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“The principle of relativity corresponds to the hypothesis that the kinematic space is a space of

constant negative curvature, the space of Lobachevski and Bolyai. The value of the radius of

curvature is the speed of light.”

Émile Borel





RESUMO

PEREIRA, R. F. O espaço cinemático da relatividade restrita e sua geometria hiperbó-
lica. 2021. 74 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

O espaço classificador de referenciais inerciais em relatividade restrita é naturalmente hiperbó-
lico. Há uma interação notável entre os elementos centrais de geometria hiperbólica e aqueles da
relatividade especial — os quais, até certo ponto, já foram observados no passado — que apresen-
tamos e discutimos mais profundamente nessa dissertação. Nosso objetivo é uma geometrização
da relatividade restrita no nível do espaço cinemático, dando aos conceitos/fenômenos físicos
definições/descrições puramente geométricas. Dessa forma, as diferenças entre a relatividade
restrita e a mecânica clássica podem ser vistas como manifestação das naturezas geométricas
distintas de seus espaços cinemáticos. A dissertação tem 4 capítulos; os dois primeiros apre-
sentam alguns dos pré-requisitos, bem como um pouco da “história” que culminou no preprint
apresentado no Capítulo 4. Esse preprint arXiv, submetido para publicação, contém os principais
resultados da dissertação. No Capítulo 3 discutimos brevemente os espaços gyrovetoriais, que
constituem um outro ambiente algébrico para lidar com a geometria hiperbólica e a relatividade
restrita.

Palavras-chave: Geometria Hiperbólica, Relatividade Restrita, Espaço Cinemático, Geometrias
Clássicas Livres de Coordenadas.





ABSTRACT

PEREIRA, R. F. The kinematic space of special relativity and its hyperbolic geometry. 2021.
74 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2021.

The classifying space of inertial reference frames in special relativity is naturally hyperbolic.
There is a remarkable interplay between central elements of hyperbolic geometry and those of
special relativity — which, to a certain extent, have already been observed in the past — that we
present and further discuss in this dissertation. We aim at a geometrization of special relativity
at the level of kinematic space by giving to physical concepts/phenomena purely geometric
definitions/descriptions. In this way, the differences between special relativity and classical
mechanics can be seen as a manifestation of the distinct geometric natures of their kinematic
spaces. The dissertation has 4 chapters; the first two present some of the prerequisites, as well as
a little bit of the “history” that culminated in the preprint that constitutes Chapter 4. This arXiv
preprint, submitted for publication, contains the main results of the dissertation. In Chapter 3,
we briefly discuss gyrovector spaces which constitute another algebraic framework to deal with
hyperbolic geometry and special relativity.

Keywords: Hyperbolic Geometry, Special Relativity, Kinematic Space, Coordinate-free Classic
Geometries.
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CHAPTER

1
INTRODUCTION

The group of orientation-preserving isometries of the hyperbolic space is the restricted
Lorentz group SO+(1,3), which is precisely the group of symmetries in special relativity. This
fact turns out to be not just a coincidence, but rather the first hint of a meaningful interplay
between hyperbolic geometry and special relativity.

1.1. Ancient history. Just a few years after Albert Einstein’s “Annus Mirabilis”, the rich interac-
tion between hyperbolic geometry and special relativity started being explored by some authors
(VARIĆAK, 1910), (BOREL, 1913b), (BOREL, 1913a). In (VARIĆAK, 1910), the relative
rapidity

w := tanh−1
(v

c

)

is defined and its role further discussed (v stands for the relative velocity and c for the speed of
light in the vacuum). Note that w → ∞ when v → c, and also that

cw = v+
v3

3c2 +
v5

5c4 +O
(
v7)

which means that the quantity cw, called true velocity by Varićak, approximates v for small
values of v/c.

