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RESUMO

OLIVEIRA, B. F. Uma aplicação de redes neurais de grafos em modelagem de tópicos com
grafos bipartidos. 2023. 92 p. Dissertação (Mestrado – Mestrado Profissional em Matemática,
Estatística e Computação Aplicadas à Indústria) – Instituto de Ciências Matemáticas e de Compu-
tação, Universidade de São Paulo, São Carlos – SP, 2023.

Grafos são estruturas de dados adequadas para representar objetos do mundo real e suas inter-
relações, tendo sido amplamente estudados teoricamente e com múltiplos exemplos de aplicações
na indústria e pesquisa acadêmica. A aplicação de dados originados de grafos em aprendizados
de máquina teve um significante avanço com a proposta das Redes Neurais de Grafos (Graph
Neural Networks, ou GNNs), permitindo a representação deste tipo de dados em algoritmos
que são capazes de preservar as características do grafo sem necessidade de pré processamento.
Nesta dissertação apresentamos uma análise das redes neurais de grafos e uma proposta de
aplicação no contexto de classificação de textos utilizando modelagem de tópicos para criação
de variáveis descritivas em grafos bipartidos.

Palavras-chave: Deep learning com grafos, aprendizado de máquina, redes neurais, modelagem
de tópicos.





ABSTRACT

OLIVEIRA, B. F. An application of graph neural networks on topic modelling with bi-
partite graphs. 2023. 92 p. Dissertação (Mestrado – Mestrado Profissional em Matemática, Es-
tatística e Computação Aplicadas à Indústria) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2023.

Graphs are data structures proper to represent real-world objects and their relationships having
been widely studied in theory and with multiple examples of applications in industries and
academic research. Applying graph-based data in machine learning had a significant advance
with the proposal of Graph Neural Networks (GNNs), allowing the representation of this type
of data in algorithms that can retain features from the graph without the need for preprocessing
stage. This master’s dissertation presents an analysis of GNNs and proposes an application on
text classification using topic modelling to create descriptive variables in bi-partite graphs.

Keywords: Graph deep learning, machine learning, neural networks, topic modelling.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Data structures are vital for computational problem solving because they provide a proper
way to represent information about the real world to be handled efficiently by computational
algorithms. The study field of Complex Networks explores the properties of graphs applied all
across the sciences. To name a few uses of graphs: model interactions of atoms and molecules
(Physics, Chemistry, Biology), power grids (Energy Supply), the World Wide Web (Computer
Science), the dynamics of diseases (Epidemiology), citation in scientific production, dynamics
of social media platforms (Social Sciences), networks of words.

Machine learning is the study of software that is able to perform tasks with performance
improved by learning from experience (data sample fed to an algorithm) (MITCHELL, 1997).
The past two decades experienced a fast-paced development of Neural Networks, a particular
class of classic machine learning algorithms following the development of the Back-propagation
algorithm (RUMETHART, 1986) that allowed the modelling of neural networks that use Rosen-
blatt’s multi-layer perceptron in an arbitrary number of layers for general-purpose task solving,
taking advantage of high-performance hardware and GPUs, then leading to the rise of Deep
Learning.

Applying the predictive modelling power of machine learning to graphs is a natural
advance. But conventional techniques such as logistical regression or tree-based algorithms
are not immediately compatible with the graph structure, as data instances are expected to be
independent and identically distributed. Some attempts to overcome this obstacle by extracting
representative features from the graph, like kernel functions (VISHWANATHAN et al., 2010) or
graph summary statistics (BHAGAT; CORMODE; MUTHUKRISHNAN, 2011) were presented.
Network embedding is another class of techniques that aims to model graph data by encoding
(projecting) algebraic representation of nodes into vectors from a low-dimensional space in which
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geometric properties (e.g. distance) represent graph edges (PEROZZI; AL-RFOU; SKIENA,
2014). The aforementioned approaches have downsides: they are dependent on a computationally
expensive pre-processing phase and do not generalize if the graph is slightly changed, e.g. by
adding a new node to it.

Some major limitations of these techniques may be pointed out: the large number of
parameters needed to represent network embeddings (proportional to the number of nodes of
the graph), the lack of generality of usage, as they cannot generate representations for nodes
that were not seen during the training stage. Another limitation is the incapability to use node
and edge features of these algorithms, as in real-world applications nodes can be described by a
collection of features (node features) as well as the edges (edge features).

Graph Neural Networks (GNNs) (GORI; MONFARDINI; SCARSELLI, 2005) came
as a new deep learning approach for graphs. This class of algorithms learns a computational
graph as a mechanism to share information between nodes of a neighbourhood. Graph nodes are
represented as an aggregation of feature information from their neighbours in neural network
layers with parameters learnt with back-propagation. GNNs differ from traditional machine
learning graph frameworks in the sense that they can process graphs with arbitrary size and
topological structure, regardless of node ordering.

During the last decade, different models of GNNs were presented. Taxonomies for
understanding such models (WU et al., 2020) organize three main types of tasks for machine
learning on graphs: node-level (related to predicting a target feature about the node), edge-level
tasks (learning some target feature about the edge or the existence of a link between a pair of
nodes) and graph-level (classifying an entire graph by obtaining a compact representation of it).
GNNs have also been applied in different learning strategies, depending on the specific objective
or data availability:

• Supervised learning when the entire graph has the target features to be learnt. It can be
applied, e.g. for node classification;

• Unsupervised learning when there is no information about a target value for the nodes.
In this case, the algorithm learns representations for subgraphs or the entire graph;

• Semi-supervised learning when only a fraction of the nodes have label information and
the model must learn from the labeled nodes and extrapolate the learning to the unlabeled
ones;

Having data not completely labeled is a common scenario due to the difficulties and cost
to produce data for modelling. Semi-supervised learning has two main approaches to work with
such data:
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• Inductive learning uses available labeled data to produce a model that fills the missing
labels;

• Transductive learning propagates the labeled data for the unlabeled without generating a
classifier.

1.2 Applications
Since the development of GNNs many different applications to problems have been

proposed, to which chapter Chapter 3 is dedicated. To name some of these areas:

• Topic Modelling: discovering semantic topics from collections of texts (YANG et al.,
2020), (ZHOU; HU; WANG, 2020);

• Computer Vision: parsing of natural language as text into images (JOHNSON; GUPTA;
FEI-FEI, 2018); parsing an image into its representation as a graph of elements (objects of
the scene) (XU et al., 2017), (WANG et al., 2019b);

• Natural Language Processing: text classification (KIPF; WELLING, 2016a), (HAMIL-
TON; YING; LESKOVEC, 2017), (YAO; MAO; LUO, 2019);

• Dynamic Systems: prediction of traffic dynamics (ZHANG et al., 2018); taxi demand
prediction (YAO et al., 2018);

• Recommender Systems: link prediction (BERG; KIPF; WELLING, 2017) (YING et al.,
2018);

• Others: Physics (SANCHEZ-GONZALEZ et al., 2020); Biochemistry (LI et al., 2021).

1.3 Objectives and Methods
This master’s dissertation presents a detailed study of Graph Neural Networks and their

applications. Topic Modelling (the discovery of semantic information from text collections by
generative probabilistic models in Information Retrieval and Text Mining) and text classification
are areas with increasing relevance due to the success of new models based on pre-trained
parameters. This dissertation proposes text classification model based on propagation on bi-
partite graphs and graph neural networks and node features given by a topic model. The objectives
of this work are as follows:

• Summarise the knowledge on Graph Neural Networks to serve as a theoretical reference
for the field;

• Propose a new text classification using GNNs on bi-partite graphs;
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• Compare the proposed model against other well-established techniques.

The modelling method used was applying GNNs for node classification tasks on bench-
mark text datasets converted into a graph representation. Numeric evaluation of the model
performance allows discussion on it’s efficiency and on opportunities for future improvement.

1.4 Contributions
The contributions of this master’s dissertation are:

• Description and summarization of GNNs;

• Analysis of the use of GNNs on text classification;

• A text classification model using Graph Neural Networks based on bi-partite graphs.

1.5 Structure of this Work

• Chapter 2 - Background: Graphs, Neural Networks and Graph Neural Networks concepts
are presented;

• Chapter 3 Variants and Applications: Presentation of main architectures of GNNs and
their applications in machine learning;

• Chapter 4 Topic Modelling: Presentation of Topic Modelling problem with prior state-of-
the-art techniques and GNN-based models;

• Chapter 5 Proposal and Results: Presentation of methods, experimental setup and strategy
for evaluating their results;

• Chapter 6 Conclusion: Final conclusions and future opportunities are stated.
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CHAPTER

2

BACKGROUND

2.1 Graphs
A graph can be represented as a data structure, denoted by G = (V,E) in which a node

vi 2V can be connected to a neighbour v j through an edge ei j 2 E . The number of vertices of a
graph is denoted by |V | and the set of neighbours of an node vi is denoted by N (vi) . A very
convenient way to describe a graph is by its adjacency matrix A , where:

Ai j =

8
<

:
1 if ei j 2 E

0 if ei j /2 E
(2.1)

Figure 1 – Visual representation of a regular square lattice undirected graph

Source: Elaborated by the author.

If Ai, j = A j,i, for any pair (i, j) the graph is called undirected (directed otherwise) and in
this case A is a symmetric matrix. Directed edges are graphically represented as arrows with
points representing the direction of the connection, while undirected edges are represented as
line segments linking the connected nodes. When all existing edges have the same intensity, like
in equation 2.1 the graph is called unweighted. Otherwise, it is called a weighted graph, with the
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graph weight matrix W defined by the weights (intensity) Wi, j of the edges ei, j. The number of
connections of a node in a graph is called degree k and can be calculated using the adjacency
matrix as:

kin(vi) = Â
j
(A ji) (2.2)

kout(vi) = Â
j
(Ai j) (2.3)

where kin(v) and = kout(v) represent respectively the number of directed connections pointing to
the edge and coming from it. Note that if the graph is undirected, kin(v) = kout(v). The degree
matrix D is defined as a diagonal matrix with the degree of the nodes: D = diag(kv1 , ...kvn).
The graph Laplacian L is a matrix defined as the subtraction of the degree and the adjacency
matrices.

L = D�A (2.4)

Li j =

8
>>><

>>>:

kvi if i = j

�1 if i 6= j and vi 2 N (v j)

0 otherwise

(2.5)

The Laplacian matrix is useful to represent the spectral decomposition of A for undirected
graphs. It can be demonstrated that L can be written in terms of the matrix U in which rows
represent the eigenvectors of A:

L = ULU�1,L = diag([l0,l1, ...ln]), (2.6)

where L is a diagonal matrix composed of eigenvalues of A.

Graphs can also be categorized concerning their edge type, denoted by t , extending the
edge notation to ei,t, j 2 E and defining for each present edge type a separate adjacency matrix
At for what is called multi-relational graphs. There are two main sets of multi-relational graphs:

• Heterogeneous graphs: where there are different disjoint sets of nodes separated by type
(V =V1 [V2 [ ...[Vk). In such graphs edge can carry implicit rules, linking only nodes of
same set or different sets (multipartite graphs);

• Multiplex graphs: where the graph is composed of k layers. For each layer edges represent
a type of intra-layer relation, although inter-layer relations are permitted.
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Figure 2 – Bipartite graph with randomly connected nodes

Source: Elaborated by the author.

