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RESUMO

FINAMORE, D. Folheações de contato: folhas fechadas e conjecturas de Weins-
tein generalizadas. 2023. 141 p. Tese (Doutorado em Ciências – Matemática) – Insti-
tuto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos
– SP, 2023.

A conjectura de Weinstein, que diz respeito a existência de órbitas periódicas para fluxos
de Reeb, é um dos problemas mais clássicos da Geometria de Contato. Almeida, em sua
tese de doutorado (ALMEIDA, 2018), introduziu uma generalização do conceito clássico
de estrutura de contato que possibilita a definição de folheações de contato, i.e., folheações
de dimensão maior que 1 que generalizam as principais propriedades do fluxo de Reeb.

Neste trabalho, inspirados pela conjectura de Weinstein para o caso clássico, buscamos
encontrar folhas fechadas para folheações de contato. Generalizando ideias usadas com
êxito anteriormente para provar a conjectura em variedades de contato com propriedades
adicionais, obtemos a existência de folhas fechadas nos casos particulares em que a folhe-
ação é hiperbólica ou C1-equicontínua. Esta última classe engloba folheações de contato
quasiconformais, conformais, isométricas e riemannianas. Além disso, usando técnicas da
Teoria de Morse, relacionamos as folhas fechadas à cohomologia básica de uma folhea-
ção de contato C1-equicontínua, obtendo uma cota inferior para a quantidade de folhas
fechadas diretamente proporcional a codimensão da folheação.

Palavras-chave: ações de grupos, folheações, estruturas de contato generalizadas, dinâ-
mica de contato.





ABSTRACT

FINAMORE, D. Contact foliations: closed leaves and generalised Weinstein
conjectures. 2023. 141 p. Tese (Doutorado em Ciências – Matemática) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2023.

The Weinstein conjecture, which regards the existence of periodic orbits for Reeb flows, is
a classic problem in Contact Geometry. In his doctoral dissertation, Almeida (ALMEIDA,
2018) introduced a novel geometric structure, which generalises contact structures and
provides a notion of contact foliation, i.e., higher dimensional analogues for the Reeb flow.

In this work, inspired by the classical Weinstein conjecture, we seek to find closed leaves
for such contact foliations. By generalising ideas already employed successfully in proving
the Weinstein conjecture in the past, we obtain the existence of closed leaves in particular
cases when the foliation is either hyperbolic or C1-equicontinuous. This later class encom-
passes those of quasiconformal, conformal, isometric, and Riemannian contact foliations.
Moreover, using techniques from Morse Theory, we were able to relate the closed leaves
of a C1-equicontinuous contact foliation to its basic cohomology, obtaining a lower bound
for the number of closed orbits, as a function of the foliation’s codimension.

Keywords: group actions, foliations, generalised contact structures, contact dynamics.





LIST OF SYMBOLS

Gln(R) — nth real general linear group

Sln(R) — nth real special linear group

Son(R) — nth real special orthogonal group

Con(R) — group of conformal transformations of Rn

Cn(R) — space of conformal metrics of Rn

Γ(E) — space of (smooth) sections of the vector bundle E

Γ(M) — short for Γ(TM), the space of (smooth) sections of the vector bundle TM

Γ(F — short for Γ(TF), the space of (smooth) sections of TM tangent to F

LX — Lie derivative in the direction of X

ιX ω — interior product of differential form ω with X

Diff(M) — group of diffeomorphisms of the manifold M

Diffvol(M) — group of volume-preserving diffeomorphisms of the manifold M

Iso(M,g) — group of isometries of the Riemannian manifold (M,g)

H∗
dR(M) — de Rham cohomology algebra of the manifold M

∧k(M) — set of differential k-forms on M

(M,⃗λ ,R⊕ξ ) — q-contact manifold

ξ — q-contact distribution

R — Reeb distribution

λ⃗ — adapted coframe of a q-contact structure

dMi — i-th volume form of M

Ci — characteristic distribution of λi

Ci — characteristic foliation of λi

δi j — Dirac’s delta notation: δi j1 if i = j; δi j = 0 otherwise

Ri — i-th Reeb vector field of the q-contact structure

F — contact action associated to the q-contact distribution



F — contact foliation associated to the q-contact action

gτ — adapted metric for the q-contact structure

WC — Weinstein Conjecture

WGWC — Weak Generalised Weinstein Conjecture

SGWC — Strong Generalised Weinstein Conjecture

∆ — Laplace-Beltrami operator

E1
F — C1-enveloping group of the action F .

B(F) — Lie algebra of F -foliate vector fields

t(F) — Lie algebra of F -transverse vector fields

δ (λ⃗ ) — basic dimension of the adapted coframe λ⃗

LF,V (x,a) — maximum distortion of the unity ball at Vx under dFa
x

LF(x,a) — maximum distortion of the unity ball at TxM under dFa
x

lF,V (x,a) — minimum distortion of the unity ball at Vx under dFa
x

lF(x,a) — minimum distortion of the unity ball at TxM under dFa
x

EF,V (x,a) — V -eccentricity of F evaluated at (x,a) ∈ M×Rq

EF(x,a) — TM-eccentricity of F evaluated at (x,a) ∈ M×Rq

∧k(M)G — differential k-forms on M invariant under the action of the group G

∧k(F) — set of F -basic k-forms

H∗
B(F) — basic cohomology algebra of a foliation F



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 CONTACT FOLIATIONS . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Contact actions of the Euclidean space . . . . . . . . . . . . . . . . . 27
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Closed orbits and generalised Weinstein conjectures . . . . . . . . . 40
2.3.1 Anosov contact actions . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Constructions on contact foliations . . . . . . . . . . . . . . . . . . . 44

3 THE CONTACT AND CHARACTERISTIC FOLIATIONS . . . . . . 51
3.1 Local representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Transverse sections and holonomy transformations . . . . . . . . . . 54
3.3 Tautness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 On the topology of q-contact manifolds . . . . . . . . . . . . . . . . . 60

4 INVARIANT METRICS . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Isometric contact foliations . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The topology of isometric contact manifolds . . . . . . . . . . . . . . 70
4.3 Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 The C1-enveloping group and C1-equicontinuity . . . . . . . . . . . . 82
4.4 Toric actions on q-contact manifolds . . . . . . . . . . . . . . . . . . 85
4.5 Counting closed leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 C1-EQUICONTINUITY, CONFORMALITY AND QUASICONFOR-
MALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Conformal structures on vector bundles . . . . . . . . . . . . . . . . . 101
5.2 Quasiconformality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Basic cohomology of quasiconformal contact foliations . . . . . . . . 111

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1 Final thoughts and comments . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Open questions and further work . . . . . . . . . . . . . . . . . . . . . 119

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



APPENDIX A TRANSVERSE GEOMETRY OF FOLIATIONS . . . . 131

APPENDIX B SYMPLECTISATIONS . . . . . . . . . . . . . . . . . . 137



19

CHAPTER

1
INTRODUCTION

A contact manifold is an odd-dimensional manifold M together with a totally non-
integrable distribution ξ ⊂ TM of maximal rank. In other words, M has dimension 2n+1
and ξ has rank 2n. The non-integrability condition means ξ supports non-degenerate
closed forms and is, therefore, a symplectic bundle, hence the usual assertion that contact
geometry is but an odd-dimensional analogue of symplectic geometry. We usually ask for
the condition that ξ is coorientable, which implies the existence of a 1-form λ on M such
that kerλ = ξ . Given a coorientable contact manifold (M,ξ ), a choice of defining 1-form
λ for the contact structure ξ gives rise to a unique vector field R on M satisfying

λ (R)≡ 1,

ιR dλ ≡ 0.

The field R is known as the Reeb field, and its flow is called the Reeb flow, or contact
flow, of M. Reeb (or Contact) Dynamics is the name given to the study of the Reeb flow
defined by a coorientable contact structure.

The most famous question in the field of Contact Dynamics is undoubtedly the
Weinstein Conjecture. It states that every Reeb flow defined on a closed contact manifold
must have a closed orbit, i.e., an orbit homeomorphic to S1. Much progress has been made
in the quest for an answer since the question was first posed by Alan Weinstein in 1978
(WEINSTEIN, 1979). In particular, the conjecture is known to hold true for any three-
dimensional contact manifold (TAUBES, 2007), for a class of contact structures known
as overtwisted (BORMAN; ELIASHBERG; MURPHY, 2015; NIEDERKRÜGER, 2006),
for contact flows supporting an invariant metric (BANYAGA, 1993), and for many other
particular cases. In its full generality, however, the Weinstein Conjecture remains an open
problem.

There are several ways to generalise contact manifolds. For instance, an almost
contact manifold is an odd-dimensional manifold together with a distribution ξ ⊂ TM
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and a non-vanishing vector field R such that

(i) R is always transverse to ξ ;

(ii) ξ admits an almost complex structure J : ξ → ξ .

In this case, ξ plays the role of non-integrable distribution. However, it still has codi-
mension 1, so the foliation associated with the structure (that is, the flow of R) is still
one-dimensional.

In order to obtain generalisations with more than one “Reeb field”, one possibility
is to look at some particular cases of f -structures. An f -structure on a (2n+1)-dimensional
manifold M, a concept introduced by Yano in (YANO, 1982), is a tensor field of type (1,1)
and rank 2n satisfying the equation f 3+ f = 0. The cases where q= 0 and q= 1 are simply
almost complex and almost contact structures, respectively. An f -structure always comes
with a splitting of the tangent bundle

TM = Im( f )⊕ker( f ).

When there are on M vector fields R1, · · ·Rq spanning ker( f ) and 1-forms λ1, · · · ,λq such
that

(i) λi(R j) = δi j;

(ii) λi ◦ f = 0;

(iii) f 2 =− id+∑i Ri ⊗λi,

we say the f -structure has a paralellisable kernel or complemented frames. In an f -
structure with complemented frames, there is always an associated metric g such that

g(X ,Y ) = g( f (X), f (Y ))+
q

∑
i=1

λi(X)λi(Y ),

and the triple (M, f ,g) is said to be an metric f -structure). Using one such metric, we
define the fundamental (or Sasakian) form of the f -structure to be

ω(X ,Y ) = g(X , f (Y )).

When it happens that dλ1 = · · ·= dλq =ω , the structure is called an almost S-structure (or
simply an S-structure, depending on whether or not some other integrability conditions
are satisfied (BLAIR, 1970; DI TERLIZZI, 2006)). In this case, the pair (Im( f ),ω) is a
symplectic bundle over M, and the fields Ri play the role of Reeb fields. On an S-manifold
the fields Ri are pairwise commutative (CABRERIZO; FERNÁNDEZ; FERNÁNDEZ,
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1990, Corollary 2.4), and therefore define a foliation on M, which is analogue to the Reeb
flow.

A similar but simpler notion is due to Bolle. In his work (BOLLE, 1996) he con-
siders the Cp-condition, a property of submanifolds of a symplectic manifold (M,ω) that
generalises the idea of a contact hypersurface. More specifically, if dimM = 2n, then for
1 ≤ p ≤ n, we say a submanifold S satisfies the Cp-condition if

(i) S is a compact co-isotropic submanifold of codimension p. In other words, ker(ω|S)
is a vector bundle of constant rank p over S;

(ii) There are 1-forms λ1, · · · ,λp on S such that dλ1 = · · ·= dλq = ω|S;

(iii) the application X 7→ (λ1(X), · · · ,λp(X)) is a bundle isomorphism between ker(ω|S)
and Rp.

A compact almost S-manifold M can also be interpreted as a submanifold satisfying a
Cp-condition if one regards it as the zero section in its symplectisation (see Appendix
B). The converse is usually not true since submanifolds satisfying the Cp-condition carry
much less structure.

In this work, we deal with geometrical structures called q-contact structures (cf.
Definition 1), first defined by Almeida in (ALMEIDA, 2018). While they bear many sim-
ilarities to the structures defined by Bolle and to almost S-structures, there’s a crucial
difference in that the derivatives of the defining forms need not be all the same, but
only share the same kernel. The notion of q-contact structure seeks to encompass only
the absolute minimum requirements necessary to obtain a higher dimensional analogue
to the Reeb flow. Basically, a such structure consists of a collection of q linearly inde-
pendent 1-forms {λ1, · · · ,λq}, which we call an adapted coframe, with the property that
all the derivatives dλi share the same kernel, and are non-degenerate on the intersection
ξ := ∩i kerλi. In such a setup, there is a unique global frame {R1, · · · ,Rq} of pairwise
commutative fields satisfying λi(R j), which we call the Reeb fields for the structure. The
underlying foliation of the bundle spanned by the Reeb fields is the contact foliation, the
higher dimensional analogue to the Reeb flow we sought.

There are many examples of q-contact manifolds besides the already established
notions that a q-contact structure seeks to generalise. Of course, every contact structure
is a 1-contact structure. By taking products of contact manifolds one can construct 2-
contact structures whose adapted coframe {λ1,λ2} is such that dλ1 ̸= dλ2 (cf. Example 5),
hence such products can not be an almost S-manifold or a C2-condition submanifold of
any larger symplectic manifold. We can construct further examples by looking at mapping
tori and flat torus bundles over q-contact manifolds (cf. Examples 7 and 8). Examples of
algebraic nature are provided by Almeida in his thesis (ALMEIDA, 2018), where algebraic
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contact structures displaying hyperbolic properties are the main concern. For instance, he
shows the Weyl chamber action is of contact nature.

Here, we expand the basic theory of q-contact structures by providing several new
examples, properties and constructions. We show that the mapping tori of a q-contact
manifold is a (q+1)-contact manifold (cf. Example 8) and provide a partial converse to
Almeida’s “extension” construction (Example 7) in the form of the “reduction” procedure
described in Theorem 2. Shortly, if the contact action F : Rq → Diff(M) has non-trivial
kernel Zl and a dense leave, then we can construct a manifold M0 over which M is a
principal Tl-bundle. Moreover, M0 carries a contact foliation F0 of which F is an extension,
in the sense of Example 7.

We also investigate a novel object, the characteristic foliation, which have no
analogue in the contact case, i.e., for q = 1. The characteristic foliation Ci of the 1-form
λi consists of the integral foliation of the bundle Span{R1, · · · , R̂i, · · · ,Rq}, and it has the
remarkable property that whenever N is a transversal to Ci, the pair (N,λi|TN) is a contact
manifold. The holonomy pseudogroup of Ci consists of contactomorphisms between these
manifolds. These foliations play a crucial role in our first major result, Theorem 4, which
is a classification result asserting that every closed manifold supporting a q-dimensional
uniform contact foliation is a fibration over the torus Tq−1. Here, uniform means all the
1-forms comprising the adapted coframe λ⃗ have the same exterior derivatives (this is the
case for almost S-manifolds and Cp-condition submanifolds, for instance). This theorem is
in line with already known results for other contact-like structures (cf. (GOERTSCHES;
LOIUDICE, 2020a, Theorem 4.4)).

Since the Weinstein conjecture is such a noteworthy part of the theory of Contact
Dynamics, it is only natural that we ask ourselves how the problem of the existence of
closed orbits translates to a set of general contact foliations. This is the focus of this
work. First, we note that the q-dimensional contact foliation associated with a q-contact
structure is the underlying foliation of a smooth, locally free action of the Euclidean plane
Rq, whose infinitesimal generators are the Reeb fields. Consequently, the topological type
of any leaf is the quotient of Rq by the isotropy subgroup of the corresponding orbit. This,
in turn, implies that each leaf must be homeomorphic to a cylinder

Rq−l ×Tl,

for some 0 ≤ l ≤ q. In the 1-dimensional (contact) case, this means each orbit must either
be a line (l = 0) or a circle (l = 1) and what Weinstein conjectured was that in a closed
manifold, one must have l = 1 for at least one orbit. In the general case, we have at least
two possibilities for a generalised Weinstein conjecture: one can ask whether l ̸= 0, for at
least one leaf, or l = q for at least one leaf. The first case simply says that a contact foliation
on a closed manifold is not a foliation by planes. In contrast, in the second situation, we
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ask for the existence of a closed leaf. In this work, we propose and investigate two novel
conjectures, both generalising the classical Weinstein conjecture (WC):

The weak generalised Weinstein conjecture (WGWC). Every contact foliation on
a closed manifold has a leaf homeomorphic to Tl ×Rq−l, for some l ≥ 1.

The strong generalised Weinstein conjecture (SGWC). Every contact foliation on
a closed manifold has a leaf homeomorphic to Tq.

The first thing that comes to mind is whether or not the conjectures are really
different. For instance, it is clear that the WC and the SGWC do not allow the existence of
non-trivial minimal contact foliations. However, one could, a priori, have cylindrical leaves
whose closure is the entire ambient manifold. Our first significant result (a consequence of
Proposition 2 and Theorem 3) states precisely that this can not happen. In other words,
neither of the Weinstein conjectures allows the existence of non-trivial minimal contact
foliations.

Notice that, for now, there’s no guarantee that the conjectures are not, in reality,
the same. In fact, for uniform contact foliations, it will follow from Theorem 4 that the
WGWC is equivalent to the WC.

Our main results, Theorems A, B and C, concern the existence of closed leaves for
contact foliations satisfying additional geometric or dynamical properties, as well as the
classification of such foliations.

Regarding the validity of our conjectures, we give partial affirmative answers to the
SGWC in at least two cases: when the contact foliation is partially hyperbolic 1 and when
the contact foliation is quasiconformal. The latter is a class of contact foliations whose
holonomies’ distortion of transverse sections is bounded (in a sense to be made precise in
Definition 31). Riemannian and conformal contact foliations belong to such class, as well
as contact actions supporting an invariant metric. The latter condition is the strongest
of them all, and foliations satisfying it are called isometric. This is the first class we
investigate, before attacking the more general case. The first of our main theorems reads
as

Theorem A. Every isometric contact foliation satisfies the SGWC.

This is first shown in Theorem 15, where we take advantage of the regularity of leaf
closures in Riemannian foliations to restrict the contact foliation to specific submanifolds,
in a procedure that can be iterated until it ends in a closed leave. This technique ensures
the existence of at least two closed leaves. We then make use of Morse Theory to improve
1 Partially hyperbolic contact foliations include, for instance, all the contact foliations appear-

ing in Almeida’s work. See Section 2.3.1 for a detailed discussion
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on this lower bound in Theorem 18, greatly generalising previously known constructions
from the literature. More specifically, in (RUKIMBIRA, 1995), Rukumbira studies the
class of K-contact manifolds, contact manifolds for which the Reeb field is Killing with
respect to a contact metric. A such metric is a Riemannian metric g satisfying a couple of
compatibility conditions with a tensor f : T M → T M of the form f = J⊕0, where J is an
almost complex structure on the contact structure (in particular, there is an f -structure
on M, of which g is the associated metric). Using the particular properties of f and g,
Rukimbira defines a Morse function on the ambient manifold, which he uses to count
closed orbits for the Reeb field.

The class of K-contact manifolds has a natural generalisation in the class of metric
f -K-contact manifolds, which is a particular kind of f -structure and also an example of
a uniform isometric q-contact structure. Goertsches and Loiudice, using properties of the
tensor f , adapted the calculations of Rukimbira and developed a generalisation of his
Morse-Bott function to the case of metric f -K-contact-structures.

Here, we further adapt the arguments of (RUKIMBIRA, 1995; GOERTSCHES;
LOIUDICE, 2020b) by showing that they do not depend on the particular properties of
the tensor f or the contact metric g but only on the fact that the infinitesimal generators
of the contact action are Killing fields. In fact, if a Reeb field Ri is Killing for some metric
tensor g with Levi-Civita connection ∇, then the mapping

X 7→ ∇RiX

is a (1,1)-tensor on M with some properties akin to those of a f -structure. Using such
tensor, we can adapt some of the lemmas from Rukimbira and Goertsches-Loiudice to
the case of isometric contact foliations, allowing us to relate the basic cohomology of the
contact foliation to the existence of closed orbits. In particular, we show that any isometric
contact foliation of codimension 2n on a closed manifold M has at least n+1 closed leaves
(cf. Theorem 18). This lower bound depends on the properties of a coframe of infinitesimal
generators for the contact action and the first Betti number. It will generally be greater
than just n+1.

As remarked before, quasiconformal foliations generalise the concepts of Rieman-
nian, isometric and conformal foliations. For general foliations, these four classes are all
distinct. A surprising and remarkable discovery we made while working on this project is
that, for contact foliations on compact manifolds, all these notions are actually equivalent.
More precisely, up to a choice of Riemannian metric tensor, every quasiconformal contact
foliation on a compact manifold can be considered isometric.

One of the most useful dynamical properties of an isometric action F : Rq → M

is the fact that its C1-closure in the group of diffeomorphisms of M, which we call the
C1-enveloping group E1

F = F(Rq), is compact. This condition implies a strong form of
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equicontinuity, dubbed here C1-equicontinuity. With this nomenclature, our result can be
stated as

Theorem B. Let F be a contact foliation on a compact manifold M. The following are
equivalent.

(i) F is C1-equicontinuous;

(ii) the C1-enveloping group E1
F is a torus;

(iii) F admits a bundle-like metric (i.e., F is a Riemannian foliation);

(iv) F admits an invariant metric;

(v) F is quasiconformal;

(vi) F admits an invariant conformal structure.

Theorem B, combined with Theorem 18, asserts that every quasiconformal contact
foliation on a closed manifold has at least 2 distinct closed leaves (generally many more).
This proves our main result in this work.

Theorem C. Every quasiconformal contact foliation on a closed manifold satisfies the
SGWC.

In particular, our results show that the classical Weinstein Conjecture is satisfied by every
conformal Reeb field, a result previously not known, to the best of the author’s knowledge.

On the structure of this work

In Chapter 2, we introduce the notion of q-contact structure, its basic properties
and the generalised Weinstein conjectures, as well as some examples. In chapter 3, we
develop the fundamentals of contact foliations and discuss the topological properties of
manifolds supporting uniform contact foliations.

Chapter 4 is devoted to study metrics and the property of C1-equicontinuity. We
investigate the geometrical and topological properties of manifolds supporting contact
foliations with invariant metrics, obtaining results regarding their cohomology and the
curvature of the invariant metric. We also prove that C1-equicontinuous contact manifolds
satisfy the SGWC and provide lower bounds on the number of closed orbits using the basic
cohomology of the contact foliation.

Finally, in Chapter 5, we look at quasiconformal and conformal contact foliations
and show how these two properties reduce to C1-equicontinuity. We discuss some open
problems in Chapter 6.
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On the nomenclature

In his work, Almeida refers to q-contact structures as generalised k-contact struc-
tures. We decided to change the index letter from k to q in order to avoid confusion
with the already established notion of a K-contact structure. Moreover, Almeida also em-
ploys the notion of k-contact structure, taken from (BOLLE, 1996; MONTANO, 2008;
TOMASSINI; VEZZONI, 2008), which generalises the similar notion of submanifolds sat-
isfying a Ck-condition. Here, we call such objects uniform q-contact structures (Definition
9). Our decision to rename these concepts was based, first, on the belief that our nomen-
clature is less cumbersome and more informative. Moreover, during our research efforts,
we stumbled upon the work of Gaset et al. (GASET et al., 2020), in which yet another
object called a k-contact structure is defined. In the sense of Gaset et al., a k-contact
structure is even more general than the objects present in this work since they do not
require the kernels of the derivatives of the defining 1-forms to be all the same. In light
of that, we felt it made little sense to call our structures “generalised,” so we decided to
abandon the adjective for good.

Besides the geometric structures from Gaset et al., uniform q-contact structures
(that is, Cq-condition submanifolds) and f -structures as discussed above, there are several
other geometric structures similar or related to the structures studied here. We would
like to give special mention to the notions of Contact Pair (cf. (BANDE; HADJAR,
2005)); Multicontat Structures (cf. (VITAGLIANO, 2015)); Pluricontact and Polycontact
Structures (cf. (APOSTOLOV et al., 2018; VAN ERP, 2011)). The interested reader is
referred to (ALMEIDA, 2018, Section 3.2.2) for a more detailed comparison between all
these different concepts.
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CHAPTER

2
CONTACT FOLIATIONS

2.1 Contact actions of the Euclidean space
Intuitively, a contact action is an action of Rq whose frame of infinitesimal co-

generators consists of “contact forms”, i.e. 1-forms whose kernels intersect to define a
completely non-integrable bundle on which their derivatives are symplectic.

Definition 1 (q-contact manifolds). Let n,q be positive integers and consider a 2n+ q

dimensional manifold M. A q-contact structure on M is a collection λ⃗ = (λ1, ...,λq) of
q linearly independent non-vanishing 1-forms λi, together with a splitting

TM =R⊕ξ

of the tangent bundle, satisfying the following conditions:

(i) ξ := ∩i kerλi;

(ii) for every i, the restriction dλi|ξ is non-degenerate. In other words, (ξ ,dλi) is a
symplectic bundle over M for every i;

(iii) for every i, one has kerdλi =R.

A manifold endowed with such structure is called a q-contact manifold and
denoted by (M,⃗λ ,R⊕ξ ), or simply by M when the context permits. The bundles R and
ξ are called the Reeb distribution and q-contact distribution, respectively.

There are several properties implicit in this definition:

• kerλi is the bundle whose fibre at p is the kernel of the linear functional λi|p :
TpM →R. It is a classical result in Functional Analysis that if L,L1, · · · ,Lk are linear
functionals such that ∩i kerLi ⊂ kerL, then L is a linear combination of the Li. Hence
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linear independence of the λi means that at every point p, the intersection of these
kernels is a 2n-dimensional subspace of TpM, that is, ξ is a vector bundle of constant
rank 2n.

• The kernel of a 2-form ω is defined as the set of fields X such that the contraction
ιX ω := ω(X , ·) is identically zero. Thus, condition (ii), together with the splitting of
TM, already gives kerdλi ⊂R, and condition (iii) could be restated as R⊂ kerdλi.

• Moreover, the linear independence of the 1-forms λi is equivalent to

λ := λ1 ∧·· ·∧λq ̸= 0

at every point of M. In other words, λ is a volume form for the Reeb distribution
R.

Definition 2 (Characteristic form). The q-form

λ := λ1 ∧·· ·∧λq

is called the characteristic form of the q-contact structure.

• As rankξ ≡ 2n, condition (ii) is equivalent to dλ n
i |ξ ̸= 0. From this we can conclude

that dMi := λ ∧dλ n
i is a volume form on M for every i. In particular, M is orientable.

We write
voli(M) :=

∫
M

dMi

for the volume of M concerning the volume form dMi.

Remark 1. The splitting TM = R⊕ ξ is as smooth as the least smooth of forms λi

comprising the collection λ⃗ , or, equivalently, as smooth as its characteristic form λ . In
this work, we will always assume the characteristic form λ to be at least of class C1.

Remark 2. In (YANO, 1982), Yano began the study of manifolds M supporting a
(1,1)-tensor f satisfying the equation f 3 + f = 0. Such a structure induces a splitting
TM = ker f ⊕ Im f , which is said to be an f -structure with complemented frames if ker f

is parallelisable (GOLDBERG; YANO, 1970). Given an f -manifold with complemented
frames, additional hypotheses on the kernel ker f give rise to different geometric structures
such as K-manifolds and S-manifolds. These last two are particular cases of q-contact
structures as considered here (cf. (BLAIR, 1970)).

On the other hand, given a q-contact manifold (M,⃗λ ,R⊕ξ ), for every defining 1-
form λi, the symplectic bundle (ξ ,dλi) admits a compatible almost complex structure Ji. If
we define fi to be equal Ji on ξ and identically zero on R, then it is clear that f 3

i + fi = 0.
So M supports (at least) as many different f -structures with complemented frames as
there are different 2-forms dλi. The concept of an f -structure with complemented frames
is more general than that of a q-contact structure.
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As in the contact case, for q-contact structures the bundle ξ is maximally non-integrable:

Proposition 1. For any vector field X tangent to ξ there’s another vector field Y ∈ Γ(ξ )
such that [X ,Y ] is not a section of ξ .

Proof. Assume there is X ∈ Γ(ξ ) such that for any other vector field Y tangent to ξ , their
Lie bracket [X ,Y ] is also tangent to ξ . Then λi(X) = λi(Y ) = λi([X ,Y ]) = 0 for every i, since
ξ is the intersection of their kernels. From this, we obtain dλi(X ,Y ) = Xλi(Y )−Y λi(X)−
λi([X ,Y ]) = 0 for every i, which can never happen as every dλi is non-degenerate on ξ .

Each 1-form λi has an associated tangent distribution Ci(p) ⊂ TpM, called the
characteristic distribution:

Definition 3 (Characteristic distribution). The characteristic distribution of λi is the
distribution

Ci(p) := {Xp ∈ TpM; λi(Xp) = 0 and ιXp dλi = 0}

= kerλi|p ∩Rp.

Note that this distribution has a constant rank equal to q− 1. Indeed, since Rp has
dimension q and kerλi|p is a hyperplane, the vector space Ci(p) ⊂ TpM has dimension
either q, in case Rp ⊂ kerλi|p, or q−1 otherwise. Now, the fact that dMi is a volume form
for M, together with λi|ξ = 0 implies λi|R ̸= 0, hence Ci(p) has dimension q−1. More than
that, if the splitting R⊕ξ is smooth, so are the characteristic distributions Ci. These are
all integrable since X ,Y ∈ Ci imply that

λi([X ,Y ]) = Xλi(Y )−Y λi(X)−dλi(X ,Y ) = 0,

and, using Cartan’s formula,

ι[X ,Y ] dλi = L[X ,Y ]λi = LXLY λi −LYLX λi = LX 0−LY 0 = 0,

hence Ci is involutive.

Definition 4 (Characteristic Foliation). The underlying foliation Ci associated with the
characteristic distribution Ci is called the characteristic foliation of λi.

We proceed by defining a suitable global frame for the bundle R

Proposition 2. There is a unique global frame R1, · · · ,Rq ∈ Γ(R) for R satisfying the
relations λi(R j) = δi j.
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Proof. As the 1-forms λi are all linearly independent, we conclude that

Ki :=
∩
j ̸=i

kerλ j

is a bundle of rank 2n+1 containing ξ , for every i= 1, · · · ,q. From the equality R⊕ξ =TM,
it follows that

R∩Ki ̸= 0

and that
dim(R∩Ki) = 1.

Thus, for each i there is only one vector field Ri tangent to R such that λi(Ri) = 1 and
λ j(Ri) = 0 for every j other than i.

It is then straightforward to check that the Ri are everywhere linearly independent,
for if there was a p ∈ M such that Ri|p = ∑ j ̸=i t jR j|p then we would have

1 = λi|p(Ri|p) = ∑
j ̸=i

t jλi|p(R j|p) = 0.

If the splitting TM =R⊕ ξ is smooth then so are the vector fields Ri. It follows
immediately from their construction that R= Span{R1, · · · ,Rq}.

Definition 5 (Reeb vector fields). The (unique) linearly independent vector fields {Ri} ⊂
Γ(R) spanning R and satisfying

λi(R j) = δi j and dλi(R j, ·) = 0

are called the Reeb vector fields of the q-contact structure.

