• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Carlos Silveira de Souza Filho
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Dias, Ires (Presidente)
Bonotto, Everaldo de Mello
Sampaio, Joao Carlos Vieira
Zani, Sergio Luis
Título em português
O corpo dos números complexos e uma proposta de abordagem no ensino médio
Palavras-chave em português
Corpo algébrico
Estrutura algébrica
Homotetia
Números complexos
Quatérnios
Resumo em português
Nesta dissertação abordamos o conjunto dos números complexos, apresentando sua forma algébrica e geométrica, demonstrando que se trata de um conjunto com estrutura algébrica de corpo. Apresentamos também as características de rotação e homotetia da operação de multiplicação, a contextualização histórica e finalizamos com uma proposta de abordagem para o ensino médio. Vemos também a impossibilidade de realizar rotação em três dimensões culminando com a criação dos quatérnios.
Título em inglês
The complexes numbers field and a proposition approach in high school
Palavras-chave em inglês
Algebraic field
Algebraic structure
Complexes numbers
Homothety
Quaternions
Resumo em inglês
In this masters thesis we discuss the complex numbers set, showing its algebraic and geometric forms, demonstrating which it is a set with algebraic structure of field. We also presente the rotation characteristics and homothety of multiplication operation, the historical contextualization and we finalized with an approach proposal for the high school. We also see the impossibility of performing the rotation in three dimensions resulting the generation of quaternions.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-08-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2023. Todos os direitos reservados.