2.2 Graph Semantic Information
A node vi may have associated with it a number F of descriptive variables, called features,

represented by the feature vector xi = [x1, ...,xF]T . The set of all features nodes is represented by
the feature matrix X 2 RF⇥N . Similarly, a graph may also have C edge attributes, with xe

i j 2 RC

representing the feature edge vector of an edge between the pair of edges vi and v j. The edge
feature matrix is given by Xe 2 RC⇥|V |.

Figure 3 – Visual representation of graph node features

Source: Elaborated by the author.
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The nodes and edge features of a graph may represent any sort of descriptive data about
the dataset elements and their relationships. In predictive modelling, generally, the purpose is
to learn one of the features as a function of the remaining ones. Many algorithms of machine
learning exist to estimate such functions with multiple application scenarios. For instance: in
social media platforms, users may be represented as nodes in a graph and each node may have a
set of attributes (age, country, profession, etc.) as node features.

2.3 Neural Networks and Deep Learning

Neural Networks are a class of machine learning algorithms that took inspiration from
neuron connections in the nervous system to build artificial neurons. The network of artificial
neurons can learn linear separable functions when fed with sufficient amount of input training
data (MCCULLOCH; PITTS, 1943).

Rosenblatt (1958) developed an artificial neuron model called Perceptron in which input
data can be adjusted by weights (called synaptic weights) during training. The different input
signals (added to a bias sign for generalization) are linearly combined with the weights and pass
through a non-linear function that serves as a hard limiter (threshold) to calculate the perceptron’s
output.

Figure 4 – Rosenblatt’s Perceptron

Source: Elaborated by the author.

In Figure 4 the linear projection u of the input signals is given by

u =
m

Â
i=1

wixi +b =
m

Â
i=0

wixi (2.7)

which can be re-written in the compact matrix form

u = wT x (2.8)
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where w and x are the weight and input vector, respectively. The hard limiter j(.) is a threshold
parameter:

j(.) =

8
<

:
1 if u  threshold

0 if u > threshold
(2.9)

Equations 2.8 and 2.9 describe a cross-section in a hyper-plane of the input variables,
granting that linear-separable functions can be modelled successfully by the perceptron, lacking
the adaptability to model non-linear functions, as shown in Figure 5. The training process for the
perceptron initializes the values of w with 0 or small random values and, for each data sample,
calculates the linear projection output y and updates the weight values interatively by subtracting
y from the ground-truth value multiplied by a constant until convergence is achieved.

Figure 5 – Pair of linear separable patterns (a) and pair of non-linear separable patterns (b)

Source: Adapted from Haykin (2010).

Even though a single perceptron (also known as singe-layer neural network) has guaran-
teed convergence on linear-separable functions, it fails when representing non-linear functions.
One famous example of this limitation is the XOR operator.

Non-linear functions can be modelled with the use of more than one perceptron acting
together, where the result of the linear projection of one perceptron is passed through a non-linear
differentiable function called activation function. The resulting model is called multi-layer
perceptron (MLP) . The MLP model has one or more hidden layers of perceptrons (called nodes
of the neural network) with a high degree of connectivity between the neighbour layers.

The patterns in input data are extracted by the hidden layers of the neural network of
an MLP during the learning process. Training an MLP associates the input data and the feature
space as each layer of perceptrons performs linear projections and non-linear transformations on
output signals of the previous layer.
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Figure 6 – Multi-layer perceptron with n fully connected hidden layers

Source: Adapted from Haykin (2010).

Having non-linear differentiable activation functions in the MLP is important for the train-
ing process which uses the Back-propagation algorithm (RUMELHART; HINTON; WILLIAMS,
1986) to calculate the optimal solution for w minimizing the error of a loss function provided with
the labeled data via gradient descent. The development of the Back-propagation algorithm made
artificial neural networks computationally efficient and represented a landmark in the research of
neural network models with larges amounts of hidden layers, known as Deep Learning.

In order to find the optimum solution for all weights of the neural network, the Back-
propagation algorithm computes the error of each synaptic layer by Chain Rule of Calculus
starting from the error signal on n-th (output) layer. For the j neuron, the error signal produces is
given by the difference of the ground-truth value and the output signal. Having d(n) defined as
the ground-truth vector, the error signal is given by:

e j(n) = d j(n)� y j(n)

= d j(n)�j j(u j(n))
(2.10)

The total instantaneous error energy of the network, for all N training examples, is
calculated by summing the errors of the set of neurons from the output layer (denoted by C):

E (N) = Â
j2C

E j(n)

=
1
2 Â

j2C
e2

j(n)
(2.11)

After the calculation of the errors, the correction of the synaptic weight wi j(n) (the i-th
neuron of the j-th layer calculated at the output layer) is proportional to the partial derivative of
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the total instantaneous error energy with respect to the synaptic weight.

∂E (n)
∂wi j(n)

=
∂E (n)
∂e j(n)

∂e j(n)
∂yi(n)

∂y j(n)
∂u j(n)

∂u j(n)
∂wi j(n)

(2.12)

It can be shown that the correction factor applied to wi j(n) is given by:

Dwi j(n) =�h ∂E (n)
∂wi j(n)

(2.13)

The hyperparameter h is called the learning rate and it represents how fast happens
the iterative mapping of the weight space in search of the optimal solution. The minus sign
asserts that the vector in weight space points to the opposite direction of the gradient of E (n)
(gradient descent). The training process initiates with all synaptic weight values with samples
from an uniform distribution. When all N examples of the training dataset are passed through the
network it is said that one epoch has passed. The network computed the output signals for all
the examples presented (forward computation) and then the correction of the synaptic weights
happen (backward computation). The training process continues iterating as many epochs as
needed for reaching convergence. The neural network may also be trained with stochastic
gradient descent, where samples from the training dataset are presented in batches making the
training process less expensive computationally-wise.

Regarding the differentiable, non-linear activation function j(.) of the neurons of the
MLP, there are typical choices of functions that are presented in Table 1. Each function presents
hyperparameters that can be adjusted to fit better different scenarios of pattern detection.

Table 1 – List of common activation functions for MLP

Function Name Expression
Sigmoid j j(u j(n)) = 1

1+exp(�au j(n))
,a > 0

Hyperbolic Tangent j j(u j(n)) = a tanh(bu j(n)),a > 0,b > 0

Parametric Rectified Linear Unit (ReLU) j j(u j(n)) =

(
u j(n) if u j(n)> 0
au j(n) otherwise

,a > 0

Swish j j(u j(n)) =
u j(n)

1+exp(�au j(n))
,a > 0

Source: Research data.

In machine learning the ability of a model to generalize predictions for new data is
very appreciated. Good performance measures on training data followed by bad performance
on new data often indicate overfitting, when the model adapts to the training data noise. With
neural networks, it is avoided with regularization techniques that avoid overfitting by penalizing
variations in weights during training. A regularization term is added to the loss value. It may
be proportional to the sum of the absolute values of the synaptic weights (L1 regularization) or
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proportional to the sum of the square values of the synaptic weights (L2 regularization, also
called weight decay).

lossREG =

8
<

:
loss+lL1 Ânum.neurons

i=1 Ânum.layers
j=1 |wi j| , L1 regularization

loss+lL2 Ânum.neurons
i=1 Ânum.layers

j=1 w2
i j , L2 regularization

(2.14)

Other form of regularization is avoiding small sets of nodes to become specially relevant
on training. This technique is called Dropout. It sets a probability pdropout of a random perceptron
not to be used during the training stage.

2.4 Prior Approaches for Machine Learning with Graphs

Applying machine learning techniques to graph data is a complex task due to the fact
that most of well-known algorithms are valid under the statistical hypothesis that data instances
are independent, identically distributed (iid) random variables. This assumption does not hold
for graph data because nodes are inherently associated amongst themselves. Another difficulty is
the fact that machine learning algorithms (e.g., random forest, logistic regression, SVM) and
deep learning algorithms rely on regular grid structured input data like tables and images, which
graphs cannot produce because nodes have different adjacency regions and therefore might have
different representations.

Using the adjacency matrix A as model input is not possible because even the iid
hypothesis would suggest the possibility of permutation of elements rows of A, deforming the
original structure of the graph. For this reason, it is said that such models are not permutation
invariant. A function f (A) is Permutation invariant if it does not depend on arbitrary ordering
of elements of A. Permutation equivalence is the property that the output of f when acting on
a permutation of A is equal to the output of permuting f acting on A. If P is the permutation
matrix, in mathematical terms we have:

f (PAPT ) = f (A) (permutation invariance) (2.15)

f (PAPT ) = P f (A) (permutation equivalence) (2.16)

Although there are attempts to use graph data for machine learning purposes focused
on mapping the representation of nodes of the graph in a low-dimensional space in such a way
that similar nodes in the original graph space are given similar representations in the embedding
space, the reason why these methods are called node embedding methods, which have their main
problem represented in Figure 7.
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Figure 7 – Node embedding problem

Source: Adapted from Hamilton (2020).

The encoder function (ENC) maps each node vi 2 V to a vector zi 2 Rd . A common
practice is the process of mapping nodes by lookup over the node IDs (shallow embedding).
The decoder (DEC) function reconstructs graph representations from the node embeddings.
Standard practice is to have pair-wise decoders that predict the similarity between node pairs.
The similarity measure S that can be generically defined by:

DEC(ENC(vi),ENC(v j)) = DEC(zi,z j)⇡ S[vi,v j] (2.17)

This operation is possible by optimizing the empirical reconstruction loss function using
the training dataset D , given by:

loss = Â
vi,v j2D

(DEC(zi,z j),S[vi,v j]), (2.18)

where the loss function l : R⇥R! R, measures the discrepancy between the similarity values
of the embedding space and the estimated values by the decoder.

There are a handful of shallow embedding methods and they differ on the approach
to produce the low-dimensional embedding space. Some methods optimize the loss function
by factorization algorithms acting on a generalization of the adjacency matrix (such as Lap
Eigenmaps (BELKIN; NIYOGI, 2001), Graph Factorization (AHMED et al., 2013), GraRep
(CAO; LU; XU, 2015) and HOPE (OU et al., 2016)). Other methods, like DeepWalk (PEROZZI;
AL-RFOU; SKIENA, 2014) and node2vec (GROVER; LESKOVEC, 2016), use statistics of
random walks to compute pG,T (vi|v j) the probability of visiting node v j starting from node vi

after T steps on the graph G. Shallow embedding methods are summarised in Table 2.
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Table 2 – Summary of shallow embedding methods

Method Decoder Similarity Measure Loss Function
Lap Eigenmaps |zi � z j|22 General DEC(zi,z j) ·S[vi,v j]
Graph Factorization zT

i z j A[vi,v j] |DEC(zi,z j) ·S[vi,v j]|22
GraRep zT

i z j A[vi,v j], ...,Ak[vi,v j] |DEC(zi,z j) ·S[vi,v j]|22
HOPE zT

i z j General |DEC(zi,z j) ·S[vi,v j]|22
DeepWalk exp(zT

i z j)

Âk2V exp(zT
i z j)

pG,T (vi|v j) �S[vi,v j]log(DEC(zi,z j))

node2vec exp(zT
i z j)

Âk2V exp(zT
i z j)

pG,T (vi|v j) (biased) �S[vi,v j]log(DEC(zi,z j))

Source: Adapted from Hamilton (2020).