In terms of the rapidity, the well-known Lorentz transformation from an inertial reference
frame O to an inertial reference frame O ′ moving with velocity v along the x-axis with respect
to O can be written as 




ct ′ = ct cosh(w)− xsinh(w)

x′ =−ct sinh(w)+ xcosh(w)

y′ = y, z′ = z

since cosh(w) = γ and sinh(w) = βγ , where γ := 1/
√

1− v2/c2 stands for the Lorentz factor
and β := v/c.

Let u = dx/dt and u′ = dx′/dt ′ be the velocities of an object as measured respectively
by O and O ′; also, let φ = tanh−1(u/c) and φ ′ = tanh−1(u′/c) be the corresponding rapidities.
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Using the above form of a Lorentz transformation, one can write

u′ =
(
ucosh(w)− csinh(w)

) dt
dt ′

= c
ucosh(w)− csinh(w)
ccosh(w)−usinh(w)

which implies

tanh(φ ′) =
tanh(φ)− tanh(w)

1− tanh(φ)tanh(w)
= tanh(φ −w).

Figure 1 – Addition of ra-

pidities.

Therefore, in one dimension, rapidities are additive. When v, u and u′

are not collinear, it is known that the general relativistic law for com-
position of velocities implies the hyperbolic law of cosines. That is,
given a geodesic triangle (p,q,r) with vertices p,q,r in the hyperbolic
disk H2

R and sides of lengths w = tanh−1(|v|/c), φ = tanh−1(|u|/c)

and φ ′ = tanh−1(|u′|/c), the formula for the norm of the composition
of velocities is equivalent to

cosh(φ) = cosh(w)cosh(φ ′)+ sinh(w)sinh(φ ′)cos(θ),

where π − θ is the angle between v and u′. The velocity u is often
called the relativistic addition of the velocities v and u′ and is denoted by u =: v⊕ u′. The
noncommutativity of this addition can be geometrically seen as follows.

Figure 2 – Noncommutativity of the relativistic velocities addition.

In Figure 2, α is the angle between the velocities v and u; β is the angle between u and u′;
and α +β + γ is the velocity between v and u′ which equals π −θ . Hence, γ = π − (α +β +θ).
But α +β +θ < π because, in hyperbolic geometry, π − (α +β +θ) is precisely the area of
the triangle (p,q,r) which is bounded above by π . Therefore, γ ̸= 0, indicating that the constant
negative sectional curvature of the hyperbolic plane is directly related to the noncommutativity
of the relativistic velocity addition.

In (BOREL, 1913b) and (BOREL, 1913a), E. Borel defined the kinematic space and
suggested a formula, using the Gauss-Bonnet theorem, for the phenomenon that later would
be called Thomas precession. Borel’s kinematic space is nothing but the unitary open ball
B := {v ∈ R3 : |v|< 1}, each vector v ∈ B corresponding to a velocity u, measured in a chosen
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reference frame regarded as the origin of B and such that v = u/c. In this way, the boundary ∂B
of the kinematic space corresponds to the velocities of photons. Note that, in kinematic space,
inertial trajectories correspond to points while accelerated ones are represented by non-constant
curves, each point of such a curve being the velocity as measured by the chosen frame at the
origin in a given instant of time.

According to Borel, the kinematic space of classical mechanics is Euclidean (actually,
it would be more accurate to say that it is a vector space with no preferred inner product, see
???). That being said, it is only natural to expect the existence of a limit velocity (the speed of
light) to impose conditions on the geometry of the kinematic space; as Borel himself quoted “the
principle of relativity corresponds to the hypothesis that the kinematic space is a space with a
constant negative curvature, the space of Lobachevsky and Bolyai. The value of the radius of
curvature is the speed of light.”