We remarked earlier that every q-contact manifold admits volume forms and is
therefore orientable. The existence of the Reeb fields immediately implies another topo-
logical obstruction.

Proposition 3. If M is a q-contact manifold, then its Euler characteristic is zero.

Proof. Each field Ri is non-vanishing, and therefore its index at every point is zero. Ap-
plying the Poincaré-Hopf Theorem to Ri gets us χ(M) = 0.

To further justify calling the fields from Proposition 2 Reeb fields, note that they
satisfy

LR jλi = d(ιR jλi)+ ιR j dλi = 0,
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meaning every Reeb flow preserves every 1-form λi and hence the bundle ξ . One see as
easily that LR j dλi = 0 as well, so that the Reeb flows actually preserve the symplectic
bundles (ξ ,dλi) over M.

Perhaps the most crucial property of the spanning set {Ri} is that these fields
commute with one another.

Proposition 4. [Ri,R j] = 0 for every i, j.

Proof. Since dMl = λ1 ∧·· ·∧λq ∧dλ n
l is a volume form, it’s sufficient to show that

ι[Ri,R j] dMl = 0.

First, note that dλi∧dλ n
j = 0 for any i and j, for this is a (2n+2)-form, and any choice of

2n+2 linearly independent vectors on TM would have at least one vector belonging to R,
on which dλl is zero. Thus λi ∧dλ n

j is a closed (2n+1)-form and, for any choices 1 ≤ i1 <

· · · is ≤ q, we have d(λi1 ∧·· ·∧λis ∧dλ n
j ) = 0. From this we calculate, using λi(R j) = δi j:

d(ιR jλ1 ∧·· ·∧λq ∧dλ n
l ) = d(λ1 ∧·· ·∧λ j−1 ∧λ j+1 ∧·· ·∧λq ∧dλ n

l ) = 0

and similarly
d(ιR j(ιRiλ1 ∧·· ·∧λq ∧dλ n

l )) = 0.

From here we use the relation ι[Ri,R j] = [ιRi,LR j ] together with Cartan’s Formula to get

ι[Ri,R j](λ1 ∧·· ·∧λq ∧dλ n
l ) = [ιRi,LR j ](λ1 ∧·· ·∧λq ∧dλ n

l )

= [ιRi, d◦ (ιR j)+(ιR j)◦d](λ1 ∧·· ·∧λq ∧dλ n
l ) = 0.

Thus, the bundle R is parallelisable, hence trivial, while the bundle ξ is symplectic,
for each dλi is a non-degenerate closed 2-form. This gives us yet another obstruction to
the existence of a q-contact structure:

Proposition 5. If a manifold M of dimension admits a q-contact structure, then the
structure group of TM reduces to {idq}×Sp(2n,R), where

Sp(2n,R) :=

{
A ∈ Sl(2n,R); At

[
0 − idn

idn 0

]
A =

[
0 − idn

idn 0

]}

is the symplectic group.

As all the Reeb vector fields commute, there is a well-defined action of Rq on M:
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Definition 6 (q-contact action). Let M be a q-contact manifold with Reeb vector fields
R1, · · · ,Rq, and denote by exp(tRi) the flow of Ri. We can define an action

F : Rq −→ Diff(M)

a 7−→ Fa : M → M,

by setting
Fa := exp(t1R1)◦ · · · ◦ exp(tqRq),

for a = (t1, · · · , tq) ∈ Rq. This will be called the q-contact action on M associated to
λ⃗ , or simply the contact action, context permitting.

Remark 3.

(i) We will sometimes write the action as a mapping F : Rq ×M → M instead of a
homomorphism from (Rq,+) to the group of diffeomorphisms of M. In such case,
we write F(a,x) := Fa(x).

(ii) If the splitting TM =R⊕ξ is smooth then so is the Reeb action F . The 1-forms λi

are non-vanishing, thus the vector fields Ri are non-singular. This means the Reeb
action of Rq is locally free.

(iii) As we pointed out before, for any pair (i, j) ∈ {1, · · ·q}2 we have

LRiλ j = LRi dλ j = 0,

so that the flow of every Reeb field preserves every other flow, as well as every
symplectic bundle (ξ ,dλ j). This means the range of the Reeb action homomorphism
F is actually the much smaller set

Symp(ξ ,⃗λ ) :=

(
q∩

i=1

Symp(ξ ,dλi)

)∩( q∩
i=1

Diff(M,φi)

)
,

where Symp(ξ ,dλi) is the group of bundle isomorphisms ψ : (M,ξ )→ (M,ξ ) such
that ψ∗ dλi = dλi, and Diff(M,φ) is the group of diffeomorphisms of M preserving
the flowlines of φ .

The commutativity of the Ri also implies that R is involutive and, therefore, inte-
grable. We denote by F the underlying foliation of F , that is, the q-dimensional foliation
of M whose leaves are the orbits of F .

Definition 7 (Contact foliation). The foliation F underlying a contact action of Rq is
called a contact foliation.
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Note that TF =R, that is, Rp is exactly the tangent space of F(p), the leaf (orbit
of F) through p. This means the characteristic form λ is a leaf-wise volume form to F , i.e.,
it restricts to a volume form on each leaf F(x). Moreover, we can consider a Riemannian
metric tensor on the Reeb distribution, making the global frame {Ri} into an orthonormal
frame. Namely, the metric

gτ =
q

∑
i=1

λi ⊗λi. (2.1)

With respect to this metric, the form λ satisfies

λ (X1, · · · ,Xq) = det{gτ(Xi,R j)}i j,

so that λ is also the characteristic form of the contact foliation F with respect to the
metric gτ , in the classic sense (cf. (TONDEUR, 1997, Chapter 4)).

Definition 8 (Adapted metric). The Riemannian metric gτ defined as in Equation (2.1)
is called the adapted metric for the coframe λ⃗ .

Furthermore, since each characteristic distribution Ci satisfies Ci(p)⊂Rp for every
p ∈ M, it follows that each leaf Ci(p) is a submanifold of the leaf F(p), that is, each leaf
of F is itself a foliated manifold, with q codimension 1 foliations Ci.

Each leaf F(p) has a canonical parametrisation

Fp : Rq → M

(t1, · · · , tq) 7→ F(t1, · · · , tq, p).

The Reeb vector fields Ri satisfy

dFp|ei(0) = Ri|p,

where {e1, ...,eq} is the canonical basis of Rq, and are therefore called the frame of
infinitesimal generators of F. Any ordered set of 1-forms {α1, . · · · ,αq} such that
αi(R j) = δi j is called a frame of infinitesimal cogenerators of F or a coframe
adapted to F. The set {λi} is a natural choice of adapted coframe.

2.2 Examples

Example 1 (Contact manifolds). Every contact manifold (M,ξ ) with a transversely
orientable contact distribution ξ is a 1-contact manifold once a defining form λ is
chosen. Here R is the span of the Reeb vector field, and the action F is the one induced
by the Reeb field’s flow. We will refer to this as the contact case.
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Example 2 (Structures on R2n+q). There’s a simple q-contact structure on R2n+q with
coordinates (x1,y1, · · · ,xn,yn,z1, · · · ,zq), given by the 1-forms

λi := dzi +
n

∑
j=1

x j dy j.

In this case, using the identification TxR2n+q =R2n+q, the Reeb vector fields are Ri = ∂zi ;
therefore R= Span(∂z1, · · · ,∂zq). The action F is simply a translation

F(t1, · · · , tq)x = x+(0, · · · ,0, t1, · · · , tq),

and the contact foliation F consists of all planes parallel to {0}×Rq. The q-contact
distribution is

ξ = Span(∂x1,Y1, · · · ,∂xn,Yn),

where Yi := ∂yi − xi ∑ j ∂z j , and the volume form dMi is the canonical volume form of
R2n+q, for every i.

More generally, if ω = dα is an exact non-degenerate form on R2n, then we
regard α as an 1-form in R2n+q by means of the identification R2n ≈ {(x,y,0)} ⊂R2n+q,
setting it to be zero elsewhere. Then all of the above holds for

λi := dzi +α.

In the same way, given a collection of such non-degenerate forms ωi = dαi, then for any
choice {α j1, · · · ,α jq} ∈ {α1, · · · ,αl}q, the 1-forms

λi := dzi +α ji

comprise an adapted coframe for a q-contact structure on R2n+q. In particular, the
dλi = ω ji need not be equal.

Definition 9 (Uniform q-contact structures). A q-contact structure with adapted coframe
λ⃗ = (λ1, · · · ,λq) is called uniform if all the exterior derivatives dλi are the same, that is,

dλi = dλ j ∀i, j.

Both K-structures and S-structures (cf. Remark 2) are particular cases of uniform
q-contact structures. Uniform q-contact structures were also studied by Bolle in (BOLLE,
1996). He defines them as codimension p submanifolds of a symplectic manifold (W,ω)

satisfying what he calls “Cp-condition”. The concepts are the same because every compact
uniform q-contact manifold is a codimension q submanifold of its symplectisation satisfying
the Cq-condition. The symplectisation of (M,⃗λ ,R⊕ξ ) consists of the product W :=M×Rq.
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Given coordinates (x, t1, · · · , tq) on W , if we equip it with the non-degenerate 2-form

ω :=
q

∑
i=1

(dti ∧λi + tidλ1) ,

then the pair (W,ω) is symplectic, and M×0 satisfies the Cq-condition (see Appendix B).

At this point, one might ask if every contact foliation supports a uniform adapted
coframe. The answer is no. The algebraic contact foliations constructed by Almeida in
his doctoral dissertation do not admit any uniform underlying coframe. See (ALMEIDA,
2018, Proposition 3.3.5) for the complete construction.

Example 3 (Weyl Chamber Actions). Suppose G is a semi-simple Lie group and a is
a Cartan subspace with centraliser a⊕ k. Let K be a compact subgroup of G associated
with k and Γ a uniform lattice on G acting freely on G/K. The exponentials of elements
in a act on M := Γ \ (G/K) by right translation. This is called the Weyl Chamber
Action. Almeida proved (ALMEIDA, 2018, Theorem 1.0.2) that this is equivalent to
a q-contact action of Rq on M.

The following “product-like” constructions give examples of closed q-contact man-
ifolds other than closed contact manifolds and Weyl Chamber Actions.

Example 4 (Products of contact manifolds). Suppose (M1,α1) and (M2,α2) are contact
manifolds, and let

λ1 := π∗
1 α1 −π∗

2 α2

λ2 := π∗
1 α1 +π∗

2 α2

be 1-forms defined on the product M := M1×M2 by means of the canonical projections
π1 : M → M1 and π2 : M → M2. It is clear that λ1 and λ2 are linearly independent. Let
Xi be the Reeb vector field of αi, and ξi = kerαi the associated contact structure. As

kerλi = π∗
1 ξ1 ∩π∗

2 ξ2 ⊕Span{π∗
1 X1 ±π∗

2 X2},

it is immediate that
ξ := kerλ1 ∩kerλ2 = π∗

1 ξ1 ∩π∗
2 ξ2.

Moreover, if we let

R1 :=
1
2
(π∗

1 X1 −π∗
2 X2),

R2 :=
1
2
(π∗

1 X1 +π∗
2 X2)
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then λi(R j) = δi j and it is straightforward to check that R := Span{R1,R2} satisfies

TM = TM1 ⊕TM2 =R⊕ξ .

It remains to show the derivatives dλi are non-degenerate on ξ . Given Y tangent to ξ ,
let p = (p1, p2) be a point in M, and write Y = Y1 ⊕Y2, with Yi ∈ Γ(ξi) ⊂ Γ(Mi). The
equality dλi|p(Yp, ·)≡ 0 implies

dα1|p1(Y1|p1, ·) =±dα2|p2(Y2|p2, ·),

or, in more explicit terms, that for any choice of Zi ∈ TpiMi, we have

dα1|p1(Y1|p1,Z1) =±dα2|p2(Y2|p2,Z2).

This can only happen when Y1|p1 = Y2|p2 = 0, for both α1 and α2 are non-degenerate.
Hence

ιY dλi ≡ 0 ⇐⇒ Y = 0.

Furthermore, the dλi are non-degenerate on ξ , as we wished. Note that, because
the fields π∗

1 X1 and π∗
2 X2 are p1-related to X1 and 0, respectively, it follows that

[π∗
1 X1, pi∗2X2] = [X1,0] = 0, hence [R1,R2] = 0, and by uniqueness we conclude that R1,R2

are indeed the Reeb fields of the contact action. The Reeb distribution R can be seen as
the span of either {R1,R2} or {π∗

1 X1,π∗
2 X2}, hence its integral submanifolds are exactly

the products of flowlines of M1 and M2.

The last example can be generalised to higher dimensional contact structures as
long as both have the same dimension. All the computations involved are virtually the
same.

Example 5 (Products of q-contact structures of same dimension). Let
(M1,{α1, · · · ,αq},R1 ⊕ ξ1) and (M2,{β1, · · · ,βq},R2 ⊕ ξ2) be q-contact manifolds.
Then M1 ×M2 admits a 2q-contact structure with adapted coframe given by the forms

λi := π∗
1 αi +π∗

2 βi,

ηi := π∗
1 αi −π∗

2 βi,

for i = 1, · · · ,q, and splitting T(M1 ×M2) = (π∗
1R1 ⊕π∗

2R2)⊕ (π∗
1 ξ1 ⊕π∗

2 ξ2). The leaves
of the contact foliation are the products of the leaves in M1 and M2.

Example 6 (Products with flat Tori). Let N be a q-contact manifold with adapted
coframe {λi} and Reeb fields Ri, and let Tl = Rl/Zl be the l-torus. Then M := N ×
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Tl admits a (q+ l)-contact structure. To construct one, we begin by considering the
canonical projections

π : M → N and ρ : M → Tl,

and the fields ∂i on Tl descending from the coordinate vector fields on Rl, i.e., for
π : Rl → Tl we have ∂xi = π∗∂i. Write αi to denote the 1-form on Tl which is π-related
to dxi, so that αi(∂ j) = δi j and TTl = Span{∂i}. By the naturality of the pullback
operation, we have dαi = 0.

We define on M, for any choice of indices { j1, · · · , jl} ⊂ {1, · · · ,q}l, a collection
of l +q differential 1-forms by setting

ηi := π∗λi, for 1 ≤ i ≤ q;

ηq+i := ρ∗αi +π∗λ ji, for 1 ≤ i ≤ l.

Note that, for i ∈ {1, · · · ,q}, we have dηi = π∗ dλi and

kerηi = (π∗ kerλi)
∪(

ρ∗TTl
)
. (2.2)

On the other hand, for i ∈ {1, · · · , l}, we have dηq+i = π∗ dλ ji and

kerηq+i =
(

ρ∗Span{∂1, · · · , ∂̂i, · · · ,∂l}
)∪(

π∗ kerλ ji
)∪(

Span{ρ∗∂i −π∗R ji}
)
. (2.3)

A straightforward calculation using Equation (2.2) shows that ∩q
i=1 kerηi =

(π∗ξ )∪
(
ρ∗TTl). Let us denote by 0⃗Tl the zero section of TTl, so that∩

i

Span{∂1, · · · , ∂̂i, · · · ,∂l}= {⃗0Tl},

and therefore, from (2.3):

l∩
i=1

kerηq+i =
(

ρ∗{⃗0Tl}
)
∩

(
l∩
i

(
π∗ kerλ ji

)
∪
(
Span{ρ∗∂i −π∗R ji}

))
⊃ ρ∗{⃗0Tl}∩π∗ξ .

Thus

ξ̃ :=
q+l∩
i=1

kerηi =

(
q∩

i=1

kerηi

)
∩

(
l∩

i=1

kerηq+i

)

=
(
(π∗ξ )∪

(
ρ∗TTl

))
∩

(
l∩

i=1

π∗ kerλq+i

)
= ρ∗{⃗0Tl}∩π∗ξ .

In other words, the fibre of ξ̃ at a point p = (t,n) ∈ M is the set

ξ̃p = {(0,X);X ∈ ξn},
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that is, ξ̃ = {0}⊕ξ . It is clear that dηi is non-degenerate on this intersection for every
1 ≤ i ≤ q+ l, and its kernel R̃ is is spawned by {ρ∗∂i}∪{π∗R j}, so that

TM = ρ∗Tl ⊕π∗N = ρ∗Tl ⊕π∗R⊕π∗ξ = R̃⊕ ξ̃ .

This is to say (M, η⃗ ,R̃⊕ ξ̃ ) is a (q+ l)-contact manifold. Here the Reeb vector fields
are

R̃i := (0,Ri), for 1 ≤ i ≤ q;

R̃q+i :=
1
2
(∂i,R ji), for 1 ≤ i ≤ l.

The contact foliation F̃ induced by this structure is just the product of the leaves of F
with tori Tl.

Example 7 (Flat Tl-bundles over q-contact manifolds). More generally, if M is a q-
contact manifold and E π−→ M is a principal Tl-bundle supporting a flat connection,
then E admits a (q+ l)-contact structure. The construction, due to Almeida, is as
follows. Denote, as usual, the q-contact structure on M by (M,⃗λ ,R⊕ ξ ). The con-
nection induces a splitting TE = H ⊕V into horizontal and vertical bundles. If we let
X1, · · · ,Xq be the commutative vector fields generating the Tl-action on each fibre, then
V = Span{X1, · · ·Xl}. Denote by αi the 1-form defined on V by αi(X j) = δi j. Using the
splitting H ⊕V , we extend the 1-forms αi from the fibres to all of M by setting

αi(X j) = δi j and αi|H = 0.

We claim these 1-forms satisfy ιX j dαi = 0, for any i, j. Indeed, [X j,Xl] = 0 for any
choice of j, l. For any horizontal vector field W , the section [X j,W ] is also horizontal
(NESTEROV, 2000, Lemma 3.12), hence

dαi(X j,Xl) = X jαi(Xl)−Xlαi(X j)−αi([X j,Xl]) = 0+0+0 = 0,

dαi(X j,W ) = X jαi(W )−Wαi(X j)−αi([X j,W ]) = 0+0+0 = 0.

We also have dαi|H = 0, because H is involutive due to the flatness of the connection
(TONDEUR, 1997, Lemma 3.1). Thus, for any W1,W2 ∈ H,

dαi(W1,W2) =W1αi(W2)−W2αi(W1)−αi([W1,W2]) = 0+0+0 = 0.

Each fibre Hp of H is identifiable with the fibre Tπ(p)M =Rπ(p)⊕ξπ(p). Thus H has a
splitting H =R⊕ ξ̃ , where ξ ≈ ξ̃ . Write R̃ :=V ⊕R so that we have

TE = R̃⊕ ξ̃ ,
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and note that, since dαi|H = 0, we have R ⊂ kerdαi. For any choice of { j1, · · · , jl} ⊂
{1, · · · ,q}l, we set

ηi := π∗λi, for 1 ≤ i ≤ q;

ηq+i := αi +π∗λ ji, for 1 ≤ i ≤ l.

These forms are such that, for i = 1, · · · ,q

kerηi = π∗ξ = ξ̃ ⊕R̃

and for i = 1, · · · , l

ker η̃q+i = Span{X j} j ̸=i ⊕Span{X −λ ji(π∗X)Xi; X ∈ Γ(H)} ⊃ ξ̃

It then follows that
q+l∩
i=1

ηi =

(
q∩

i=1

kerηi

)
∩

(
l∩

i=1

ker(ηq+i)

)

=
(

ξ̃ ⊕R̃
)
∩

(
l∩

i=i

Span{X −λ ji(π∗X)Xi; X ∈ Γ(H)}

)
= ξ̃ ,

and (E, η⃗ ,R̃⊕ ξ̃ ) is therefore a (l + q)-contact structure. Since the bundle R ⊂ H is
diffeomorphic to R, we can think of the Reeb vector fields on M as vector fields on H.
Hence the Reeb vector fields of the ηi are

R̃i := Ri, for 1 ≤ i ≤ q;

R̃q+i :=
1
2
(Xi +R ji), for 1 ≤ i ≤ l.

Note that the restriction of the flat connection on TE to R̃ is again flat, providing
us with two complementary integrable sub-bundles V and R of R̃. This means the leaves
of F̃ are the product of the leaves of F with the torus Tl.

Example 8 (Mapping tori). Another example similar to the above comes from map-
ping tori. Given a q-contact manifold(M,⃗λ ,R⊕ ξ ) and a structure-preserving diffeo-
morphism Φ of M (i.e. Φ∗λi = λi) then its mapping torus

MΦ := M×R/
Z,

where the Z-action is given by

n · (x, t) = (Φn(x), t +n), (2.4)
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supports a (q+1)-contact structure. Indeed, in M×R we define forms η1, · · · ,ηq+1 by
setting

ηi(X) = π∗λi(X), ηi(∂t) = 0, for i = 1, · · · ,q;

ηq+1(X) = π∗λ1(X), ηq+1(∂t) = 1;

where π : M×R→ M is canonical projection, X ∈ TM and ∂t is the standard coordinate
field on R. Thus, we obtain ∩

i

kerηi = ξ ,

and since dηi|ξ = dλi for i = 1, · · · ,q and dηq+1|ξ = dλ1, the derivatives are all non-
degenerate on the intersection. Hence η⃗ defines a (q+ 1)-contact structure on M ×R.
Now, since the structure is invariant under the Z-action 2.4, it descends to a (q+ 1)-
contact structure on MΦ.

Remark 4. As pointed out in (GOERTSCHES; LOIUDICE, 2020b), it is unusual for
a geometric structure to be preserved by mapping tori. It does not happen for contact
manifolds (clearly, as the mapping torus has even dimension), nor for symplectic or Kähler
manifolds. In this sense, q-contact structures are less rigid.

The manifolds constructed in Examples 4, 5, 6 and 7, and the mapping torus
from Example 8 are all closed manifolds, provided the starting manifold M is closed. In
particular, by taking M to be a contact manifold and choosing the dimension of the fibre
appropriately, we can construct closed manifolds supporting q-contact structures for any
q larger than 1.

2.3 Closed orbits and generalised Weinstein conjectures
A 1-contact manifold is simply a contact manifold (M,ξ ) with a chosen defining

1-form λ for the contact structure ξ . One of the main questions in contact dynamics
(that is, the study of Reeb vector fields and their flows) is the following conjecture due to
Weinstein (WEINSTEIN, 1979).

Conjecture 1 (Weinstein Conjecture (WC)). The Reeb vector field of every closed con-
tact manifold (M,λ ) admits a closed orbit.

Thought not yet proven in its full generality, the conjecture is known to hold in sev-
eral particular cases: in dimension three (TAUBES, 2007; HUTCHINGS, 2009); for over-
twisted contact manifolds (ALBERS; HOFER, 2009; BORMAN; ELIASHBERG; MUR-
PHY, 2015); and when the Reeb vector field is Killing with respect to some metric on
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M (RUKIMBIRA, 1993; BANYAGA; RUKIMBIRA, 1995). The general “feeling” among
researchers is that the conjecture holds in its full generality.

There are two different possibilities to generalise the one-dimensional Weinstein
conjecture to higher dimensional contact foliations: one can ask if there is always an orbit
which is periodic in at least one direction in R or if there is always an orbit which is
periodic in every direction in R, that is, a closed orbit. The latter is a much stronger
condition on the foliation. There are topological obstructions to the existence of closed
orbits for general foliations, in terms of cohomology classes and the characteristic map
of the foliation (cf. (ARRAUT; DOS SANTOS, 1988; ARRAUT; DOS SANTOS, 1992;
DOS SANTOS, 1994)). For a contact foliation, the characteristic map is given in terms
of the adapted coframe {λ1, · · · ,λq} via the rule

λF : Rq ×·· ·×Rq −→ H4n+1
dR (M)

(v1, · · · ,v2n+1) 7−→ [η1 ∧dη2 ∧·· ·dη2n+1],

where vi = (vi
1, · · · ,vi

q) ∈ Rq and ηi = vi
1λ1 + · · ·vi

qλq ∈ ∧1(M).

As shown in (ARRAUT; DOS SANTOS, 1988), the non-vanishing of the char-
acteristic map is an obstruction to the existence of closed orbits for the foliation. Such
obstruction does not exist in the case of contact actions.

Proposition 6. The mapping λF vanishes for any contact action F : Rq ×M → M.

Proof. We consider the linear mapping λ F : (Rq)⊗(2n+1) → H4n+1
dR (M) induced by λF by

means the universal property of the tensor product. The collection {ei1 ⊗·· ·⊗ ei2n+1; 1 ≤
i j ≤ q} is a basis for (Rq)⊗(2n+1), where {e1, · · · ,eq} is the canonical basis of Rq. Then

λ F(ei1 ⊗·· ·⊗ ei2n+1) = [λi1 ∧dλi2 ∧·· ·∧dλi2n+1].

Now, dλi2 ∧·· ·∧dλi2n+1 is a 4n-form that vanishes whenever it is fed a vector field tangent
to F , whose dimension is q. Moreover, as ξ has rank 2n, there are no linearly independent
sets of 4n vector fields tangent to ξ , so that dλi2 ∧ ·· · ∧ dλi2n+1 vanishes at every point.
Thus λ F evaluates to 0 at every vector in the basis of (Rq)⊗(2n+1), hence λF = 0.

This means that, a priori, there are no obstructions to the existence of closed
orbits under the Reeb action of Rq. With this in mind, we propose two generalisations for
the one-dimensional Weinstein Conjecture.

Conjecture 2 (The Weak Generalised Weinstein Conjecture (WGWC)). A contact foli-
ation on a closed manifold M cannot be a foliation by planes.
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Conjecture 3 (The Strong Generalised Weinstein Conjecture (SGWC)). Every q-contact
foliation has a closed leaf, that is, a leaf homeomorphic to a torus Tq.

We remark that, being orbits of an action of the Euclidean space Rq, every leaf of
the foliation F is homeomorphic to Rq−l ×Tl for some 0 ≤ l ≤ q, which depends on the
leaf. The WGWC states that l ≥ 1 for some leaf, while the SGWC asks for the existence
of a leaf for which l = q. Of course, in the contact case, when q = 1, a leaf that is not
homeomorphic to R is automatically a closed curve homeomorphic to S1. Therefore, the
WGWC and the SGWC are equivalent to the Weinstein Conjecture on dimension 1 and
comprise generalisations of this conjecture to higher dimensional contact foliations. They
form a hierarchy

SGWC =⇒ WGWC =⇒ WC,

with the converse implications holding when q = 1.

2.3.1 Anosov contact actions

There is a class of contact foliation for which it is relatively simple to show that
SGWC holds: the Anosov contact foliations, which we briefly discuss in this section.

Definition 10 (Anosov Elements and Anosov Actions). Consider an C2 action φ : Rk →
Diff(M) of Rk on a closed Riemannian manifold (M,g). A point a ∈ Rk is said to be an
Anosov element of the action if f = φa := φ(a, ·) acts normally hyperbolically on
M, meaning that there are constants A,C > 0 and a d f -invariant splitting

TM = Es
a ⊕Tφ ⊕Eu

a

of the tangent bundle of M such that:

(i) ∥
(
d f |Es

a

)n ∥ ≤Ce−An, for all n > 0;

(ii) ∥
(
d f |Eu

a

)n ∥ ≤CeAn, for all n < 0.

The action φ is called an Anosov action of Rk if it has an Anosov element a ∈ Rk.

In other words, the action is Anosov when there is a point a ∈Rk whose action on
M contracts a bundle Es

a exponentially while simultaneously expanding another bundle Eu
a

also exponentially. Anosov elements never come alone. In fact, each connected component
of the set A(φ) of all Anosov elements of the action φ is an open cone in Rk, called a
chamber (BARBOT; MAQUERA, 2011). An open convex subcone in a chamber is called
a regular subcone of the action φ .



2.3. Closed orbits and generalised Weinstein conjectures 43

Definition 11 (Non-wandering subsets). A point x ∈ M is non-wandering if for any open
neighbourhood U ⊂ M of x there exists a v ∈ Rk such that g(v,v)> 1 and such that

φv(U)∩U ̸= /0.

The set of all non-wandering points is denoted by nw(φ).

More specifically, a point x ∈ M is non-wandering with respect to a regular subcone
C if for any open neighbourhood U ⊂ M of x there exists a v ∈ C whose norm is greater
than 1 and such that

φv(U)∩U ̸= /0.

The set of all such points in M is denoted by nw(C) and called the non-wandering
subset of C.

Recall that an action of Rk is called transitive if it has a dense orbit. More
generally, given subsets N ⊂ M, E ⊂ Rk, we say N is E-transitive if N is φ-invariant and
there is a point x in N such that

{φ(v,x);v ∈ E}= N,

that is, the invariant set N contains a dense E-orbit.

Proposition 7 (Spectral Decomposition (BARBOT; MAQUERA, 2011)). Let M be a
closed smooth manifold and φ be an Anosov action on M. Then there is a finite collection
{Λi}l

i=1 of pairwise disjoint, locally connected, closed φ-invariant subsets of M such that

(i) For every 1 ≤ i ≤ l, the union of closed orbits of φ inside Λi is dense in Λi;

(ii) For any regular subcone C the set Λi is C-transitive;

(iii) the non-wandering set of M decomposes

nw(φ) =
l∪

i=1

Λi.

Theorem 1. If a contact action φ : Rq → Diff(M) is Anosov, then φ has a closed orbit.

Proof. In light of itens (i) and (iii) of the Spectral Decomposition 7, it is sufficient to
show that nw(φ) ̸= /0. To that end, given a point x ∈ M and an open set U containing
x, we consider an element a ∈ Rq with |a| > 1. The transformation f = φa is volume-
preserving (it preserves the forms dMi), hence, by Poincaré’s recurrence theorem, there
exists a positive natural number j such that f j(U)∩U ̸= /0. But f j = φ ja, where, by
construction, | ja|> 1, which means exactly that x is a non-wandering point. Thus φ = M

and the theorem follows.
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Note that the contact condition was used only to guarantee the existence of the
invariant volume form so that what has been shown is that the non-wandering subset of
volume-preserving Anosov actions is the entire manifold. Together with Theorem 7 and
the connectedness of M, this yields an even stronger conclusion:

Corollary 1. If an Anosov action preserves a volume, then it is transitive.

Remark 5. If the Anosov action φ is also a contact action of Rq, then Tφ = R and
Es

a⊕Eu
a ≈ ξ . In particular, each of these bundles inherits the φ-invariant symplectic forms

dλi. If X ,Y are tangent to Es
a then, for any j ∈ N we have

dλi(X ,Y ) = dλi(d f jX ,d f jY )
j→∞−−−→ 0,

and hence dλi(X ,Y ) = 0, implying Es
a is a Lagrangian sub-bundle of ξ . Similar arguments

show the same for Eu
a . In particular, when φ is both contact and Anosov the bundles Es

a

and Eu
a have the same rank, namely n.

2.4 Constructions on contact foliations

Proposition 8 (Reparameterisation Lemma). Let λ⃗ =(λ1, · · · ,λq) be an adapted coframe
for a q-contact structure on M, and A(p) = {ai j(p)} a mapping A : M →Mq(R) from M

to the space of real matrices. If A is sufficiently C1-close to 0 and the functions ai j are
leaf-wise constants (with respect to the contact foliation), then

η⃗ := (id−A)⃗λ

is also an adapted coframe for a q-contact structure on M, and the splittings associated
with these two structures are the same.