Some limitations can be pointed from shallow embedding methods:

• Parameters are not shared between nodes in the encode (one embedding per node). This
leads to high computational complexity (O(N = |V |)).

• Node features are not considered.

• Such methods cannot generalize to produce embeddings for nodes that were not presented
during the training stage. This represents a restriction from using the methods on inductive
learning, for what they are classified as inherently transductive.

2.5 Graph Neural Networks
Graph Neural Networks extend the neural networks mechanisms (MLP) to encode

graph information. In this work, the formalism for undirected graphs will be described. The
generic GNN model consists of representing a node (and its features) using information from
its neighbourhood. Such representation can be used to produce predictions about the node. The
seminal work (GORI; MONFARDINI; SCARSELLI, 2005) later revised (SCARSELLI et al.,
2008) carried the formalism of recurrent neural networks to calculate the state of a node vi:

h(k+1)
i = f (x(k)i ,x(k)j )| j 2 N (vi) (2.19)

where h(k+1)
i is the k-hop representation of node vi (also called hidden embedding), written as

function the node features of vi and its k-hop neighbourhood. The function f represents a neural
network adjusted by Back-propagation using examples from the training set (supervised and
semi-supervised learning requires label feature to be used in the cost function optimization). It is
also possible to have an entire graph embedded hG, usually for graph-focused learning purposes
(e.g. graph classification, community detection).

The basic mechanism that operates in GNN is called Neural Message Passing (GILMER
et al., 2017), which is composed of three functions: MESSAGE, AGGREGATION and UPDATE.
The k superscript in 2.20 represents the k-th iteration of the message passing mechanism.
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MESSAGE computes the node embedding m(k)
i using nodes and edge features

m(k)
i j = M(h(k)i ,h(k)i ,xe,(k)

i )| j 2 N (vi) (2.20)

where the message function M is valid in the adjacency region of node vi and may have different
shapes, like simply copying the message values from neighbours, normalizing the message values
for the adjacency region or even applying attention (VASWANI et al., 2017) to the messages in
order to weight the importance of each neighbour:

m(k)
i, j =

8
>>><

>>>:

h(k)j (neighbourhood copy)
1

ci, j
h(k)j (structurally normalized neighbourhood copy)

a(h(k)i ,h(k)j ).h(k)j (attention)

(2.21)

The AGGREGATE function computes a fixed-length representation of the neighbourhood
of the embedded node (regardless of its size):

m̂(k)
i =� j2N (vi)m

(k)
i j (2.22)

where � is a permutation invariant transformation. Some options for such transformations are
the sum or the maximum value of neighbour’s messages. For cases when there are hubs (nodes
with large amounts of connections compared to others in the graph) may decrease the quality of
descriptive power of the GNN. Neighbourhood normalization and symmetric neighbourhood
normalization (KIPF; WELLING, 2016b) correct this effect.

m̂(k)
i =

8
>>>>>>><

>>>>>>>:

Â j2N (vi)m(k)
i, j (sum)

maxN (vi)m(k)
i, j (maximum)

Â j2N (vi)
h(k)i

|N (vi)| (neighbourhood normalization)

Â j2N (vi)
h(k)ip

|N (vi)||N (v j)|
(symmetric neighbourhood normalization)

(2.23)

Regarding the AGGREGATE function, it was proven (ZAHEER et al., 2017) that it is a
universal set approximator if it satisfies equation 2.15 (permutation invariance), mapping a set
of embeddings to a single embedding, for a set of learnable parameters q :

m̂(k)
i = MLPq ( Â

j2N (vi)

MLPjh(k)j ) (2.24)

Once the messages are aggregated, the UPDATE function computes new node embed-
dings using aggregated messages and the old embeddings:

h(k+1)
i = j(h(k)i , m̂(k)

i ) (2.25)
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Figure 8 – Neural Message Passing Diagram

Source: Adapted from Hamilton (2020).

with different models of GNNs applying particular definitions of the UPDATE function.

The overall mechanism of Neural Message Passing is illustrated in Figure 8, where the
local neighbourhood of node A passes messages to embed this node based on their respective
adjacency region (reason for the (k = 0) mark on messages).

The process of neural message passing through k iterations results in the final embedding
for each node of the graph. In MLP terms node embeddings are given by:

h(k+1)
i = j[W(k+1)

sel f h(k)i +W(k+1)
N Â

j2N (vi)

h(k)j +b(k+1)] (2.26)

where j is an element-wise non-linearity, the weights matrices Wsel f and WN are learnable
parameters and b is the bias term. Equation 2.26 can be simplified by adding self loops on the
AGGGREGATE phase of message passing, which is equivalent to computing UPDATE in the
same phase by sharing parameters between the weight matrices.

h(k+1)
i = j[(A+ I)W(k+1) Â

j2N (vi)[vi

h(k)j +b(k+1)] (2.27)

Equations 2.7 and 2.26 are similar as GNNs and MLP are both based on layers of
linear projections of input signals followed by an element-wise nonlinear transformation. This
framework can effectively represent nodes, edges and even entire graphs. Edge representation
learning will not be regarded in detail in this master’s dissertation. The basic pipeline for GNN
modelling is expressed in Figure 9.
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Figure 9 – Basic pipeline for GNN modelling

Source: Adapted from Zhou et al. (2020).

2.6 Summary
Choosing adequate data structures when solving specific tasks can heavily influence

the solution’s effectiveness. When data is presented in singular shapes such as with graphs,
algorithms must either preprocess the data (losing valuable information in this costly stage) or
adapt to the graph topology in the case of Graph Neural Networks.

In this chapter, the main concepts of graph algebra and machine learning with graphs
were presented. The fundamentals of deep learning and GNNs are established as well as the
generic framework for solving different classes of problems in machine learning.

The mathematical formalism for Graph Neural Networks in a general form was stated
and will be used to discuss different models from literature in the following chapter.





43

CHAPTER

3

VARIANTS AND APPLICATIONS

In this chapter, prior related work on GNN models from the literature are reviewed and
organized by method type. By no means this work intends to touch all available variants. At the
end of the chapter, there is an analysis of GNN applications with perspectives for the field.

3.1 Spectral Methods
Spectral Methods rely on the Fourier transform to generate a convolutional operator in

the spectra domain of A using graph signal processing framework (SHUMAN et al., 2013). The
convolution operation defined over finite domains (denoted by the operator ?) represents the
filtering operation of a function f (the signal) by a filter h.

( f ?h)(x) =
Z

f (y)h(x�y)dy (3.1)

The filter in most cases represents a domain in which the signal propagates (e.g. time t).
A shift in the signal domain passed by a convolution is equivalent to convolving the signal and
then transliding the final result:

D f (t)?g(t) = f (t)?Dg(t) = D( f ?g)(t) (3.2)

with D f (t) = f (t +1)� f (t) being called the Laplace operator.

In graph domains, such filtering operations are equivalent to performing a walk on
connected edges. This node shift can be achieved by multiplying a vector f (representing the
current node) by the circulant matrix AC, that replaces the adjacency matrix:

Ac[i, j] =

8
<

:
1 if j = (i+1)modN

0 otherwise
(3.3)

(ACf)[t] = f[(t +1)] (3.4)
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Using the unnormalized Laplacian LC = I�AC we have

(LCf)[t] = f[(t +1)modN ]� f[t] (3.5)

showing the similarity between time shifts on the graph signal by Fourier convolutions and
the node signal propagation in a graph using multiplications adjacency and Laplacian matrices.
Generally, a convolutional filter in a graph can be defined as a matrix operator Qh that commutes
with A and L in the form

Qh = a0I+
N

Â
n=1

anAN (3.6)

and the features of a node can be convolved by Qh resulting in its representation by the N-hop
node adjacency region, previously referred as message

QhX = a0IX+
N

Â
n=1

anANX (3.7)

In order to represent graph convolutions using Fourier formalism, recalling the eigende-
composition of the Laplacian matrix (equation 2.6), the Fourier transform of the signal f and its
inverse can be written respectively as

F (f) = UT f

F
�1(f) = UT f

(3.8)

For some filter h, the convolution theorem (MALLAT, 1999) allows the Fourier coeffi-
cients to be calculated by a graph convolution using element-wise products:

f?h = F
�1(F (f)�F (h)) (3.9)

3.2 Convolutional GNN Variants

The theoretical generalization of convolutions graphs was used by Bruna et al. (2013) to
define the Spectral Network, which combines multiple convolutional layers and non-linearities,
having the filter qh given by learnbale parameters of a diagonal matrix corresponding to a
meaningful convolution on the graph:

f?h = U(UT f�UT h)

= (Udiag(qh)UT )f
(3.10)

where qh = UT h is the spectral domain representation of hdiag(qh). This operation is not com-
putationally efficient. Also, results in a filter are not spatially localized. As an alternative, by
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choosing the spectral filter as N-degree polynomial of the eigenvalues (HAMMOND; VAN-
DERGHEYNST; GRIBONVAL, 2011) of L the spatial locality is then ensured:

f?h = (UpN(L)UT )f

= pN(L )f
(3.11)

Graph Convolutional Network (GCN) (KIPF; WELLING, 2016a) is one of the most
popular GNN architectures. The model uses an approximation for the polynomial solution class
similar to equation 3.11 called Chebyshev polynomials, reducing the time complexity of the
algorithm. The network is defined as

H(k+1) = j(ÃH(k)W(k+1)) (3.12)

where W(k+1) is a learnble matrix and the adjacency matrix is replaced by the normalized
adjacency matrix Ã given by (D+ I)� 1

2 (I+A)(D+ I)� 1
2 . The model can be re-written to fit the

message passing framework (recalling equation 2.26) as

H(k+1) = j(H(k)W(k+1)
sel f +AH(k)W(k+1)

j2N (vi)
) (3.13)

Figure 10 – Multi-layer Graph Convolutional Network (GCN) with first-order filters

Source: Adapted from Kipf and Welling (2016a).
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Probabilistic Graph Models (PGM) are a class of GNNs that generalizes the graph
representation for Markov random fields. Node features x are mapped to probability distribution
p({x}) and node embeddings z are given by parametric functions F and Y that carry the
formalism of Hilbert space algebra. For G = (V,E):

p({xi},{z j}) µ ’
i2V

F(xi,zi) ’
(i, j)2E

Y(zi,z j) (3.14)

Using this formalism, the model is built by computing the likelihood of a set of embed-
dings given its observed features. Such a model is not scalable. Variational inference is employed
to produce an approximation q for equation 3.14.

p({xi},{z j})⇡ q({zi}) = ’
i2V

q(zi) (3.15)

Kullback–Leibler (KL) divergence (KULLBACK; LEIBLER, 1951) between true poste-
rior and approximate posterior is used as loss function to be minimized in order to obtain the
probabilistic representations of the node embeddings µ . The formal process is out of the scope
of this dissertation. Dai, Dai and Song (2016) defines the probabilistic GNN as:

µ(t+1)
i = j(W(t+1)

sel f xi +W(t+1)
N Â

j2N (vi)

µ(t)
j ) (3.16)

which is structurally similar to equation 2.19. The weight matrices are updated with an iteractive
gradient descent process.

