• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.55.2022.tde-06092022-100818
Documento
Autor
Nome completo
Bruno Aparecido Barbosa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2022
Orientador
Banca examinadora
Rezende, Solange Oliveira (Presidente)
Carvalho, Veronica Oliveira de
Delbem, Alexandre Cláudio Botazzo
Lobato, Fábio Manoel França
Título em português
Predição do movimento de ações da Petrobras a partir de notícias
Palavras-chave em português
Classificação
Mineração de Textos
Notícias
Petrobras
Resumo em português
Com a crescente entrada de novos investidores no mercado acionário brasileiro vê-se uma crescente circulação de conteúdos referentes a empresas, oportunidades de investimentos, avaliações e fatos relevantes sobre investimentos do mercado financeiro brasileiro. Esse movimento, somado a possibilidade de veiculação de conteúdos na internet torna difícil para os investidores assimilar novos conteúdos que são veiculados diariamente visando a melhor tomada de decisão na alocação de recursos para seus investimentos. Uma saída para abranger mais conteúdos referentes a alguma possibilidade de investimento e selecionar somente o conteúdo mais relevante é a utilização de algoritmos que possam extrair de um elevado conjunto de informações as mais relevantes para o interesse do investidor. O uso de tecnologias de aprendizado de máquina vem sendo usado em diversas áreas do conhecimento, dentre elas a classificação ou previsão do movimento do mercado financeiro utilizando notícias. No entanto, até agora poucos trabalhos utilizam modelos de linguagem natural baseados em redes neurais, como text embedding. Neste trabalho, é proposto a utilização do modelo BERT (Bidirectional Encoder Representations from Transformers) em comparação com o modelo BoW (Bag of Words) com o classificador Naive Bayes SVM, mais comumente utilizado para a finalidade de prever o movimento de uma ação do mercado financeiro através de notícias. Será utilizado notícias de jornais brasileiros separando somente as notícias referentes a empresa Petrobras
Título em inglês
Petrobras share movement prediction based on news
Palavras-chave em inglês
Classification
News
Petrobras
Text Mining
Resumo em inglês
With the increasing entry of new investors in the Brazilian stock market, there is a growing circulation of content referring to companies, investment opportunities, evaluations and relevant facts about investments in the Brazilian financial market, this movement, added to the possibility of broadcasting content on the internet makes it difficult for investors to assimilate new content that is broadcast daily, aiming at better decision-making in the allocation of resources for their investments. A way out to cover more content referring to some investment possibility and select only the most relevant content is the use of algorithms that can extract from a high set of information the most relevant to the investors interest. The use of machine learning technologies has been used in several areas of knowledge, among them the classification or prediction of the movement of the financial market using news. However, so far few works use natural language models based on neural networks, such as text embedding. In this work, we propose the use of the BERT model (Bidirectional Encoder Representations from Transformers) in comparison with the BoW model (Bag of Words) with the most commonly used Naive Bayes SVM classifier. for the purpose of predicting the movement of a stock in the financial market through news. News from Brazilian newspapers will be used, separating only the news referring to the company Petrobras
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-09-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.