Proof. We have
ηi = λi −∑

j
ai jλ j,

and therefore ξ = ∩ j kerλ j ⊂ kerηi, for every i. On the other hand, by choosing A small
enough so that (id−A) is invertible, we can write each λi as a linear combination of the
η j, thus obtaining that ∩ j kerη j ⊂ kerλi, from where we obtain the equality

∩ j kerη j = ∩ j kerλ j = ξ .

Moreover,
dηi = dλi −∑

j
(dai j ∧λ j +ai j dλ j), (2.5)

and, since by hypothesis the functions ai j are leaf-wise constant, they satisfy the equations
ai j(Rl) = 0, for every i, j, l. Therefore, the Reeb vector fields Ri of the λi satisfy ιRi dη j = 0.
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In other words, R ⊂ kerdηi, for every i. Now the splitting R⊕ ξ = TM and the non-
degeneracy of dηi on ξ imply kerdηi ⊂R, and we have equality between these two bundles
as well.

From Equation (2.5) it follows that

dηn
i = dλ n

i + εi,

where εi can get arbitrarily small if A is taken small enough. In particular, for εi sufficiently
close to 0, the 2n-form dηn

i is volume form on the bundle ξ , and dηi is therefore non-
degenerate on ξ . Moreover, by employing the Determinant Theorem, we can derive the
equality

η1 ∧·· ·∧ηq ∧ (dηi)
n = det(id−A)λ1 ∧·· ·λq ∧ ((dλi)

n + εi),

where the RHS will be a volume form as long as εi is sufficiently small.

In general, the Reeb vector fields of the ηi are not the same as the Ri, though
they spam the same invariant bundle, so the construction above might be thought of as
a reparameterisation of the contact action. This is similar to what happens to a contact
form when it is multiplied by a non-vanishing function, though in the contact case the
product is always non-degenerate, so we do not need to require the function to be small.
Note, however, that the bundle R remains the same if and only if the function is constant
in the direction of the Reeb vector field.

Note that the hypothesis on the functions ai j from Proposition 8 is used to ensure
that R is contained in the kernels of the ηi. If we already have this property, then virtually
the same arguments as the ones in the previous proof give the following.

Proposition 9. Suppose M is a manifold of dimension 2n+ q and there are linearly
independent non-vanishing 1- forms α1, · · · ,αl,λ1, · · · ,λq−l on M, together with a splitting
TM =R⊕ξ satisfying:

(i) rankR= q;

(ii) ξ =
(
∩kerα j

)
∩ (∩kerλi) ;

(iii) kerdλi =R and dλi is non-degenerate on ξ , for i = 1, · · · ,q− l;

(iv) R⊂ kerdα j, for j = 1, · · · , l.

Then there is a mapping B : M → Gll(R), C1-close to the identity, such that the 1-forms
η1, · · · ,ηl,λ1, · · · ,λq−l define a q-contact structure on M with splitting TM =R⊕ξ , where

ηi :=
l

∑
j=1

bi jα j.
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Proof. Just choose A : M →Ml(R) C1-close to zero, set B = id−A and proceed as in the
proof of Proposition 8.

When the action is transitive, the situation is considerably better, as we do not
need the smallness conditions and actually have a dense subset of possible reparameteri-
sations to choose from. Note that the existence of a dense leaf implies that any leaf-wise
constant function is just a constant function, so the only reparameterisations are actual
matrices in Glq(R).

Lemma 1. (ALMEIDA, 2018) Suppose the contact foliation F is transitive, and let
B⊂Glq(R) be the set of (constant) reparameterisations of the action; then the complement
of B is closed and has empty interior. In particular, B is dense in Glq(R).

Proof. Let λ⃗ = (λ1, · · · ,λq) be an adapted coframe of the action and B ∈ Glq(R). Then
η⃗ = B⃗λ satisfy ∩kerηi = ξ and R⊂ kerdηi. In order to guarantee that (η1, · · · ,ηq) is also
an coframe adapted to the action, it is sufficient to show that η1 ∧ ·· · ∧ηq ∧ (dηi)

n is a
volume form for every i.

Since dηi = ∑ j bi j dλ j, we have

(dηi)
n = ∑

|J|=n
ci

J(B)(dλ1)
J1 ∧·· ·∧ (dλq)

Jq, (2.6)

where by J we mean the multi-index J = (J1, · · · ,Jq) ∈ {1, · · ·n}q and by |J| we denote the
sum J1 + · · ·+ Jq of its entries. The coefficients

ci
J(B) =

n!
J1! · · ·Jq!

q

∏
l=1

bJl
il

are monomials of degree n on the variables bi j. The key step lies in noticing that each of
the forms (dλ1)

J1 ∧ ·· · ∧ (dλq)
Jq is non degenerate on ξ , and therefore are related to the

volume form (dλ1)
n by an equation

(dλ1)
J1 ∧·· ·∧ (dλq)

Jq = aJ(dλ1)
n, (2.7)

where aJ is a non-vanishing function on M. However, since both dλ1 and (dλ1)
J1 ∧ ·· · ∧

(dλq)
Jq are leaf-wise invariant forms and F has a dense leaf, aJ must be a constant. Thus,

it follows from Equations (2.6) and (2.7) that

pi(B) := ∑
|J|=n

aJci
J(B),

is a homogeneous polynomial of degree n on the variables bi j, and it is completely deter-
mined by the adapted coframe (λ1, · · · ,λq). In addition to that, pi satisfies

η1 ∧·· ·∧ηq ∧ (dηi)
n = det(B)pi(B)λ1 ∧·· ·∧λq ∧ (dλ1)

n.
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Therefore, η1∧·· ·∧ηq∧ (dηi)
n is non degenerate if and only if B is not an zero of pi, and

we see that B is exactly the complement of the set of zeros

Z :=
∪

i

{B ∈ Glq(R); pi(B) = 0}.

But each polynomial pi is non zero, because pi(id) = 1, and therefore their sets of zeros
are closed subsets of Rq×q whose interiors are empty, as we wanted.

In Example 7, the foliation obtained on E is a product of the foliation on M by tori.
There is a construction that allows us, under suitable hypotheses, to reduce the action
by removing toric components from the leaves, effectively being a partial converse to the
method of Example 7. First, let us recall that the topological type of a leaf is determined
by the relation

F(x) := Rq/
Iso(F(x)),

where Iso(F(x)) := {a ∈ Rq;Fa(x) = x} is the isotropy group of the leaf F(x). The kernel
of the action is a lattice in Rq consisting of the elements acting as the identity on M, and
it equals the intersection of all the isotropy subgroups:∩

x∈M

Iso(F(x)) = kerF := {a ∈ Rq;Fa = id} ≈ Zl,

hence every leaf is a cylinder Ts×Rq−s for some s ≥ l. In particular, if the action’s kernel
is nontrivial, then no leaf is a plane.

Theorem 2 (Reduction of the action). Let (M,⃗λ ,R⊕ξ ) be a closed q-contact manifold.
Suppose the contact action F is transitive and has nontrivial kernel Γ ≈ Zl, where 0 <

l < q. Then M is a principal Tl-bundle over a closed (2n+q− l)-dimensional manifold M0;
moreover, the contact foliation on M induces a (q− l)-contact foliation on M0.

Proof. We consider the vector spaces

G := Span Γ ≈ Rl,

H := Rq/
G ≈ Rq−l,

and the natural isomorphism Rq ≈ G⊕H.

First, let the torus Tl ≈ Γ/G act on M by

(a+Γ) · x := Fa(x) = F(a,x).

This action is well defined because if a+Γ = b+Γ, then their difference belongs to the
kernel of F . It is also a free action, since (a+Γ) · x = x means Fa acts as the identity on
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the leaf F(x), hence a ∈ Γ, the isotropy group of F(x). Finally, the action is proper due
to the compactness of Tl. It follows that the leaf space.

M0 := M/
Tl

is a (2n+ q− l)-dimensional closed manifold M0, and Tl ↪→ M
ρ−→ M0 is a principal Tl-

bundle, where ρ : M → M0 is the canonical projection.

We define an action of Rq−l on M0, via H, by

F0 : H ×M0 −→ M0

(a,ρ(x)) 7−→ ρ(F(a,x)).
(2.8)

This clearly does not depend on the first representative a, since ρ(F(a,x)) = ρ(F(b,x))

for every a,b ∈ Rq. It also does not depend on the second representative x. Indeed, if
ρ(x) = ρ(y), then y = F(b,x) for some b ∈ G, and consequently F(a,y) = F(a+b,x) belong
to the same leaf as F(a,x).

It remains to show that F0 is a contact action. We will achieve this by using
integration along the fibres, possibly after choosing a suitable reparameterisation of the
action F . Since the bundle R is trivial, the isomorphism Rq ≈ G⊕H induces a splitting
R = G ⊕H. Note that Gx is composed of the directions tangent to the fibre ρ−1(ρ(x)),
hence Gx = kerdρx. Similarly, the tangent space at ρ(x) of the orbit F0(H,ρ(x)) is exactly
ρ∗(Hx), so it is sufficient to show that H0 := ρ∗H can be realised as the Reeb bundle of
a (q− l)-contact structure on M0.

We begin by decomposing the Reeb fields of λ⃗ as

Ri = RG
i ⊕RH

i .

Using Lemma 8 to find a suitable reparameterisation if necessary (recall F is a transitive
foliation), we may assume without loss of generality that

H= Span{RH
1 , · · · ,RH

q−l};

λi(RH
i ) ̸= 0, for i = 1, · · · ,q− l.

Let us further replace RH
i by a suitable multiple Xi as to assure we have λi(Xi) ≡ 1. In

addition, we consider a fibre-wise volume form ω , normalised as to satisfy∫
ρ−1(y)

ω = 1,

for every y ∈ M0. We define q− l differential 1-forms on M0 by ηi := ρ∗(λi ∧ω), using the
linear morphism ρ∗ : ∧∗(M)→∧∗−l(M0), determined by ρ via integration along the fibres.
To be more precise,

ηi|y(Z) =
∫

ρ−1(y)

ιZ̃(λi ∧ω),
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where the RHS is independent of the choice of lifting Z̃. The forms ηi are non-vanishing,
since ηi(ρ∗Xi) ≡ 1 for i = i, · · ·q− l; it is clear from their construction they are linearly
independent forms whose restriction to ξ0 := ρ∗ξ is identically zero. Finally, the morphism
ρ∗ commutes with the exterior derivative, from where it follows that each dηi is non-
degenerate on ξ0, and has as its kernel the bundle ρ∗R= ρ∗H=:H0. Hence (M0, η⃗ ,H0⊕ξ0)

is a (q− l)-contact manifold, as we wanted.

It is clear that the SGWC and the WC do not permit minimal contact foliations
to exist. It follows from Theorem 2 that this is also the case for the WGWC. Indeed, for
minimal foliations, every leaf is dense, and the continuity of the action implies that every
isotropy group is the same. Consequently, reducing a minimal contact action leaves us
with a contact action by planes, which contradicts the WGWC.

Theorem 3. If a minimal contact foliation (M,F) exists, then the Weak Generalised
Weinstein Conjecture is invalid.

Proof. Since (M,F) is a minimal q-contact foliation, all leaves are dense in M, and their
isotropy groups are all the same, namely the lattice Γ := kerF ≈ Zl. None of these leaves
can be closed due to minimality. Therefore l < q. From Theorem 2, ρ : M → M0 is a
principal bundle over a (q− l)-contact manifold M0. We claim that the contact action
defined by (2.8) is a minimal action whose orbits are all planes. Indeed, the action is
minimal: given ρ(x),ρ(y) ∈ M0, the leaf F(x) accumulates on y, hence there is a sequence
an ∈ Rq such that

F(an,x)→ y.

We write an = aG
n + aH

n , and note that F(aG
n , ·) gets arbitrarily close to the identity. We

choose a sub-sequence an j such that F(aG
n j
,x)→ x, from where we conclude

F(aH
n j
,F(aG

n j
,x))→ y,

which, in turn, implyies

F0(an j ,ρ(x)) = F0(an j ,ρ(F(aG
n j
,x))) = ρ(F(aH

n j
,F(aG

n j
,x)))→ ρ(y).

Therefore, F0(ρ(x)) accumulates on ρ(y), and every orbit of the action F0 is dense. To
see that the orbits are planes Rq, it is simply a matter of noticing that F0 is free. If
ρ(x) = F0(a,ρ(x)) := ρ(F(a,x)), then there is b ∈ G such that

F(a,x) = (b+Γ) · x = F(b,x).

Thus a acts like an element of G, representing the identity on H. In particular, minimality
implies that the isotropy group of any leaf is kerF0 = {0}. Hence every leaf is a plane.
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We conclude that (M0,F0) is a minimal contact foliation by planes. Therefore the
WGWC does not hold, as we wanted.
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CHAPTER

3
THE CONTACT AND CHARACTERISTIC

FOLIATIONS

3.1 Local representations
In a foliated chart ψ : U → Rq ×R2n the tangent coordinates (z1, · · · ,zq) can be

chosen so that ∂zi = Ri (cf (BOOTHBY, 1986, Theorem 8.3)). This gives rise to the
following local characterisation of the adapted coframe λ⃗ .

Proposition 10. Around each point p ∈ M there are coordinates (x,y,z) ∈ R2n ×Rq:

x = (x1, · · · ,xn)

y = (y1, · · · ,yn)

z = (z1, · · · ,zq),

and, for each 1 ≤ i ≤ q and 1 ≤ j ≤ n, functions f i
j,g

i
j : R2n → R such that:

λi = dzi +
n

∑
j=1

(
− f i

j(x,y)dx j +gi
j(x,y)dy j

)
.

Proof. Let (U ;x,y,z) be a foliated chart around p. As pointed out before, these coordinates
can be chosen such that ∂ zi = Ri. In these coordinates, we write

λi =
q

∑
l=1

hi
l(x,y,z)dzl +

n

∑
j=1

(
f i

j(x,y,z)dx j +gi
j(x,y,z)dy j

)
, (3.1)

for appropriate functions f i
j,g

i
j and hi

l. Evaluating Equation 3.1 at the Reeb vector fields
of F implies hi

l = δil, so that

λi = dzi +
n

∑
j=1

(
f i

j(x,y,z)dx j +gi
j(x,y,z)dy j

)
. (3.2)
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Now we differentiate Equation (3.2) to get

dλi =
n

∑
j,l=1

(
∂

∂x j
gi

l(x,y,z)−
∂

∂yl
f i

j(x,y,z)
)

dx j ∧dyl

+
q

∑
l=1

n

∑
j=1

(
∂

∂ zl
f i

j(x,y,z)dzl ∧dx j +
∂

∂ zl
gi

j(x,y,z)dzl ∧dy j

)
.

Evaluating both sides of the above equation on the Reeb vector fields implies that all the
partial derivatives ∂

∂ zl
f i

j(x,y,z) and ∂
∂ zl

gi
j(x,y,z) must vanish, hence f i

j and gi
j are functions

depending only on the coordinates (x,y). Applying this to Equation (3.2) proves our
assertion.

Motivated by the last proposition, one can pose oneself the question of whether
q-contact structures are locally isomorphic or not, in the sense of a generalised Darboux
Theorem. A partial result in this direction comes from the following proposition.

Proposition 11. Let M be a manifold supporting a contact foliation of codimension 2,
that is, dimM = 2+q. Then around each point of M there are coordinates (U ;x,y,z1, · · · ,zq)

and leaf-wise constant functions ai : U → R such that ∂xai is non-vanishing and

λi = dzi +ai dy.

Moreover, we can take a1 = x.

Proof. Around each point of M, one can find a neighbourhood U diffeomorphic to a
product of discs Dq×D2. Let Φ :U →D2 be the submersion defined by this diffeomorphism,
the fibres of which are the plaques of F on U . Since the symplectic form dλi is holonomy-
invariant, there is a well defined symplectic form ωi on D2 satisfying Φ∗ωi = dλi, and
by Darboux’s theorem there is a coordinate chart (x′,y′) on D2 such that ω1 = dx′∧ dy′.
Moreover, for every other i there is a non-vanishing function bi on D2 such that ωi =

bi dx′∧dy′.

Consider on U the unique fields X and Y on M that are Φ-related to the coordinate
vector fields ∂x′ and ∂y′ and have no components in any leaf-wise direction. More precisely,
they satisfy the following: 

X = Φ∗∂x′

Y = Φ∗∂y′

LRiX = LRiY = 0 for all i.

Thus, {R1, · · · ,Rq,X ,Y} is a local frame for the tangent bundle of M, satisfying [Ri,R j] =

[X ,R j] = [Y,R j] = 0 for any i, j. As for [X ,Y ], we have

λi([X ,Y ]) = Xλi(Y )−Y λi(X)−dλi(X ,Y ) = bi dx′∧dy′(∂x′,∂y′) = bi ◦Φ,



3.1. Local representations 53

so that [X ,Y ] = ∑i(bi ◦Φ)Ri. We define on D2 functions

ci(x′,y′) =
∫ x′

0
bi(t,y′)dt

and note that, since X and ∂x′ are Φ-related, these satisfy

X(ci ◦Φ) = ∂x′ci ◦Φ = bi ◦Φ.

Thus, the vector field Ỹ := Y −∑i(ci ◦Φ)Ri is linearly independent from X and the Ri; in
addition, it is such that

[X ,Ỹ ] = [X ,Y ]−∑
i
[X ,(ci ◦Φ)Ri] = ∑

i
(bi ◦Φ)Ri −∑

i
(bi ◦Φ)Ri = 0.

One can, therefore, find coordinates (x,y,z1, · · · ,zq) on M whose coordinate vector fields
are {X ,Ỹ ,R1, · · · ,Rq}, obtaining

X = ∂x

Y = ∂y +∑i(ci ◦Φ)∂zi

Ri = ∂zi.

It follows from construction that Φ∗ dx′ = dx and Φ∗ dy′ = dy. Hence

dλi = Φ∗ωi = (bi ◦Φ)dx∧dy

and, since d(ci ◦Φ) = (bi ◦Φ)dx+∂y(ci ◦Φ)dy,

d ((ci ◦Φ)dy) = (bi ◦Φ)dx∧dy.

Thus d(λi − (ci ◦ Φ)dy) = 0, and there exists, on a possible smaller neighbourhood, a
function fi such that

λi = d fi − (ci ◦Φ)dy.

Finally, we see that

δi j = λi(R j) = d fi(∂z j)− (ci ◦Φ)dy(∂z j) = ∂z j fi;

0 = λi(X) = d fi(∂x)− (ci ◦Φ)dy(∂x) = ∂x fi;

0 = λi(Y ) = d fi(∂y)+∑
j
(c j ◦Φ)d fi(∂z j)− (ci ◦Φ)dy(∂y)−∑

j
(c j ◦Φ)dy(∂z j)

= ∂y fi +(ci ◦Φ)− (ci ◦Φ) = ∂y fi,

and therefore d fi = d fi, from where we conclude, setting ai :=−(ci◦Φ), that λi = d fi+ai dy,
as we wanted.
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A crucial fact in the construction above is the existence of the non-vanishing
functions bi. When the codimension is greater than 2, one can not generally find a single
basis for which all the symplectic forms are written canonically, so this argument does not
hold. When, however, all the derivatives dλi coincide, then a similar construction yields
for general codimension:

Proposition 12 ((BLAIR; TERLIZZI; KONDERAK, 2006)). If M is a uniform q-contact
manifold, then around each point there are coordinates (U ;x,y,z1, · · · ,zq) such that

λi = dzi +∑
j

x j dy j.

3.2 Transverse sections and holonomy transformations
Given a transverse section T to the contact foliation F , note that T is a symplectic

manifold. Indeed, given a field X tangent to T , there is a unique decomposition

X = XR+Xξ ,

due to the splitting TM =R⊕ξ . Since T is transverse to F , the component Xξ is neces-
sarily non-zero, except, of course, if X = 0. Hence the mapping X 7→ Xξ is an isomorphism
between TT and ξ , and since kerdλi =R for every i, we have the identities

dλi(X ,Y ) = dλi(Xξ ,Yξ ), ∀X ,Y ∈ TT, ∀i = 1, · · · ,q.

So each restriction dλi|T is non-degenerate, hence a symplectic form. Thus, the pair (T,dλi)

is an exact symplectic manifold for every transversal T and 1-form λi. In particular, the
foliation F admits no closed transversal.

Proposition 13. There is no 2n-dimensional closed submanifold of M everywhere trans-
verse to F .

Proof. Indeed, if T was one such manifold, then the exact 2n-form

d(λi)
n = d(λi ∧ (dλi)

n−1)

would be an exact volume form on T , contradicting Stokes’s theorem.

Moreover, every holonomy transformation is a symplectomorphism between its
domain and range.

Proposition 14. Let T be a complete transversal for the contact foliation F . Then for
every i = 1, · · · ,q, the holonomy maps of F are local symplectomorphisms of (T,dλi).
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Proof. Let h : D(h) → R(h) be a holonomy transformation of F . We are going to show
that every point of D(h) has a neighbourhood restricted to which h preserves the 2-form
dλi, and therefore h : (D(h),dλi)→ (R(h),dλi) is a symplectomorphism. Now, since F is
the orbit foliation of an action F : Rq ×M → M, given x ∈ D(h), there is an open set
U ⊂ D(h) containing x, and a function τ : U → Rq, such that h(u) = Fτ(u)(u) for every
u ∈ U . Nevertheless, F is a composition of the flows of the Reeb field, each of which
preserves the 2-form dλi. Hence F , and therefore h, preserve the 2-form dλi on the open
set U .

For the characteristic foliations of the forms λi, on the other hand, there is no obstruction
to the existence of closed transversals. As it happens to the contact foliation F , their
transversal also inherits geometrical structures.

Proposition 15. If T is a transversal of Ci, then λi|T is a contact form.

Proof. Note that the equality Ci = Span{R j} j ̸=i implies that each leaf of Ci is transverse to
both Ri and ξ . Suppose that T is a transversal of Ci. Then dimT = 2n+1 and, as before,
the fact that T is transverse to R j for every j other than i means

ιR1(ιR2(· · · ι̂Ri(· · · ιRq(dMi)) · · ·) = λi ∧dλ n
i

is a volume form on T . Hence λi|T is a contact form.

The contact structure associated is the intersection bundle

kerλi ∩TT = (TCi ⊕ξ )∩TT = ξ ∩TT.

Moreover, as in the case of Proposition 14, the holonomy maps of Ci connect different
transversals by following the leaves of Ci, effectively “flowing” along the vector fields R j,
j ̸= i. As all these fields preserve the bundle ξ , so do the holonomy maps, implying that the
holonomy transformations are contactomorphisms. Recall that a measure µ on a complete
transversal T for F is holonomy-invariant if µ(h(U)) = µ(U) for every measurable set
U ⊂ N and every holonomy transformation h : D → R such that U ⊂ D. As symplecto- and
contactomorphisms preserve the volumes induced by the symplectic or contact form (i.e.,
the measures µi := |dλ n

i | or µi := |λi∧dλ (n−1)
i |, respectively), we see that H and Hi consist

of volume-preserving transformations. Rephrasing all in just one proposition, we get

Proposition 16. Let (M,F) be a q-contact manifold.

(i) The holonomy pseudogroup H of the foliation F tangent to the orbits of the action
consists of symplectomorphisms.
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(ii) The holonomy pseudogroup Hi of each characteristic foliation Ci consists of contac-
tomorphisms.

In particular, every contact and characteristic foliation admits holonomy-invariant mea-
sures.

Corollary 2. The Godbillon-Vey class gv(F) of any contact foliation F vanishes.

Proof. This is a consequence of the fact that dλ n
i is a holonomy-invariant closed vol-

ume form (cf. Hurder’s Vanishing theorem on (HURDER, 1986), and also (CANDEL;
CONLON, 2000b, Section 7.1.E)). This can also be seen directly from the definition of
gv(F).

Remark 6. We emphasise that by λi|T we mean j∗λi, where j : T → M is an embedding.
In particular, Ri need not coincide with the Reeb vector field of λi|N . However, since
both TCi ⊕TT and TCi ⊕Span{Ri}⊕ξ are equal the whole TM, there is a smooth bundle
isomorphism Ψ : Span{Ri}⊕ ξ → TT . This comes from the composition of linear isomor-
phisms of the quotient space TpT → TanpM

TpCi
and Span{Ri}⊕ξ → TanpM

TpCi
, defined fibre-wise.

In particular, the image ΨRi is the unique vector field on T such that ΨRi −Ri ∈ TT . If
we write Xi for this difference, then

λi(ΨRi) = λi(Ri)+λi(Xi) = 1

and
dλi(ΨRi, ·) = dλi(Ri, ·)+dλi(Xi, ·) = 0,

so that ΨRi is indeed the Reeb vector field of λi|T . Moreover, for any closed orbit γ :R→ T

of ΨRi of period τ we have

Ri(γ(s))+Xi(γ(s)) = ΨRi(γ(s)) = ΨRi(γ(τ + s)) = Ri(γ(τ + s))+Xi(γ(τ + s))

and therefore
Ri(γ(s))−Ri(γ(τ + s)) = Xi(γ(τ + s))−Xi(γ(s)),

where the LHS belongs to SpanRi⊕ξ while the LHS belongs to TCi. Since these subspaces
are complementary, it follows that γ is a closed orbit of period τ for both Ri and Xi. In
particular, Ri admits a closed orbit in M.

Remark 7. If q≥ 2, then we can also see the symplectisation of (T,λi|T ) as a submanifold
of M, by flowing T along R j for a small time, for some j ̸= i. If we denote the submanifold
thus obtained by W and write coordinates (t,x) for it, then the symplectic form is ω =

d(etλi|T ). In other words, the point (t,x) = exp(tR j)(x). Then the form dt is equal to λ j

and ∂t is just R j. In particular, R j is a Liouville vector field for (W,ω), that is

LR jω = ω.

So, for sufficiently small t, all the level sets Nt := {t}× T in a neighbourhood of T are
contact manifolds, with contact forms ιR jω = et(λi|T ). Their Reeb vector fields are e−tRi|T
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3.3 Tautness

Let L be a leaf of F , and consider a characteristic foliation Ci. Then Ci induces
a codimension 1 foliation of L, more specifically the one determined by the involutive
bundle ∪ j ̸=iRR j. It follows directly from the definition of the characteristic bundle Ci that
each flow line of Ri in L is a transversal of Ci. Moreover, these are complete transversals,
i.e., they intersect every leaf. Indeed, if T is the orbit of y under the flow of Ri and
Ci(x) is a leaf of the characteristic foliation, then there is a = (t1, · · · , tq) ∈ Rq such that
x = Fa(y). If Fi denotes the action of Rq whose underlying foliation is Ci, then for b =

(−t1, · · · ,−ti−1, t̂i,−ti+1, · · · ,−tq) we have Fi(b,x) = exp(tiRi)(y) ∈ T ∩Ci(x).

Recall that a codimension one foliation is taut if it has a complete closed transversal.
It follows from the considerations above that

Proposition 17. The foliation Ci is taut on a leaf L if and only if Ri has a closed orbit
in L.

The foliations F and Ci are taut as well, in the appropriate sense. Tautness generalises
to higher codimension in several ways, all equivalent when the ambient manifold is com-
pact. One of the definitions is given with respect to the minimal submanifolds (that is, a
submanifold for which the mean curvature is zero in all normal directions) of the ambient
manifold once a Riemannian metric is fixed.

Definition 12 (Harmonic foliations). A foliation is geometrically taut (also called
harmonic) if there is a Riemannian metric on the ambient manifold for which every leaf
is a minimal submanifold.

Proposition 18. There is a Riemannian metric on M such that any submanifold of
dimension 2 ≤ d ≤ q realisable as an orbit of the action of Rd induced by Reeb vector
fields Ri1, · · · ,Rid is a minimal submanifold.

Proof. We begin with the case d = q; the others are analogous. Choose any metric g⊥ on
the q-contact distribution, and consider on R the adapted metric

gτ :=
q

∑
i=1

λi ⊗λi.

Then g = gτ ⊕ g⊥ is a metric on M such that R ⊥ ξ and g(Ri,R j) = δi j. In particular,
the normal bundle to any leaf L is ξ |L. The mean curvature of L in the normal direction
X ∈ Γ(ξ ) is the trace of the Weingarten map W X(Y ) := πξ ∇Y (X), where ∇ is the Levi-
Civita connection of g.
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Fix a normal field X ∈ Γ(ξ ). First, we observe that ∇X R j is orthogonal do R j, for
all j, since

0 = ∇X g(R j,R j)︸ ︷︷ ︸
≡1

= 2g(∇X R j,R j).

In particular,

g([X ,R j],R j) = g(∇X R j,R j)−g(∇R jX ,R j) =−g(W X(R j),R j). (3.3)

On the other hand, with respect to the characteristic form λ = λ1 ∧·· ·∧λq we have

λ (R1, · · · ,R j−1, [X ,R j],R j+1, · · · ,Rq) = det(A j
il)il = g([X ,R j],R j), (3.4)

where

A j
il =

λi(Rl) = δil, if l ̸= j

λi([X ,R j]) = g([X ,R j],Ri), if l = j.

Finally, from Equations (3.3) and (3.4), it follows

ιX dλ (R1, · · · ,Rq) =−∑
j

λ (R1, · · · ,R j−1, [X ,R j],R j+1, · · · ,Rq)

=−∑
j

g([X ,R j],R j)

= trW X ,

that is, the interior product iX dλ , when evaluated on the global frame defined by the
Reeb vector fields, yields the mean curvature in the X direction.

On the other hand, every normal vector is foliate, that is, their Lie bracket with
any vector field tangent to R is again tangent to R (cf. Appendix A), implying

trW X = ιX dλ (R1, · · · ,Rq) = 0.

In particular, L is a minimal submanifold.

For L an orbit of the action generated by Ri1, · · · ,Rid just consider now the d-form

η = λi1 ∧·· ·∧λid

and notice that the normal bundle of L is now the direct sum of ξ with the spam of the
other Reeb vector fields not appearing in the set {Ri1 , · · · ,Rid}. The same calculations as
above will yield

trW X = ιX dη(Ri1, · · · ,Rid) = 0

for any vector field X normal to L.
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Remark 8. Suppose that we take d = 1 in Proposition 18, so that L is a one-dimensional
submanifold generated by a Reeb vector field, that is, a flow line of Ri for some i. Let
γ denote one of such flow lines, and notice that it is automatically parameterised by
arclength, since

γ̇(s) :=
d
dt

∣∣∣
t=0

γ(s+ t) = Ri(γ(s))

by definition and g(Ri,Ri) = 1 by construction. Since Ri has unit length, it follows that,
for any normal vector field X , one has

0 = ∇γ̇g(X , γ̇) = g(∇γ̇X , γ̇)+g(X ,∇γ̇ γ̇),

hence
g(W X(γ̇), γ̇) =−g(X ,∇γ̇ γ̇).