Graph Isomorphism Network (GIN) is a model that leverages the concept of isomorphism,
the topological equivalence properties that one graph may have in relation to one another. Two
graphs G1 and G2 are isomorphic if they share the same structure, differing in node order given
by a permutation operation given by

PA1PT = A2 (3.17)

The Weisfeiler-Lehman (WL) algorithms for isomorphism test (WEISFEILER; LEMAN,
1968) are a class of heuristic techniques to check for graph isomorphism with polynomial
complexity O|V |p), avoiding the naive approach of computing all possible permutation matrices
in time O(|V |!). The simplest algorithm, 1-WL assigns each node to a colour c(0)i and then
iteratively reassigns this colour with neighbourhood information aggregation:

c(t+1)
i = HASH(c(t)i ,{{c(t)j2N (vi)

}}) (3.18)

Convergence is achieved when colours stop changing and two graphs are possibly
isomorphic if they have the same colour histogram (non-isomorphic otherwise). For GNNs,
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isomorphism is important because it provides a way to quantify the representational power of a
given GNN. Graph Isomorphism Network (GIN) (XU et al., 2018) provides a model with the
least amount of parameters that is still as powerful as de WL algorithm, defined the addition of a
learnble parameter e to the UPDATE function:

h(k+1)
i = MLP(k)[(1+ e(k))h(k)i + Â

j2N (vi)

h(k)j ] (3.19)

3.3 Spatial Methods
Spatial approaches rely on the graph topology to perform convolution operations. Ag-

gregations are made locally, from one neighbourhood to the other. Such methods formulate
convolutions parameters that can be shared with different sizes of neighbourhoods. Their main
advantage is the fact that convolution can be computed in batches and shared with different
locations and or unseen graph structures, therefore they may be suitable for dealing with large
graphs. Unlikely spectral-based methods, spatial methods can handle directed graphs.

GraphSAGE (HAMILTON; YING; LESKOVEC, 2017) is a well-known spatial-based
variant of GNNs that reached state-of-the-art performance in node-focused and graph-focused
classification tasks (supervised and unsupervised). Feature information is learned through a
generalized k-hop neighbourhood process. By having this local approach, node embeddings
can be created with less memory, ignoring the rest of the graph when generating a computation
graph. Selecting a set of computation graphs (mini-batch sampling) is a way to leverage the
model training. GraphSAGE (an acronym for Graph SAmpe and aggreGatE) also samples the
neighbourhood nodes during training in order to reduce the cost of computation graph for hubs
(nodes with high degree), increasing precision variance as a trade-off. Another contribution of this
method is that since generalized neighbourhood sampling is made with a fixed size, the trained
model can be used to classify unseen graphs in a inductive set. Different aggregation functions
are used for GraphSAGE, for example, the pooling aggregator in which each neighbours’s
vector is independently passed through a fully connected MPL, followed by an element-wise
max-polling operator.

h(k+1)
i = max(MLP(k)[h(k)i ,h(k)j ]), j 2 N (vi) (3.20)

3.4 Attention-based Methods
The attention mechanism is a technique in deep learning for increasing the relevance

of some neural connections in comparison to others. It works by computing the weighted
sum of output connections and then assigning a compatibility metric to the output values in
order to identify the most significant ones. The use of attention on Encoder-Decoder in the
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Transformer model (VASWANI et al., 2017) has successfully solved different classification tasks
achieving state-of-the-art performance for text processing tasks. Initially applied to translation,
the transformer uses positional encoding and self-attention to generate vector representations of
texts regarding the context of phrases. It can be shown that transformer neural networks can be
generalized as arbitrary graph representations (DWIVEDI; BRESSON, 2020).

Figure 11 – Transformer Model

Source: Adapted from Vaswani et al. (2017).

By using attention weights for neighbours of a node, Graph Attention Networks (GAT)
(VELIČKOVIĆ et al., 2017) creates a model that expresses the original node features as a
product of a graph attention layer, its version of the computational graph. Attention weights are
computed as matrix products for every node.

ei j = a(Wxi,Wx j) (3.21)

and they express the importance of node i to node j. The learnble hyperparameter a is then
normalized across all the combinations of nodes (defined by the graph structure):

ai j = softmax(ei j) =
exp(ei j)

Âk2Nvi
exp(eik)

(3.22)



3.4. Attention-based Methods 49

The node features resulting from K graph attention layers are a concatenation (denoted
by the k operator) of all of the intermediary MLP layers (also possible by averaging them):

x0i = kK
k=1j[ Â

j2Ni

ak
i jWkx j] (3.23)

GAT achieved state-of-the-art performance in transductive and inductive sets. It is also
a low-cost model because the final layers have the same number of parameters, independently
from the graph size.

Figure 12 – Graph attention layer

Source: Adapted from Veličković et al. (2017).

GATv2 (BRODY; ALON; YAHAV, 2021) expands the calculation of attention to the
dynamic weighting of neighbour embeddings increasing the expressiveness of the network. By
changing the order of operations of GAT, GATv2 writes equation 3.22 as

x0i = ak
i jkK

k=1j[ Â
j2Ni

Wkx j] (3.24)

Graph Transformer Network (GTN) (YUN et al., 2019) is a network architecture that
has shown in experiments to address well the handling of heterogeneous graphs. Prior techniques
pre-processed heterogeneous graphs converting them into homogeneous graphs with connections
defined by meta-pahts (a path consisting of a sequence of relations between different object
types, e.g. document-word relations in text knowledge graphs). In GTN, the computational graph
is called Graph Transformer (GT) Layer and it consists of computing a tensor as a product of the
intermediary adjacency matrices (called adjacency tensor). The node representation is learned
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after stacking (concatenating) k GT layers, forming a meta-path:

Z = kC
i=1j[D̃�1

i Ãk
i XW ] (3.25)

where C denotes the number of channels (dimensionality of the output layer). The stacked GT
layers are then passed by a CGN. This model was used in different node classification problems,
achieving state-of-the-art performance.
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3.5 Applications

Node classification problem is defined as learning useful representation for graph nodes
in order to correctly classify node i accordingly to its true class or label, denoted by ŷi. Under
the supervised node classification set, the whole graph is labeled and the training is performed
using a fraction of the nodes, to be tested against the remaining portion. Different GNN models
have achieved state-of-the-art when applied to this machine learning set. To name a few: GCN
(KIPF; WELLING, 2016a), GAT (VELIČKOVIĆ et al., 2017), NPNN (GILMER et al., 2017).
Statistically, this problem is expressed by an optimization problem and the solution is found by
minimizing the loss function

O =
1
nl

nl

Â
i=1

loss(ŷi,yi) (3.26)

where yi is the class predicted by the algorithm for node i. In classification problems the loss
function is commonly chosen to be the cross-entropy loss function. The learnble parameters of
the GNN are found by having h(k), the last GNN layer passed by a softmax layer that maps the
node representations into the output (class) space:

ŷi = softmax(Wh(k)i ) (3.27)

Semi-supervised node classification is defined as learning node labels when not all nodes
have node information. This type of problem can be addressed in the transductive set, when
all nodes are passed to the algorithm, including unlabeled nodes which are then classified. It is
also possible to address the problem in the inductive set, when the algorithm learns to classify
nodes that were not offered during the trainging process. As examples of models used for
semi-supervised learning there is CGN (KIPF; WELLING, 2016a), VAE (KIPF; WELLING,
2016b) (transductive set) and GraphSAGE (HAMILTON; YING; LESKOVEC, 2017) (inductive
set). The loss function is generally written in terms of the Kullback-Leibler divergence between
probability distributions given by equation 3.15.

Link prediction problem is defined as predicting the existence of an edge between two
nodes of a graph, generally this task is presented as a semi-supervised learning problem. When
dealing with heterogeneous bipartite user-term graphs link prediction is often referred to as
matrix completion or recommender systems (WU et al., 2022). Node-based link prediction
methods treat GNNs as inductive network embedding methods. Node embeddings are learnt
from this representation and pairwise node embeddings are aggregated representing edges. One
example of GNN application in this scenario is GAE (KIPF; WELLING, 2016b), which has
adjacency and features matrices A and X passed through GCN (KIPF; WELLING, 2016a) to
get the node representations output zi and then passes pairs of nodes (i, j) representations by
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the sigmoid function to obtain the link representation, Âi j interpreted as the probability for the
existence of an edge between nodes (i, j):

Âi j = j(zT
i z j), where zi = CGN(X, A)i (3.28)

The model learns the link representations by minimizing the cross-entropy between the adjacency
matrix reconstructed from all Âi j and the true adjacency matrix:

loss = Â
i, j
[�Ai jlog(Âi j)� (1�Ai j)log(1� Âi j)] (3.29)

Subgraph-based link prediction methods use GNNs to learn from local subgraph rep-
resentation around target links. One example this type of method is the SEAL (learning from
Subgraphs, Embeddings and Attributes for Link prediction) framework (ZHANG; CHEN, 2018).
This algorithm first selects target links and extracts subgraphs around them, applying node
labeling to mark nodes inside the subgraph. Then the labeled subgraphs are fed into a GNN
responsible for learning the graph-level structure features of the subgraph in order to perform the
link prediction.

Graph classification problem is defined as extracting graph (or subgraph) features in
order to correctly predict its label. It can be applied in both supervised and unsupervised sets,
using a large range of models. Computational simulation of molecular structures represented
as graphs has become a growing research topic for GNNs in the pharmaceutical industry. As
examples in of this type of application (drug discovery), Gaudelet et al. (2021) using GIN (XU
et al., 2018) and Stokes et al. (2020) adapting neural message passing (GILMER et al., 2017).

3.6 Model Interpretability
A common discussion regarding deep learning models is the lack of interpretability

concerning the components of the MPL, for which such models receive the "black box" label
as a criticism. GNNs inherit this undesired characteristic, which has been targeted by different
approaches. Although attention-based GNNs are natural candidates for bringing interpretability
for the models by identifying the most relevant connections of a neighbourhood, in recent
years there were some efforts to increase the interpretability, specifically for other GNN models
addressing the problem from different perspectives. A taxonomy for the available techniques on
GNN interpretability (YUAN et al., 2020b) groups them into the instance-level and model-level
explanations

Instance-level explanations explore gradients or features to explain the model. Sen-
sitivity Analysis (BALDASSARRE; AZIZPOUR, 2019), Integrated Gradients (SANCHEZ-
LENGELING et al., 2020) are examples of using MLP structural gradients to correlate predic-
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tions and input values. Methods like GraphLime (HUANG et al., 2022) and RelEx (ZHANG;
DEFAZIO; RAMESH, 2021) use classical interpretable models like regression and tree-based
algorithms to fit the GNN model. LRP (BALDASSARRE; AZIZPOUR, 2019) and GNN-LRP
(SCHNAKE et al., 2020) are examples of techniques called relevance-propagation, in which
a rule is defined for the activation redistribution between the neurons of the network. At last,
perturbation-based techniques like GNNExplainer (YING et al., 2019) and PGExplainer (LUO
et al., 2020) rely on modelling a mask for edges, nodes and features that are combined with the
input graph to obtain a new graph representation that contains important input information.

