• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2016.tde-20102016-094938
Document
Author
Full name
Daniel Polacchini Octaviano
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2015
Supervisor
Committee
Ribeiro, Hermano de Souza (President)
Andrade Filho, Marinho Gomes de
Soares, Sérgio Henrique Monari
Viola, Márcio Luis Lanfredi
Title in Portuguese
Espaços finitos de probabilidade
Keywords in Portuguese
Espaços finitos de probabilidade
Noções de probabilidades
Probabilidade
Abstract in Portuguese
Este trabalho aborda aspectos básicos do cálculo de probabilidades em espaço finito de probabilidade, aplicados a eventos como lançamentos de moedas, jogos de pôquer, loterias, problemas de nascimento de crianças e problemas com urnas, e tem como objetivo principal exibir, em cada fenômeno aleatório, o espaço finito de probabilidade que é o modelo probabilístico do fenômeno. Em cada exemplo de aplicação, foram definidos os espaços amostrais e a função de probabilidade correspondente, além do evento cuja probabilidade é a resposta do problema apresentado. A visualização concreta do espaço dos eventos associado a um processo aleatório facilita a compreensão do cálculo de probabilidades.
Title in English
Finite probability spaces
Keywords in English
Finite probability spaces
Notions of probability
Probability
Abstract in English
This dissertation approaches basic aspects of the probability calculus in finite probability space, applied to events such as coins tosses, poker matches, lotteries, birth problems and problems with voting machines, and it aims at displaying in each random phenomenon, the finite probability space which is the probability model of the phenomenon. In each working example, the sample spaces and their corresponding probability function have been defined, besides the event whose probability is the response of the problem presented. The concrete visualization of the space of events associated with a random process facilitates the understanding of the probability calculus.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-10-20
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.