Thus, L is a minimal submanifold if and only if ∇γ̇ γ̇ is tangent to L. But ∇γ̇ γ̇ is already
normal to L, since 0 = ∇γ̇g(γ̇, γ̇) = 2g(∇γ̇ γ̇, γ̇). Therefore, the leaf L is minimal if and only
if its arclength parametrisation γ satisfies ∇γ̇ γ̇ = 0, that is, γ is a geodesic.

To summarise the above discussion:

Corollary 3. There is a metric on M such that each Reeb vector field is of unit length,
their flow lines are geodesics, and the foliations F and Ci are harmonic foliations.

Remark 9. Recall that a differential p-form η is called F -closed if

dη(X1, · · · ,Xp+1) = 0,

whenever at least p fields among X1, · · · ,Xp+1 are tangent to F . The form η = λi1 ∧·· ·∧λid

is always S-closed, where S denote the underlying foliation of the bundle spanned by the
Reeb fields Ri1, · · · ,Rid . In the case d = q, this means the characteristic form λ = λ1∧·· ·∧λq

is F -closed. From this point of view, Proposition 18 is simply an application of Rummler’s
criterion for tautness (RUMMLER, 1979).

We recall the following definitions.

Definition 13 (Harmonicity). Let (M;g) be a C2 Riemannian manifold, and f : M → R
a C2 function. We say f is harmonic if it is a zero of the Laplace–Beltrami operator ∆,
that is,

∆ f = ∇(∇ f ) = 0,

where ∇ is the Levi-Civita connection of (M,g). Similarly, a C2-differential form ω is
harmonic if it is a zero of the Laplace–de Rham operator ∆, that is,

∆ω = d(δω)+δ (dω) = (δ +d)2ω,

where δ is the adjoint of the exterior differential d.
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There are several links between harmonic foliations, harmonic functions, and har-
monic differential forms (cf. (KAMBER; TONDEUR, 1982)). We are particularly inter-
ested in the following improved version of Proposition 10.

Proposition 19. Suppose M supports a q-contact structure of class C2. Around each
point p ∈ M one can find coordinates (x,y,z) ∈ R2n ×Rq and, for each 1 ≤ i ≤ q and
1 ≤ j ≤ n, functions f i

j,g
i
j : R2n → R such that:

(i) λi = dzi +∑ j

(
− f i

j(x,y)dx j +gi
j(x,y)dy j

)
for every i;

(ii) each coordinate function zi and differential form dzi is harmonic.

Proof. Given p ∈ (M,g), let U be an open geodesic ball of radius ε around p, and choose
a foliated chart ψ : U → R2n ×Rq such that Ri = ∂zi and ψ(p) = 0. Then the inclusion

z j : (−ε,ε)−→ M

t 7−→ (0, · · · ,0,z j(t),0, · · · ,0)

is an arclength parameterisation of a segment of the flow line of R j through the point p,
and being so, it is a geodesic of g (see Remark 8 above). In particular, the function z j is
a Riemannian immersion, and its image is a minimal submanifold, hence z j is harmonic
(see the Proposition in Paragraph § 2 of (EELLS; SAMPSON, 1964)) and therefore so is
its derivative dz j (see also (EELLS; SAMPSON, 1964), Paragraph §3). This proves (ii).
The proof of (i) is precisely the same as in Proposition 10.

3.4 On the topology of q-contact manifolds
It was proven by Tischler that if a closed manifold admits a closed non-vanishing

1-form, then it is a fibre bundle over S1. From this, we have:

Proposition 20. If M is a closed q-contact manifold and dλi = dλ j for any pair i, j then
M is a fibre bundle over S1. If for any choice of indices i1, · · · , il ⊂ {1, · · · ,q} one has
dλi1 = · · ·= dλil then dimH1

dR(M)≥ l −1.

Proof. The 1-form α := λi−λ j is nowhere vanishing, since αp = 0 would imply Ri|p = R j|p,
which in turn would mean the fibre Rp has dimension less than q, a contradiction. The
form α is also closed by hypothesis; hence Tischler’s theorem proves the first assertion.
For the second one, note that each form α j := λi1 −λi j is closed and that they form an l.i.
set. Moreover, the forms α j can not be exact since any function f : M → R has a critical
point x. Hence, exactness of α j would imply d fx = α j|x ≡ 0, which can not happen as
α j(Ri1)≡ 1. Hence {[α j]} is an l.i. set of nontrivial cohomology classes.
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Corollary 4. Let M be a closed, simply connected manifold. If M supports a q-contact
structure with adapted coframe λ⃗ , then λi ̸= dλ j for every 1≤ i, j ≤ q. In particular, simply
connected closed manifolds support no uniform q-contact structures for q ≥ 2.

Corollary 5. A q-contact foliation defined by λ⃗ = (λ1, · · · ,λq) on a sphere S2n+q can not
have dλi1 = dλi2 for more than one pair of indices i1, i2. In particular, for q > 2, spheres
admit no uniform q-contact structure.

We can improve Proposition 20 in the case of uniform q-contact structures, obtain-
ing M as a fibration over the torus Tq−1.

Theorem 4. Let (M,⃗λ ,R⊕ξ ) be a uniform q-contact manifold, q ≥ 2. Suppose that M

is of class at least C2, and the splitting TM =R⊕ ξ is C1, and consequently, so are the
Reeb fields and the induced foliations. Then each characteristic foliation Ci is transverse
to the leaves of a (2n+1)-dimensional C2-foliation without holonomy.

Proof. We follow the steps of (TISCHLER, 1970, Corollary II). For simplicity, let us work
with the characteristic foliation Cq, associated with λq, noting that this choice implies no
loss of generality. We define

αi := λi −λq, i = 1, · · · ,q−1.

As in Proposition 20, these are linearly independent, non-vanishing closed forms. Moreover,
αi is a leaf-wise volume form for the foliation Li defined by the flow of Ri, since αi(Ri)≡ 1.
In other words, the closed form αi is transverse to Li (cf. (SULLIVAN, 1976).

First, let us show that one can perturb the 1-forms αi without losing linear inde-
pendence. Given a finite atlas for M, we can define suitable Cr norms on ∧1(M) as the
maximum over all charts of the sum of Cr norms of coordinate functions. We consider
on ∧1(M) the topology obtained as direct limit of the Cr norms, and denote by D1 the
corresponding topological R-vector space (cf.(DE RHAM, 1973), (CANDEL; CONLON,
2000a). Due to the linear independence of {αi}, we can use the Hann-Banach theorem
to find for each αi a corresponding continuous dual (a current) fi : D1 → R in the strong
dual space D∗

1, satisfying
fi(α j) = δi j.

We define a mapping from the (q−1)-fold product of D1 with itself to R by

Φ : D1 ×·· ·×D1 −→ R

(ω1, · · · ,ωq−1) 7−→ det{ fi(ω j)}.

This mapping is continuous, and since Φ(α1, · · · ,αq−1) = 1, we can find an open neighbour-
hood U of (α1, · · · ,αq−1) on which Φ is always positive. This means the matrix { fi(ω j)}
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is invertible for any choice of (ω1, · · · ,ωq−1) ∈U , and consequently the set {ω1, · · · ,ωq−1}
is linearly independent for every element of U .

Now, each αi can be arbitrarily well approximated by a C2-closed 1-form ωi with
the properties:

(i) the foliation Ni, integral to the bundle kerωi, comprises the fibres of a C2 fibration
ρi : M → S1, that is, Ni(p) = ρ−1

i (ρ(p));

(ii) the leaves of Ni are transverse to Li.

See, for instance, (TISCHLER, 1970, Theorem 1) and (CANDEL; CONLON, 2000a, The-
orem 9.4.2 and Proposition 10.3.14)) for better exposition of these results. Here we limit
ourselves to emphasise that the C1 property is necessary in order to apply such theorems
to our setting.

Since the linear independence of a set of (q− 1) 1-forms is an open property, we
can choose the ωi to be linearly independent. We set

ρ : M −→ Tq−1 ≈ S1 ×·· ·×S1

x 7−→ (ρ1(x), · · · ,ρq−1(x)).

The mapping ρ is a C2 submersion since the ωi are linearly independent; moreover, it is
proper, being a map between compact manifolds. Erehsmann Fibration Theorem shows
that ρ is a (locally trivial) fibration. Each fibre N (p) of this fibration is an intersection

N (p) :=
q−1∩
i=1

Ni(p).

By construction, the fibres are transverse to each of the Reeb fields R1, · · · ,Rq−1, and
consequently to the characteristic foliation Cq. Being a fibration, the foliation N is without
holonomy.

The most immediate and essential consequence of Theorem 4 is the existence
of complete closed transversals for the characteristic foliations, i.e., any of the fibres of
π : M → Tq−1.

Corollary 6. If (M,⃗λ ,R⊕ξ ) is a C1 uniform q-contact manifold and q ≥ 2, then every
characteristic foliation Ci admits a complete transversal Ti, that is, a closed (2n + 1)-
dimensional submanifold of M intercepting every leaf of Ci and satisfying

TM = TTi ⊕TCi.
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In light of Proposition 15, we have the following equivalence of Weinstein Conjec-
tures:

Theorem 5. For closed uniform q-contact manifolds, the Weak Generalised Weinstein
Conjecture is equivalent to the Weinstein Conjecture.

Proof. The implication WGWC =⇒ WC is clear since a flow line that is not homeomorphic
to R has to be closed. Conversely, if the Weinstein Conjecture is true, than (Ti,λi|Ti) has
a closed Reeb orbit, being a closed contact manifold (cf. Proposition 15). This, in turn,
implies the existence of a closed orbit γ for Li, as pointed out in Remark 6. The leaf of F
containing the closed orbit γ is not a plane; hence M satisfy the WGWC.

Another consequence of Corollary 5 is the following, a direct application of a
famous result of Plante (PLANTE, 1975, Theorem 1.1).

Corollary 7. If a closed manifold M admits a uniform q-contact structure, then the
homology group H2n(M;R) is non-zero.

Recall that an overtwisted contact 3-manifold is one which contains an embedded
overtwisted disk. In higher dimensions, the role of the overtwisted disk can be filled by a
Plastikstufe (NIEDERKRÜGER, 2006), or, more generally, by overtwisted 2n-closed balls
(BORMAN; ELIASHBERG; MURPHY, 2015; CASALS; MURPHY; PRESAS, 2019). In
any case, it is known that such contact manifolds satisfy the WC (ALBERS; HOFER,
2009; BORMAN; ELIASHBERG; MURPHY, 2015). If we define a q-contact structure to
be overtwisted when it “contains” an overtwisted contact structure in the classical sense,
we can conclude that all such structures satisfy the WGWC. More precisely:

Definition 14 (Overtwisted q-contact structures). A q-contact structure is overtwisted
when, for some of the defining 1-forms λi, the characteristic foliation Fi admits a transver-
sal T such that (T ,λi) is an overtwisted contact manifold.

From Corollary 5 and Theorem 5 it follows:

Theorem 6. Every closed uniform overtwisted q-contact manifold satisfies the WGWC.
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CHAPTER

4
INVARIANT METRICS

Last Chapter ended with a theorem giving conditions under which the WGWC
holds, namely Theorem 5 and 6. In the present Chapter, we work on conditions to guar-
antee that the SGWC is satisfied. As we will see, the existence of an invariant metric for
the action F implies strong recurrence properties for the contact foliation F and in the
existence of F -preserving toric actions on M, which we will be able to use to find closed
leaves.

4.1 Isometric contact foliations
Following the work of Rukimbira for the contact case (cf. (RUKIMBIRA, 1991;

RUKIMBIRA, 1993)), we define the following notion.

Definition 15 (Isometric contact foliation). A foliation F induced by a q-contact struc-
ture is called a isometric q-contact foliation if there is a metric g 1 with respect to
which the Reeb vector fields are Killing, that is

LRig = 0.

In other words, F is isometric if it is induced by an action of Rq through isometries. We
say (M,g,⃗λ ,ξ ⊕R) is an isometric q-contact manifold.

There is always a metric on the bundle R for which the Reeb vector fields are
Killing, namely the adapted metric

gτ = ∑
i

λi ⊗λi,

1 There is a similar notion in the contact topology literature, called a K-contact manifold
(cf. (KON; YANO, 1985; BLAIR, 2010)). In a K-contact manifold (M,g,λ ), the Reeb vector
field R is Killing with respect to a contact metric g, which is a Riemannian metric satisfying
a number of assumptions related to the non-degenerate form dλ . Here, we do not make any
assumptions on the metric other than its invariance under the action.
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that is, the metric defined by setting gτ(Ri,R j) = δi j, and extending it linearly. It satisfies

LR jg
τ = ∑

i
(LR jλi ⊗λi +λi ⊗LR jλi) = 0.

Therefore, asking for a foliation to be isometric amounts to assert the existence of a
transverse invariant metric, that is, a metric g⊥ on the bundle ξ such that LR jg

⊥ = 0
for every Reeb vector field R j. Since every transverse invariant metric is associated with
a bundle-like metric (MOLINO, 1988, Proposition 3.3), it follows that, up to a choice of
metric tensor, every Riemannian contact foliation is, in fact, isometric.

Theorem 7. For a q-contact manifold (M,⃗λ ,R⊕ξ ) the following are equivalent

(i) The contact foliation F has a bundle-like metric;

(ii) The contact foliation F has an invariant metric;

(iii) There exists a metric g on M for which the Reeb vector fields Ri are Killing, and

λi(X) = g(Ri,X)

for any vector field on M.

Proof. (i) =⇒ (ii): Suppose g0 is a bundle-like metric for F , and gT is the associated
F -transverse metric. By definition, gT is F -basic, hence LRig

T = 0 for every i. As before,
we let

gτ = ∑
i

λi ⊗λi

be the adapted metric of the collection λ⃗ , so that LRig
τ = 0 for every i. It follows that

g := gτ ⊕gT is a Riemannian metric on M with respect to which every Reeb field is Killing.

(ii) =⇒ (iii) If F is isometric and g̃ is a Riemannian metric with respect to which every
Reeb field is Killing, then we define a new metric g on M by letting g⊥ be the restriction
of g̃ to the bundle ξ and setting

g = gτ ⊕g⊥,

where gτ = ∑i λi ⊗λi, as above. Then LRig = 0 and g(Ri, ·) = λi.

(iii) =⇒ (i) If every Reeb field is Killing then the contact action is an isometric action
of Rq, and it follows that g is bundle-like with respect to F (cf. (MOERDIJK; MRČUN,
2003, Remmark 2.7(8))).

Following the terminology of Rukimbira, we define

Definition 16 (R-metric). On a q-contact manifold (M,⃗λ ,R⊕ξ ) a metric g satisfying
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(i) LRig = 0;

(ii) g(Ri, ·) = λi,

is called an R-metric of the foliation F .

Remark 10. Note that Proposition 7 can be restated as “a contact foliation is isometric
if and only if it admits an R-metric”. From now on, whenever we say the triple (M,F ,g)

is an isometric contact foliation, it is implicitly assumed that g is an R-metric.

Example 9 (The canonical contact structure of R2n+q). Recall that R2n+q with coor-
dinates (x,y,z) = (x1, · · · ,xn,y1, · · · ,yn,z1, · · · ,zq) has a canonical contact structure given
by the forms

λi := dzi +∑
j

x j dy j.

The Reeb vector fields are ∂zi , and we can identify R with Rq ⊂R2n+q, the subspace of
vectors with coordinates x = y = 0. Similarly, ξ is identified with R2n ⊂R2n+q, realised
as the set of vectors {z = 0}. We can consider on ξ the metric g⊥, obtained as the
restriction to R2n of the canonical metric of R2n+q. Moreover, let gτ = ∑i λi ⊗ λi, as
usual. Then the metric g⊥ is invariant under the Reeb vector fields, as the ∂zi are Killing
vector fields of the canonical metric on R2n+q, and therefore g := gτ ⊕g⊥ satisfies

L∂zi
g = 0,

that is, g is an R-metric.

As for examples on closed manifolds, we have product-like constructions such as

Example 10 (Products of structures of same dimension). Let (M1, α⃗,R1⊕ξ1,g1) and
(M2, β⃗ ,R2⊕ξ2,g2) be isometric q-contact manifolds (i.e., both have contact foliations of
same dimension, namely q). Then M := M1×M2 is a 2q-contact manifold with adapted
coframe given by the forms

λi = αi +βi,

ηi = αi −βi,

as seen in Examples 4 and 5. We set on TM ≡ TM1 ⊕TM2 a metric g by declaring TM1

orthogonal to TM2 and letting g restrict to gi on TMi. In other words, let

g := g1 ⊕g2.
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Now, if Xi is the Reeb field of αi and Yi the Reeb field of βi, then the Reeb field of λi is

Ri = Xi +Yi,

and the Reeb field of ηi is
Si = Xi −Yi.

So we have

LRig = LRig1 +LRig2 = LXig1 +LYig1 +LXig2 +LYig2 = 0,

and similarly for LSig. Thus g is an R-metric for M.

Example 11 (Toric extensions). Let (M,⃗λ ,R⊕ξ ) be a q-contact manifold admitting
an R-metric g = gτ ⊕ g⊥. Suppose π : E → M is a principal Tl-bundle equipped with
a flat connection TE = H ⊕V . As it is shown in detail in Example 7, E admits a
(q+ l)-contact structure determined by 1-forms

ηi = π∗λi, for 1 ≤ i ≤ q;

ηq+i = αi +π∗λ ji, for 1 ≤ i ≤ l,

where the αi are 1-forms that are identically zero on the horizontal bundle and on the
vertical bundle are given by

αi(X j) = δi j,

with the Xi being the fields generating the toric action on the fibres. The identification
of H with TM via π induces a splitting H = R⊕ ξ̃ , where R ≈ R and ξ ≈ ξ̃ , both
diffeomorphisms being a restriction of dπ. Thus TE = R̃⊕ξ , where R̃=V ⊕R is the
bundle tangent to the (q+ l)-dimensional contact foliation F̃ on E. The Reeb vector
fields are

R̃i = Ri, for 1 ≤ i ≤ q;

R̃q+i =
1
2
(Xi +R ji), for 1 ≤ i ≤ l.

(4.1)

We want to show that (E, η⃗ ,TE = R̃⊕ ξ̃ ) defines an isometric contact foliation for a
suitable choice of metric g̃ on E. For this, let g0 be a metric on the tangent bundle R̃
defined by

g0 :=
q+l

∑
i=1

ηi ⊗ηi.

This makes {R̃i} into an orthonormal basis for R. Finally, we let

g̃ := g0 ⊕g⊥
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be a Riemannian metric on TE = R̃⊕ ξ̃ .

We claim that g̃ is an R-metric for E. First, it is clear from the definition of g̃

that
g̃(X , R̃i) = g0(X , R̃i) = ηi(X). (4.2)

It is then straight forward that LR̃i
g0 ≡ 0, since(

LR̃i
g0

)
(R̃ j, R̃l) = LR̃i

(ιR̃l
ιR̃ j

g0)−g0([R̃i, R̃ j], R̃l)−g0(R̃ j, [R̃i, R̃l])

= LR̃i
δi j −0−0

= 0.

Now, from the characterisation of the Reeb fields in Equation (4.1), we have

LR̃i
g̃ = LRi g̃ = LRig0 +LRig

⊥ = 0, for 1 ≤ i ≤ q;

LR̃q+i
g̃ = LR̃q+i

g⊥ =
1
2
LXig

⊥+
1
2
LRig

⊥ =
1
2
LXig

⊥, for 1 ≤ i ≤ l.
(4.3)

Recall, from Example 7, that for every generator field X1 it holds that

[Xi,Z] is horizontal whenever Z is horizontal.

On the other hand, we know every vector field Z tangent to ξ̃ is foliate with respect
to F̃ , that is, it satisfy [R̃i,Z] ∈ R̃ for every Reeb field. Together, these two conditions
imply

[Xi,Z] ∈R whenever Z ∈ Γ(ξ̃ ).

In particular, for Y,Z tangent to ξ̃ we have

(LXig
⊥)(Y,Z) = LXi(ιZιY g⊥)−g⊥([Xi,Y ],Z)−g⊥(Y, [Xi,Z]) = LXi(ιZιY g⊥) = 0,

as the function ιZιY g⊥ can be thought as a lift to E of a leaf-wise function of (M,F) to
a leaf-wise function of (E, F̃), whose leaves all of the form F̃(x) ≈ Tl ×F(π(x)), with
the Xi being vectors on the Tl directions. Thus, Equation (4.3) reduces to LR̃i

g̃ ≡ 0,
which together with (4.2) means that g̃ is an R-metric for (E, η⃗ ,TE = R̃⊕ ξ̃ ), and F̃
is an isometric contact foliation.

In particular, by taking products of manifolds supporting R-flows and products of
such manifolds with tori, we can produce isometric contact foliations of any dimension
q ≥ 2. We remark that the resulting manifold is closed if we start with closed manifolds.
Examples of R-flows include regular and almost regular contact manifolds (the canonical
contact structures on odd spheres S2n+1 are specific examples of regular contact mani-
folds, cf. (BLAIR, 2010; GEIGES, 2008) for more details and examples), and also every
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K-contact manifold. This last class includes, in particular, compact contact hypersurfaces
(BANYAGA, 1993), Kähler manifolds of constant positive holomorphic sectional curva-
ture, and Brieskorn manifolds (KON; YANO, 1985). A product of any such manifold with
a torus Tq−1 provides the desired isometric q-contact foliation.

Another class of examples is that of metric f -K-contact manifolds. These are f -
manifolds with complemented frames {λ1, · · · ,λq} such that the Reeb fields are Killing for
the associated metric

g = ω ◦ ( f × f )+∑
i

λi ⊗λi,

where ω is a 2-form satisfying dλi = ω for every i, called the fundamental form (see
(GOERTSCHES; LOIUDICE, 2020b) for more on such structures). In particular, every
metric f -K-contact structure is a uniform isometric q-contact manifold.

4.2 The topology of isometric contact manifolds
Besides the orientability of the manifold and the suitable reduction of the structure

group, when it comes to the existence of isometric contact foliations, the curvature of a
metric also plays the role of an obstruction, which in turn restricts the topology of a mani-
fold supporting such an action. Explicit examples of such phenomena are consequences of
the fact that on an isometric contact manifold every harmonic field most belong to Γ(ξ ).
Recall from Definition 13 that a differential form ω is harmonic if it belongs to the kernel
of the Beltrami-de Rham operator ∆.

Definition 17 (Harmonic fields). We say a field X is harmonic with respect to a metric
g if its dual form g(X , ·) is harmonic.

Remark 11. When a form ω has compact support harmonicity is equivalent to the
condition that dω = δω = 0. In particular, every harmonic form on a compact manifold
is closed. It is a celebrated theorem due to Hodge that, for compact M, every de Rham
class in H∗

dR(M) has a harmonic representative.

Theorem 8. Let (M,F ,g) be an isometric contact foliation on a closed manifold M. If a
vector field is harmonic with respect to g, then X is tangent to the contact distribution
ξ . In particular, every harmonic 1-form on M is basic.

Proof. The coordinate function of X in the direction Ri is

ci := λi(X) = g(Ri,X) = µ(Ri).

We wish to show that ci ≡ 0 for every i. We divide the proof into two steps: first, we show
that if we assume that ci ̸= 0 for some value of i, then there is no loss of generality in
assuming ci ̸= 0 for a single value of i. Then we show that the latter case cannot happen.
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Step I- We may assume µ(R j) = clδl j for a single index l. Since X is harmonic and Ri is
a Killing field, it follows that ci = µ(Ri) must be a constant for i = 1, · · · ,q (cf. (POOR,
2015, Proposition 5.13)). Let us separate the components of X in the R directions and
write X = ∑i ciRi + X̃ , with X̃ tangent to ξ . Taking duals with respect to g, let us write
the harmonic form µ as a sum

µ =
q

∑
i=1

ciλi + µ̃. (4.4)

In particular, µ̃(Ri) = 0 for every Reeb vector field, by construction. As the manifold M

is closed, harmonicity implies that µ is closed. Hence

q

∑
i=1

ci dλi =−dµ̃. (4.5)

Now, around any point p ∈ M, we can choose a foliated chart (U ;x1, · · · ,x2n,z1, · · · ,zq) as
in Proposition 19. We expand both µ̃ and the forms λi in these coordinates so that µ is
written as

µ =
q

∑
i=1

(
ci dzi +

2n

∑
j=1

ci f i
j(x)dx j

)
+

2n

∑
j=1

α j(x,z)dx j +
q

∑
s=1

βs(x,z)dzs︸ ︷︷ ︸
µ̃

.

By construction, µ̃(Ri) = 0 for every i. Since in these coordinates Ri = ∂zi , the functions
βs on the expansion above are actually constants equal to zero. Hence

µ =
q

∑
i=1

(
ci dzi +

2n

∑
j=1

ci f i
j(x)dx j

)
+

2n

∑
j=1

α j(x,z)dx j, (4.6)

and, in these coordinates, the equality in (4.5) becomes

2n

∑
j,l=1

(
∑

i
ci

∂
∂xl

f i
j(x)dxl ∧dx j

)
=−

2n

∑
j,l=1

∂
∂xl

α j(x,z)dxl ∧dx j −
2n

∑
j=1

q

∑
l=1

∂
∂ zl

α j(x,z)dzl ∧dx j.

Evaluating both sides of the above equation at the Reeb vector fields implies that

∂
∂ zl

α j(x,z) = 0 for every 1 ≤ l ≤ q,

and therefore, the α j are functions of the coordinate x, satisfying

− ∂
∂xl

α j(x) =
∂

∂xl
∑

i
ci f i

j(x) for every 1 ≤ l ≤ 2n.

This means there are constants K j such that

α j(x) =−∑
i

ci f i
j(x)+K j.
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Applying this to Equation (4.6) gives

µ =
q

∑
i=1

ci dzi +
2n

∑
j=1

K j dx j.

Choose an index l such that cl ̸= 0, and write

µ −∑
i ̸=l

ci dzi = clλl +
2n

∑
j=1

K j dx j.

The RHS is a harmonic form, for each dzi is harmonic (cf. Proposition 19). Thus the
1-form

µ0 := clλl +
2n

∑
j=1

K j dx j

is a harmonic form on M satisfying

µ0(R j) = clδ jl,

as we wanted.

Step II - Given a constant cl ̸= 0, there can be no harmonic form µ with µ(R j) = clδl j.
Let us assume the existence of such a form. To simplify things a bit, let the non-zero
coefficient be c1. Write X = c1R1 + X̃ to denote the dual vector field of µ , where X̃ is
tangent to ξ . Then

η := λ1 −
1
c1

µ

is a basic 1-form on M such that dη = dλ1 (cf. Appendix A). This follows because, as
µ(R j) = c1δ1 j, we have

η(Ri) = 0 for every i.

Moreover, since µ is harmonic, LY µ = 0 for every Killing field Y (cf (POOR, 2015, Propo-
sition 5.13)). In particular,

LRiη = LRiλ1 +LRi µ +

(
Ri

1
c1

)
µ = 0 for every i,

so that η is indeed basic. Finally, as M is closed, dµ = 0, hence dη = dλ1. Consequently,
we have

d(η ∧ (dλ1)
n−1) = dη ∧ (dλ1)

n−1 = (dλ1)
n. (4.7)

Recall that the characteristic form λ is the leaf-wise volume form dor the foliation F .
Using Equation (4.7) above we obtain a volume form on M written as

λ ∧ (dλ1)
n = λ ∧d(η ∧ (dλ1)

n−1) = (−1)q dλ ∧η ∧ (dλ1)
n−1 +(−1)q+1 d(λ ∧η ∧ (dλ1)

n−1).

Note that the 2n+ q-form dλ ∧ η ∧ (dλ1)
n−1 is basic, being a product of basic forms.

However, any choice of 2n+q fields on M cannot simultaneously be linearly independent
and consist only of vector fields tangent to ξ . This means dλ ∧η ∧ (dλ1)

n−1 ≡ 0, hence

λ ∧ (dλ1)
n = (−1)q+1 d(λ ∧η ∧ (dλ1)

n−1),
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which can not be, for a closed manifold admits no exact volume form.

We conclude that there can be no harmonic vector field satisfying X = c1R1 + X̃ ,
with X̃ tangent to ξ , which implies, in turn, in light of Step (I), that any harmonic vector
field with respect to an R-metric for a contact foliation F must be transverse to that
foliation, as we wanted. In particular, since each Ri is Killing, any harmonic 1-form must
satisfy ιRi µ = 0 for every 1 ≤ i ≤ q;

LRi µ = 0 for every 1 ≤ i ≤ q,

hence every harmonic 1-form is basic.

For any foliation F there is an injection H1
B(F) ↪→ H1

dR(M) (cf. Proposition 35,
Appendix A). Using our last result, we can show that for Riemannian contact foliations,
this is an isomorphism.

Theorem 9. If (M,F ,g) is an isometric contact foliation on a closed manifold M, there
is an isomorphism

H1
dR(M)≈ H1

B(F)

between the first De Rham cohomology group of M and the first basic cohomology group
of the foliation F .

Proof. Recall that the basic functions are exactly those that are leaf-wise constant. If an
exact 1 form η = d f is basic, then in particular Ri f = η(Ri) = 0 for every i, and f is
automatically basic as well. This means any exact basic form is cohomologous to zero.
Thus the inclusion H1

B(F) ↪→ H1
dR(M) is injective. On the other hand, Hodge’s Theorem

states that every class in H1
dR(M) has a harmonic representative. Since every harmonic

1-form is basic, this gives an injection from H1
dR(M) into H1

B(F), which implies the desired
isomorphism.

We apply this result in order to exclude the existence of isometric contact foliations
on several closed manifolds:

Proposition 21. Let M be a closed orientable manifold of dimension 2n+q, and suppose
that, as a real vector space, H1

dR(M) also has dimension 2n+ q. Then M supports no
isometric q-contact foliation, for every q ≥ 1.

Proof. Suppose, by contradiction, that F is an isometric q-contact foliation on M, for any
q ≥ 1. Let η1, · · · ,η2n+q be harmonic forms whose cohomology classes form a basis for
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the R-vector space H1
dR(M). On one hand, since the classes [ηi] are linearly independent,

the product η1∧·· ·∧η2n+q is non-vanishing, hence its class in the top cohomology group
H2n+q

dR (M) can also be represented a volume form ω on M. This means, in particular, that
we can find a (2n+q−1)-form η such that

η1 ∧·· ·∧η2n+q = ω −dη .

On the other hand, since F is an isometric contact foliation, it follows from Theo-
rem 8 that each one the 1-forms ηi is also basic, hence η1∧·· ·∧η2n+q = 0 (the maximum
rank of basic form in H∗

B(F) being the codimension 2n, which is less than 2n+ q), and
therefore the volume form ω = dη is exact, a contradiction.

Corollary 8. There can be no isometric q-contact foliation on the torus T2n+q, whichever
is q≥ 1. More generally, if p : E →Tm is a Tl-bundle, then E supports no isometric contact
foliation.

Proof. For a torus T2n+q the first cohomology group is isomorphic to R2n+q, hence it has
the same dimension as the manifold, and the conclusion follows from Theorem 9 above.