Model-level explanations provide a general, high-level description of the GNN, like
pointing out what kind of graph patterns can lead to specific target predictions. XGNN (YUAN
et al., 2020a) is an example of this group and its objective is to train graph generators by
reinforcement learning, feeding the generated graph to the GNN model. XGNN pipeline allows
it to describe graph classification models only.

3.7 Computational Implementations
Graph neural networks are an emerging research area that has contributed with a plethora

of models applied in may different scenarios. Different computational libraries were proposed
for modelling graph data for GNN using open-source Python language:

• Deep Graph Library (WANG et al., 2019a);

• PyTorch Geometric (FEY; LENSSEN, 2019);

• Spektral (GRATTAROLA; ALIPPI, 2021);

• Graph-Nets (BATTAGLIA et al., 2018);

• PyDGN (BACCIU et al., 2020);

• Alibaba AliGraph (ZHU et al., 2019);

• AWS Daemon (VIRINCHI; SALADI; MONDAL, 2022);

Pytorch Geometric has the special feature of allowing to train models using GPUs and is
the most cited engine in recent GNN research.
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3.8 Summary
Graph Neural Networks is an emerging field of research that allows using graph-

structured data for different deep learning purposes. In this chapter the main GNN variants
were discussed as well as research applications in which this approach achieved state-of-the-art
performance.

Many domains of knowledge start to be explored with GNN as new model variants are
proposed. Next chapter follows an analysis of Topic Modelling, a class of models for Information
Retrieval from text data.
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4

TOPIC MODELLING

4.1 Topic Modelling Techniques
Text is a very common format to express real word data, growing in volume ever since

digital text storage has become available to companies and consumers. For its unstructured
nature, processing text data is a necessary step to retrieve information such as summarisation
and classification. There are different approaches to extracting analytical value from text data
deriving from branches of research like Text Mining and Information Retrieval (IR) . Since
reviewing the Text Mining knowledge domain is out of the scope of this work, some basic
terminology is presented for later reference:

• word w is the basic unit of discrete text data extracted from an indexed set (called
vocabulary V ) with size N. |V |= N.

• document w is a portion of written text formed by a sequence of n words: w = (w1, ...,wn)

• corpus D is a collection M documents: D = {w1, ...,wM}

• topic z is a semantic meaning expressed by a word (or group of words) form the text

• cluster is a group of words that share a defined similarity

The discovery of abstract semantic structure (topics) from text using statistical models is
called Topic Modelling (TM). In these techniques, the order of the words inside the document is
neglected (bag-of-words assumption). Early relevant TM models, like Baeza-Yates, Ribeiro-Neto
et al. (1999), consisted in converting the text document into a word frequency vector. Term
frequency-inverse document frequency (TF-IDF) is a metric used to reduce the importance of
words commonly shared across many documents.

T F � IDF(wi,w) =
count(wi 2 w)

N
log(

N
count(w 2 D|wi 2 w)

) (4.1)
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The normalized vectors for the entire corpus are then used to provide information about
the texts. Successive models targeted dimensionality reduction to generate efficient corpus
representation that still contains most of the variance from the original documents. Latent
Semantic Analysis (LSA) (DEERWESTER et al., 1990) approached this challenge by mapping
documents and words to a latent semantic space done by a matrix operation called Singular
Value Decomposition (SVM), with the hypothesis that the semantic similarity from the words of
the documents is also represented in the latent space. Despite its lack of statistical foundations,
Latet Semantic Indexing (LSI) has been successfully applied to IR in different scenarios, in
particular, automatic LSI of texts.

Probabilistic Latent Semantic Indexing (pLSI) (HOFMANN, 1999) has every word in a
document as a sample from a mixture model and the semantic topics from the corpus are the
mixture components, modeled as random variables. The document is then represented as a list
of mixing proportions (probability distributions) for the topics. In the pLSI model, the word wn

and the document w are conditionally independent given an unobserved topic z according the
probability:

p(w,wn) = p(d)Â
z

p(wn|z)p(z|w) (4.2)

where d is a multinomial random variable that assumes different values during the training
of the model, in which the topic mixtures p(z|d) are learned. Equation 4.2 offers a generative
parametric model for words from the corpus given a set of topics.

Latent Dirichlet Allocation (LDA) (BLEI; NG; JORDAN, 2003) is a generative prob-
abilistic model, i.e., randomly generates values from latent variables, for a corpus with the
capability to generate probabilities for words from unseen documents. In Topic Modelling, the
observable variables are the collection of words in the documents while the latent variables are
the topic distributions. LDA provides a model for explaining how to compose documents from
these distributions given a priori a set of hyper-parameters.

For each document w j in a corpus D, N words are chosen using Poisson distribution
(N ⇠ Poisson(x )) . A distribution q is calculated from the Dirichlet distribution with hyper-
parameter a . Distributions fk for topics over the words are calculated with Dirichlet distribution
with hyper-parameter b . Then for each word i a topic z j,i is chosen from multinomial distribution
q . The model then generates a multinomial probability conditioned to the chosen topic for the
words:

z ji = Multinomial(q j),q ⇠ Dir(a) (4.3)

w ji ⇠ p(w ji|z ji,b ) (4.4)

Figure 13 expresses the generative process of LDA: Dir(a) generates distribution of
topics over M documents q and then distribution of topics over N words (w ⇠ Dir(b )) . In the
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end of the process, LDA allows to represent documents as a mixing of topic distributions:

p(z,w,f ,q |a,b ) =
K

’
k=1

p(fk|b )
M

’
j=1

p(q j|a)[
V

’
i=1

p(z ji|~q)p(wi j|zi j,fz ji)] (4.5)

Figure 13 – Plate notation for LDA

Source: Adapted from Blei, Ng and Jordan (2003).

Nonnegative Matrix Factorization (NMF) (LOPES; RIBEIRO, 2015) is a method that
consists in factorizing a matrix with non-negative elements into new matrices, also with non-
negative values. NMF was shown to be analytically equivalent LDA (FALEIROS; LOPES, 2016).
When applied to Topic Modelling, NMF factorizes a document-term matrix FD⇥T into matrices
WD⇥K and HK⇥T by minimizing a loss function expressed as distance metric:

loss = f (|F �WH|2) (4.6)

for which the discrete KL-Divergence is well suited:

loss = QKL�NMF = Â
ji
(Fjilog

Fji

[WH] j,i
�Fji[WH] ji) (4.7)

The optimal solution for equation 4.7 is found by using gradient descent to compute the
update update rules for elements of factor matrices

Wjk =Wjk
Â j,iWkiFji/[WH] ji

Âq Hkq
(4.8)

Hjk = Hjk
Â jiWkiFji/[WH] ji

ÂqWkq
(4.9)

A common critique about the models presented above is the fact that words are considered
to be interchangeble with the bag-of-words assumption when in fact the linguistic semantics most
often relies on word dependencies. Specific deep learning models regarding texts as sequences
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and modelled in layers of recurrent (DIENG et al., 2016), autoregressive (LAROCHELLE;
LAULY, 2012), (GUPTA et al., 2019) and other topologies. Such models aim to use the structural
dependencies of words in a sentence for better performance. Pure neural network approaches to
Topic Modelling are out of the scope of this work.

4.2 Pre-trained Models

Vector representation for text data works using the Encoder-Decoder mechanism Bidi-
rectional Encoder Representation Transformers (BERT) (DEVLIN et al., 2018) is a model that
learns representation for unlabeled text using 30,000 token vocabulary embedding and can be
pre-trained to generate predictions for different types of tasks (e.g. translation, topic modelling)
and later fine-tuned with labeled data.

GPT (Generative Pre-trained Transformers) (RADFORD et al., 2018) is another example
of pre-trained transformer-based model generator for text processing and topic modelling. It takes
an unsupervised corpus as input and passes it through a neural network in order to maximize
the probability likelihood for the decoder. Its current installment, GPT-4 (OPENAI, 2023), is
pre-trained with a large amount of text data and is regarded as a very precise text generation
model.

Both pre-trained models described have achieved state-of-the-art performance for text-
related tasks. An in-depth analysis of these models is out of the scope of this dissertation.

4.3 Graph Representation for Topic Modelling

The usage of graph representation for classification tasks (such as topic detection) has
already been explored mainly in semi-supervised learning with the transductive set. This section
brings an example of heuristics-based techniques.

Propagation on Bi-partite Graphs (PBG) (FALEIROS; VALEJO; LOPES, 2020) is
a unsusupervised algorithm that propagates latent variables of the words and documents in
neighbourhoods. The collection of documents is represented as a bi-partite graph G(D[W ,E , f )
where the vertices are the documents (set D) and the words (set W ) linked by an edge e ji 2 E .
Frequency of word wi in document w j is represented by f ji. Given the number of topics Kz

PBG propagates multidimensional latent variables A j,Bi,Ce ji associated with the vertices and
the edges that at first are initialized randomly constrained to ÂK

k=1 A jk = 1 and Âwi2W Bik = 1.
These latent variables are then updated by a local propagation for each edge

Ce ji = A j �Bi (4.10)
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constrained to ÂKz
k=1Ce ji = 1. The values computed in the local propagation are fed again to A j,

including the a parameter to control the concentration of values in A j.

A j = a +Â
i

f jiCe ji (4.11)

A global propagation step takes place for each word vertex and its edges.

Bi = Â
w j2D

f jiCe ji (4.12)

At the end of the process, PBG models the influence of each word wi from a document
w j in the array A j. For topics, the influence of wi is given by the array Bi.

Figure 14 – PBG representation of text

Source: Adapted from Faleiros, Valejo and Lopes (2020).
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KL-Divergence between vectors is used to find the optimal.

loss = QKL�G(A,B,C) = Â
e ji2E

[ f jiCe jilog
A j �Bi

Ce ji

+ Â
w j2D

R(A j,a)] (4.13)

where the regularization factor, applied to each document, R is given by

R(A j,a) = (a �A jk)logA jk +A jklog(A jk �1),k = 1, ...K (4.14)

Transductive Propagation on Bi-partite Graphs (TPBG) (FALEIROS; VALEJO; LOPES,
2020) is a semi-supervised variant of PBG. It applies the transductive learning approach and
makes an estimation of labels for unlabeled documents D

u using labeled documents D
l without

creating predictive model. Documents and words compose a bi-partite graph as in PBG. For
TPBG the discriptive vectors have the same dimension size as the number of classes from the
dataset. Equation 4.13 is changed to

loss = QKL�G(A,B,C) = Â
e ji2E

[ f jiCe jilog
A j �Bi

Ce ji

+ Â
w j2D

R(A j,a)+ Â
w j2D l

y jlog
A j

y j
] (4.15)

where the regularization term R(A j,a) is given by

R(A j,a) = (a �A j)logA j +A jlog(A j �1) (4.16)

and the term Âw j2D l YjlogA j
Yj

is set to ensure the likelihood of the estimated label in respect to the
labeled documents. TPBG achieved the state-of-the-art performance on semi-supervised text
classification tasks.

4.4 GNN for Topic Modelling

The growing number of publications on Graph Neural Networks in recent years had
also contributed to Topic Modelling research. While the aforementioned models were based
on latent variables computed with the bag-of-words assumption over the documents, models
based on GNNs leverage the neighbourhood structure information from the documents (and also
words) represented as nodes in a graph. Relevant GNN-based topic models from the literature
are discussed in this section.

