• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2018.tde-18102018-164352
Documento
Autor
Nombre completo
Thiago Trindade Pimentel
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2018
Director
Tribunal
Federson, Marcia Cristina Anderson Braz (Presidente)
Collegari, Rodolfo
Gadotti, Marta Cilene
Zani, Sergio Luis
Título en portugués
Construção dos números reais via cortes de Dedekind
Palabras clave en portugués
Conjuntos
Cortes de Dedekind
Números Inteiros
Números Naturais
Números Racionais
Números Reais
Partição
Relação de Equivalência
Relação de Ordem
Resumen en portugués
O objetivo desta dissertação é apresentar a construção dos números reais a partir de cortes de Dedekind. Para isso, vamos estudar os números naturais, os números inteiros, os números racionais e as propriedades envolvidas. Então, a partir dos números racionais, iremos construir o corpo dos números reais e estabelecer suas propriedades. Um corte de Dedekind, assim nomeado em homenagem ao matemático alemão Richard Dedekind, é uma partição dos números racionais em dois conjuntos não vazios A e B em que cada elemento de A é menor do que todos os elementos de B e A não contém um elemento máximo. Se B contiver um elemento mínimo, então o corte representará este elemento mínimo, que é um número racional. Se B não contiver um elemento mínimo, então o corte definirá um único número irracional, que preenche o espaço entre A e B. Desta forma, pode-se construir o conjunto dos números reais a partir dos racionais e estabelecer suas propriedades. Esta dissertação proporcionará aos estudantes do Ensino Médio, interessados em Matemática, uma formação sólida em um de seus pilares, que é o conjunto dos números reais e suas operações algébricas e propriedades. Isso será muito importante para a formação destes alunos e sua atuação educacional.
Título en inglés
Construction of the real numbers via Dedekind cuts
Palabras clave en inglés
Cuts of Dedekind
Equivalence-relation
Integers
Natural Numbers
Order
Partition
Rational Numbers
Real Numbers
Sets
Resumen en inglés
The purpose of this dissertation is to present the construction of the real numbers from Dedekind cuts. For this, we study the natural numbers, the integers, the rational numbers and some properties involved. Then, based on the rational numbers, we construct the field of the real numbers and establish their properties. A Dedekind cut, named after the German mathematician Richard Dedekind, is a partition of the rational numbers into two non-empty sets A and B, such that each element of A is smaller than all elements of B and A does not contain a maximum element. If B contains a minimum element, then the cut represents this minimum element, which is a rational number. If B does not contain a minimal element, then the cut defines a single irrational number, which "fills the gap" between A and B. In this way, one can construct the set of real numbers from the rationals and establish their properties. This dissertation provides students who like Mathematics a solid basis in one of the pillars of Mathematics, which is the set of real numbers and their algebraic operations and properties. This text will be very important for your educational background and performance.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-10-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.