As for a torus bundle p : E →Tm, it is a matter of noticing that the exact homotopy
sequence of the fibration Tl i

↪−→ E
p−→ Tm becomes

· · ·0 → Zl i∗−→ π1(E)
π∗−→ Zm → 0 · · · ,

hence
π1(E)⧸Zl ≈ Zm.

If {ei} and { fi} are spanning sets for Zl and Zm, respectively, we set Ei := i∗(ei), and
choose En+ j such that the class En+ j +Zl corresponds to f j, thus obtaining a spanning
set {E1, · · · ,En+m} for the fundamental group π1(E). Hence

π1(E)≈ Zm+n.

Now, the first de Rham cohomology group is isomorphic to Hom(π1(E);(R,+)) via

[ω] 7→
(
[γ] 7→

∫
γ

ω
)
.

Since Hom(π1(E);(R,+)) is generated (with R coefficients) by the mappings sending each
generator Ei to 1, it follows that

H1
dR(E)≈ Hom(π1(E);(R,+))≈ Rm+n,

and therefore dimH1
dR(E) = m+n = dimE. According to Proposition 21, there can be no

isometric contact foliation on E.
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Another consequence of Theorem 8 is the following theorem, which imposes geo-
metric restrictions on the curvature of a metric g making a contact foliation F isometric.

Theorem 10. If (M,F ,g) is an isometric foliation on a closed manifold M, then the
sectional curvature of g is neither strictly positive nor strictly non-positive. In other words,
there are points p,q ∈ M and planes π ⊂ TpM and σ ⊂ TqM such that

sec(π)> 0

sec(σ)≤ 0.

Proof. We argue by contradiction. Assume that g is an R-metric for the contact foliation
F whose sectional curvature is non-positive, and denote by ∇ the Levi-Civita connection.
Since the action is locally free, for small enough t the flow exp(sR1) provides an homotopy
between a nontrivial isometry exp(tR1) and the identity id = exp(0R1). It follows that
M admits a non-vanishing parallel vector field X (BLAINE LAWSON Jr.; YAU, 1972,
Proposition 2). Being a parallel field on a compact Riemannian manifold, X must be
Killing and harmonic (POOR, 2015, Proposition 5.12). It follows from Theorem 8 that X

is everywhere tangent to ξ , and its dual form µ = g(X , ·) is basic. We claim this implies
[Ri,X ] = 0 for every i. Indeed, given Y ∈ Γ(M), we have

0 = LRi µ(Y ) = Riµ(Y )−µ([Ri,Y ])

= Rig(X ,Y )−g(X , [Ri,Y ])

= LRig(X ,Y )−g(X , [Ri,Y ])+g([Ri,X ],Y )+g(X , [Ri,Y ])

= g([Ri,X ],Y ),

from where it follows [Ri,X ] = 0, as we wanted.

Moreover, since X is also Killing, for arbitrary Y ∈ Γ(M) and 1 ≤ i ≤ q, we have

LX λi(Y ) = Xλi(Y )−λi([X ,Y ])

= Xg(Ri,Y )−g(Ri, [X ,Y ])

= LX g(Ri,Y )+g([X ,Ri],Y )

= g(Ri, [X ,Y ])−g(Ri, [X ,Y ])

= 0.

Finally, from the relations λi(X) = LX λi = 0 for every 1 ≤ i ≤ q it follows

0 = LX λi = dιX λi + ιX dλi = ιX dλi,

that is, X belongs to the kernel of dλi, namely R. This would imply X = 0, which contra-
dicts the non-vanishing of X as given by (POOR, 2015, Proposition 5.12), proving that
the curvature of g can not be strictly non-negative.
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On the other hand, if the sectional curvature of g is strictly positive, then it follows
from (PETERSEN, 2006, Theorem 8.3.5) that any two commuting Killing fields on M

must be linearly dependent somewhere. We know, however, that {Ri} is a global frame of
commuting Killing fields for R. Hence g can not have positive sectional curvature.

4.3 Equicontinuity
The existence of an invariant metric is a geometric property of the action, but it, in

turn, implies a rather valuable dynamical property: equicontinuity. Equicontinuity means
that close points remain close under the action, that is, close orbits can not grow too
much apart as the dynamics progresses. It has substantial consequences on the dynamical
behaviour of a system. Here we investigate some of the consequences equicontinuity has
on the dynamics and define a stronger dynamical property, C1-equicontinuity, which turns
out to be equivalent to the existence of an invariant metric.

Definition 18 (Equicontinuity). Let d be a metric on M, compatible with its manifold
topology. The action F : Rq → Diff(M) is (uniformly) equicontinuous if for every ε > 0
there is a δ > 0 such that

d(x,y)< δ =⇒ d(Fa(x),Fa(y))< ε for all a ∈ Rq.

Remark 12. The choice of metric d in Definition 18 is not crucial because we only deal
with compact manifolds. In a compact metric space, any two metrics d0,d1 are quasi-
isometric, meaning that there are positive constants c and C such that

cd1(x,y)≤ d0(x,y)≤Cd1(x,y)

for every x,y. It is easy to see quasi-isometries preserve that equicontinuity, so equicon-
tinuity in compact spaces is independent of the choice of metric. This is not true for
non-compact metric spaces, where equicontinuity is, in fact, a property of a family of
functions with respect to a specific metric. In fact, equicontinuity can be defined more
generally in terms of uniformities. However, since compact topological spaces have a single
compatible uniformity, in such spaces, the notion of equicontinuity becomes a topological
one.

Clearly, an isometric contact foliation is equicontinuous. However, only some con-
tact foliations are equicontinuous, as the next examples show.
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Example 12 (The standard overtwisted contact structure). Consider R3 with cylin-
drical coordinates (ρ,θ ,z). The 1-form

λot = cos(ρ)dz+ρ sin(ρ)dθ

is the standard overtwisted contact form. It’s derivative is

dλot =−sin(ρ)dρ ∧dz+(sin(ρ)+ρ cos(ρ))dρ ∧dθ

= dρ ∧ [(sin(ρ)+ρ cos(ρ))dθ − sin(ρ)dz]︸ ︷︷ ︸
α

= dρ ∧α.

It’s Reeb field Rot = f ∂ρ +g∂θ +h∂z is uniquely defined by the relations

1 = λot(Rot) = cosρh+ρ sinρg

and

0 = dλot(Rot, ·)

= dρ ∧α(Rot, ·)

= dρ(Rot)α −α(Rot)dρ

= f [(sinρ +ρ cosρ)dθ − sinρ dz]− [(sinρ +ρ cosρ)g− sinρh]dρ

= [sinρh− (sinρ +ρ cosρ)g]dρ + f (sinρ +ρ cosρ)dθ − f sinρ dz.

These equations are equivalent to the the system

cosρh+ρ sinρg = 1

sinρh = (sinρ +ρ cosρ)g

f (sinρ +ρ cosρ) = 0

f sinρ = 0

which, for ρ > 0, has as solutions
f = 0

g = sinρ
ρ+sin(ρ)cos(ρ) =

2sinρ
2ρ+sin(2ρ)

h = sinρ+ρ cosρ
ρ+sin(ρ)cos(ρ) =

2sinρ+2ρ cosρ
2ρ+sin(2ρ) ,

where we made use of the relation sin(ρ)cos(ρ) = sin(2ρ)
2 . Thus

Rot =
2

2ρ + sin(2ρ))
(sin(ρ)∂θ +(sinρ +ρ cosρ)∂z) .

Note that the field does not depend on θ or z, nor does it have any radial components.
This means each cylinder {ρ = ρ0} is invariant under the flow of Rot and foliated by its
flowlines, which are helices in R3. In particular, consider a value ρ0 > 0 for which

ρ0 + tg(ρ0) = 0.
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Such value is an isolated zero of the function

2(sinρ +ρ cosρ)
2ρ + sin(2ρ))

,

therefore the ∂z component of Rot vanishes at the cylinder C defined by ρ = ρ0. The
restriction of the Reeb flow exp(tRot) to C is a closed foliation by circles parallel to the
ρθ -plane. In particular, the z-component is constant along each flowline.

Fix a point x0 = (ρ0,θ0,z0) ∈ C. Given ε > 0, in any δ -ball centred in x0 we
can find a point y = (ρy,θ0,z0) lying in a cylinder where the ∂z component of Rot does
not vanish. This means the orbit of y under the flow of Rot is a helix, and therefore
the z component of exp(tRot)y grows in module as t goes to infinity. The z-component
of exp(tRot)x0, on the other hand, is constant. Hence the distance between exp(tRot)y

and exp(tRot)x0 will be greater than ε for large enough t, and the Reeb flow is not
equicontinuous.

Example 13 (Anosov contact actions). Anosov contact foliations can never be equicon-
tinuous, for instance. To see this, consider a point x ∈ M and a disc W u(x) tangent to
the unstable distribution (which always exists because an Anosov contact action is, in
particular, a partially hyperbolic dynamical system). Choose ε > 0 small enough so
that there is y ∈W u(x) such that d(x,y)> ε . Now, for any δ > 0, the Anosov condition
implies that there is an Anosov element a ∈ Rq and a natural number N > 0 such that
F−Na satisfies

d(F−Na(x),F−Na(y))< δ .

Thus the points x0 = F−Na(x) and y0 = F−Na(y) are δ -close, but their images under FNa

are further away than ε , meaning F : Rq → Diff(M) is not an equicontinuous contact
action.

Example 14 (Contact structures on T3). Consider the 1-form on R3, with coordinates
(x,y,z), given by

λ = cos(2πz)dx+ sin(2πz)dy.

One notices that λ ∧ dλ = −2π dx∧ dy∧ dz. Therefore λ is a contact form on R3. A
straightforward calculation shows that its Reeb vector field is

Rα = cos(2πz)∂x + sin(2πz)∂y,

which can be integrated explicitly. The integral curve passing through a initial point
p0(x0,y0,z0) at time t = 0 is

ϕ(t) = (x0 + cos(2πz0)t,y0 + sin(2πz0)t,z0).
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Note that by slightly varying only the z-coordinate of the initial point p0, one can
obtain arbitrarily close distinct initial points whose orbits grow further and further
apart as time passes.

Now, the 1-form λ and its Reeb field are invariant under the standard action of
Z3 on R3 by translations. Therefore, λ descends to a 1-form on the quotient T3, giving
an example of a contact structure on a closed manifold which is not equicontinuous.

More generally, no expansive flow can be equicontinuous. Consider a flow ϕ defined
on a Riemannian manifold (M,g).

Definition 19 (Transverse geodesic ball). We define geodesic balls transverse to the flow
ϕ by setting

Hε(x) := {expxY ;gx(Y,Y )
1
2 < ε and gx(Y,X) = 0}.

Informally, an expansive flow is one for which distinct orbits grow apart. To for-
malise this, we ask that, given distinct points x,y, any reparameterisation of the y orbit
always ends up leaving a transverse ball of fixed radius around the orbit of x after finite
time:

Definition 20 (Expansive flow). The flow ϕ is expansive if there is δ > 0 with the
following property:

if γ : R→ R is smooth, increasing, surjective, γ(0) = 0 and ϕ γ(t)(y) ∈ Hδ (ϕ t(x)) for every
t ∈ R, then x = y.

Proposition 22. If ϕ is equicontinuous, then ϕ is not expansive.

Proof. Indeed, given δ > 0 there is ρ > 0 such that d(x,y)< ρ =⇒ d(ϕ t(x),ϕ t(y))< δ for
every t ∈ R, for every x,y ∈ M.

Given x ∈ M, consider y ̸= x in the transverse ball Hρ(x)⊂ Bρ(x). Consider a func-
tion γ : R→ R defined as to satisfy the relation

ϕ γ(t)(y) =O(y)∩Hδ (ϕ t(x)).

Intuitively, γ(t) is the time it takes from the orbit of y to reach the transverse ball of
radius δ around the point ϕ t(x). A function γ defined as such is a reparameterisation of
the orbit O(y), and by construction, it satisfies

ϕ γ(t)(y) ∈ Hδ (ϕ t(x)) ∀t ∈ R.

Since x ̸= y by choice, it follows that ϕ is not expansive.
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This means an expansive flow can never be equicontinuous. It is known, due to
the work of Paternain (PATERNAIN, 1993, Corollary 2), that if a 2-dimensional closed
Riemannian manifold has no conjugated points and its Riemannian covering has no bi-
asymptotic geodesics, then its geodesic flow is expansive. On the other hand, the geodesic
flow is of contact type, as it can be seen as the Reeb flow of the canonical contact form
on the unit tangent bundle T1M (which is, in this case, a 3-dimensional manifold). This
provides yet another example of an entire family of contact foliations/actions which are
not equicontinuous.

The class of equicontinuous contact foliations is somewhat restricted, as equiconti-
nuity turns out to be equivalent to a strong regularity condition on the orbits of F . More
specifically, the underlying foliation of an equicontinuous action is uniformly almost peri-
odic. This is a strong form of recurrence – the orbit returns to an arbitrary neighbourhood
infinitely often. We recall the involved definitions.

Definition 21 (Syndetic set). A subset S ⊂ Rq is syndetic if there is a compact subset
K ⊂ Rq such that Rq = S+K.

Basically, S is syndetic if it has “bounded gaps” inside Rq. Note that a syndetic
subset is necessarily unbounded. An example of syndetic set is the lattice Zq, since Zq +

[0,1]q = Rq.

Definition 22 (Almost periodicity). A point x ∈ M is said to be almost periodic if for
every ε > 0 there exists a syndetic subset Sx,ε such that

d(x,Fs(x))< ε ∀s ∈ Sε .

The action F is uniformly almost periodic if for every ε > 0 there is a syndetic subset
Sε of Rq such that

d(x,Fs(x))< ε

for every x ∈ M and s ∈ Sε .

In order to show that equicontinuity is equivalent to uniform almost periodicity,
we follow (AUSLANDER, 1988) and begin with two lemmas.

Lemma 2. If F is equicontinuous and M compact, then F is point-wise almost periodic.

Proof. Let x ∈ M. We claim that F(x) is a minimal subset of F2. Indeed, for ε > 0 there
is a δ > 0 such that

d(x,y)< δ =⇒ d(Fa(x),Fa(y))< ε,
2 Note that, for contact actions F , this does not contradict Theorem 3, because we’re not

saying that F(x) is a minimal contact foliation, that is, there’s no guarantee that the contact
structure restricts to F(x). Indeed, Theorem 3 prevents that from happening.
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for every x,y ∈ M,a ∈ Rq. Given y ∈ F(x), there is p ∈ Rq such that d(F p(x),y)< δ , and
therefore d(x,F−p(y)) = d(F−p+p(x),F p(y)) < ε → 0 as ε → 0, implying that x ∈ F(y).
Hence F(x) is minimal, and in particular, compact. For any open ball Bε(x) around x,
F(x) ⊂ F(Bε(x)) (otherwise cF(x)\F(Bε(x)) is a closed invariant subset), and compact-
ness implies that

F(x)⊂
l∪

j=1

Fk j(Bε(x))

for some finite collection of points K = {k1, · · · ,kl} ⊂ Rq. For any a ∈ Rq, the point Fa(x)

belongs to Fk j(Bε(x)) for some j, hence Fa−k j(x) ∈ Bε(x). Let Sx,ε be the set

Sx,ε := {s ∈ Rq;Fs(x) ∈ Bε(x)}.

Hence a− k j ∈ Sx,ε and consequently Rq = Sx,ε +K. Thus Sx,ε is syndetic, and x is almost
periodic.

Next, we prove a finite version of our equivalence.

Lemma 3. Let F : M → Diff(M) be an equicontinuous action. Given ε > 0 and points
x1, · · · ,xl ∈ M, there is a syndetic set Sε on Rq such that

d(Fs(xi),xi)< ε, ∀s ∈ Sε , ∀i = 1, · · · , l.

Proof. We consider the Cartesian product Ml equipped with the metric

d((y1, · · · ,yl),(z1, · · · ,zl)) := max{d(yi,zi); i = 1, · · · , l}.

Let F be the action of Rq on Mn given by acting via F on each coordinate. With respect
to d, this is an equicontinuous action. The point x = (x1, · · · ,xl) from the statement is
almost periodic due to Lemma 2, so there is a syndetic set Sε ⊂ Rq such that

d(Fs
(x),x)< ε

for every s ∈ Sε . The set Sε has the desired properties.

Theorem 11. An action on a compact manifold is equicontinuous if and only if it is
uniformly almost periodic.

Proof. We fix a metric d on M. Suppose first that F is uniformly almost periodic. Given
ε > 0, let S be a syndetic set on Rq such that

d(x,Fs(x))<
ε
3

for every x ∈ M and s ∈ S. By definition, there is a compact K such that Rq = S+K. We
consider the compact set

A = K ∪−K = {k ∈ Rq;k ∈ K or − k ∈ K}.
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Since A is compact, there is a positive δ such that, for any x,y ∈ M,

d(x,y)< δ =⇒ d(Fk(x),Fk(y))<
ε
3
, ∀k ∈ A. (4.8)

Given an arbitrary element a ∈ Rq, there are k ∈ K and s ∈ S such that −a = s+ k, and
therefore a+ s = −k. Now, since S is the syndetic set associated with ε

3 by the uniform
almost periodicity, we have, for any x,y ∈ M,

max{d(Fa(x),Fa+s(x)),d(Fa(y),Fa+s(y))}< ε
3

(4.9)

On the other hand, if x and y are δ -close, then condition in (4.8) implies

d(Fa+s(x),Fa+s(y) = d(F−k(x),F−k(y))<
ε
3
.

The inequality above, together with the ones in (4.9) and the triangle inequality, yields

d(x,y)< δ =⇒ d(Fa(x),Fa(y))< ε ∀a ∈ Rq,

hence F is equicontinuous.

For the converse, suppose that F is equicontinuous and let ε > 0 be given. Then
there is δ > 0 such that

d(x,y)< δ =⇒ d(Fa(x),Fa(y))<
ε
3
∀a ∈ Rq, ∀x,y ∈ M.

We can assume without loss of generality that δ < 3−1ε . Using the compactness of M

we chose a finite collection x1, · · · ,xl with the property that for every y ∈ M there is an
1 ≤ j ≤ l such that d(y,x j)< δ . By Lemma 3 there is a syndetic set Sδ such that

d(Fs(xi),xi)< δ ∀s ∈ Sδ , ∀i = 1, · · · , l.

Now, any x ∈ M is δ -close to xi for some i, thus

d(x,Fa(x))≤ d(x,xi)+d(xi,Fa(xi)+d(Fa(xi),Fa(x))

< δ +δ +
ε
3

< ε,

which proves uniform almost periodicity.

4.3.1 The C1-enveloping group and C1-equicontinuity
Given an action A : G → Homeo(X) of a topological group G on a compact topo-

logical space X , the enveloping semi-group (or Ellis semi-group) EA is the closure of A(G)
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in the set XX of all functions X → X , with respect to the topology of point-wise conver-
gence. The famous Arzella-Ascolli Theorem (cf.(KELLEY, 2017, Theorem 7.16)) says that
equicontinuity of a family of homeomorphisms of X is equivalent to the condition that
this family have compact closure on the space C(X) of continuous functions X → X , with
respect to the compact-open topology (which coincides with the topology of point-wise
convergence for equicontinuous families). Moreover, such closure consists solely of home-
omorphisms. In this sense, an action’s equicontinuity is equivalent to the compactness of
its enveloping group (AUSLANDER, 1988, Theorem 3.3).

We will define the C1-enveloping group of a contact action in the same way but
considering the C1 compact-open topology on the space of diffeomorphisms. Note that the
image F(Rq) of the contact action F : Rq → Diff(M) is the set spanned by all the flows of
the Reeb fields Ri. In other words,

F(Rq) = Span{exp(tRi); t ∈ R, i = 1, · · · ,q} ,

Now, Diff(M) is a Lie Group when equipped with the C1 compact-open open topology τ1,
its Lie Algebra being that of vector fields on M.

Definition 23 (C1-enveloping group). Let F : Rq → Diff(M) be a contact action. The
C1-enveloping group of F is the closure

E1
F := F(Rq)

in the Lie group (Diff(M),τ1).

If the contact action F is isometric, then F(Rq) is an equicontinuous family, since
the C1-enveloping group E1

F is a closed subset of the compact space Iso(M). With this in
mind, we propose the following stronger version of equicontinuity.

Definition 24 (C1-equicontinuity). The action F is said to be C1-equicontinuous if its
C1-enveloping group E1

F is compact.

The C1-enveloping group acts on the manifold M in a natural way, and its orbits
are exactly the closures of the leaves of F .

Proposition 23. Given a C1-equicontinuous action F :Rq →Diff(M) and x∈M, the orbit
of x under the action of E1

F is exactly F(x).

Proof. Let y ∈ F(x). Then there is a sequence an ∈Rq such that Fan(x)→ y and since E1
F

is compact, Fan → T ∈ E1
F (up to a sub-sequence). Hence y = T (x) belongs to the orbit of

x under E1
F . Conversely, if y is in the orbit of x under E1

F , then there is T = limFan ∈ E1
F

such that y = T (x) = limFan(x), and therefore y ∈ F(x).
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We remark that C1-equicontinuity is a strong dynamical condition. It means the fam-
ily F(Rq) is equicontinuous in the classic sense, and each of the families of derivatives
{dFa

x ;a ∈ Rq} is equicontinuous, for every x ∈ M.

It can be showed that every compact topological space M supporting an equicontin-
uous action F also supports a metric d (compatible with M’s topology) which is invariant
under F . Of course, even when M is a manifold, there is no a priori reason to expect the
metric d to be associated with a Riemannian metric tensor in M, as it is a purely topolog-
ical object of M. The main advantage of working with C1-equicontinuity is precisely that,
in this setting, there exists an F-invariant metric coming from a Riemannian tensor on
M. In other words, being C1-equicontinuous and being an isometric action are actually
equivalent conditions.

Theorem 12. Let F : Rq → Diff(M) be a C1-equicontinuous action. Then M supports an
F-invariant Riemannian metric.

Proof. Let g0 be any Riemannian metric on M. By hypothesis, E1
F is a compact Lie group.

Let µ be a Haar measure defined on the Borel σ -algebra of E1
F . For each p ∈ M and

X ,Y ∈ TpM we define a function

E1
F → R

e 7→ (e∗g0)p(X ,Y ) = g0|e(p)(depX ,depY ).
(4.10)

Note that two elements of E1
F are close in the C1 topology if they are close in the compact-

open topology, and their derivatives are close as transformations. This, together with
the fact that g0 is smooth, implies that the function defined by the mapping (4.10) is
continuous and, therefore, µ-measurable. We define a metric tensor g on M by averaging
the metric g0:

gp(X ,Y ) =
∫

E1
F

(e∗g0)p(X ,Y )dµ(e).

This is a Riemannian metric since it is smooth, bi-linear, and g(X ,X)> 0 for every
field X . Moreover, it is invariant under the action of E1

F , as for any f ∈ E1
F one has

( f ∗g)p(X ,Y ) = g0| f (p)(d fpX ,d fpY )

=
∫

e∈E1
F

e∗g0| f (p)(d fpX ,d fpY )

=
∫

e∈E1
F

(e f )∗g0|p(X ,Y )

= gp(X ,Y ),

thus f ∗g = g. In particular, (Fa)∗g = g for every a ∈Rq, that is, F is an isometric contact
foliation.
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Thus, C1-equicontinuity is simply a dynamical expression of the geometric property
of preserving a metric. Using the famous result of Myers and Steenrod, we can characterise
C1-equicontinuous actions as precisely those which can be extended to a toric action on
M.

Theorem 13. Let F be a action on a compact manifold M. Then F is C1-equicontinuous
if and only if E1

F is a torus.

Proof. If E1
F ≈Tl, then in particular E1

F is compact and F is C1-equicontinuous. Conversely,
if F is C1-equicontinuous then by Theorem 12 there is a metric tensor g invariant under
F . Hence F(Rq) is a representation of the Lie Group (Rq,+) in Iso(M,g), which is a
compact subset of Diff(M) in the C1 topology (cf. (MYERS; STEENROD, 1939)). Thus
E1

F := F(Rq) is compact Abelian subgroup of Iso(M,g), and is therefore isomorphic to a
torus Tl.

4.4 Toric actions on q-contact manifolds
We saw in the last section that contact foliations with invariant metrics are (C1-)

equicontinuous and, therefore, strongly recurrent, with every point returning arbitrarily
close to itself infinitely often. In this section, we look for actually closed orbits for isometric
contact foliations. To this end, we define a particular class of toric actions on a q-contact
manifold.

Definition 25 (Compatible toric action). Let (M,⃗λ ,R⊕ξ ) be a q-contact foliation, and
Tl → Diff(M) be an action of the torus Tl on M. We will say this action is compatible
with the contact foliation F it it preserves the non-degenerate forms dλi. To be more
precise, let X1, · · · ,Xl be generators of the toric action. The action is compatible if

LXi dλ j = 0 for any i, j.

The most critical example of contact foliations supporting compatible toric actions
is the class of isometric contact foliations.

Proposition 24. If F is C1-equicontinuous q-contact foliation on a compact manifold M,
then F admits a compatible action by isometries Tq → Iso(M,g).

Proof. Due to Proposition 7 and Theorem 12, we can assume without loss of general-
ity that g is an R-metric, that is, that λi(X) = g(Ri,X). Since g is F-invariant, the C1-
enveloping group EF is the smallest compact Abelian subgroup containing the image
F(Rq). Hence E1

F is a torus E1
F ≈ Tl, with l ≥ q.
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Now, the inclusion Tq ↪→ E1
F induces an Tq-action on M. By construction this is

an isometric action, so its generators X1, · · · ,Xq are Killing vector fields, that is, LXig = 0
for every i.

We claim this action is compatible. Indeed, since all the elements in E1
F commute,

it follows that h◦ exp(tRi) = exp(tRi)◦h for every h ∈ Tq. Therefore, the action preserves
the Reeb vector fields, that is, dhp(Ri|p) = Ri|h(p). We can use these facts to conclude that
the toric action also preserves the adapted coframe λ⃗ :

h∗λi|p(X) = λi|h(p)(dhp(X))

= gh(p)(Ri|h(p),dhp(X))

= gh(p)(dhp(Ri|p),dhp(X))

= h∗gp(Ri,X)

= gp(Ri,X)

= λi|p(X).

It follows now, using the naturality of the pullback operation, that

h∗ dλi = dλi,

so that the action is compatible, as we wished.

Compatible toric actions are helpful when searching for closed orbits because when-
ever a generator Xi is tangent to a leaf F(x), the leaf in question is not a plane.

Proposition 25. Let (M,⃗λ ,R⊕ξ ) be a closed q-contact manifold, and Ts → Diff(M) be
a compatible action with generators X1, · · · ,Xs. Then each generator is tangent to R in at
least two points.

Proof. We consider on M a q-form λ , obtained from the characteristic form λ by averaging
it with respect to a Haar measure µ on Ts, in the following sense:

λ p(Y1, · · · ,Yq) :=
∫

g∈Ts

g∗λp(Y1, · · · ,Yq)dµ(g).

Note that g is being used to write both the element of Tl and the diffeomorphism of M it
represents. Due to the invariance of µ under multiplication on Ts, the form λ is invariant
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under the action of Ts:

(h∗λ )p(Y1, · · · ,Yq) = λ h(p)(dhpY1, · · · ,dhpYq)

=
∫

g∈Tq

g∗λh(p)(dhpY1, · · · ,dhpYq)dµ(g)

=
∫

g∈Tq

λg(h(p))(dgh(p) dhpY1, · · · ,dgh(p) dhpYq)dµ(g)

=
∫

g∈Tq

(hg)∗λp(Y1, · · · ,Yq)dµ(g)

=
∫

g∈Tq

g∗λp(Y1, · · · ,Yq)dµ(g)

= λ p(Y1, · · · ,Yq),

that is, h∗λ = λ . In particular, for any i ≤ q, any l ≤ s and any set of vector fields Y1, · · · ,Yl

we have
LXi(ιY1 · · · ιYl λ ) = 0.

We also define λ i by
λ i|p(Y ) :=

∫
g∈Tq

g∗λi|p(Y )dµ(g).

We consider, for each i ≤ s and j ≤ q, the functions

φi j(p) := (−1)ιXiλ j|p,

Note that, since g∗Xi = Xi for any g ∈ Tq and generator Xi, these functions are constant
along the orbits of the toric action. We claim that

dφi j = ιXidλ j, (4.11)

To see this, begin defining an auxiliary forms α j = λ j −λ j, and notice that since dλ j is
preserved by the action, the forms α j is closed. Together with LXiλ , the closeness of α j

yields, for any generator Xi:

ιXidλ j +dιXiλ j = LXiλ j = LXiα j +LXiλ j = dιXiα j = dιXiλ j −dιXiλ j,

that is
dφi j =−dιXiλ j = ιXidλ j, i, j = 1, · · · ,q,

which proves (4.11). Moreover, for any i, j, l, the relation ι[Ri,X j] = [LRi, ιX j ], together with
Equation (4.11), yields

ι[Ri,X j]dλl
= LRiιX jdλl

= ιRid(ιX jdλl)+d(ιRiιX jdλl)

= ιRiddφi j

= 0.
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Hence [Ri,X j] ∈ kerdλl = R, that is, the generators Xi are foliate vector fields of F . In
particular, their flows preserve the leaves of F . Finally, consider the function φi j. Since M

is closed, φi j has at least two critical points, where φi j attains its maximum and minimum,
respectively. At a critical point p, one has

0 = dφi j|p = dλ j|p(Xi|p, ·) ⇐⇒ Xi|p ∈Rp,

that is, the critical points of φi j are exactly the points where Xi is tangent to R.

Theorem 14. If a closed q-contact manifold admits a compatible toric action, then
the contact foliation can not be a foliation by planes. In other words, closed q-contact
manifolds supporting compatible toric actions satisfy the WGWC.

Proof. As we saw in the last proposition, the generating fields Xi are foliate. Recall that
the set of foliate vector fields is the normaliser

B(F) := {X ∈ Γ(M); [X ,Y ] ∈ Γ(F) for all Y ∈ Γ(F)}

of the Lie algebra Γ(F) of vector fields tangent to F , that is, sections of R. The Lie
algebra of sections of R is clearly a sub-algebra of B(F), and the quotient

t(F) := B(F)/
Γ(F)

is the Lie algebra of transverse vector fields (cf. Appendix A). We denote by X the image
of a field X under the projection B(F) → t(F). Each transverse field acts on the leaf
space M/F via its flow. According to Proposition 25 above, if p is a critical point of the
function φi j, then the generating field Xi is tangent to F at p, and consequently X i is zero
at the point (that is, the leaf ) F(p). This means the flow of Xi fixes the entire leaf F(p).
In particular, the entire orbit of p under Xi is contained in F(p).

Finally, since we can choose the generators of the toric action to be all periodic
fields, it follows that F(p) contains an essential closed curve, and it is, therefore, not a
plane.