Graph Topic Model (GTM) (ZHOU; HU; WANG, 2020) proposes to represent the corpus
D as an undirected graph with words and documents as nodes. There are N +M nodes in total
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(sum of the number of documents in D and the size of the vocabulary V ). Edges are created
based on co-occurrences of words with TF-IDF metric:

Ai j =

8
>>>>>><

>>>>>>:

TF-IDFi j if i 2 D and j 2 V

TF-IDF ji if i 2 V and j 2 D

1 if i = j (auto-connection)

0 otherwise

(4.17)

Node features are given by the latent topic variables. The topical representation of a
document is then aggregated by message passing including word and document nodes and
encoded into Ẑ using GCN framework given by equation 3.13. Later, the word weights Â are
decoded using an MLP.

Ẑ = CGN(A) (Encoder) (4.18)

Â = MPL(Ẑ,Dir(a)) (Decoder) (4.19)

The training objective is learned by optimizing the document reconstruction loss function:

lossrec(A, Â) =�mean[xlog(x̂)] (4.20)

where x and x̂ are the TF-IDF of a document and its reconstructed word distribution. GTM can
be expressed as an Encode-Decoder schema as seen in Figure 15, where

Figure 15 – Graph Topic Model diagram

Source: Adapted from Zhou, Hu and Wang (2020).

Graph Attention Topic Modeling Networks (GATON) (YANG et al., 2020) analyses
similarities between pLSI (referred to as Stochastic Block Models) on bi-partite graphs and
GAT to propose a model that generates a bi-partite graph with documents and words as node
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types. Word node attributes are given by embeddings functions and document node attributes are
learned by the bi-partite graph edges, represented as a frequency vector, where the frequency of
word wi in document w j is represented by f ji:

xwi = embedding(wi) (4.21)

xw j = ( f j1, ..., f jN) (4.22)

Different embedding dimensions are possible for document and word representations
as nodes of the bi-partite graph, leading to different unsymmetrical attention normalization
constants adoc�word and aword�doc. GATON has the basic nodes representation as

hword = j( Â
t2Nword

aword�docht),hdoc = j( Â
z2Ndoc

adoc�wordhz) (4.23)

Reconstruction loss function Lrec is then used on the final GNN layers with the final
representation of words and documents to achieve the optimal solution.

Graph Neural Topic Model (GNTM) (SHEN et al., 2021) uses multinomial distributions
on vocabulary and word sets to build topics and generate a graph. Neural Variational Inference is
then used to learn a GNN as an encoder-decoder set minimizing ELBO loss function. GNTM is
presented as a special case of LDA.

MagNet (ZHANG et al., 2021) uses the mathematical properties of the hermitian matrix
(called magnetic Laplacian) to produce a GAT network that learns both attention weights and the
adjacency matrix. It uses BERT word embeddings to train the model.

4.5 Summary
Topic Modelling is a very common text-processing problem in Computer Science. In

this section the main concepts of the Topic Modelling problem were covered, from the initial
models based on the bag-of-words assumption to probabilistic models, graph-based algorithms
and finally GNN-based models.

The next chapter presents this dissertation’s proposed approach to text classification
using topic modelling embeddings for Graph Neural Networks.
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5

PROPOSAL AND RESULTS

5.1 Proposed Model
The proposed experiment is designed to test a hybrid model that leverages bi-partite graph

representation of the corpus computed by TPBG algorithm (FALEIROS; VALEJO; LOPES, 2020)
and the GraphSAGE (HAMILTON; YING; LESKOVEC, 2017), adding document descriptive
features from doc2vec (LE; MIKOLOV, 2014). This model learns text representations in a
two-step training process and predicts the class of documents. The main reason for modelling the
problem with these algorithms is to use the bi-partite document-word graph structure generated
from text without having convert it into a homogeneous graph.

TPBG is an semi-supervised algorithm that estimated topics for unlabeled documents
via propagation of information on the neighbourhood of a bi-partite graph. It was developed by a
member of the research group of this master’s degree candidate. GraphSAGE was chosen as a
GNN model for its capability of dealing with large graphs, such as text-based graphs. Doc2vec is
an algorithm that learns paragraph and document vector representations with memory-efficient
bag-of-words model.

The first stage of the training process if training TPBG. The text collection has documents
marked as labeled D

l (training set) and unlabeled D
u (validation set). The corpus D = D

u [D
l

is pre-processed to be removed from common, low-value words (known as stop-words) lower-
case standardized and lemmatized (different forms of a word are reduced to a single one). The
pre-processed text is later represented in a vector space with IF-IDF. Doc2vec is used to process
the dataset and produce a set of 400 descriptive features. This process is shown in Figure 16.
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Figure 16 – Text processing for the proposed model

Source: Elaborated by the author.

The process of fitting TPBG to corpus is as follows: each document is represented as a
row in a TF-IDF matrix generated by the pre-prossessing phase. The documents from the dataset
are marked with a binary mask that indicates the training set and the validation set. For the
training of TPBG, the documents from the validation set are used as the unlabeled documents.
The class value of the unlabeled documents is initialized with a proxy value of -1. The algorithm
propagates the descriptive vectors for documents and words via the edges of the bi-partite graph.
By the end of the process all documents have descriptive vectors optimized by TPBG. The A and
B vectors (equations 4.11 and 4.12) are stored for each document, representing the document
and word features of the graph. This process is shown in Figure 17.

Figure 17 – TPBG training

Source: Elaborated by the author.
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For each document, doc2vec algorithm is executed and the result features are concate-
nated with the z topic projections for documents calculated by TPBG generating Xw the document
feature vectors. The z topic projections for words given by TPBG, represented by a Xw is used
by the proposed model as word features.

Based on the mask applied to identify the labeled and unlabeled documents, the corpus
is divided into training and validation sets. Both sets carry the original labels to the next stage.
Labels calculated by TPBG for the unlabeled documents are discarted.

One bi-partite graph is then generated from each dataset using the TPBG document-word
matrix structure to create document-word edges. Document and word features are associated
with the nodes of the bi-partite graphs as shown in Figure 18.

Figure 18 – Bi-partite graph representation of text

Source: Elaborated by the author.

The second training stage is when GraphSAGE is trained on the bi-partite graph from
the training dataset. As there is a predictive GNN model generated, this phase is an example of
inductive learning. The neural network is allowed to have an arbitrary number of hidden channels
and hidden layers. The output layer has the dimension of the number of labels observed during
training. The training strategy for one GNN layer is shown in Figure 19.
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Figure 19 – Bi-partite GNN learning

Source: Adapted from Fey and Lenssen (2019).

where document nodes (denoted by source nodes) are associated with the topic values. Documents
are linked to word nodes (target by source) by the edge list. GraphSAGE convolutions pass the
message of node summarization via the edge list of the two node types over K iterations to get the
final node embeddings. A dropout regularization layer is added to avoid overfitting GNN learning.
The objective of the training process the GNN to learn the document class representation from
the training graph, and then evaluate the predictions of the model on the validation graph.

5.2 Experimental Setup
The experiments were performed on 11 opensource benchmark datasets: 20 News

Groups (RENNIE, 2008), BBC News (GREENE; CUNNINGHAM, 2006), Classic4 (M., 2010),
Computer Science Technical Reports Collection (CSTR) (JONES; CUNNINGHAM; MCNAB,
1998), National Science Foundation Collection (NSF) (PAZZANI, 2017), Web Knowledge Base
(WebKB) Collection (CRAVEN et al., 1998), Re8 Collection (FORMAN, 2006) and four datasets
from the Directory Mozilla The Open Directory Project (DMOZ) (GRAHAM, 2004): DMOZ
Computers, DMOZ Health, DMOZ Science and DMOZ Sports. Preprocessing text data used
word lemmatizer from NLTK (XUE, 2011) and IT-IDF vectorizer from ScikitLearn (BUITINCK
et al., 2013). Table 3 presents for each dataset: M (number of documents), N (number of terms),
N̄ (average number of terms per document) and C (number of classes).
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Table 3 – List of benchmark datasets

Dataset M N N̄ C
20 News Groups 18808 45434 76.47 20
BBC News 2225 9635 197.07 5
Classic4 7095 7749 35.28 4
CSTR 299 5427 57.27 4
NSF 10524 3888 6.56 16
WebKB 8282 22892 89.78 7
Re8 7674 3531 35.31 8
DMOZ Computers 95000 5111 10.83 19
DMOZ Health 6500 4217 12.40 13
DMOZ Science 6000 4821 11.52 12
DMOZ Sports 13500 5682 11.87 27

Source: Adapted from Rossi, Marcacini and Rezende (2013).

In the experimental scenarios the hybrid model overfitted when the corpus had a number
of classes greater than 5. In order to perform similar classification tasks across all datasets, five
classes were selected from the datasets to perform the training for all experiments.

A 60% fraction of each dataset was marked as labeled. The TPBG algorithm was then
executed on the dataset with a parameter set to 0.5%, 50 local iterations and 10 global iterations.
The Gensim Project (REHUREK; SOJKA, 2011) implementation of Doc2vec is processed in the
corpus to produce document features with the same structure both for train and test datasets.

To generate the bi-partite graph representation the Heterodata class from Pytorch Geo-
metric (FEY; LENSSEN, 2019) was used as a wrapper. All convolutions were initialized with
lazy evaluations (without specifying input dimensionality).

The neural network input layer reads input signals from the bi-partite nodes. Document
features Xw and word features are Xw feed the GNN layers (stacked with HeteroConv method by
Pytorch Geometric) calculating node embeddings using sum as aggregate function. The output
layer is composed of softmax projection with dimension equal to the number of classes to be
modelled. The activation function used for the convolution layers is LeakyReLU, a special case
of the parametric ReLU from Table 1 where a is a hyperparameter learned by the network
instead of a given value. The stochastic optimization engine used was based ADAM method
(KINGMA; BA, 2014).

Two functions were tested as loss functions: Cross Entropy (CE) and Focal Loss (FL):

lossCE =�
i=C

Â
i=1

yilog(softmax(i)) (5.1)

lossFL =�
i=C

Â
i=1

yi(1� softmax(i))g log(softmax(i)) (5.2)
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where C is the number of classes for the dataset and g is is a hyperparameter with value set to 1
in the experiments.

The training process selected the best model from the execution of 1,500 epochs and
is considered to achieve convergence for the minimum value of the loss function after all the
epochs. Weight decay and dropout were used as regularization techniques for the GNN.

The experiment setup is a multi-class classification with a semi-supervised training stage
(TPBG) and a supervised training stage (GNN). To evaluate performance on class predictions on
test dataset the metric chosen was micro-averaging F1-score (Fµ

1 ):

Fµ
1 =

2PµRµ

Pµ +Rµ (5.3)

where Pµ is the micro-averaging precision (average, for each class, of true positive count divided
by the count of positive and negative examples) and Rµ is the micro-averaging recall (average,
for each class, of true positive count divided by the count positive examples). Fµ

1 is commonly
used in multi-class classification to measure harmonic average of precision and recall.

All experiments were performed using a 2,7GHz Quad-Core Intel Core i7 processor with
16GB of memory. The source code of the experiments is available on the project page on GitHub
(<https://github.com/brunofbessa/masters_degree_icmc/tree/master/project>).