The Thomas precession is the well-known phenomenon in relativistic kinematics in
which the angular momentum of a body precesses when the body is in an accelerated trajectory.
Suppose a body is in a uniform circular motion with angular velocity ω in relation to a given
inertial reference frame. Then the angular momentum of the body, measured in this reference
frame, precesses with angular velocity Ω given by

(1.1.1) Ω =
(
1− γ

−1)
ω

where γ = 1/
√

1− v2/c2 (RINDLER, 2006, p. 2000, formula (9.31)). Borel not only predicted
the existence of such phenomenon but, postulating the Thomas Precession as a direct consequence
of the parallel transport along a (plane) closed path in the kinematic space, used the Gauss-
Bonnet theorem to estimate the area enclosed by such path and arrived at Ω =

(
1− γ−2)ω ,

which approximates formula (1.1.1) when v → c.

1.2. Gyroworld. A more recent way to formulate special relativity in terms of hyperbolic
geometry appears in (UNGAR, 2008), where the axiomatization of the “weak commutativity and
associativity” properties satisfied by the addition of relativistic velocities, also called Einstein’s
addition in this context, gives rise to the concepts of gyrogroup and gyrovector space, which are
presented in more detail in Chapter 3. In the sense of this algebraic structure, the addition of
velocities

v⊕w :=
1

1+ ⟨v,w⟩
c2

(
v+

w
γv

+
1
c2

γv

1+ γv
⟨v,w⟩v

)

for all v,w ∈ B0(c) := {v ∈ R3 : |v| < c}, where γv := 1/
√

1− v2/c2 is the Lorentz factor, is
shown to be equivalent to the Möbius addition

a⊕b :=
a+b
1+ab

for all a,b ∈ D. Here, D := {z ∈ C : |z| < 1} stands for the unitary complex disk, and z is the
complex conjugate of z ∈ C. Besides the addition, a gyrovector space is equipped with a scalar
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product which, in the case of Einstein gyrovector space, is given by

r⊗ v := c tanh
(

r tanh−1 |v|
c

)
v
|v|

for all v ∈ B0(c) and r ∈ R.

Perhaps the most interesting thing about gyrovector spaces is that, when endowed with
an inner product, they provide an algebraic framework to hyperbolic geometry in a similar
way that inner product vector spaces provide for Euclidean geometry. For instance, while
straight lines (Euclidean geodesics) in a vector space can be parameterized as curves of the type
c(t) = p+ tv, hyperbolic geodesics in Einstein (or, equivalently , Möbius) gyrovector space can
be parameterized as curves of the type c(t) = p⊕ t ⊗ v. Also, in a normed gyrovector space
G, the hyperbolic geodesics are the minimizing curves of the gyrometric d⊕(p,q) := |p⊖ q|,
p,q ∈ G, in the way as straight lines are the minimizing curves of the metric d(p,q) := |p−q|,
p,q ∈V , in a normed vector space V .

Kinematic space in the spotlight. In (FERREIRA; REIS; GROSSI, 2020), we propose yet
another framework to explore the interplay between special relativity and hyperbolic geometry.
The mathematical tools we use come mainly from (ANAN’IN; GROSSI, 2011b), where a
synthetic and coordinate-free frameset for several of the so-called classic geometries (including,
say, hyperbolic, Fubini-Study, de Sitter and anti-de Sitter) is presented; Chapter 2 is devoted to a
more detailed description of such methods.

Consider the Minkowski spacetime M, i.e., a real vector space endowed with a nonde-
generate symmetric bilinear form ⟨−,−⟩ of signature −+++, and let P be the projectivization
of M. We define the kinematic space as the classifying space of inertial massive observers in
Minkowski spacetime, that is, the kinematic space is the space K := {p ∈ P | ⟨p, p⟩< 0}. Given
a point p ∈ K , the tangent space TpK is isomorphic to the space of linear transformations from
the subspace generated by p to its orthogonal p⊥,

TpK ≃ Lin(Rp, p⊥).