In particular, when q = 1 last corollary is a result on circle invariant pre-symplectic forms
by Banyaga and Rukimbira (BANYAGA; RUKIMBIRA, 1995).

Corollary 9. Every isometric contact foliation on a closed manifold satisfies the WGWC.

Proof. This is just Theorem 14 restated in light of Proposition 24.



4.4. Toric actions on q-contact manifolds 89

Now we present a proof of Theorem A by showing that an isometric contact action
of Rq must have at least two closed orbits, which generalises a result from Banyaga and
Rukimbira. To that end, we first need the following Proposition, due to Caramello Jr. and
Töben, which we state here for completeness:

Proposition 26 (Proposition 3.1 in (CARAMELLO Jr.; TÖBEN, 2019)). Let (M,F)

be a Riemannian foliation, and X be a transverse killing vector field. Then each connect
component N of the set of zeros of X is an even-codimensional closed submanifold of M

saturated by the leaves of F . Moreover, N is horizontally totally geodesic, and if F is
transversely orientable, so is (N,F|N).

This is a generalisation to Riemannian foliations of a result for Riemannian man-
ifolds regarding zero sets of Killing fields, that is, sets of points where the vector field
vanishes (cf. (KOBAYASHI, 1995, Theorem 5.3, Chapter II), and also (KOBAYASHI,
1958)). We will need the following simple lemma as well.

Lemma 4. Let (M,⃗λ ,R⊕ ξ ) be a q-contact foliation. If N ⊂ M is an F -saturated sub-
manifold of even codimension, then (N ,⃗λ |N ,TN =R|N ⊕ξ ∩TN) is a q-contact structure
on N.

Proof. First note that since, N is saturated, that is, F(p) ⊂ N for every p ∈ N, we have
dimN ≥ q, and therefore codimN = 2m for some m ≤ n. Moreover, we cannot have Ri

transverse to N at any point. Hence all Reeb vector fields are everywhere tangent to N.
In particular, R|N ⊂ TN. One can also check that

ker(λi|N) = kerλi ∩TN,

for any i and, consequently, ∩
i

ker(λi|N) = ξ ∩TN.

Moreover, the derivatives satisfy

ker(dλi|N) =R∩TN =R|N .

for whichever i we choose. Hence

TN = (TN ∩R)⊕ (TN ∩ξ ) =R|N ⊕ (TN ∩ξ ) = ker(dλi|N)⊕

(∩
j

ker
(
λ j|N

))
,

and therefore (N,λ1|N , · · · ,λk|N ,TN = R|N ⊕ ξ ∩ TN) is a q-contact structure on N, as
claimed.
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Theorem 15. Every isometric contact foliation on a closed manifold satisfies the SGWC,
having at least 2 distinct closed orbits. Moreover, the set C of closed orbits consists of a
union

C =
∪

Ni,

where each Ni is an even-codimensional totally geodesic closed submanifold carrying a
closed contact foliation, that is, one where every leaf is closed.

Proof. Let Tq → Iso(M) be a compatible action by isometries as in Proposition 24. As
remarked before in Proposition 25, since the generators X1, · · · ,Xq of the compatible toric
action are foliated vector fields, to find a close orbit, it is sufficient to find a point where
all the generators are tangent to R. The main idea here is that the set of points where
these generators are tangent to the foliation can be realised as a zero set of a Killing
vector field. Hence it has even codimension and therefore carries a q-contact structure,
according to Lemma 4.

Given a generator Xi, we denote by X i its image under the projection onto the
algebra of transverse fields. By construction, each X i is a transverse Killing vector field,
that is, one that preserves the metric g⊥ on ξ .

Consider the set of zeros of X1, i.e.,

{p ∈ M;X1|p = 0} ⊂ M.

This is exactly the set of points p ∈ M where X1 is tangent to the foliation, and, due to
Proposition 25, it has at least two elements. Let M1 be a connected component of this
set. It follows from Proposition 26 that M1 is a closed submanifold of even codimension
saturated by the contact foliation F . According to Lemma 4, there is on M1 a q-contact
structure inducing the same foliation as R|M1 , and whose Reeb vector fields are Ri|M1 . By
construction, X1 is everywhere tangent to the leaves on M1. Now, since M1 is closed, for
any j = 1, · · · ,q the function φ2 j =−λ j(X2) has a critical point on M1, and hence the set

{p ∈ M1;X2|p = 0}

is non-empty. We choose a connected component M2 on this set. It follows again from
Proposition 26 that M2 is a closed submanifold of even codimension (both in M and M1),
which is saturated by F and on which X2 restricts to a vector field everywhere tangent to
the leaves.

Iterating this procedure, we eventually arrive at a submanifold Mq−1 of even codi-
mension. By construction, the manifold Mq−1 is F -saturated, and on Mq−1 the fields
X1, · · · ,Xq−1 are everywhere tangent to the leaves. On this closed submanifold the func-
tions φq, j have at least two distinct critical points p and q, corresponding the extrema of
the function, so that both Xq|p and Xq|q are tangent to R. By construction, all the Xi are
tangent to R at p and q, hence, by Proposition 25, the leaves F(p) and F(q) are closed.
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This proves that the subset C of points in M belonging to a closed leaf is non-empty.
We know from Proposition 23 that the leaf closures are exactly the orbits of the action of
E1

F on M. Thus, if p ∈ C, then p belongs to a closed leaf F(p) =F(p), which is the orbit of
p under the action of E1

F . Since F(p) is a torus Tq, p is a fixed point of some element of E1
F .

Hence it is a fixed point of the elements of an entire isotropy subgroup of E1
F (as is the entire

leaf L to which p belongs). Now, being a compact Abelian Lie group, E1
F admits only a

finite number of such isotropy groups, say I1, · · · , Il. Denote by I1, · · · ,Il the corresponding
Lie algebras of Killing fields. The leaf F(p) is a set of collective zeros of the Killing fields in
one of the algebras I j. Hence it follows from (KOBAYASHI, 1958, Corollary 1) that F(p)

is contained in an even-codimensional totally geodesic submanifold N of M. The finite
collection of all these submanifolds gives us the desired partition. Moreover, as pointed
out before, p ∈ N implies F(p) ⊂ N. Hence each N is a saturated submanifold of even
codimension so that Lemma 4 applies, allowing us to conclude that the restriction of λ⃗
to N gives rise to a q-contact foliation, the leaves of which are all closed by construction.

In the next section, we will see how to define the set C in terms of a Morse-Bott
function and how to relate its properties to the basic cohomology of F .

4.5 Counting closed leaves
In this section, we further generalise results from (RUKIMBIRA, 1995) and (GO-

ERTSCHES; LOIUDICE, 2020b) to the context of isometric contact foliations. Originally,
the results from this section were proved for K-contact manifolds and f -K-contact struc-
tures. However, as we show here, only the weaker hypothesis of the Reeb fields being
Killing for any metric is sufficient for most of the results. In this section we work on a
fixed isometric contact action F : Rq → Iso(M,g).

We begin by recalling that, given an arbitrary field K on a Riemannian manifold
(M,g), one can use its dual form ηK := g(K, ·) to rewrite Koszul’s formula as

2g(∇X K,Y ) = Xg(K,Y )+Kg(X ,Y )−Y g(K,X)

+g([X ,K],Y )−g([X ,Y ],K)−g([K,Y ],X)

= Kg(X ,Y )−g([K,X ],Y )−g([K,Y ],X)

+XηK(Y )−Y ηK(X)−ηK([X ,Y ])

= LKg(X ,Y )+dηK(X ,Y ).

If we suppose K is Killing, so that the first term in the RHS vanishes, this expression
becomes

2g(∇X K,Y ) = dη(X ,Y ).
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This means that for Killing fields K, the mapping X 7→ ∇X K defines a skew-symmetric
(1,1)-tensor field on M. In the case of an isometric contact foliation, since each Reeb field
is Killing, we can define:

Definition 26 (Associate tensor field). For each Reeb field Ri of an isometric contact
foliation F , its associate tensor field is the (1,1)-tensor

fi : X 7→ ∇X Ri.

By construction, these tensors satisfy

g( fi(X),Y ) =
1
2

dλi(X ,Y ). (4.12)

Next lemma follows immediately from Equation (4.12).

Lemma 5. For every i, the associated tensor field fi is such that

(i) fi is skew-symmetric with respect to g;

(ii) fi(R j) = 0 for every j;

(iii) Im fi ∩R= {0}.

Remark the similarities between the properties (i) - (iii) of the tensor field associ-
ated with Ri and the properties satisfied by the defining tensor f of an f -structure. We
do not know, however, that fi satisfies the equality

f 3
i + fi = 0,

However, as we will see, such a condition is not necessary for our goals. Next, we show
that using fi to replace f , one can recover many of the results which hold for metric
f -K-contact structures. First, we have the following lemma, which plays a role similar to
that of Equation (2.6) in (GOERTSCHES; LOIUDICE, 2020b).

Lemma 6 (Kostant’s Formula). For a Reeb field Ri in an isometric contact manifold
(M,g,⃗λ ,ξ ⊕R)

∇X fi = R(X ,Ri).

Proof. On the one hand, the tensor field LRi∇ is zero since the flow of Ri consists of
isometries, which preserve the connection. On the other hand,

(LRi∇)XY = LRi(∇XY )−∇LRiX
Y −∇X(LRiY )

= [Ri,∇XY ]−∇[Ri,X ]Y −∇X [Ri,Y ]

= ∇Ri∇XY −∇∇XY Ri −∇[Ri,X ]Y −∇X ∇RiY +∇X ∇Y Ri

= ∇Ri∇XY −∇[Ri,X ]Y −∇X ∇RiY +∇X fi(Y )− fi(∇XY )

= R(X ,Ri)Y − (∇X fi)Y.
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Hence R(X ,Ri)Y = (∇X fi)Y for any field Y , as we wanted.

We consider the Lie algebra e of the C1-enveloping group

E1
F = Span{exp(t1R1), · · · ,exp(tqRq);(t1, · · · , tq) ∈ Rq},

noting that this is a subalgebra of iso(M)(that is, the family of Killing fields on M)
containing the Reeb distribution R.

For each point p ∈ M, the isotropy subalgebra Ip is defined as the set of elements
of e whose value at p is zero, i.e., the fields in e whose flow fixes p. Note that Ip has
dimension at most dimE1

F −q since the Reeb fields never belong to it. We want to choose
a vector field Z : M → e avoiding subspaces of non-maximal dimension, which is a generic
choice in the following sense. We define

Ĩp = Ip ⊕R⊂ e.

Due to M’s compactness, there are only finitely many distinct subspaces Ĩp. Let b be
the (finite) union of all the “bad” subspaces Ĩp ̸= e, that is, those whose dimension is
non-maximal. We choose a Killing field Z to satisfy

Z ∈ e\b.

Since LZλi = 0 for any i, we have d(ιZλi) = −ιZdλi. Thus the critical point set C of the
map

S : M → R

p 7→ ιZλi(p)

is exactly the set of points where dλi(Zp, ·)≡ 0, there is, the set

C = {p ∈ M;Zp ∈Rp},

which, in light of our choice of Z, is the same as the set

C = {p ∈ M; the dimension of the orbit of p under the action of E1
F is exactly q}.

The latter is exactly the union of the closed leaves of the contact foliation F . The set C
is the union of fixed points of the subtori T ⊂ E1

F whose dimension is dimE1
F −q, hence C

is a manifold.

Lemma 7. Let N be a connected component of C and p ∈ N. Consider the Killing field

K = Z −πRZ,

and the tensor field
Φ =

q

∑
j=1

(ιZλ j) f j.

Then for all v,w ∈ TpM perpendicular to N, we have:
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(i) ∇vK = ∇vZ +Φ(v) is a non-zero vector perpendicular to N. In particular, ∇vK ∈ ξp.

(ii) Hess(S)|p(v,w) = 2g(R(Ri,v)Zp + fi(∇vZ),w).

(iii) The Hessian of S along N is non-degenerate in directions orthogonal to N. In partic-
ular, S : M → R is a Morse-Bott function on M.

Proof. We remark that R ⊂ T N, and since R and ξ are orthogonal as per choice of
g, it follows that T⊥N ⊂ ξ . To prove (i), first note that the Lie algebra of E1

F has a
decomposition e = Ip ⊕R, and Z = K +πRZ is simply the corresponding decomposition
of Z. Evaluating the connection in the direction of v yields

∇vZ = ∇vK +∇v

q

∑
ji

λ j(Z)R j

= ∇vK +
q

∑
ji

(vλ j(Z)R j +λ j(Z) f j(v))

= ∇vK +Φ(v)+
q

∑
j=1

(vλ j(Z))R j. (4.13)

Now notice that on N the vector Z belongs to R, and since v ∈ ξ , λ j([v,Z]) = 0 for every
j. Hence

vλ j(Z) = dλ j(v,Z)+Zλ j(v)+λ j([v,Z]) = dλ j(v,Z) = 0,

and therefore Equation (4.13) becomes ∇vK = ∇vZ +Φ(v), as wanted.

We claim ∇vK ̸= 0. To see this, suppose by contradiction that ∇vK = 0 and consider
a geodesic γ starting at p with velocity vector v. Since K is Killing, it is a Jacobi field for γ ,
and since Kp = 0, it follows that K|γ = 0. On the other hand, our choice of Z implies that
in a neighbourhood of N, the only zeros of Z are those in N. Thus γ ⊂ N, contradicting
the orthogonality of v with respect to N. Therefore ∇vK ̸= 0.

Now, to see that ∇vK is orthogonal to N, we note that N, being the zero set of a
Killing field, is a totally geodesic submanifold. Because K is Killing and K|N is tangent to
N, this implies ∇X K tangent to N for any X tangent to N. Thus

g(∇vK,X) =−g(∇X K,v) = 0,

and since X was arbitrarily chosen, it follows that ∇vK ∈ T⊥N ⊂ ξ .

As for (ii), we consider fields V and W extending v and w. Suppose these fields
are obtained employing parallel transporting v and w along the geodesics starting at p.
Observe that Ri and Z are commuting Killing fields, hence

∇RiZ = fi(Z)+ [Ri,Z] = fi(Z).
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Using the relation above, the properties of our choice of Z, and Lemma 6, we obtain

Hess(S)|p(v,w) =V (WS(p))

=V (Wλi|p(Z))

=V (Wgp(Ri,Z)

=V (gp( fi(W ),Z)+gp(Ri,∇W Z))

=V (−gp( fi(Z),W )−gp( fi(Z),W )

=−2V gp( fi(Z),W )

=−2(gp(∇V fi(Z),W )+gp( fi(Z),∇VW ))

=−2(gp((∇V fi)(Z)+ fi(∇V Z),W )+
1
2

dλi(Z,∇VW )︸ ︷︷ ︸
0

=−2g(R(v,Ri)Z + fi(∇vZ),w).

Finally, to see that Hess(S)|p is non-degenerate in the normal bundle of N, we first observe
that

R(X ,Ri)R j = (∇X fi)R j = ∇X( fi(R j))− fi(∇X R j) =− fi f j(X).

Now we use item (ii) with w = fi(∇vK), yielding:

Hess(S)|p(v, fi(∇vK)) =−2g(R(v,Ri)Z + fi(∇vZ), fi(∇vK))

=−2g

(
q

∑
j=1

ιZλ jR(v,Ri)R j + fi(∇vZ), fi(∇vK)

)

=−2g

(
−

q

∑
j=1

ιZλ j fi f j(v)+ fi(Φ(v)+∇vK), fi(∇vK)

)
=−2g(− fi(Φ(v))+ fi(Φ(v))+ fi(∇vK), fi(∇vK))

=−2|( fi(∇vK), fi(∇vK)|

Now note that fi(∇vK) ̸= 0. In fact, suppose by contradiction that fi(∇vK) = 0. Then, for
every X ∈ ξ :

0 = g(X , fi(∇vK)) =−g( fi(X),∇vK) =−1
2

dλi(X ,∇vK),

which can not happen since dλi is non-degenerate on ξ . This means for each v normal to
N there is another vector fi(∇vK) such that Hess(S)|p(v, fi(∇vK)) ̸= 0, that is, Hess(S)|p
is non-degenerate in normal directions.

Recall that the Betti number bi(M;R) is the dimension of the i-th cohomology
group H i

dR(M) over R. Similarly, we define the F -basic Betti number bi(F) to be the real
dimension of the basic cohomology group H i

B(F). The F -basic Poincaré polynomial of the
foliated manifold (M,F) is

PF(t) =
codim(F)

∑
i=0

t ibi(F).
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We have just shown that S : M → R is a F -basic Morse-Bott function. We can then
apply the results from (GOERTSCHES; TÖBEN, 2018) to relate the F -basic Poincaré
polynomials of (M,F) and (N,F|N), for each connected component N of the critical set
C, getting:

Theorem 16. The F -basic Poincaré polynomials for M and N satisfy

PF(t) = ∑
N

t iN PF |N (t),

where N runs over all the connected components of C, and iN is the index of N, i.e., the
rank of the negative normal bundle of N with respect to S.

In particular, by evaluating both sides at t = 1, we obtain

Theorem 17. Let (M,g,⃗λ ,R⊕ξ ) be an isometric contact foliation, and C be the critical
point set of the Morse-Bott function S : p 7→ λi(Zp). Then

dimRH∗
B(F) = dimRH∗

B(F|C).

In particular, if F has only finitely many closed orbits, then the dimension of the basic
cohomology ring H∗

B(F) is exactly the number of closed orbits of F .

Theorem 17 allows us to estimate the number of closed orbits by studying the
basic cohomology of the contact foliation F . The first thing to note is that the even-
dimensional basic cohomology groups are never zero because the exterior derivatives of
the adapted coframe λ⃗ define non-zero basic forms. In fact, it is known that an invariant
transversal volume form µ for a harmonic foliation (M,F) represents a non-zero class on
the top-dimensional basic cohomology space HcodimF

B (F). This implies, in particular, that
if F is a foliation of even codimension 2n, and ω is an invariant transversal symplectic
form, then [ω]i ̸= 0 ∈ H2i

B (F) for i = 1, · · · ,n (cf. (TONDEUR, 2012, Theorems 4.32 and
4.33)). In the case of q-contact structures, one notes that the operator

ω 7→
∫

M
λ ∧ω,

where λ := λ1 ∧ ·· · ∧λq is the characteristic form, descends to an operator H∗
B(F) → R,

because the q-form λ is F -closed (cf. Remark 9). Such operator maps [dλi]
n to a non-

zero number, since λ ∧ (dλi)
n is a volume form on M, hence [dλi]

n ̸= 0, and consequently
[dλi]

j ̸= 0 for every j = 1, · · · ,n.

To better use this fact, we associate with each adapted coframe the following
quantity.

Definition 27 (Basic dimension of an adapted coframe). Let (M,g,⃗λ ,R⊕ ξ ,g) be an
isometric contact foliation on the (2n+ q)-dimensional manifold M. Define δ0(⃗λ ) := 1,
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and for i = 1, · · · ,n, let δi(⃗λ )) be the dimension of the linear subspace of H2i
B (F) spanned

by {[dλ1]
i, · · · , [dλq]

i}. In other words

δi(⃗λ ) := max{#L;L ⊂ {[dλ1]
i, · · · , [dλq]

i} is linearly independent}.

The natural number
δ (λ⃗ ) :=

n

∑
i=0

δi(⃗λ ) = 1+
n

∑
i=1

δi(⃗λ )

is the basic dimension of the adapted coframe λ⃗ .

Note that δi(⃗λ ) is bounded below by 1 and above by either q or the dimension of
H2i

B (F). Hence the basic dimension satisfies the inequalities

n+1 ≤ δ (⃗λ )≤ min{qn+1,dimH∗
B(F)}. (4.14)

We remark that for uniform contact foliations, the basic dimension is always minimal, i.e.,
equal to exactly n+1. Using Theorem 17, we obtain

Theorem 18. Let F be an isometric contact foliation on a closed manifold. Then the set
C of closed orbits consists of a union

C =
∪

Ni,

where each Ni is an even-codimensional totally geodesic closed submanifold, and the re-
striction F|Ni is a closed contact foliation. Moreover, the number of closed orbits of F is
at least δ (⃗λ )+ b1(M;R). In particular, an isometric contact foliation of codimension 2n

has no less than n+1 closed orbits.

Proof. The assertions regarding the set C are exactly the same as in Therem 15, so we
only need to prove that the lower bound of δ (⃗λ )+b1(M;R) closed orbits hold.

By definition, the basic dimension satisfies δi(⃗λ ) ≤ b2i(F). Hence, it is a lower
bound for dimRH∗

B(F). Note that this bound does not consider the dimensions of any
of cohomology groups H i

B(F) for odd i. On the other hand, it was shown in Theorem 9
that every harmonic 1-form on an isometric q-contact manifold is also F -basic, implying
an isomorphism H1

dR(M) ≈ H1
B(F) (cf. Theorem 9). In particular, b1(M;R) = b1(F), and

therefore δ (⃗λ )+b1(M;R) is a lower bound for dimRH∗
B(F).

As remarked above, the basic dimension does not consider any odd-dimensional
basic cohomology groups. Hence, one should not expect it to be equal to the number of
closed orbits.
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Example 15 (Products of Stiefel manifolds). We consider the 7-dimensional Stiefel
manifold

V2,5 ≈ SO(5)/
SO(3).

As shown in (GOERTSCHES; NOZAWA; TÖBEN, 2012, Section 8), V2,5 supports a
K-contact structure (α,g) whose Reeb field S has exactly

4 = #{0, [dα], [dα]2, [dα]3]}= δ (α)

orbits. We consider the 14-dimensional manifold M =V2,5×V2,5, and denote by πi : M →
V2,5 the projection on the i-th coordinate. For i = 1,2, we write

gi := π∗
i g,

σi := π∗
i α,

Xi := π∗
i S.

Then the 1-forms

λ+ = σ1 +σ2

λ− = σ1 −σ2

define an non-uniform 2-contact structure on M whose Reeb fields are R+= 2−1(X1+X2)

and R− = 2−1(X1 −X2), respectively, as in Example 10. The metric g = g1 +g2 on M is
such that each Reeb field Ri is Killing, so that (M,g,{λ+,λ−}) defines an isometric 2-
contact structure. The contact foliation F is the product of the contact flows in (V2,5,α).
In particular, the closed leaves are exactly the products of closed flowlines, hence (M,F)

has exactly 16 closed leaves, and dimRH∗
B(F) is 16, according to Theorem 17. On the

other hand, the Stiefel manifold V2,5 is a real cohomology sphere of dimension 7. Hence
the Künneth formula implies that the first cohomology group of M is 0. Moreover, F
has codimension 12 = 2 ·6, hence the minimal number of closed leaves of F as given by
Theorem 18 is 7. Using Equation (4.14), we conclude that the basic dimension of the
coframe {λ+,λ−} is bounded above by 2 · 6+ 1 = 13, so that’s the maximum number
of closed orbits one could assume F has by using the estimates of Theorem 18 alone.

Observe that the basic dimension δ ({λ+,λ−}) is not minimal. In general, for an
adapted coframe {λ1, · · · ,λq}, two basic classes [dλi] and [dλ j] satisfy an equality

[dλi]
l = a[dλ j]

l

for a non-zero real number, a if and only if there is a basic (2l −1)-form η such that

(dλi)
l −a(dλ j)

l = dη ,
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and therefore
λi ∧ (dλi)

l−1 −aλ j ∧ (dλ j)
l−1 = η +θ , (4.15)

where θ is a closed (2l−1)-form. In particular, in the case of the manifold M of Example
10, if we assume δ1({λ+,λ−}) = 1 and apply Equation (4.15) we get

λ+−aλ− = d f +θ , (4.16)

where f is a basic function and dθ = 0, because H1
B(F) ≈ H1

dR(M) = 0 (cf. Theorem 9).
Taking exterior derivatives in Equation (4.16) we obtain

(a−1)dσ1 =−(a+1)dσ2,

which can not happen for any real a. Thus δ1({λ+,λ−}) = 2, and consequently

δ ({λ+,λ−}) = 1+2+
6

∑
i=2

δi({λ+,λ−})≥ 8

is strictly bigger than 2−1codim(F)+1 = 7.
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CHAPTER

5
C1-EQUICONTINUITY, CONFORMALITY

AND QUASICONFORMALITY

C1-equicontinuity should be thought of as a dynamical way to express the geo-
metrical property of having an invariant metric. Two other properties, one dynamical
and one geometrical, generalise the concept of metric invariance: quasiconformality and
conformality. When restricted to the normal bundle of a foliation, these properties are
generalisations of the existence of a bundle-like metric. In other words, quasiconformal and
conformal foliations generalise the class of Riemannian foliations. These generalisations
are strict: there are conformal foliations that are not Riemannian and quasiconformal
foliations that are not conformal.

We already saw that for contact foliations, the existence of a bundle-like metric is
equivalent to the existence of an invariant metric, that is, the class of isometric contact fo-
liations is the same as the class of Riemannian contact foliations, both being characterised
by the dynamical condition of being C1-equicontinuous. We will show in this chapter that
the same occurs for the other two classes discussed above, i.e., that quasiconformal and
conformal contact foliations are actually, up to a choice of metric, isometric contact fo-
liations. In this sense, all of these properties are equivalent to being C1-equicontinuous:
quasiconformal, conformal, Riemannian and isometric contact foliations are all charac-
terised by the fact that their C1-enveloping groups are tori.

5.1 Conformal structures on vector bundles

On the n-dimensional Euclidean space, we say two inner products are conformally
equivalent if one is a positive multiple of the other. Conformally equivalent inner prod-
ucts define the same (oriented) angles but not the same norms. A conformal metric on
the Euclidean space is an equivalence class of conformally equivalent inner products.
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The space of all inner products on Rn can be identified with the space Sym(n;R)
of symmetric positive definite n×n matrices. This space is acted upon by Gln(R) via

X ·A = |detX |
2
n X tAX .

One can check (for instance, using Cholesky Decomposition) that every A ∈ Sym(n;R)
belongs to the orbit of the identity matrix I. In other words, the action is transitive.
Moreover, this action preserves conformal equivalence, so it descends to the space Cn :=
Sym(n;R)/ ∼ of conformal metrics. The isotropy subgroup of the identity (and hence of
the entire action) is

Con(R) := {X ∈ Gln(R); X tX = cI,c > 0},

and we can then give the space Cn of conformal metrics the following description

Cn ≈ Gln(R)/
Con(R) ≈

Sln(R)/
Son(R).

Note that the last isomorphism is simply a consequence of the fact that conformal metrics
can be re-scaled at will so that we can choose the representing matrices to have determi-
nant 1. If an element of Cn is represented by the matrix A whose eigenvalues are α1, · · · ,αn,
then the norm

d0(A) :=
1
2

(
n

n

∑
i=1

(lnαi)
2

) 1
2

defines an Gln(R)-invariant metric on Cn, making it into a complete, simply connected,
globally symmetric Riemannian manifold of non-compact type and negative curvature.
Any linear isomorphism Rn → Rn induces a linear isometry Cn →Cn. We direct the inter-
ested reader to (TUKIA, 1986, Section D) for more details and further references.

Another norm d1 can be defined on Cn, by setting

d1(A) :=
n
2

max
(

ln(max{αi}), ln
(

1
min{αi}

))
,

and requiring invariance under the action of Gln(R). The following inequalities relate these
two metrics

1√
n−1

d1 ≤ d0 ≤

d1 if n is even,
1√

(n−1)n−1
d1 if n is odd

(5.1)

(cf. (TUKIA, 1986, Section D)).

Suppose E → M is a vector bundle of constant rank n. On a fibre Ex ≈Rn, we can
consider the set CE

x of all the conformal metrics, which has the structure of a Riemannian
manifold, as discussed above. Thus, CE → M becomes a fibre bundle of typical fibre Cn.

Definition 28 (Conformal Structures). A conformal structure on E is a section γ :
M → CE of the bundle of conformal spaces. We say the conformal structure is smooth
(resp. Cr, measurable) if the section γ is a smooth (resp. Cr, measurable) map.
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Remark 13. At each point x, the conformal metric γx is represented by an inner product
g(γ)x on the fibre Ex. This choice of representatives can be made so that g(γ)x varies
smoothly on x (or varies in a Cr manner) given that the conformal structure is itself smooth
(resp, Cr). Therefore, each smooth (resp. Cr) conformal structure γ : M → CE defines a
smooth (resp. Cr) Riemannian metric tensor gγ on M. Conversely, given a Riemannian
metric g on the bundle (M,E), it defines a unique conformal structure γ(g) by defining
γ(g)x as the conformal class of gx. It is clear that γ(g) defined in this manner is as regular
as g.

Each fibre of the bundle of conformal metrics CE has a canonically defined metric,
as described earlier. Any linear isomorphism between two fibres of E induces an isometry
between the associated fibres of CE . So, if (Φ,ϕ) is a bundle isomorphism 1, it acts on a
conformal structure via

(Φ,ϕ) · γ := Φ−1 ◦ γ ◦ϕ

(where Φ−1 is an abuse of notation denoting the isometry induced by Φ−1 : E → E on CE).
If γ is represented by a metric tensor g, then (Φ,ϕ) · γ is represented by the metric

hx := gϕ(x) ◦ (Φx ×Φx).

When E = TM and ϕ is a diffeomorphism, then h = ϕ∗g. The same holds for any sub-
bundle of TM preserved by Diff(M). In this case, instead of (Φ,ϕ) · γ we may write the
action simply as ϕ · γ .

Specialising in the q-contact case, we have the following definitions.

Definition 29 (Conformal contact action). The contact action F : Rq → Diff(M) is con-
formal if there is a smooth conformal structure γ : M →CTM such that

Fa · γ = γ,

for all a ∈ Rq.

Definition 30 (Transversely conformal contact action). The contact action F : Rq →
Diff(M) is transversely conformal if there is a smooth conformal structure γ : M →Cξ

such that
Fa · γ = γ,

for all a ∈ Rq.

That is, a contact foliation is (transversely) conformal when it preserves a conformal
structure on (the contact distribution ξ ) the manifold M . In other words, there is a
1 that, is, Φ : E → E is a fibre-wise linear isomorphism, ϕ : M → M is a homeomorphism, and

π ◦Φ = ϕ ◦π, where π : E → M is the natural projection
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Riemannian metric tensor g on ξ (respectively, M) and a collection {ρa}a∈Rq of positive-
valued functions ρa : M → R+ such that

(Fa)∗g = ρag,

for all a ∈ Rq. Smoothness of γ implies the family {ρa} varies smoothly on a. We say the
contact foliation F is (transversely) conformal if its underlying action is (transversely)
conformal.

Generally, a vector field whose flow consists of conformal transformations is called
a conformal Killing field. One possible characterisation for such fields is that they
satisfy the following equation

LX g = ρg,

for some non-negative function ρ , called the conformal factor of the field X . In particular,
Killing fields are exactly the conformal ones whose conformal factor is identically zero. In
the case of conformal contact actions, this translates into the following proposition.

Proposition 27. If F : Rq → Diff(M) is (transversely) conformal then each to each Reeb
field corresponds a function σi such that

LRig = σig.

