −13,218.77
AIC 13,295.22 13,238.77

Model CLL Gamma frailty CLL IG frailty
α0 0.125 0.016 0.093 0.156 0.153 0.012 0.130 0.176
α1(Yes) -0.098 0.016 -0.129 -0.068 -0.125 0.012 -0.148 -0.102
α2(Older) 0.001 0.007 -0.012 0.014 0.003 0.007 -0.010 0.016
α3(Male) 0.003 0.007 -0.011 0.016 0.009 0.007 -0.004 0.022
λ 1.655 0.163 1.335 1.975 1.413 0.134 1.150 1.676
β1(Yes) 1.267 0.034 1.201 1.334 1.221 0.034 1.156 1.287
β2(Older) -0.145 0.030 -0.203 -0.087 -0.149 0.031 -0.209 -0.089
β3(Male) -0.177 0.028 -0.233 -0.121 -0.194 0.029 -0.251 -0.137
γ - - - - - - - -
θ 1.457 0.194 1.078 1.837 1.468 0.302 0.877 2.059
2max `(·) −13,204.43 −13,225.61
AIC 13,222.43 13,243.61

younger female patients who have undergone surgery have better survival than those who did
not undergo surgery, regardless of age at diagnosis. Female patients exhibited slightly better
long-term survivors than male patients with the same treatment (surgery). Meanwhile, in the
absence of surgery, the estimated long-term survivors are worse, mainly in older male patients.
These results are in line with those observed in Calsavara et al. (2020), Molina et al. (2021),
Rodrigues et al. (2021).
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Figure 10 – Estimated survival function according to CLL gamma frailty model for all combinations of
the covariates surgery, gender and age at diagnosis.

Table 6 – Estimated long-term survivors according to the CLL gamma frailty model stratified by surgery,
gender and age at diagnosis.

Surgery No surgery
Long-term Female Male Female Male
survivors Younger Older Younger Older Younger Older Younger Older
p 0.741 0.633 0.619 0.517 0.321 0.283 0.278 0.247

The results finding in our study are consistent with those observed in routine clinical
practice. Surgery, gender, and age at diagnosis have already been reported as prognostic factors,
suggesting that younger patients and women have a better prognosis (SABEL et al., 2005;
BALCH et al., 2014; BALCH et al., 2001; BALCH et al., 2009; GERSHENWALD et al., 2017).
As previously mentioned, those patients who had early diagnosis were in great majority treated
with surgery, which is associated with a better prognosis. The estimated curves shown in this
dissertation are very similar to those presented in the three latest updates of the AJCC staging
system for melanoma (BALCH et al., 2001; BALCH et al., 2009; GERSHENWALD et al.,
2017).
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CHAPTER

5
FINAL REMARKS

5.1 Conclusion

In this dissertation, we extended the complementary log-log hazard model (CLL) pro-
posed by Milani et al. (MILANI; DINIZ; TOMAZELLA, 2014) with the inclusion of a scalar
parameter λ in the hazard function allowing the new hazard function is not limited in the unit
interval. We also proposed a generalized of the extended CLL model with a PVF frailty term
for right-censored data. An advantage of the proposed model over alternatives is that it does
not make assumptions about the existence of the long-term survivors, once the parameter α

value has led to proper (α ≤ 0) or improper (α > 0) distribution; this makes the model flex-
ible and applicable to situations presence and absence long-term survivors. If parameter α is
estimated to be positive, then the long-term survivors are computed as a function of the CLL
model parameters. Besides, the inclusion of a frailty term in the hazard function quantifies
unobserved heterogeneity employing the parameter θ . In our simulation study, conducted to
illustrate the various properties of the MLEs of the parameters, the bias and RMSEs appeared
to trend reasonably close to 0 as the sample size increased. The simulation study showed that
the CLL frailty model is not indicated for small (n≤ 100) samples. The practical relevance and
applicability of the proposed models were demonstrated using a real melanoma dataset, where
surgery, age, and gender covariates were essential factors to explain the failure rate and the time
effect, which was different only for the surgery. Although further research on this approach must
be conducted, our initial results suggest that this model enhances the analysis of non-proportional
hazards in the presence or absence of long-term survivors.

5.2 Future work

The present study leaves some open topics to be addressed in the future. For instance,
we may consider developing more simulation studies considering several values of unobserved
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heterogeneity in the sample, incorporating two or more covariates in the two components, study
the impact of the MLEs when there are not immunes in the population, or when a subgroup has
long-term survivors and the others not, and developing a power analysis for planing sample size.
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