Using the above identification, we provide K with the hyperbolic metric

(1.2) ⟨ϕ1,ϕ2⟩p :=−⟨ϕ1(p),ϕ2(p)⟩
⟨p, p⟩

for all ϕ1,ϕ2 ∈ TpK . An interesting and useful fact is that, in this way, the hyperbolic space is
naturally compactified by the de Sitter space, which is P∖K endowed with metric (1.2), where
K is the topological closure of K in P.

Here, the quote by Borel can be interpreted as the fact that, when working with Minkowski
spacetime, the kinematic space is a topological ball naturally provided with a hyperbolic metric.
If one takes a look at Newtonian spacetime, that is, a real vector space V with a symmetric
bilinear form of signature 0+++, the classifying space of inertial observers turns out to be a
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real vector space with no distinguished inner product. To observe this, one just have to note that,
choosing v ∈V such that ⟨v,v⟩= 0, each inertial observer (straight line in V ) can be mapped to a
vector in the vector subspace of signature +++.

We arrived at a geometrization of special relativity at the level of kinematic space,
translating physical quantities (Lorentz factor, addition of velocities, Doppler effect) into purely
geometric definitions and objects:

∙ The Lorentz factor is given by the square root of the tance, which is the simplest algebraic
(projective) invariant involving two points (see (FERREIRA; REIS; GROSSI, 2020),
Subsection 3.1). The square root of the tance is a monotonic function of the hyperbolic
distance;

∙ The relative velocity between inertial observers ppp,qqq ∈ K appears as a natural algebraic
expression for the tangent vector to the geodesic segment joining ppp,qqq (see (FERREIRA;
REIS; GROSSI, 2020), Definition 3.2.4);

∙ Rapidity and the closely related concept of scaled rapidity are shown to have distinct
geometric origins. While rapidity comes from the hyperbolic metric on K and measures
the hyperbolic distance between inertial reference frames, scaled rapidity comes from the
hyperbolic metric on a velocity space Vppp for ppp ∈K , and measures the hyperbolic distance
between relative velocities at ppp (see (FERREIRA; REIS; GROSSI, 2020), Section 3.2);

∙ Parallel transport gives rise to the relativistic velocity addition in a straightforward gen-
eralization of the classical velocity addition (see (FERREIRA; REIS; GROSSI, 2020),
Definition 3.2.1);

∙ Hypercycles (that is, curves equidistant from a geodesic in K ) allow one to write a
“parallelogram law” for the relativistic velocity addition (see (FERREIRA; REIS; GROSSI,
2020), end of Subsection 3.2);

∙ The general relativistic Doppler effect can be described by a natural expression involving
the Busemann function related to a photon or, equivalently, to a point in the ideal boundary
of K ((FERREIRA; REIS; GROSSI, 2020), see Proposition 3.3.2). Moreover, horospheres
appear as level surfaces of energy/frequency ((FERREIRA; REIS; GROSSI, 2020), see
Corollary 3.3.3). There is a striking resemblance between such geometric form of the
relativistic Doppler effect and the study of probability measures in the context of Patterson-
Sullivan theory (see (QUINT., 2006, Section 1.2 and Proposition 3.9) for the Patterson-
Sullivan perspective);

∙ A basic algebraic invariant involving two inertial observers in K and a pair of space-
like separated events determines whether the observers agree or disagree on the order of
occurrence of the events (see (FERREIRA; REIS; GROSSI, 2020), Subsection 3.5);
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∙ Curves in K can be seen as describing the inertial reference frames occupied by an
observer at each instant of its proper time and a tangent vector to such a curve gives the
instantaneous 4-acceleration of the observer. Hence, dynamics can also be modelled at the
level of the kinematic space (see (FERREIRA; REIS; GROSSI, 2020), Subsection 3.6).