The experimental parameters are listed below:

Table 4 – List of experimental parameters

Parameter Context Vaues
|xW | Number word features from TPBG z
|xD| Number of document features form TPBG and Doc2vec 400 + z
K Number of convolutional layers 2, 3, 4
nh Number of channels on hidden layers 20, 40, 100
lL2 L2 regularization factor 0.00001
h GNN training learning rate 0.001
pdropout Dropout probability 0, 20%
loss Loss function CE, FL

Source: Research data.

https://github.com/brunofbessa/masters_degree_icmc/tree/master/project
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5.3 Experimental Results
All the different experimental setups from Table 4 are presented for each dataset in Tables

5 to 15. Table 16 has a resume of the best performance from these scenarios for each dataset.

Table 5 – Experimental results for dataset 20 News Groups

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 79.69 1412
20 2 0 FL 79.41 739
20 2 0.2 CE 79.77 869
20 2 0.2 FL 79.60 737
20 3 0 CE 79.73 643
20 3 0 FL 79.37 1016
20 3 0.2 CE 79.39 1286
20 3 0.2 FL 79.54 1239
20 4 0 CE 79.55 1210
20 4 0 FL 79.6 870
20 4 0.2 CE 79.53 993
20 4 0.2 FL 79.14 1379
40 2 0 CE 79.54 296
40 2 0 FL 79.53 405
40 2 0.2 CE 79.69 1087
40 2 0.2 FL 79.56 1218
40 3 0 CE 79.45 155
40 3 0 FL 79.67 349
40 3 0.2 CE 79.98 873
40 3 0.2 FL 79.62 330
40 4 0 CE 79.94 412
40 4 0 FL 79.78 353
40 4 0.2 CE 79.93 1308
40 4 0.2 FL 79.77 1488
100 2 0 CE 79.72 775
100 2 0 FL 79.33 752
100 2 0.2 CE 80.10 859
100 2 0.2 FL 79.85 291
100 3 0 CE 80.19 393
100 3 0 FL 79.80 309
100 3 0.2 CE 80.18 986
100 3 0.2 FL 80.11 893
100 4 0 CE 80.17 387
100 4 0 FL 80.06 426
100 4 0.2 CE 80.37 877
100 4 0.2 FL 80.19 467

Source: Elaborated by the author.
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Table 6 – Experimental results for dataset BBC News

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 97.53 1446
20 2 0 FL 97.19 1499
20 2 0.2 CE 97.86 1241
20 2 0.2 FL 97.64 1367
20 3 0 CE 96.86 801
20 3 0 FL 97.53 1499
20 3 0.2 CE 97.64 1292
20 3 0.2 FL 97.75 1437
20 4 0 CE 97.63 708
20 4 0 FL 97.52 1183
20 4 0.2 CE 97.30 1428
20 4 0.2 FL 97.07 1443
40 2 0 CE 97.53 1499
40 2 0 FL 97.53 1070
40 2 0.2 CE 97.75 1447
40 2 0.2 FL 97.98 1403
40 3 0 CE 97.63 1218
40 3 0 FL 97.30 223
40 3 0.2 CE 97.97 1064
40 3 0.2 FL 97.86 1251
40 4 0 CE 97.31 632
40 4 0 FL 97.52 891
40 4 0.2 CE 97.97 1326
40 4 0.2 FL 97.64 1399
100 2 0 CE 97.52 964
100 2 0 FL 97.53 637
100 2 0.2 CE 97.97 1309
100 2 0.2 FL 97.98 1174
100 3 0 CE 97.63 604
100 3 0 FL 97.52 737
100 3 0.2 CE 97.97 558
100 3 0.2 FL 97.74 1222
100 4 0 CE 97.64 191
100 4 0 FL 97.63 835
100 4 0.2 CE 97.75 903
100 4 0.2 FL 97.86 1002

Source: Elaborated by the author.
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Table 7 – Experimental results for dataset Classic4

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 95.49 1151
20 2 0 FL 95.49 1499
20 2 0.2 CE 95.31 1439
20 2 0.2 FL 94.85 1471
20 3 0 CE 95.87 934
20 3 0 FL 95.56 777
20 3 0.2 CE 95.27 1469
20 3 0.2 FL 95.09 1417
20 4 0 CE 95.73 608
20 4 0 FL 95.63 1044
20 4 0.2 CE 95.30 1175
20 4 0.2 FL 95.25 1342
40 2 0 CE 95.61 1095
40 2 0 FL 95.71 1064
40 2 0.2 CE 95.45 1321
40 2 0.2 FL 95.38 884
40 3 0 CE 95.70 628
40 3 0 FL 95.63 630
40 3 0.2 CE 95.49 1106
40 3 0.2 FL 95.51 1078
40 4 0 CE 95.62 542
40 4 0 FL 95.52 395
40 4 0.2 CE 95.37 929
40 4 0.2 FL 95.57 912
100 2 0 CE 95.77 748
100 2 0 FL 95.74 650
100 2 0.2 CE 95.62 740
100 2 0.2 FL 95.52 668
100 3 0 CE 95.87 470
100 3 0 FL 95.70 419
100 3 0.2 CE 95.66 445
100 3 0.2 FL 95.76 421
100 4 0 CE 95.87 502
100 4 0 FL 95.62 270
100 4 0.2 CE 95.72 538
100 4 0.2 FL 95.83 343

Source: Elaborated by the author.
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Table 8 – Experimental results for dataset NSF

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 89.26 267
20 2 0 FL 89.48 111
20 2 0.2 CE 89.33 1196
20 2 0.2 FL 89.56 1193
20 3 0 CE 89.63 122
20 3 0 FL 89.56 808
20 3 0.2 CE 89.26 1469
20 3 0.2 FL 89.93 765
20 4 0 CE 89.71 269
20 4 0 FL 89.33 528
20 4 0.2 CE 89.63 1344
20 4 0.2 FL 89.78 1169
40 2 0 CE 89.48 84
40 2 0 FL 89.78 1147
40 2 0.2 CE 89.93 1474
40 2 0.2 FL 90.01 795
40 3 0 CE 89.56 341
40 3 0 FL 89.56 755
40 3 0.2 CE 89.93 1386
40 3 0.2 FL 90.08 1301
40 4 0 CE 89.86 279
40 4 0 FL 89.63 429
40 4 0.2 CE 89.93 1310
40 4 0.2 FL 89.86 503
100 2 0 CE 89.78 811
100 2 0 FL 89.93 766
100 2 0.2 CE 89.93 1360
100 2 0.2 FL 90.01 802
100 3 0 CE 89.78 271
100 3 0 FL 89.78 279
100 3 0.2 CE 90.08 937
100 3 0.2 FL 90.16 386
100 4 0 CE 89.86 32
100 4 0 FL 89.48 152
100 4 0.2 CE 90.01 403
100 4 0.2 FL 90.16 647

Source: Elaborated by the author.
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Table 9 – Experimental results for dataset WebKB

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 75.57 1498
20 2 0 FL 75.56 1267
20 2 0.2 CE 71.59 1458
20 2 0.2 FL 70.48 1479
20 3 0 CE 77.30 1141
20 3 0 FL 78.97 1221
20 3 0.2 CE 74.33 1496
20 3 0.2 FL 72.72 1478
20 4 0 CE 79.09 1153
20 4 0 FL 77.85 1497
20 4 0.2 CE 75.03 1429
20 4 0.2 FL 73.26 1388
40 2 0 CE 76.69 1102
40 2 0 FL 77.07 1157
40 2 0.2 CE 75.00 1480
40 2 0.2 FL 74.98 1462
40 3 0 CE 79.23 872
40 3 0 FL 78.16 1066
40 3 0.2 CE 76.94 1100
40 3 0.2 FL 76.57 1298
40 4 0 CE 80.16 814
40 4 0 FL 79.68 1054
40 4 0.2 CE 77.94 1397
40 4 0.2 FL 76.89 1469
100 2 0 CE 78.04 783
100 2 0 FL 77.72 628
100 2 0.2 CE 76.67 1078
100 2 0.2 FL 76.48 1109
100 3 0 CE 78.82 800
100 3 0 FL 80.16 629
100 3 0.2 CE 78.67 658
100 3 0.2 FL 78.78 813
100 4 0 CE 79.92 679
100 4 0 FL 80.75 731
100 4 0.2 CE 81.10 827
100 4 0.2 FL 80.90 1187

Source: Elaborated by the author.



74 Chapter 5. Proposal and Results

Table 10 – Experimental results for dataset CSTR

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 76.71 222
20 2 0 FL 75.92 203
20 2 0.2 CE 75.70 721
20 2 0.2 FL 73.99 326
20 3 0 CE 74.26 198
20 3 0 FL 71.1 82
20 3 0.2 CE 74.65 166
20 3 0.2 FL 73.27 179
20 4 0 CE 68.51 103
20 4 0 FL 72.55 308
20 4 0.2 CE 73.02 156
20 4 0.2 FL 70.35 115
40 2 0 CE 75.96 121
40 2 0 FL 75.52 107
40 2 0.2 CE 74.69 1057
40 2 0.2 FL 77.62 126
40 3 0 CE 77.45 81
40 3 0 FL 79.54 50
40 3 0.2 CE 71.47 84
40 3 0.2 FL 73.20 82
40 4 0 CE 68.80 560
40 4 0 FL 69.51 71
40 4 0.2 CE 73.26 83
40 4 0.2 FL 72.48 62
100 2 0 CE 74.69 53
100 2 0 FL 76.52 53
100 2 0.2 CE 77.62 59
100 2 0.2 FL 75.37 57
100 3 0 CE 73.01 28
100 3 0 FL 74.40 44
100 3 0.2 CE 73.36 40
100 3 0.2 FL 77.69 41
100 4 0 CE 69.57 29
100 4 0 FL 73.39 36
100 4 0.2 CE 72.54 29
100 4 0.2 FL 73.20 31

Source: Elaborated by the author.
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Table 11 – Experimental results for dataset Re8

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 93.58 1498
20 2 0 FL 93.39 1485
20 2 0.2 CE 91.87 1496
20 2 0.2 FL 91.62 1470
20 3 0 CE 93.90 1082
20 3 0 FL 94.08 1283
20 3 0.2 CE 91.38 1458
20 3 0.2 FL 91.29 1494
20 4 0 CE 93.34 863
20 4 0 FL 93.47 1044
20 4 0.2 CE 89.82 1492
20 4 0.2 FL 91.24 1426
40 2 0 CE 94.40 1486
40 2 0 FL 94.39 1401
40 2 0.2 CE 93.13 1493
40 2 0.2 FL 93.43 1454
40 3 0 CE 94.39 797
40 3 0 FL 94.18 859
40 3 0.2 CE 93.83 1138
40 3 0.2 FL 93.86 1170
40 4 0 CE 94.13 736
40 4 0 FL 94.31 696
40 4 0.2 CE 93.72 1381
40 4 0.2 FL 93.53 1164
100 2 0 CE 94.54 869
100 2 0 FL 94.61 934
100 2 0.2 CE 94.52 1122
100 2 0.2 FL 94.38 1224
100 3 0 CE 94.67 430
100 3 0 FL 94.66 613
100 3 0.2 CE 94.56 762
100 3 0.2 FL 94.43 896
100 4 0 CE 94.52 508
100 4 0 FL 94.69 517
100 4 0.2 CE 94.47 660
100 4 0.2 FL 94.44 864