Proof. The flow of Ri is exactly exp(tRi) = F tei , by definition. Hence, there are positive-
valued functions ρtei such that

(exp(tRi))
∗g = ρteig.

Differentiating both sides with respect to t and evaluating at 0 gives

LRig :=
d
dt
(exp(tRi))

∗g
∣∣∣∣
t=0

=
d
dt

(ρteig)
∣∣∣∣
t=0

=
d
dt

ρtei

∣∣∣∣
t=0

g.

Letting σi := d
dt ρtei|t=0 gives the desired equality.

Example 16 (Invariant metrics). If M supports an F -invariant metric g, then the
conformal structure represented by g is also invariant. Indeed, for any positive function
f : M → R,

(Fa)∗ f g = ( f ◦Fa)g.

So F is conformal. Similarly, if g is a bundle-like metric on ξ , then it represents an
F -invariant conformal structure on ξ . Thus every Riemannian foliation is transversely
conformal.
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Remark 14. Note that if g represents an invariant conformal structure on M, then it
restriction to ξ induces an invariant conformal structure. On the other hand, contrary
to the Riemannian case, there is no way to use the adapted metric gτ to extend an F -
invariant conformal structure on ξ to the whole TM in a conformal way. Indeed, if such
a conformal structure is represented by a metric gξ , we would have

(Fa)∗(gξ +gτ) = ρagξ +gτ = fa(gξ +gτ). (5.2)

Evaluating this at a pair (Ri,Ri) yields fa ≡ 1, and therefore ρa ≡ 1. In other words, the
only way Equation (5.2) holds is if Ri is Killing with respect to gξ , so a priori, there is no
clear way to extend an invariant conformal structure on ξ to TM, unless it is actually an
invariant metric.

Now, let T be a complete transversal for F . Since TT ≈ ξ , the metric gξ pulls back
to a metric on T , for which the Reeb fields are all conformal Killing fields. Using the same
arguments as in Proposition 14, we note that the holonomy transformations induced by
F on T can be seen, at least locally, in terms of the action of F on M, and are therefore
conformal transformations of T .

Proposition 28. If the contact action F is transversely conformal, then the holonomy
pseudogroup of F is a pseudogroup of conformal transformations.

Remark 15. In particular, if (Uα , fα ,γαβ ) is a foliation cocycle for F on M, then the
transition maps γαβ are all conformal transformations, and therefore F is a transversely
flat conformal foliation, in the sense of (ASUKE, 1996).

5.2 Quasiconformality
Suppose M is a manifold and V ⊂ TM is a subbundle equipped with a Riemannian

metric tensor g. If F : R→ M is an action, then at each point x ∈ M and element a ∈ Rq,
we consider the mappings

LF,V (x,a) := max{|dFa
x v|; v ∈Vx and |v|= 1},

lF,V (x,a) := min{|dFa
x v|; v ∈Vx and |v|= 1}.

These mappings measure, respectively, how much the unit ball in V is deformed in the
maximum and minimum deformation directions under the map dFa

x , all with respect to
the metric g, of course. Together, these quantities define the V -eccentricity of the action
F as the ratio

EF,V (x,a) :=
LF,V (x,a)
lF,V (x,a)

.

This can be thought of as a measure of how much the unity ball in Vx is deformed into an el-
lipsoid in VFa(x) by the transformation dFa

x . The action F is said to be K-quasiconformal
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on V if the V -eccentricity map is globally bounded by K, that is, EF,V (x,a)< K. The real
number K is called a quasiconformality constant for the action. For simplicity, in the
particular case when V = TM is the entire tangent bundle, we drop any references to the
subbbundle V and adopt the notations lF , lF and EF .

We remark that for compact M, the choice of metric is irrelevant since any two
Riemannian metrics g,g′ are quasi-isometric, that is

1
c

g(v,v)≤ g′(v,v)≤ c2g(v,v)

for some fixed constant c ∈ R+ and every v ∈ TM. The notions of conformality and qua-
siconformality, though very different in nature (the former is a geometric property, and
the latter is dynamic), are related in many ways.

Proposition 29. The V -eccentricity map EF,V is constant equal to 1 if and only if F is
conformal on V , i.e., preserves a conformal structure in CV .

Proof. If F is conformal on V there is an Rq indexed family ρa : M → R+ such that the
unity ball at Vx is mapped by dFa

x into a ball of radius ρa(x) in VFa(x). Hence LF,V (x,a) =

lF,V (x,a) = ρa(x), and EF,V ≡ 1. Conversely, if EF,V ≡ 1 then LF,V ≡ lF,V and, for any x and
a, the isomorphism dFa

x maps the unity ball in Vx to a ball of radius ra(x) = LF,V (x,a) =

lF,V (x,a) in VFa(x), implying (Fa)∗g = ra(x)g, as we wanted.

For contact actions, we define

Definition 31 (Quasiconformal contact action). We say the contact action F is quasi-
conformal with respect to the metric g if its TM-eccentricity mapping

EF : M×Rq → R

is globally bounded. Similarly, the action is transversely quasiconformal if the ξ -
eccentricity map EF,ξ : M×Rq → R is bounded.

We say the contact foliation F is (transversely) quasiconformal if the associated
action is (transversely) quasiconformal.

Notice that quasiconformality restricts to subbundles, that is, if one has vector
bundles W ⊂V ⊂TM and an action F is quasiconformal on V then it is also quasiconformal
on W . In particular, any quasiconformal contact action is also transversely quasiconformal.
The converse is generally not true, as we illustrate in Example 18 bellow. Akin to what
happens in the conformal case, if the contact action is transversely quasiconformal, there
is no clear way to use the adapted metric gτ to extend the metric on ξ to the entire TM

quasiconformally.
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Indeed, let consider on ξ ,R and TM the metrics gξ ,gR and gξ +gτ , respectively.
From the fact that

LF,ξ (x,a)≤ KlF,ξ (x,a)

for all x ∈ M and a ∈ Rq, we would like to conclude that a similar inequality

LF(x,a)≤ClF(x,a) ∀x ∈ M, ∀a ∈ Rq, (5.3)

for some constant C. Now, since ξx ⊂ TxM, we immediately obtain that lF ≤ lF,ξ . On the
other hand, given a vector v ∈ TxM, we decompose it into v = vξ + vR, and notice that
if |v|+1 then |vξ |, |vξ | ≤ 1. Since the maximum of a linear map in the closed unit ball is
always attained at its boundary, i.e., the unity sphere, we have

LF(x,a) = max{|dFa
x v|; |v|= 1}

≤ max{|dFa
x vξ |+ |dFa

x vR|; vξ ∈ ξx and |vξ | ≤ 1,vR ∈Rx and |vR| ≤ 1}

≤ max{|dFa
x vξ |; vξ ∈ ξx and |vξ | ≤ 1}+max{|dFa

x vR|; vR ∈Rx and |vR| ≤ 1}

= max{|dFa
x vξ |; vξ ∈ ξx and |vξ |= 1}+max{|dFa

x vR|; vR ∈Rx and |vR|= 1}

= LF,ξ (x,a)+1.

Thus, we are left with three inequalities

LF ≤ KlF ,

LF ≤ LF,ξ +1,

LF ≤ lF,ξ ,

which are generally not enough to conclude the validity of (5.3).

More interesting is that whenever M is compact, quasiconformality can be made
into conformality by a suitable change of Riemannian metrics. This can be showed adapt-
ing arguments from (TUKIA, 1986) and (SADOVSKAYA, 2005).

Theorem 19. If a contact action F on a compact manifold M is (transversely) quasicon-
formal, then there is a (transverse) bounded measurable conformal structure γ preserved
by F .

Proof. We shall prove this only for quasiconformal actions, the arguments for the trans-
verse case (or for any other subbundle of TM) being completely analogous. Let γ0 be a
continuous conformal structure on TM. For each x ∈ M, we consider the subset of CTM(x)

defined as
C(x) := {(Fa · γ0)x; a ∈ Rq}.

Quasiconformality of the action implies that C(x) is always a bounded subset of CTM(x)

with respect to its Gl2n(R)-invariant metrics. Indeed, if EF ≤K, then we have the following
inclusion of spheres in TFa(x)M

S2n
Fa(x) ⊂

1
lF(x,a)

dFa
x S2n

x ⊂ KS2n
Fa(x).



108 Chapter 5. C1-equicontinuity, conformality and quasiconformality

Now, if g0 is a metric representing γ0 and the eigenvalues of its corresponding matrix at
TxM are α1, · · · ,αq (it doesn’t matter which basis we choose for TxM since the eigenvalues
are invariant), then an element (Fa · γ0)x of C(x) is represented by the metric (Fa)∗g, and
at TxM its eigenvalues β1, · · · ,βn can be indexed as to satisfy

1
lF(x,a)

αi ≤ βi < Kαi.

It follows from the inequalities in (5.1) that (Fa · γ0)x is at bounded distance from (γ0)x,
for every a ∈ Rn, and hence C(x) is bounded. Note that the choice of γ0 does not impact
this fact since M is compact and γ0 is continuous. Finally, since CTM(x) is a space of
non-positive curvature, there is a unique ball of minimal radius containing C(x). It can
be shown that the centre of this ball is a bounded, measurable, F-invariant conformal
structure (TUKIA, 1986).

Definition 32 (Good measures). A holonomy invariant measure µ is said to be good if it
is non-atomic and the union of all the leaves in its support is the entire ambient manifold
M.

Proposition 30. The measure µi = |dλ n
i | is a good measure for F .

Proof. Indeed, µi is a volume form on T , hence given x ∈ M and y ∈F(x)∩T , any open set
U ⊂ T containing y is such that µi(U)> 0. Thus F(x) ∈ supp(µi), and since x is arbitrary
it follows that ∪

F(x)∈supp(µi)

F(x) = M,

and therefore, µi is a good measure.

Theorem 20. Let (M,F ,g0) be a quasiconformal contact foliation. Then there is a Rie-
mannian metric g on M for which F is isometric.

Proof. Indeed, by Proposition 19 there is a Riemannian metric g1 such that (M,F ,g1) is
a conformal contact foliation. On the other hand, since F admits a good measure µi, it
follows from (ASUKE, 1998) that F supports a transversely invariant Riemannian metric,
which implies F to be an isometric contact foliation, as in Proposition 7.

Corollary 10. Every quasiconformal contact foliation on a compact manifold is uniformly
almost periodic.

Proof. Quasi-isometries preserve equicontinuity, and any two Riemannian metrics on a
compact manifold are quasi-isometric. Since any isometric action is equicontinuous, any
quasiconformal contact action is uniformly almost periodic (cf. Theorem 11).
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Putting together Theorems 7, 12, 13, 19, and 20, we obtain

Theorem B. Let F be a contact foliation on a compact manifold M. The following are
equivalent.

(i) F is C1-equicontinuous;

(ii) the C1-enveloping group E1
F is a torus;

(iii) F admits a bundle-like metric;

(iv) F admits an invariant metric;

(v) F is quasiconformal;

(vi) F admits an invariant conformal structure.

As a first consequence, notice that if a contact action if transversely quasiconformal
(in particular, transversely conformal), even though generally there is no way to quasicon-
formally (or conformally) extend the metric in ξ to the entire TM, there is always another
metric tensor on M with respect to which the action is quasiconformal (conformal) on
the entire tangent bundle.

Example 17 (Regular contact forms). A contact form on M is regular if every point of
M has a neighbourhood U such that each integral curve of the Reeb field intersecting
U passes passes through U only once (cf. (BLAIR, 2010, page 24)). It is known that for
regular contact forms on closed manifolds all the Reeb orbits are closed, as the action of
the Reeb field is actually and S1-action (cf. (BOOTHBY; WANG, 1958)). In particular,
it follows that C1-enveloping group associated with the action is S1, therefore the contact
structures involved are C1-equicontinuous, and in particular quasiconformal.

Similarly, every q-contact structure obtained from a regular contact structure
via a “product-like” construction (cf. Examples 5,7,8) is also quasiconformal.

Example 18 (Anosov contact actions). An Anosov action (cf. Section 2.3.1) is said to
be u-quasiconformal if it is quasiconformal with respect to the unstable bundle Eu.
Similarly, the action is s-quasiconformal when it is quasiconformal with respect to
the stable bundle Es. When the action is both u-quasiconformal and s-quasiconformal,
we simply say it is an quasiconformal Anosov action. Recently, quasiconformal Anosov
contact actions have been subject to intense research (cf. (FANG, 2004; SADOVSKAYA,
2005; NEPOMUCENO, 2022)).
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It follows from Theorem B that a quasiconformal Anosov contact action on a
compact manifold can never be transversely quasiconformal. Indeed, first we note that
the Anosov property of an action is preserved by quasi-isometries, hence, if an Anosov
action on a compact manifold is Anosov no matter which metric tensor is considered.
If a quasiconformal Anosov contact action F : M → Diff(M) were quasiconformal on
ξ = Eu+Es, then according to Theorem B there would be a metric tensor g on ξ with
respect to which F is simultaneously both Anosov (i.e., hyperbolic) and isometric, a
contradiction.

Another way of showing this is by remarking that Anosov actions are not
equicontinuous (cf. Example 13), and therefore not C1-equicontinuous.

In particular, there is no way to quasiconformaly extend the metrics on Eu or
Es to the entire transverse bundle ξ .

The following theorem is a direct application of Theorems B and 18.

Theorem C. Let (M,⃗λ ,R⊕ ξ ) be a closed quasiconformal q-contact manifold. The
contact foliation F satisfies the SGWC. Moreover, F has at least δ (⃗λ ) + b1(M;R) ≥
2−1 codimF +1 closed orbits.

In particular, we obtain the following corollary, a novel affirmative answer for the
Weinstein Conjecture on contact manifolds.

Theorem 21. Let (M,λ ) be a closed contact manifold of dimension (2n+1). If the Reeb
field R is quasiconformal (i.e., its flow is a quasiconformal contact action) then it has at
least n+1 closed orbits.

There is a theorem due to Banyaga stating that a contact form which is C2-close
to a regular contact form satisfies the Weinstein conjecture. As a corollary to Theorem
21 above, we obtain the following new proof for this fact.

Corollary 11 (Theorem 1 in (BANYAGA, 1990)). Let M be a closed manifold and λ
a regular contact form on M. If λ ′ is C2-close to λ , then (M,λ ′) satisfies the Weinstein
conjecture.

Proof. The contact condition for 1-forms is simply that λ ∧dλ > 0, which is clearly open
in the C1-topology. On the other hand, quasiconformality is also an open property. If
λ and λ ′ are sufficiently C2-close, then their contact actions Fλ and Fλ ′ are C1-close
enough to guarantee that Fλ ′ is also quasiconformal, and therefore satisfies the Weinstein
conjecture.
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Before ending this section, we expand briefly on the discussion of Example 12.
Recall that a contact structure is said to be tight if it is not overtwisted. We have the
following result.

Proposition 31. If a Reeb flow is quasiconformal, then the associated contact structure
is tight..

Proof. According to geometrical characterisation of overtwistedness presented in (CASALS;
MURPHY; PRESAS, 2019), it is sufficient to prove that the model

(R3 ×D2n−4,λot +λstd)

is not equicontinuous. Here, R3 is given cylindrical coordinates (ρ,θ ,z) and D2n−4 is a
ball of a fixed radius with coordinates (x1,y1, · · · ,xn−2,yn−2). The contact form is the sum
of

λot = cosρ dz+ρ cosρ dθ ,

λstd =
1
2

n−2

∑
i=1

(xi dyi − yi dxi).

The Reeb field R associated to such form is simply Rot + 0⃗, which is not equicontinuous.
Indeed, if its flow were equicontinuous, then its projection on R3 would be equicontinuous
as well, but we know from Example 12 this is does not happen.

Now, it follows from (CASALS; MURPHY; PRESAS, 2019, Theorem 1.1) that any
overtwisted contact manifold admits an contact embedding of (R3 ×D2n−4(r),λot +λstd)

for some r > 0.Thus, its Reeb flow is not equicontinuous, and therefore not quasiconformal.

If the converse to Proposition 31 were true, then Theorem 21 together with the
dichotomy overtwisted/tight would prove the Weinstein Conjecture. However, this is not
the case. Indeed, the standard contact form on the 3-torus (cf. Example 14) is tight
(even more, it is strongly fillable (ELIASHBERG, 1996)) but it is not equicontinuous, and
therefore not quasiconformal. Similar constructions hold in higher dimensions (MASSOT;
NIEDERKRüGER; WENDL, 2013).

5.3 Basic cohomology of quasiconformal contact folia-
tions

As shown in Example 15, the lower bound of 2−1codim(F)− 1 need not be the
exact number of closed orbits, even when there are only finitely many of them. However,
in the case when the number of closed orbits is finite and minimal, i.e., equal to exactly
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2−1codim(F)− 1, then substantial topological restrictions are imposed on the ambient
manifold. This is true for metric f -K-contact structures, and since we showed in Section
4.5 that the function S : M → R is Morse-Bott even without the presence of the tensor
f , those topological restrictions carry over to the more general class of C1-equicontinuous
uniform q-contact manifolds. All the proofs in (GOERTSCHES; LOIUDICE, 2020b) apply,
mutatis mutandis, to the case of q-contact manifolds, giving rise to the results in this
section.

The Reeb fields are pair-wise commutative, hence the bundle spanned by any
choice of them is integrable. Denote by Fi the integral foliation of the bundle

i⊕
j=1

RR j ⊂R,

that is, the bundle Span{R1, · · · ,Ri}. This is exactly the orbit foliation of the action

Fi : Ri −→ Iso(M,g)

(t1, · · · , ti) 7−→ (exp t1R1)◦ · · · ◦ (exp tiRi).

Of course, Fq = F is simply the contact action, and for s = 0 we defined F0 to be the trivial
foliation by points. As for the contact action F , we can define C1-enveloping groups for
each action Fi as the closure of the subgroup spanned by the flows of the first i Reeb fields,
i.e.:

E1
i = Span{exp(t1R1), · · · ,exp(tiRi);(t1, · · · , ti) ∈ Ri}.

Note that each foliation Fi isometric because the Reeb fields are all Killing, though
generally, it will not be a contact foliation. Regardless, the arguments of Theorem 13 apply,
and we conclude each E1

i is a torus, and each Fi is C1-equicontinuous. Again, E1
q = E1

F is
just the C1-enveloping group of F .

To see how the q-contact structure affects the topology of the ambient manifold,
we begin by considering, for s= 1,2, · · · ,q, the following sets of basic forms invariant under
the compactified action of Ri.

∧∗(Fs)
E1

s+1 := {ω ∈ ∧∗(M);ω is Fs-basic and T ∗ω = ω for every T ∈ E1
s+1}.

Since the operator d preserves basic forms and commutes with pullbacks, the set ∧∗(Fs)
E1

s+1

is a differential complex for every s= 1, · · · ,q−1. We denote its cohomology by H∗(Fs)
E1

s+1 .
The natural inclusion j : ∧∗(Fs)

E1
s+1 ↪→∧∗(Fs) induces an injective morphism

j∗ : H∗(Fs)
E1

s+1 → H∗
B(Fs).

There is also, for s = 1, · · · ,q−1, an averaging operator

av : ∧∗(Fs)→∧∗(Fs)
E1

s+1
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given by
av(ω) =

∫
E1

s+1

T ∗ω dµ(T ),

where µ , as usual, is the Haar measure of the torus E1
s+1. This is well defined since the

averaging procedure produces in fact E1
s+1-invariant forms, just like in Theorem 12 and

Proposition 25. Note also that av is a chain map, that is, d◦av = av◦d, since the exterior
derivative commutes with pullbacks. Hence it induces a morphism in cohomology

av∗ : H∗
B(Fs)→ H∗(Fs)

E1
s+1.

Lemma 8. The mapping av∗ : H∗
B(Fs)→ H∗(Fs)

E1
s+1 is an isomorphism.

Proof. The mapping av∗ is the same as the identity. As argued in (BAZZONI; GO-
ERTSCHES, 2019, Lemma 5.3), there is a chain homotopy between av and the identity
map, which preserves the property of being Fs-basic. Thus av∗ and j∗ are inverses to one
another.

Lemma 9. The set ∧∗(Fs)
E1

s+1 contains all the Fs+1-basic forms. In other words,

∧∗(Fs+1)⊂ ∧∗(Fs)
E1

s+1.

Proof. Indeed, if ω is Fs+1-basic and T ∈ E1
s+1, then there is a sequence an = ∑s+1

i=1 ai
nei in

Rq such that
T = lim

n
Fan = lim

n
(Fas+1

n es+1 ◦ · · · ◦Fa1
ne1).

Hence
lim

n
(Fan)∗ω = lim

n
(Fa1

ne1)∗ · · ·(Fas+1
n es+1)∗ω = ω,

and by continuity T ∗ω = ω. So ∧∗(Fs+1)⊂ ∧∗(Fs)
E1

s+1 .

These lemmas allow us to construct an analogue of the Gysin sequence for pairs
of foliations, which gives us exact sequences such as below:

Proposition 32. (GOERTSCHES; LOIUDICE, 2020b, Proposition 4.4) For s= 0, · · · ,q−
2 there are short exact sequences

0 −→ H∗
B(Fs+1)−→ H∗

B(Fs)−→ H∗−1
B (Fs+1)−→ 0,

as well as a long exact sequence

· · · −→ H∗
B(F)−→ H∗

B(Fq−1)−→ H∗−1
B (F)

δ−→ H∗+1
B (F)−→ ·· ·

where δ ([σ ]) = [dλq−1 ∧σ ].
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Proof. Suppose 0 ≤ s ≤ q−1. We consider the following sequence of complexes

0 −→∧∗(Fs+1)−→∧∗(Fs)
E1

s+1
ιRs+1−−−→∧∗−1(Fs+1)−→ 0, (5.4)

where the first map is simply the inclusion of Lemma 9. On the other hand, given any
Fs+1-basic form in ∧∗−1(Fs+1), the form λs+1 ∧ω belongs to ∧∗(Fs+1)⊂ ∧∗(Fs)

E1
s+1 , and

ιRs+1(λs+1 ∧ω) = ω.

Thus, ιRs+1 : ∧∗(Fs)
E1

s+1 →∧∗−1(Fs+1) is surjective, and Sequence 5.4 is exact. It, therefore,
descends to a long exact sequence in cohomology

· · · −→ H∗
B(Fs+1)−→ H∗

B(Fs)−→ H∗−1
B (Fs+1)

δ−→ H∗+1
B (Fs+1)−→ ·· ·

To better understand the connecting homomorphism δ , observe that given a closed form
σ ∈ ∧∗−1(Fs+1), the form λs+1 ∧σ is a pre-image for σ under ιRs+1 , hence

δ ([σ ]) = [d(λs+1 ∧σ)] = [dλs+1 ∧σ ].

Now, for any s < q−1, the 1-form λs+1 belongs to ∧∗(Fs+1), hence dλs+1 is closed in this
complex, and therefore δ ≡ 0. We thus obtain

0 −→ H∗
B(Fs+1)−→ H∗

B(Fs)−→ H∗−1
B (Fs+1)−→ 0,

for s = 1, · · · ,q− 2, as we wanted. As for the case s = q− 1, the long exact sequence
becomes

· · · −→ H∗
BF)−→ H∗

B(Fq−1)−→ H∗−1
B (F)

δ−→ H∗+1
B (F)−→ ·· ·

with δ [(σ)] = [dλq−1 ∧σ ], as claimed.

Now, if the isometric q-contact structure is also uniform, that is, if dλi = ω for
every i, then the first de Rham cohomology group of M has dimension at least q−1, since
each form λi−λq is closed and non-exact (cf. Proposition 20). In particular, we can obtain
a homomorphism

∧(Rq−1)→ H1
dR(M),

where ∧(Rq−1) is the exterior algebra on q− i generators, by sending the i-th generator
to the class [λi −λq]. This gives H∗

dR(M) the structure of an ∧(Rq−1)-algebra, and then
the exact sequences of Lemma 32 allow us to conclude the existence of the following
isomorphism (cf. (GOERTSCHES; LOIUDICE, 2020b, Theorem 1.1))

H∗
dR(M)≈ ∧(Rq−1)⊗H∗

B(F)

Using the isomorphism above, we obtain the following.
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Theorem 22. (GOERTSCHES; LOIUDICE, 2020b, Theorem 6.4) For a q-dimensional
uniform quasiconformal contact foliation F on a (2n+q)-dimensional closed manifold M,
the following are equivalent.

(i) F has exactly n+1 closed orbits;

(ii) The basic cohomology of F is the same as the de Rham cohomology of CPn;

(iii) The basic cohomology of Fq−1 is the same as the de Rham cohomology of the sphere
S2n+1;

(iv) The de Rham cohomology of M is the same as that of S2n+1 ×Tq−1.

In relation to item (iv), we remark that a general uniform q-contact foliation is
known to be a fibration over the torus Tq−1 (cf. Theorem 4), while a similar result of
Goertsches and Loiudice (GOERTSCHES; LOIUDICE, 2020a) states that every metric
f -K-contact manifold can be constructed from a K-contact manifold by taking mapping
tori and applying certain deformations.
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CHAPTER

6
CONCLUSION

6.1 Final thoughts and comments

The theory of q-contact structures, as dealt with here, started with Almeida’s
work, inspired by Bolle, Bande and Hadjar, and other authors. Almeida’s focus was mainly
on the contact action, and at that, in the particular case when such action is partially
hyperbolic. In this work, we focus instead on the perspective of the contact foliation.

In Chapters 2 and 3, we dived into the fundamental theory of contact foliations,
greatly expanding the foundations laid out by Almeida. In particular, we provided new
examples, local descriptions for these foliations (Propositions 10 and 19), canonical forms
for the adapted coframe in particular cases (Propositions 11 and 12), and pointed out
some basic properties of the holonomy groups of various distinct foliations related to a
q-contact structure (Proposition 16).

Two exciting results of ours in these first chapters are the reduction procedure
of Theorem 2 and the characterisation of uniform contact manifolds in Theorem 4. The
former is a partial converse to the construction of contact structures in flat toric bundles
introduced by Almeida. It allowed us to prove that non-trivial minimal contact foliations
can not take place if any of the Weinstein conjectures are valid (cf. Theorem 3), a result
not all obvious at first sight. The latter imposes substantial restrictions on the existence
of uniform q-contact structures for q greater than 2, hinting that such foliations might
not occur so frequently. It is also our first result specifically concerning contact foliations,
in that it does not apply for contact flows, i.e., for the classic case. It is a result nicely
related to a Theorem of Goertsches and Loiudice stating that every metric f -K-contact
manifold can be constructed from a K-contact manifold utilising mapping tori and the
so-called “type II” deformations (cf. (GOERTSCHES; LOIUDICE, 2020a, Theorem 4.4)).

Theorem 4 has other interesting aspects to it. When comparing the results of
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Propositions 13 and 15, we see a crucial distinction between the contact and characteristic
foliations, in that the former does not support complete transversals. In particular, a
contact foliation can never be a suspension. In this sense, Theorem 4 hints at some sort of
maximality of the characteristic foliations concerning being a suspension, or, equivalently,
minimality of the contact foliation with respect to the property of not being a suspension.

It is in Chapter 4 that we begin tackling the main problem in our work: finding
closed leaves for contact foliations. From a dynamical point of view, a closed leaf in a
non-singular foliation is simply a trivial minimal set. Our first strategy was to restrict the
foliation to a minimal set and then use a procedure like the one from Theorem 2 to reduce
the dimension of the acting Euclidean space. This would hopefully lead us to a situation
where we could use one of the proven versions of the Weinstein conjecture, allowing us to
prove the validity of, at least, the WGWC. Though the restriction of a contact action to a
non-trivial minimal subset can not be a contact action, we were looking for hypotheses that
would allow us to guarantee that the reduced action was of contact nature. Unfortunately,
minimal sets are generally very pathological, so this approach was unsuccessful.

There is, however, a class of foliations for which the closure of leaves is actually very
well-behaved: Riemannian foliations. Leaf closures in Riemannian foliations are manifolds
with all the necessary properties needed to guarantee that the contact foliation can be
restricted (cf. Proposition 26 and Lemma 4). Moreover, the adapted metric gτ makes it
possible to consider isometric actions instead of Riemannian foliations. Working with an
isometric action not only makes the theory a lot simpler but also implies strong recurrence
properties for the foliation, creating further evidence to support the existence of closed
leaves.

Making use of all these outstanding properties of Riemannian contact foliations, we
developed a procedure to reduce the contact foliation. Such procedure could be iterated to
a point where we find ourselves in a familiar situation, for which the Weinstein conjecture
is known to be valid: Riemannian contact flows (cf. (BANYAGA, 1993; RUKIMBIRA,
1993)). Thus Theorem 15 came to be.

We end Chapter 4 with Theorem 18, which is an improved version of Theorem 15
obtained by means of Morse Theory. Theorem 18 generalises results of Goertsches and
Loiudice and Rukimbira, specially (GOERTSCHES; LOIUDICE, 2020a, Corollary 6.2).
We note that in these works, the authors extensively use the properties of the tensor
f associated with the (generalised) K-contact structure in question and also that the
Reeb fields are Killing for a contact metric. What is remarkable about Theorem 18 is
our discovery that the theory of Goertsches and Loiudice and Rukimbira does not really
depend in any way on the properties of the tensor f , but only on the fact that the Reeb
fields are Killing with respect to any metric (not necessarily a contact one), a result which
is not at all clear at first sight.
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With the SGWC settled for the Riemannian case, we wanted to check what would
happen under the weaker hypotheses that the holonomy pseudogroup preserve not a
metric, but a conformal structure, or more generally, that they had bounded transverse
distortion, i.e., the foliation is quasiconformal. It was clear from the results for the iso-
metric case that the closure F(Rq) of the action was the crucial object to be analysed.
While looking for conditions that would let us conclude the compactness of F(Rq) for
quasiconformal and conformal contact actions F , we discovered Theorems 19 and 20, and
ultimately Theorem B. This is a surprising result because, generally, the hierarchy

{isometric} ⊂ {Riemannian} ⊂ {conformal} ⊂ {quasiconformal}

is a strict one. This made clear to us that the critical dynamical condition involved
was the possibility of compactifying the contact action, and it led to the definition of C1-
equicontinuity. In particular, applying our results to the contact case proves the Weinstein
conjecture for conformal and quasiconformal Reeb flows (cf Theorem 21), a result which
was not known before, to the best of the author’s knowledge.

Essential to the proof of Theorem B is the result of Asuke on the existence of a
smooth bundle-like metric for conformal foliations supporting good measures. The tech-
niques Asuke uses in his work are more in line with what is usual to Foliation Theory
than with the classical tools of the study of flows. Theorem B and its corollaries are, in
this sense, an example of how looking at more general objects (in our case, foliations) can
yield results regarding particular ones (flows) which would not be so readily accessible by
the examination of the simpler cases. We defend the position that this further enriches
and justifies the study of contact foliations.