We expect that this geometrization could help to study special relativity in other ge-
ometries, such as de Sitter and anti-de Sitter spaces, that also can be modelled by the same
approach, presented on Chapter 2. We believe, as well, that some techniques could be extended
to general relativity, studying for instance the classifying space of massive inertial observers in
the Schwarzschild metric.
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CHAPTER

2
PROJECTIVE CLASSIC GEOMETRIES

This chapter is devoted to the study of a coordinate free approach to the so-called
classic geometries (see Subsection 2.2 for examples of classic geometries). These spaces share a
common algebraic structure related to their geometry which is sometimes simpler to work with
than the usual Riemannian/pseudo-Riemannian concepts; this is the viewpoint that is applied in
Chapter 4 to the study of special relativity. The chapter is entirely based in (ANAN’IN; GROSSI,
2011b) and in (ANAN’IN; GROSSI, 2011a).

2.1 Projective Spaces

2.1.1. Definition. Let V be a K-vector space of dimension n+1 endowed with a nondegenerate
hermitian form ⟨−,−⟩ : V ×V →K, where the field K can be R or C. The projective space of
dimension n over K is defined as the quotient:

PKV := Pn
K :=V ∙/K∙

where V ∙ :=V ∖{0} and K∙ :=K∖{0}. That means Pn
K is the quotient of V ∙ by the equivalence

relation u ∼ v ⇔ u = rv, for some r ∈K∙. Of course PKV is provided with the quotient topology
and its usual C∞ structure.

From now on, in moments with no ambiguity, we are going to use the same letter to
denote a point p ∈ PKV and a representative of this point p ∈V . We are also going to use the
notation π : V ∙ → PKV for the quotient projection.

2.1.2. Definition. Given a point p ∈ PKV , we define its sign as the sign of ⟨p, p⟩ (−, + or 0).
The sign is well defined since ⟨kp,kp⟩ = |k|2⟨p, p⟩, k ∈ K∙, that is, it does not depend on the
choice of representatives.

The sign divides PKV in three disjoint components. The points in PKV can be negative,
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positive or isotropic:

BV := {p∈PKV | ⟨p, p⟩< 0}, EV := {p∈PKV | ⟨p, p⟩> 0}, SV := {p∈PKV | ⟨p, p⟩= 0}.

We call absolute the space SV of isotropic points.

The sets B := {v ∈V ∙|⟨v,v⟩< 0} and E := {v ∈V ∙|⟨v,v⟩> 0} are open, since they’re
inverse images of open sets by the continuous map V ∙ →R, v ↦→ ⟨v,v⟩, and therefore BV = π(B)

and EV = π(E) are also open since the quotient map is open. The set SV is immediately closed,
because SV = PKV ∖ (BV ⊔EV ).

Given a non-isotropic point p ∈ PKV ∖SV , we are going to use, for orthogonal decompo-
sition, the following notation:

V =Kp⊕ p⊥, v = π[p]v+π
′[p]v

where

p⊥ ∋ π[p]v := v− ⟨v, p⟩
⟨p, p⟩ p

Kp ∋ π
′[p]v :=

⟨v, p⟩
⟨p, p⟩ p

2.1.3. Proposition. There exists a natural isomorphism:

(2.1.4) TpPKV ≃ Lin(Kp,V/Kp)

where Kp is the subspace spanned by p ∈V and Lin(Kp,V/Kp) is the space of K-linear maps
from Kp to V/Kp.

Proof. Given a smooth function f ∈C∞(PKV ), let f̃ be the map f̃ := f ∘π : V ∙ →R. Given a lin-
ear map ϕ ∈Lin(Kp,V/Kp), let ϕ̃ :Kp→V be a lift of ϕ . Consider the map Lin(Kp,V/Kp)→
TpPKV , ϕ ↦→ vϕ , where:

(2.1.5) vϕ f :=
d
dt

∣∣∣
t=0

f̃
(

p+ tϕ̃(p)
)

for all f ∈C∞(PKV ). Note that f̃ (kv) = f̃ (v), for all k ∈K∙, v ∈V ∙, so our map doesn’t depend
on the choice of representative p ∈V ∙. Besides, given k ∈K∙,

d
dt

∣∣∣
t=0

f̃
(

p+ t(ϕ̃(p)+ kp)
)
=

d
dt

∣∣∣
t=0

f̃
(
(1+ tk)p+ tϕ̃(p)

)
=

=
d
dt

∣∣∣
t=0

f̃
(

p+
t

1+ tk
ϕ̃(p)

)
=

d
dt

∣∣∣
t=0

f̃
(

p+ tϕ̃(p)
)

So, vϕ also doesn’t depend on the choice of ϕ̃ .

