Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.55.2022.tde-17012023-155330
Document
Auteur
Nom complet
Evandro Aloisio Guilherme
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2022
Directeur
Jury
Picon, Tiago Henrique (Président)
Almeida, Marcelo Fernandes de
Ebert, Marcelo Rempel
Zugliani, Giuliano Angelo
Titre en portugais
Introdução às séries de Fourier e critérios de convergência.
Mots-clés en portugais
Convergência de séries de funções
Funções periódicas
Séries de Fourier
Teorema de Fourier
Resumé en portugais
Titre en anglais
Introduction to Fourier Series and convergence criteria
Mots-clés en anglais
Convergence of series of function
Fourier Series
Fouriers Theorem
Functions parity
Periodic functions
Resumé en anglais
There are several gaps in the training of mathematics teachers in Brazil. Whether for a short time or for an extensive menu of subjects that make up the curriculum of undergraduate courses, many teachers graduate without having learned the Fourier Series in depth, or even without ever having studied them. In this sense, this dissertation aims to offer students and future mathematics teachers a detailed material on the introductory foundations of Fourier Series. In order to achieve this objective, this dissertation began with a preliminary study on periodicity and parity of functions; in the sequence, seeking to encourage the study of Fourier Series, the physical problem of heat conduction in a metallic object was approached, a problem that motivated the emergence of this theory due to Fourier; then, the coefficients and the expression of the Fourier Series were defined, whose calculations were illustrated by an expressive number of examples; later, the interesting application of how to obtain series of numbers that approximate the value of was presented; and finally, the uniform and pointwise convergence of the Fourier Theorem was demonstrated. In the last chapter, a didactic tutorial was presented teaching how to construct the graphs of partial sums of Fourier Series using the Geogebra software.

AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2023-01-17

AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2023. Tous droits réservés.