• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-31012018-161438
Document
Author
Full name
Renato da Silva Fernandes
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2017
Supervisor
Committee
Ribeiro, Hermano de Souza (President)
Bassetto, Camila Fernanda
Nunes, Wagner Vieira Leite
Silva, Tiago Pereira da
Title in Portuguese
Combinatória: dos princípios fundamentais da contagem à álgebra abstrata
Keywords in Portuguese
Álgebra abstrata
Combinatória
Abstract in Portuguese
O objetivo deste trabalho é fazer um estudo amplo e sequencial sobre combinatória. Iniciase com os fundamentos da combinatória enumerativa, tais como permutações, combinações simples, combinações completas e os lemas de Kaplanski. Num segundo momento é apresentado uma abordagem aos problemas de contagem utilizando a teoria de conjuntos; são abordados o princípio da inclusão-exclusão, permutações caóticas e a contagem de funções. No terceiro momento é feito um aprofundamento do conceito de permutação sob a ótica da álgebra abstrata. É explorado o conceito de grupo de permutações e resultados importantes relacionados. Na sequência propõe-se uma relação de ordem completa e estrita para o grupo de permutações. Por fim, investiga-se dois problemas interessantes da combinatória: a determinação do número de caminhos numa malha quadriculada e a contagem de permutações que desconhecem padrões de comprimento três.
Title in English
Combinatorics: from fundamental counting principles to abstract algebra
Keywords in English
Abstract algebra
Combinatorics
Abstract in English
The objective of this work is to make a broad and sequential study on combinatorics. It begins with the foundations of enumerative combinatorics, such as permutations, simple combinations, complete combinations, and Kaplanskis lemmas. In a second moment an approach is presented to the counting problems using set theory; the principle of inclusion-exclusion, chaotic permutations and the counting of functions are addressed. In the third moment a deepening of the concept of permutation is made from the perspective of abstract algebra. The concept of group of permutations and related important results is explored. A strict total order relation for the permutation group is proposed. Finally, we investigate two interesting combinatorial problems: the determination of the number of paths in a grid and the number of permutations that avoids patterns of length three.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-01-31
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.