6.2 Open questions and further work
We briefly discussed in the Introduction the question of whether or not our gener-

alised Weinstein conjectures are equivalent to one another. However, we did not address
this problem in the present work. Of course, the distinction between the WGWC and the
SGWC does not matter in the 1-dimensional case, which is arguably the most crucial
instance of the Weinstein conjecture. However, when working with higher dimensional
contact foliations on closed manifolds, one would expect the problem of showing that no
such foliation is a foliation by planes to be much simpler than actually finding closed
leaves.

Equivalence between the WGWC and the SGWC could even prove helpful in find-
ing new classes of manifolds where the conjecture holds since the existence of foliation
by planes on a compact manifold usually imposes strong topological restrictions on the
ambient manifold (cf. (BIASI; MAQUERA, 2012; ROSENBERG, 1968)).
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Question 1. Are the WGWC and SGWC equivalent?

Another question left without answer in Chapter 2, coming from the basic theory
of q-contact manifolds, regards their local structure. As we saw in Propositions 11 and
12, there are canonical forms for each 1-form in the adapted coframe λ⃗ when the q-
contact structure is either uniform or 2-codimensional. We think it likely to be true that
such canonical forms also exist in the general case, though we do not yet know how to
prove this. In general, of course, a q-contact structure need not be uniform, so a general
Darboux-like theorem for q-contact manifolds, if true, should most likely be like the one
in Proposition 11, i.e.

Conjecture 4 (Darboux’s Theorem for q-contact structures). Given a q-contact manifold
(M,⃗λ ,R⊕ξ ) and a point p ∈ M, there are coordinates (U ;x1,y1, · · · ,xn,yn,z1, · · · ,zq) and
leaf-wise constant functions ai j : U → R such that ∂xiai j is non vanishing for every 1 ≤
i, j ≤ n, and

λi = dzi +
n

∑
j=1

ai j dy j.

One of the fundamental question in the development of Symplectic Geometry was
the problem of symplectic rigidity. Shortly, this was related to the relative size of the
group Symp(M) – diffeomorphisms of M preserving a symplectic form – inside Diffvol(M),
in the sense of whether of not the C0-closure of Symp(M) is the entire Diffvol(M). Gromov
formulated this problem in terms of a dichotomy rigidity vs. flexibility, the former meaning
Symp(M) is closed in the C0-topology, while the latter means the C0-closure of Symp(M)

is Diffvol(M) (see (MCDUFF; SALAMON, 2017) for a more thorough discussion). Rigid-
ity has been shown to hold by Eliashberg (ELIASHBERG, 1982; ELIASHBERG, 1987),
Gromov (GROMOV, 2013), and Ekeland and Hofer (EKELAND; HOFER, 1989). In par-
ticular, their work shows that merely continuous transformations can preserve symplectic
structures, which are, a priori, intrinsically differentiable objects. This marks the begin-
ning of the theory of Symplectic Topology.

The deep connections between Contact and Symplectic geometries would suggest
that some sort of structural rigidity also holds for contact manifolds. This is the case in-
deed, was shown, for instance, by Müller and Spaeth in their work (MÜLLER; SPAETH,
2014; MÜLLER, 2019). Their techniques are based on the existence of symplectic invari-
ants defined in terms of cohomology classes. For contact manifolds, similar invariants can
be defined by means of symplectisations. This leads us to believe that the same ideas
can be used to define invariants for q-contact structures, making use of the constructions
from Appendix B. Once this is done, one expect to use such invariants, together with
Symplectic Rigidity, to prove results akin to those of Müller and Spaeth:
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Conjecture 5 (C0-rigidity for q-contact structures). The group of automorphisms of a
q-contact structure is closed with respect to the C0-topology.

The following is another question on the basic theory for q-contact structures
regarding symplectisations.

Question 2. Suppose η⃗ = A⃗λ is a reparameterisation. How are the symplectisations of
η⃗ and λ⃗ related?

In Chapter 4, we defined the concept of C1-equicontinuity as a smooth analogue
to classical equicontinuity in terms of the compacity of the group of transformations
acting on the manifold. In general, one should expect the closure of a family concerning
the C0-topology to be different from the C1-closure. However, since the family F(Rq)

exists under so many heavy hypotheses, like simultaneously preserving all the forms dλi,
volume forms dMi and all the foliations Fi and Ci, one might suspect that equicontinuity
alone, together with the said regularity of the family F(Rq), is enough to impose C1-
equicontinuity. This suspicion is further encouraged by the facts that all the examples of
non-equicontinuous contact actions known to the author are either Anosov or expansive
and that this sort of “bootstrapping” phenomena (where convergence in the C0 topology
implies C∞-convergence) are recurrent in Symplectic topology.

Question 3. In the class of contact actions, does equicontinuity imply C1-equicontinuity?

Even if that is not true, it would be interesting to study the dynamics of a contact action
F : Rq → M which is equicontinuous but not C1-equicontinuous. In such a setting, the
action would still preserve a metric d : M×M → R, but such a metric could not possibly
come from a Riemannian metric tensor on M. It makes one wonder how the reasoning
and techniques used throughout this work could be modified to prove the validity of the
SGWC in this case.

As for further investigation of the Weinstein conjectures, there are a few promising
cases, especially those where it should be possible to reduce the action to a flow and apply
Taubes’ theorem (TAUBES, 2007). For instance:

Question 4. Let M be a 4-dimensional closed manifold equipped with a 2-dimensional
contact foliation. If the underlying contact action F is unfaithful, does the SGWC hold?

Here, one possibility is to try and find conditions implying the transitivity of the action,
as it would then be possible to apply a reduction procedure as in Theorem 2 to conclude
the SGWC from the WC. For example, is the volume-preservation property of F enough
to guarantee transitivity in the contact setting, as it happens for Anosov actions (cf.
Corollary 1)?
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In the same line of reasoning, we remark that in his doctoral dissertation, Arakawa
showed that codimension 2 Anosov actions on closed manifolds are essentially toric ex-
tensions of Anosov flows, contributing to the efforts towards a general classification of
Anosov systems. Though the work of Arakawa extensively uses the Anosov property of
the action and his techniques have no direct analogue to the contact case, his results raise
the question of whether or not a similar assertion holds for a contact action.

Question 5. Is a codimension 2 contact action a toric extension of a contact flow?

If this holds, even in a smaller class of contact actions, a direct application of
Taubes’ Theorem could prove the SGWC for such 2-codimensional contact foliations.

It is worth pointing out that all of our results regarding the generalised versions
of the Weinstein conjecture are similar in that they impose further restrictions on the
dynamics, like having an invariant structure (a hyperbolic splitting, a Riemannian metric
or conformal metric) or having bounded distortion (in the quasiconformal case). Such
restriction, when combined with the contact foliation’s properties, yields closed orbits’
existence. However, the most profound and meaningful results regarding the Weinstein
conjecture are usually centred only on the properties of the contact structure itself. Such
is the case, for instance, in Taubes’ proof of the WC for 3-dimensional closed manifolds,
where he uses Seiberg-Witten invariants of 4-manifolds, together with embedded contact
homology (cf. (TAUBES, 2007; HUTCHINGS, 2009)).

In this spirit, we could consider the action functional

A : C∞(Tq,M)→ R

γ 7→
∫

γ
λ ,

(6.1)

where C∞(Tq,M) is the set of smooth q-tori embedded in M, and λ is the characteristic
form. Almeida pointed out to the author in personal communications that the critical
points of such a functional are the closed orbits of the associated contact foliation, at
least in the uniform case (showing this already requires some effort). One would hope
that, by deploying the functional A, it would be possible to develop some sort of Floer
homology theory for q-contact manifolds. This is, a priori, a viable strategy to try and
find closed orbits without relying on additional dynamical hypotheses. However, there are
myriad technical difficulties regarding the gradient equation one obtains when trying to
reproduce the usual steps of a Floer theory. Namely, most of the problems arise because
the equations one gets from the gradient of the operator (6.1) and a suitable associated
almost complex structure are non-linear.

As for possible applications of the concept of contact action, we again turn to the
question of classifying Anosov systems. There is a famous result due to Benoist, Foulon
and Labourie which says, essentially, that
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BFL’s Theorem. Every contact Anosov flow with smooth bundles is, up to finite cover-
ings and change of parameters, isomorphic to the geodesic flow of a smooth manifold of
strictly negative curvature.

This result was exactly what motivated Almeida to define the notion of q-contact structure:
he was after a geometrical entity which could replicate in higher dimensions the properties
of the Reeb flow in order to generalise BFL’s Theorem to Anosov actions. He was partially
successful in this task. Indeed, contact Actions with smooth bundles are not generally
algebraic, but only quasi-algebraic (cf. (ALMEIDA, 2018)).

Not many years ago, Fang used BFL’s Theorem to classify quasiconformal Anosov
flows, obtaining the following

Theorem 23. Let M be a closed manifold, and ϕ a C∞ uniformly quasiconformal volume-
preserving Anosov flow on M. If Eu ⊕Es is smooth and the invariant bundles have rank
at least 2, then up to a change of parameters and finite coverings, the flow ϕ is either the
suspension of a hyperbolic automorphism of the torus or a perturbation of the geodesic
flow of a hyperbolic manifold.

BFL’s theorem plays a central role in Fang results, as the conclusions of Theorem 23
suggest. Since q-contact structures were designed to be the higher dimensional analogues
to the contact flow in BFL’s Theorem, it is only natural that we make the following
conjecture.

Conjecture 6. Let M be a closed manifold, and F : Rk → Diff(M) a C∞ uniformly qua-
siconformal volume-preserving Anosov action on M. Suppose Eu ⊕Es is smooth and the
invariant bundles have rank at least 2. Then the action is, up to reparameterisations and
finite coverings, either the suspension of a hyperbolic automorphism of the torus or a
perturbation of quasi-algebraic contact action.

The most straightforward strategy for proving this conjecture would be to gen-
eralise the arguments of Fang’s original proof (FANG, 2004). His is a very technical
demonstration, relying heavily on notions from the Ergodic Theory of flows (all of which
have the proper analogues in Foliation Theory) and also of results of Sadovskaya. The
latter we have already shown to remain valid for contact actions in Theorem 19, and the
same arguments can be used to show that they are also valid for Anosov actions. Even
so, if Fang’s techniques turn out not to work in the setting of actions, one may hope that
the process of trying to adapt them reveals a counter-example to the conjecture, further
enriching the theory of generalised contact manifolds.
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APPENDIX

A
TRANSVERSE GEOMETRY OF FOLIATIONS

In this section, we deal with an arbitrary q-dimensional smooth foliation F on a
(q+ r)-dimensional manifold M. We write TF for the tangent bundle to the leaves of F ,
and Γ(F) := Γ(TF) for the Lie Algebra of fields tangent to F . The vector space of all
k-forms on M is denoted by ∧k(M).

Definition 33 (Transverse bundle). The transverse bundle T of a foliation F is the
bundle of rank r = codimF for which there is an exact sequence

0 −→ TF −→ TM π−→ T −→ 0.

Up to isomorphism, all transverse bundles are the same, isomorphic to the quotient

π : TM → TM/
TF .

In the case of contact foliation, the non-integrable bundle ξ is a natural choice of a
transverse bundle.

Definition 34 (Foliate vector fields.). Let X ∈ Γ(M) be a vector field whose local descrip-
tion in the foliated chart (U ;x1, · · · ,xq,y1, · · · ,yr) is

X =
q

∑
i=1

ai(x,y)∂xi +
r

∑
l=1

bl(x,y)∂yl .

We say X is foliate if
∂

∂xi
bl = 0

for all i = 1, · · · ,q and l = 1, · · · ,r. In other words, the functions bl(y) are independent of
x, for every l, i.e., last l coordinate functions are leaf-wise constants.

A straightforward calculation shows that the property of being foliate does not
depend on the choice of foliated chart. Instead of conducting such a calculation, we want
to provide a coordinate-free characterisation of foliate fields.
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Definition 35 (Infinitesimal symmetries). A vector field X ∈ Γ(M) is an infinitesimal
symmetry of F if its flow preserves the bundle TF . In other words, X is an infinitesimal
symmetry of F if, for every field Y ∈ Γ(F), one has

LXY = [X ,Y ] = 0.

Proposition 33. The foliate vector fields of a foliation F are exactly its infinitesimal
symmetries.

Proof. Being an infinitesimal symmetry is a local property, so it is sufficient to prove this
in a local foliated chart (U ;x1, · · · ,xq,y1, · · · ,yr). Suppose we can write X and Y in such
coordinates as

X =
q

∑
i=1

ai(x,y)∂xi +
r

∑
l=1

bl(x,y)∂yl

Y =
q

∑
j=1

c j(x,y)∂x j .

Then

[X ,Y ] = ∑
i
[ai∂xi,Y ]+∑

l
[bl∂yl ,Y ]

= ∑
i
[ai∂xi,Y ]+∑

l
∑

j
[bl∂yl ,c j∂x j ]

= ∑
i
[ai∂xi,Y ]+∑

l
∑

j

((
bl

∂
∂yl

c j

)
∂x j −

(
c j

∂
∂x j

bl

)
∂yl

)
= Z −∑

l
∑

j

(
c j

∂
∂x j

bl

)
∂yl , (A.1)

where
Z := ∑

i
[ai∂xi,Y ]+∑

l
∑

j

(
bl

∂
∂yl

c j

)
∂x j

is, by Fröbenius’ Theorem, a vector field tangent to TF . Therefore, Z is of the form

Z =
q

∑
i=1

di(x,y)∂xi.

Thus, using Equation (A.1) we get that [X ,Y ] = 0 if and only if the following equality
holds

∑
l

∑
j

(
c j

∂
∂x j

bl

)
∂yl =

q

∑
i=1

di(x,y)∂xi,

which can only happen if
∂

∂x j
bl ≡ 0

for every j and l, as wanted.
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Using any of the definitions above, one can check by an immediate calculation that
the set of foliated fields is closed under Lie brackets and form a subalgebra of Γ(M).

Definition 36 (Algebra of foliate fields). We denote by

B(F) := {X ∈ Γ(M); [X ,Y ] = 0 ∀Y ∈ Γ(F)}

the Lie algebra of foliate fields.

In a foliated chart (U ;x1, · · · ,xq,y1, · · · ,yr), the bundle T |U has as global frame
the set {π∂y1, · · · ,π∂yr}. For a foliate field X = ∑l bl(y)∂yl defined U , its image under the
projection π : TU →T |U is (point-wise)

πX = ∑
l

bl(y)π∂yl . (A.2)

Hence, the foliate fields on U are exactly the fields which are π-related to fields on the
quotient U/F|U . In the particular case when F is the foliation defined by the fibres of a
smooth fibration f : M → B (this is usually called, in the literature, a simple foliation),
the foliate fields are exactly those f -related to fields in the base manifold B. For this
reason, foliate fields are also referred to as projectable fields, basic fields and base-like
fields.

Remark that Γ(F)⊂B(F) is an ideal. Indeed, if a foliate vector is described locally
as one for which the last r coordinate functions bl are leaf-wise constants, a field tangent
to F is exactly one for which the functions bl are constant and equal to 0. The“truly trans-
verse” fields are the foliated fields whose the first q coordinate functions ai are zero: the
fields with no components in the TF directions. To describe this property in a coordinate-
free manner, we define the following notion.

Definition 37 (Transverse fields). The elements of the set

t(F) := B(F)/
Γ(F)

are called the transverse fields of F .

We can extend the projection π : TM → T to a map between Γ(M) and Γ(T ) by
applying π point-wise on each field. Let us denote this extension by π as well. It follows
from Equation (A.2) that the restriction π : B(F)→ Γ(T ) is surjective. It is immediate,
also from Equation (A.2), that the kernel of π is Γ(F). Therefore, there is an exact
sequence of vector spaces

0 −→ Γ(F) ↪→B(F)
π−→ t(F)−→ 0.



134 APPENDIX A. Transverse geometry of foliations

Since Γ(F) ⊂ B(F) is an ideal, we can equip t(F) with a Lie algebra structure by set-
ting [πX ,πY ] = π([X ,Y ]), so that the sequence above becomes an exact sequence of Lie
Algebras.

For general foliations, the leaf space M/F need not even be a manifold, but we can
still regard B(F) as an algebra of “derivations”.

Definition 38 (Basic function). A smooth function f : M →R is called basic if d f (X) = 0
for every X ∈ Γ(F). In other words, the basic functions of (M,F) are the leaf-wise constant
functions.

In this sense, we could define the foliate fields of F as those for which the coordinate
functions in the transverse directions are basic. Note that if X is foliate and f is basic,
then f X is still foliate, and the function X f = d f (X) is still basic. So B(F) is a module
over the ring of basic functions, and the elements of B(F) act as derivations on this ring.
Again, the basic functions correspond to pullbacks of functions on the base manifold for
simple foliations.

Following the same reasoning, we define “transverse” differential forms.

Definition 39 (Basic form). A differential form ω is said to be F-basic (or simply basic
when the context permits), if it satisfies

ιX ω = LX ω = 0, (A.3)

for every X ∈ Γ(F). We write ∧k(F) for the set of all F -basic differential k-forms on M.

In a foliated chart (U ;x1, · · · ,xq,y1, · · · ,yr) this translates to fact that a F -basic
k-form ω can be written as a sum of terms

ωIk dyi1 ∧·· ·∧dyik ,

where ωIk : U → R is independent of the first q-variables. We note immediately from this
description that any basic k-form for k > codimF must be zero. It is also clear that F -basic
0-forms are the leaf-wise constant functions, i.e., basic functions.

∧0(F) = {basic functions f : M → R},

∧k(F) = 0, for every k greater than codimF .
(A.4)

It is clear from the coordinate-free description given by the equations in A.3 that ∧k(M)

is a vector space and that the wedge product turns ∧∗(F) into a graded algebra.

Proposition 34. The set ∧∗(F) is a differential graded algebra.
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Proof. In fact, we restrict the usual exterior derivative d from ∧∗(M) to ∧∗(F). If ω is
basic, then, for X ∈ Γ(F),

LX(dω) = d(FX ω) = 0,

ιX(dω) = d(ιX ω)−LX ω = 0.

We can therefore consider the cohomology of (∧∗(M),d).

Definition 40 (Basic cohomology). The cohomology of the pair (∧∗(F),d) is denoted by
H∗

B(F) and called basic cohomology of F .

We can easily calculate H0
B(F) for connected M: the 0-cycles are the leaf-wise

constant functions f : M → R such that d f = 0, that is, the constant functions on M.
Hence

H0
B(F) = R.

Similarly, using Equations A.4 we see that

Hk
B(F) = 0 ∀k > codimF .

In this sense, the basic cohomology of F plays the role of the De Rham cohomology for
the leaf space M/

F .

In some way, basic functions, foliate fields and basic differential forms provide a
rudimentary way to define a theory of calculus on the transverse distribution. For more
results in this sense, the reader is referred to the much interesting survey by Vitagliano
(VITAGLIANO, 2018).

Contrary to what happens for the De Rham cohomology of manifolds, in general,
the basic cohomology groups can be infinite-dimensional. It can be shown that for Rie-
mannian foliations on closed manifolds, these groups are always finite-dimensional (cf.
(TONDEUR, 1997, Theorems 7.22 and 7.51)). For general foliations, at least H1

B(F) is
always finite.

Proposition 35. The inclusion ∧1(F) ↪→∧1(M) induces an injective morphism

H1
B(F)→ H1

dR(M).

Proof. Suppose [ω]B and [ω ′]B are two basic classes in H1
B(F) such that [ω]dR = [ω ′]dR.

Then there is a function f : M → R such that

ω −ω ′ = d f .
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But both ω and ω ′ are F -basic, hence, for X ∈ Γ(F), we have

LX f = ιX d f = ιX ω − ιX ω ′ = 0,

and therefore f ∈ ∧0(F). In other words, ω and ω ′ differ only by an F -basic function,
which means exactly that [ω]B = [ω ′]B
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APPENDIX

B
SYMPLECTISATIONS

Let M be a compact q-contact manifold of dimension 2n+q. For each form λi, let
Ri be the associated Reeb vector field and ξ = ∩kerλi the sub-bundle where the 2-forms
dλi are non-degenerated. The complementary sub-bundle R := Span{Ri} is the shared
kernel of the forms dλi and we have a splitting TM = R⊕ ξ . For each i the product
λ1 ∧·· ·∧λq ∧ (dλi)

n is a volume form, which we denote by dMi.

Now consider in Rq an open ball Bq
ε(e1) around the point e1 = (1,0, · · · ,0) and its

closure Bq
ε(e1). We define W to be the product manifold Bq

ε(e1)×M. We consider on W

coordinates (t1, t2, · · · , tq,x) and the following differential forms

σ :=
q

∑
i=1

tiλi

ω := dσ = ∑
i

dti ∧λi +∑
i

ti dλi,

where by λi and dλi we actually mean the pullback under the projection πM : W → M onto
the second coordinate, that is, if v = v1 ⊕ v2 ∈ TW ≈ Rq ⊕TM then λi(v) := λi(v2), and so
forth.

The 2 -form ω is non-degenerated for sufficiently small choices of ε , and hence a
symplectic form on W . Showing that the top form ωn+q is nowhere vanishing is sufficient.
Let α := ∑i dti ∧λi and β := ∑i ti dλi, so that ω = α +β and hence

ωn+q =
n+q

∑
l=0

(
n+q

l

)
α l ∧β n+q−l.

Now, on the one hand, we have

α l =

q!dt1 ∧λ1 ∧·· ·∧dtq ∧λq, if l = q

0, if l > q.
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Moreover, dt1 ∧ λ1 ∧ ·· · ∧ dtq ∧ λq = (−1)q+1 dt1 ∧ dt2 ∧ ·· · ∧ dtl ∧ λ1 ∧ ·· ·λq. On the other
hand, as the product of 2-forms is commutative, we can use the multinomial theorem to
get

β l = ∑
| j|=l

(
l!

j1! · · · jq!

)
t j1
1 (dλ1)

j1 ∧·· ·∧ t jq
q (dλq)

jq

= ∑
| j|=l

(
l!t j1

1 · · · t jq
q

j1! · · · jq!

)
(dλ1)

j1 ∧·· ·∧ (dλq)
jq,

where by j we mean the multi-index j = ( j1, · · · , jq) ∈ {1, · · ·n}q and by | j| we denote the
sum j1+ · · ·+ jq of its entries. Note that the product (dλ1)

j1 ∧·· ·∧(dλq)
jq is a (2| j|)-form,

and therefore it is equal to 0 whenever | j|> n, each dλi being non-degenerated only the
2n-dimensional sub-bundle ξ . Hence we have β l = 0 for any exponent l greater than n,
and therefore

ωn+q =
n+q

∑
l=0

(
n+q

l

)
α l ∧β n+q−l =

(
n+q

q

)
αq ∧β n.

From there one has

ωn+q =
(n+q)!

n!q!
αq ∧β n

= (−1)q+1(n+q)!dt1 ∧·· ·∧λq ∧

(
∑
| j|=n

t j1
1 · · · t jq

q

j1! · · · jq!
(dλ1)

j1 ∧·· ·∧ (dλq)
jq

)

= (−1)q+1(n+q)!dt1 ∧·· ·∧λq ∧

 tn
1

n!
(dλ1)

n + ∑
| j|=n
j1 ̸=n

t j1
1 · · · t jq

q

j1! · · · jq!
(dλ1)

j1 ∧·· ·∧ (dλq)
jq


= (−1)q+1 tn

1(n+q)!
n!

dt1 ∧·· ·∧dtq ∧dM1 +η ,

where

η := (−1)q+1(n+q)!dt1 ∧·· ·∧λq ∧

 ∑
| j|=n
j1 ̸=n

t j1
1 · · · t jq

q

j1! · · · jq!
(dλ1)

j1 ∧·· ·∧ (dλq)
jq

 .

The product dt1 ∧·· ·∧dtq ∧dM1 is a volume form on W , and for sufficiently small
choices of ε the coordinate t1 can be taken arbitrarily close to 1 while all the other entries
will be arbitrarily closed to 0, and so will be the 2(n+ q)-form η . Hence ωn+q ̸= 0 and
(W,ω) is a symplectic manifold.

Definition 41 (Symplectisation). If M is a q-contact manifold of dimension 2n+q, then
the 2(n+ q)-dimensional manifold W = Bq

ε(e1)×M, equipped with the symplectic form
ω = ∑i d(tiλi), is called a symplectisation of M.
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The compact manifold W is also a Liouville domain.

Proposition 36. (W,ω,σ) is a Liouville domain.

Proof. The 1-form σ is a primitive for ω by definition, so we only need to show that
σ |∂W is a contact form on ∂W ≈ Sq−1

ε ×M, that is, that σ ∧ (d(σ)|∂W )n+q−1 is a volume
form. First, recall that the canonical volume form for the unit sphere r : Sq−1 ↪→ RK is
dS := r∗ dt1 ∧ ·· ·∧dtq = ∑i(−1)i+1ti dt1 ∧ ·· ·∧ (̂dti)∧ ·· ·dtq. Now, as we pointed out before,
dσ = α +β where α l = 0 for l > 0 and β l = 0 for l > n. Hence

dσn+q−1 =∑
l

(
n+q−1

l

)
α l ∧β n+q−(l+1) =

(
n+q−1

q

)
αq∧β n−1+

(
n+q−1

q−1

)
αq−1∧β n,

and therefore

σ ∧dσn+q−1 =
(n+q−1)!
(n−1)!q! ∑

i
tiλiαq ∧β n−1 +

(n+q−1)!
n!(q−1)! ∑

i
tiλiαq−1 ∧β n.

The first term of sum above vanishes since λi ∧αq = q!λi ∧dt1 ∧λ1 ∧·· ·∧dtq ∧λq = 0. On
the other hand,

αq−1 = ∑
| j|=q−1

(q−1)!
j1! · · · jq!

(dt1 ∧λ1)
j1 ∧·· ·∧ (dtq ∧λq)

jq

= (q−1)!
q

∑
l=1

(dt1 ∧λ1)∧·· ·∧ ̂(dtl ∧λl)∧·· ·∧ (dtq ∧λq),

hence

∑
i

tiλiαq−1 = (q−1)!
q

∑
i=1

tiλi ∧dt1 ∧λ1 ∧·· ·∧ d̂ti ∧·· ·∧dtq ∧λq

= (−1)q+1(q−1)!

(
∑

i
(−1)i+1 dt1 ∧·· ·∧ d̂ti ∧·· ·∧dtq

)
∧ (λ1 ∧·· ·∧λq)

= (−1)q+1(q−1)!dS∧λ1 ∧·· ·∧λq.

Finally, using β n = tn
1(dλ1)

n+n!∑| j|=n
j1 ̸=n

t j1
1 ···t jq

q
j1!··· jq!(dλ1)

j1 ∧·· ·∧ (dλq)
jq , as we computed before,

we get:

σ ∧ (dσ)n+q−1 =
(n+q−1)!
n!(q−1)! ∑

i
tiλiαq−1 ∧β n

=
(n+q−1)!

n!
(−1)q+1dS∧λ1 ∧·· ·∧λq ∧β n

=
(n+q−1)!tn

1
n!

(−1)q+1dS∧dM1

+(n+q−1)!(−1)q+1dS∧λ1 ∧·· ·∧λq

 ∑
| j|=n
j1 ̸=n

t j1
1 · · · t jq

q

j1! · · · jq!
(dλ1)

j1 ∧·· ·∧ (dλq)
jq

 .
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The product dS∧dM1 is a volume form on Sq+1 ×M ≈ ∂w, and the second term is gets
arbitrarily small for small choices of ε . Thus, for sufficiently small choices of ε , the 1-form
σ is a Liouville form for the symplectic manifold (W,ω), as we wanted.

We can consider M as a submanifold of W by means of the inclusion M ↪→ W

sending x to (e1,x). In this regard, M is a compact co-isotropic submanifold of W . Indeed,
the restriction of ω to M is ∑i dti ∧λi +dλ1. Thus, if X ∈ TW and u ∈ TM, we have

ω|TM(X ,u) = ∑
i

dti(X)λi(u)+dλ1(X ,u).

If X belongs to symplectic complement of TM, that is, if ω(X ,u) = 0 for all u ∈ TM, then,
in particular, for u = R j one has

0 = ω|TM(X ,R j) = dt j(X),

and therefore dti(X) = 0 for every i, meaning X belong to TM.

Recall the following definition, due to Bolle.

Definition 42 (Cp-Condition). Let (M,ω) be a 2n-dimensional closed symplectic mani-
fold. For 1 ≤ p ≤ n, we say a submanifold S satisfies the Cp-condition if

(i) S is a compact co-isotropic submanifold of codimension p. In other words, ker(ω|S)
is a vector bundle of constant rank p over S;

(ii) There are 1-forms λ1, · · · ,λq on S such that dλ1 = · · ·= dλq = ω|S;

(iii) the application X 7→ (λ1(X), · · · ,λq(X)) is a bundle isomorphism between ker(ω|S)
and Rq.

Proposition 37. Every uniform q-contact manifold satisfies the Cq-condition.

Proof. Indeed, suppose M is a uniform q-contact manifold and let (W,ω) be its symplec-
tisation. The, since dλi = dλ j for every i, j, then

ω = dσ = ∑
i
(dti ∧λi)+

(
∑

i
ti

)
dλ1.

Then M ≈ {e1}×M is co-isotropic, and the restriction of the kernel of

ω|M = ∑
i
(dti ∧λi)+dλ1,

is exactly the Reeb bundle R. Hence it has rank q. Moreover, for any X ,Y ∈ Γ(M), we
have

ω|M(X ,Y ) = ∑
i
(dti ∧λi)(X ,Y )+dλ1(X ,Y ) = dλ1(X ,Y ),
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because dti(X) = dti(Y ) = 0 for every i, as argued above. Finally, isomorphism in (iii) is
simply the decomposition of X in the frame {R1, · · · ,Rq}.

This means the concept of uniform q-contact structure and Cp-submanifold are
the same.

On (W,ω) we consider the projection Hi : (t1, · · · , tq,x) 7→ ti. The vector field Xi :=
0⊕Ri satisfies:

ιX ω = ∑
j

dt j ∧λ j(X , ·)+∑
j

t j dλ j(X , ·)

= ∑
j
(dt j(0)λ j −λ j(Ri)dt j)+∑

j
t j dλ j(Ri, ·)

=−dti =−dHi,

and is, therefore, the Hamiltonian vector field of H. Similarly, the vector field 0⊕Ri is the
Hamiltonian of the projection on the i-th Rq coordinate.

Analogously to the relation between Legendrian submanifolds of a contact manifold
and Lagrangian submanifolds in its symplectisation, we have the following.

Definition 43 (λi-Legendrian submanifold). We say a n-dimensional submanifold L ⊂ M

is λi-Legendrian if for every p ∈ L the tangent space TpL is a co-isotropic subset of the
symplectic vector field (ξp,dλi|p). In other words, for every p ∈ L, we have inclusions

TpL⊥i ⊂ TpL ⊂ ξp,

where TpL⊥i := {v ∈ ξp; dλi|p(v,u) = 0 for all u ∈ TpL} ⊂ TpL.

It follows from a direct verification of the definitions that

Proposition 38. A submanifold L⊂W is Lagrangian if and only if πM(L) is λi-Legendrian
for every i.
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