• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-24102018-152915
Document
Author
Full name
Lenilson dos Reis Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Bosco, Geraldine Góes (President)
Andrade, Joana de Jesus de
Artioli, Vanessa Rolnik
Gadotti, Marta Cilene
Title in Portuguese
Grafos, coloração, polinômios cromáticos e jogos no processo de ensino aprendizagem da enumeração e da contagem
Keywords in Portuguese
Coloração
Enumeração
Grafos
Jogos
Polinômio cromático
Abstract in Portuguese
O objetivo deste trabalho é usar jogos e tópicos de Teoria dos Grafos como ferramenta para desenvolver a habilidade da enumeração, que está por trás dos cálculos combinatórios ensinados no Ensino Fundamental e Médio. Mais especificamente, neste trabalho são introduzidos os métodos mais comuns de contagem através de situacões-problema e jogos, como o Nim e o Dominó, que podem ser melhor explorados ao serem descritos atráves dos elementos de um grafo. Com essa motivacão são apresentados conceitos básicos da Teoria dos Grafos e tópicos de coloração de grafos, como o número cromático e os polinômios cromáticos. Esses tópicos fornecem exemplos ricos e motivacionais ao processo de ensino e aprendizagem dos raciocínios combinatórios. Por outro lado, os tópicos abordados contém em si a riqueza e a complexidade da Matemática, como é o caso do Teorema das 4 Cores, demonstrado com o uso da enumeração de todos os casos possíveis. Nesse contexto são apresentados os conceitos de coloração de vértices de grafos dando destaque principal para problemas combinatórios que envolvem o número cromático e o polinômio cromático de um grafo. Complementando o trabalho, são propostas atividades para serem desenvolvidas em sala de aula.
Title in English
Graphs, coloration, chromatic polynomials and games in the enumeration and counting teaching learning process
Keywords in English
Chromatic polynomial
Coloring
Enumeration
Games
Graphs
Abstract in English
The purpose of this work is to use games and topics of Graph Theory as a tool to develop the ability of enumeration, which is behind combinatorial calculations taught in Elementary and High School. More specifically, in this work, the most common methods of counting through problem situations and games, such as Nim and Domino, which can be better explored when described through the elements of a graph. With this motivation are presented basic concepts of the Theory of Graphs and graph coloring topics such as chromatic number and chromatic polynomials. Those topics provide rich and motivational examples to the process of teaching and learning combinatorial reasoning. On the other hand, the topics approach contains in itself the richness and complexity of Mathematics, as is the case with the 4-Color Theorem, demonstrated with the use of the enumeration of all possible cases. In this context are presented concepts of coloring of vertices of graphs giving main highlight to combinatorial problems which involve the chromatic number and the chromatic polynomial of a graph. Complementing the work, activities are proposed to be developed in the classroom.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-10-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.