Source: Elaborated by the author.
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Table 12 – Experimental results for dataset DMOZ Computers

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 80.62 370
20 2 0 FL 80.73 187
20 2 0.2 CE 81.33 537
20 2 0.2 FL 81.55 1282
20 3 0 CE 80.46 307
20 3 0 FL 80.88 989
20 3 0.2 CE 81.50 1015
20 3 0.2 FL 81.63 1050
20 4 0 CE 80.60 173
20 4 0 FL 80.85 690
20 4 0.2 CE 81.41 1399
20 4 0.2 FL 81.55 1327
40 2 0 CE 80.69 80
40 2 0 FL 81.32 132
40 2 0.2 CE 81.27 1006
40 2 0.2 FL 81.49 436
40 3 0 CE 80.58 160
40 3 0 FL 80.84 116
40 3 0.2 CE 81.60 1217
40 3 0.2 FL 81.56 305
40 4 0 CE 80.62 93
40 4 0 FL 80.73 394
40 4 0.2 CE 81.61 1072
40 4 0.2 FL 81.88 905
100 2 0 CE 80.66 1448
100 2 0 FL 80.97 727
100 2 0.2 CE 81.76 1237
100 2 0.2 FL 81.44 1276
100 3 0 CE 80.62 226
100 3 0 FL 80.92 253
100 3 0.2 CE 81.39 454
100 3 0.2 FL 81.46 491
100 4 0 CE 80.89 42
100 4 0 FL 80.69 182
100 4 0.2 CE 81.64 220
100 4 0.2 FL 81.68 189

Source: Elaborated by the author.
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Table 13 – Experimental results for dataset DMOZ Health

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 86.41 525
20 2 0 FL 86.48 1499
20 2 0.2 CE 87.41 1358
20 2 0.2 FL 86.92 1084
20 3 0 CE 87.59 1365
20 3 0 FL 86.89 474
20 3 0.2 CE 87.6 832
20 3 0.2 FL 88.00 1479
20 4 0 CE 87.27 821
20 4 0 FL 87.46 855
20 4 0.2 CE 88.33 1304
20 4 0.2 FL 88.11 1486
40 2 0 CE 86.80 1045
40 2 0 FL 87.27 1314
40 2 0.2 CE 87.51 1363
40 2 0.2 FL 87.52 1453
40 3 0 CE 88.10 779
40 3 0 FL 88.08 773
40 3 0.2 CE 88.69 1472
40 3 0.2 FL 88.66 1408
40 4 0 CE 87.98 911
40 4 0 FL 87.94 650
40 4 0.2 CE 89.32 1445
40 4 0.2 FL 89.05 1396
100 2 0 CE 87.87 1010
100 2 0 FL 87.73 1445
100 2 0.2 CE 88.01 1365
100 2 0.2 FL 87.89 1491
100 3 0 CE 88.26 480
100 3 0 FL 88.09 344
100 3 0.2 CE 88.77 1282
100 3 0.2 FL 88.71 664
100 4 0 CE 87.86 330
100 4 0 FL 88.10 835
100 4 0.2 CE 88.90 600
100 4 0.2 FL 89.29 1242

Source: Elaborated by the author.
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Table 14 – Experimental results for dataset DMOZ Science

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 81.73 1499
20 2 0 FL 81.85 1499
20 2 0.2 CE 82.46 721
20 2 0.2 FL 82.25 1298
20 3 0 CE 81.85 1262
20 3 0 FL 81.74 1456
20 3 0.2 CE 83.16 1380
20 3 0.2 FL 82.67 1040
20 4 0 CE 82.35 910
20 4 0 FL 82.55 1429
20 4 0.2 CE 82.77 1379
20 4 0.2 FL 82.89 1128
40 2 0 CE 81.63 222
40 2 0 FL 81.85 1160
40 2 0.2 CE 82.55 1261
40 2 0.2 FL 82.56 1310
40 3 0 CE 82.77 869
40 3 0 FL 82.05 731
40 3 0.2 CE 82.96 1048
40 3 0.2 FL 83.03 1118
40 4 0 CE 82.14 390
40 4 0 FL 82.81 542
40 4 0.2 CE 83.16 1471
40 4 0.2 FL 82.97 474
100 2 0 CE 82.14 915
100 2 0 FL 81.86 81
100 2 0.2 CE 83.00 1358
100 2 0.2 FL 82.78 1294
100 3 0 CE 82.81 477
100 3 0 FL 82.05 283
100 3 0.2 CE 82.89 712
100 3 0.2 FL 83.03 906
100 4 0 CE 82.39 434
100 4 0 FL 82.68 843
100 4 0.2 CE 83.00 1246
100 4 0.2 FL 83.07 315

Source: Elaborated by the author.
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Table 15 – Experimental results for dataset DMOZ Sports

nh K Dropout Prob. (%) Loss Function Fµ
1 (%) Num. Epochs

20 2 0 CE 87.97 1497
20 2 0 FL 88.29 583
20 2 0.2 CE 88.58 439
20 2 0.2 FL 88.51 1281
20 3 0 CE 89.80 1489
20 3 0 FL 89.40 1489
20 3 0.2 CE 88.96 1183
20 3 0.2 FL 89.01 1474
20 4 0 CE 90.05 1118
20 4 0 FL 90.50 1496
20 4 0.2 CE 90.60 1470
20 4 0.2 FL 90.03 1321
40 2 0 CE 88.60 1062
40 2 0 FL 89.90 1376
40 2 0.2 CE 89.39 1483
40 2 0.2 FL 88.90 1357
40 3 0 CE 90.62 1365
40 3 0 FL 91.10 1365
40 3 0.2 CE 91.10 1349
40 3 0.2 FL 90.40 1464
40 4 0 CE 90.09 611
40 4 0 FL 90.91 780
40 4 0.2 CE 91.83 1420
40 4 0.2 FL 92.32 1394
100 2 0 CE 90.21 1334
100 2 0 FL 90.81 1384
100 2 0.2 CE 90.30 1309
100 2 0.2 FL 91.31 1359
100 3 0 CE 91.11 816
100 3 0 FL 92.14 733
100 3 0.2 CE 92.31 1372
100 3 0.2 FL 92.23 1466
100 4 0 CE 90.50 580
100 4 0 FL 92.11 450
100 4 0.2 CE 92.80 1475
100 4 0.2 FL 92.40 1399

Source: Elaborated by the author.
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In the following table are presented the best performances for each dataset identified
as the Proposed Model. For comparison effect, table 16 shows the performance of relevant
topic modelling techniques from research (LDA and NMF embeddings were used in a random
forest to perform classification), as well as BERT, a classification model that reaches the current
state-of-the-art.

Table 16 – Classification F1-score (%) Comparison

Dataset LDA+R. Forest NMF+R. Forest TPBG BERT Proposed Model
20 News Groups 68.10 74.42 75.64 98.26 80.37
BBC News 88.65 93.14 96.42 99.15 97.97
Classic4 93.44 94.96 93.84 98.53 95.87
CSTR 53.33 79.16 55.61 77.62 79.54
NSF 61.68 84.14 86.65 93.46 90.16
WebKb 81.14 83.39 50.34 89.34 81.10
Re8 92.05 94.52 64.56 96.49 94.69
DMOZ Computers 48.73 78.58 79.49 88.45 81.88
DMOZ Health 59.70 85.41 84.85 91.68 89.32
DMOZ Science 41.15 73.80 80.09 98.14 83.16
DMOZ Sports 76.26 93.52 85.07 98.05 92.80

Source: Elaborated by the author.

LDA and NMF models were fit to the datasets using scikit-learn implementations. The
parameters used for both models were the same (the number of topics was set to 100). The
embedding from LDA and NMF were used as features for a Random Forest classifier (also from
scikit-learn implementation), with the number of estimators set to 1000. The same TPBG setup
described in section 5.2 was used to train the datasets and to generate the GNN embeddings. The
training of BERT algorothm used Ktrain implementation with internal parameters maxlen and
max_features set to 350 and 35,000 respectively.

5.4 Discussion

The comparison of performance from the proposed model involved choice of other
models. LDA, NMF were chosen for their importance on the development of topic modelling
and their embeddings were used to generate supervised models with Random Forest. TPBG
was used for its deep reationship with the proposed model and BERT was chosen because it
represents modern pre-trained models.

From the experiments it is possible to conclude that the complexity of the GNN model
(represented by the number of hidden channels and convolutional layers) plays a significant role
in the number of epochs the training process has execute to find the optimal solution. Better
results were achieved for the more complex models.
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The values for F1-score do not outperform current state-of-the-art models such as BERT
but, in general, the proposed model adds a residual improvement to the TPBG classification, in
which the bi-partite structure of the graph is based. BERT is a model that can retrieve contextual
information from texts, representing them in a token vocabulary space. It benefits from the fact
that the average number of terms in each document is smaller than the number of tokens from
the model.

It is also possible to conclude that the choice of the loss function variation does not
significantly affect the performance metric, but it does affect, in some scenarios, the number of
epochs executed to achieve optimal solution.
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5.5 Complexity Analysis
The computational complexity of the hybrid proposed solution has three components:

• PBG training: O(MT N|xW |)

• Doc2vec features generation: O(M ⇤ log(N))

• bi-partite graph generation: O(M|xW |)

• GNN training: O(’k=K
k=1 Hk)

where M is the number of documents, N is the vocabulary size, |xW | is the number of topic
projections (the number of node features), K is the number of layers and Hk is the number of
samples neighbours for each layer (limited to the number of nodes).

The number of GNN layers is required to be low (in experiments it was limited to 4) due
to the over-smoothing effect of aggregating messages from node embeddings.

5.6 Summary
The experiments have shown that it is possible to combine a technique that propagates

topic information through a bi-partite graph structure and use the latent topic representations as
node features to feed a graph neural network based on sample message passing. The overall cost
of the procedure is concentrated in the second stage of the training, due to the bigger structure of
the GNN requiring more computational power than TPBG.

The text classification experimental results for this proposed model are comparable
with benchmark techniques available in the literature, achieving a residual improvement when
compared to TPBG.
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6

CONCLUSION

This work developed an analysis of the Graph Neural Networks and proposed an applica-
tion combining TPBG (FALEIROS; VALEJO; LOPES, 2020), a topic model not based on deep
learning with GNN model for the text classification problem.

The theoretical foundations of GNN are presented to serve as reference material on
the subject with references from the main works from the literature. Regarding the proposed
model, classification experiments with benchmark open source datasets show that it is capable
of successfully predict the classes of texts. The model’s performance was, for some scenarios,
comparable with selected alternative models related to the subject.

The present work used the GraphSAGE (HAMILTON; YING; LESKOVEC, 2017) GNN
model, chosen by its capability to process large graphs, such as document-words graphs. In future
research it is possible to investigate the feasibility of applying combinations of other models
of GNNs and how the bi-partite generated graph can bring information on the explainability,
searching for connectivity patterns as well as using an arbitrary number of document classes for
model training.
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