The map ϕ ↦→ vϕ is linear due to the linearity of the directional derivative and to the
fact that f̃ is invariant under the choice of representative. It’s not hard to see that the map
Lin(Kp,V/Kp) → TpPKV is injective. Indeed, if we suppose vϕ ≡ 0, we necessarily have
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ϕ(p) ∈Kp because, otherwise, we would be able to find a smooth function f ∈C∞(PKV ) such
that the directional derivative vϕ f wouldn’t vanish. Now, the surjectivity comes from the fact
that dim(Lin(Kp,V/Kp)) = dim(PKV ). �

2.1.6. Corollary. Given a non-isotropic point p ∈ PKV ∖SV , there exists a natural identification

(2.1.7) TpPKV ≃ Lin(Kp, p⊥).

Proof. It’s easy to see that the map V/Kp → p⊥, [v] ↦→ π[p]v is well defined and is a linear
isomorphism. �

2.2 Metric

Using the notation ⟨−, p⟩v : V → V for the linear map x ↦→ ⟨x, p⟩v, we have, for a
non-isotropic p ∈ PKV ,

TpPKV =
{
⟨−, p⟩v | v ∈ p⊥

}
.

Given v ∈ p⊥, we’re going to use the notation tp,v := ⟨−, p⟩v. We equip TpPKV with a hermitian
form in a natural way:

⟨⟨tp,v, tp,w⟩⟩p :=±
〈
tp,v(p), tp,w(p)

〉

⟨p, p⟩ =±⟨p, p⟩⟨v,w⟩

for all v,w ∈ p⊥. Clearly, we have the associated bilinear symmetric form

(2.2.1) ⟨tp,v, tp,v⟩p = Re⟨⟨tp,v, tp,v⟩⟩p,

where Re(z) stands for the real part of z ∈ C. In this way, we obtain in Pn
R ∖ SV a pseudo-

Riemannian metric, since one can readily see that this formula depends smoothly on p ∈ Pn
R ∖SV .

2.2.2. Examples. With this metric we can model many classic geometries, depending on the
choice of field K, sign in the equation (2.2.1) and signature of the hermitian form.

∙ Let K = R, −++ be the signature of ⟨−,−⟩ and − the sign in (2.2.1). In this case,
BV is topologically an open disk endowed with a Riemannian metric. Such manifold is
known as Beltrami-Klein’s disk, and it’s a projective model for plane hyperbolic geometry,
which is going to be a central case in this work. The component EV is a Möbius strip
with a Lorentzian1metric. The space P2

R provided with these two geometries is called
Möbius-Beltrami-Klein’s projective plane.

∙ Let K= R, −+++ be the signature of ⟨−,−⟩ and − the sign in (2.2.1). Here, BV is the
real hyperbolic space of dimension 3. The manifold EV is Lorentzian and is known as de

Sitter space (an important space in general relativity).

1 A pseudo-Riemannian metric (on a smooth manifold) is called Lorentzian when its signature is
−+ ...+.
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∙ Let K = R, −−++ be the signature of ⟨−,−⟩ and − the sign in (2.2.1). Now, BV is
provided with a pseudo-Riemannian metric known as anti-de Sitter metric (also important
in general relativity and in the adS/CFT correspondence).

∙ Let K = C, ++ be the signature of ⟨−,−⟩ and + the sign in (2.2.1). We get the usual
sphere of dimension 2 with constant positive curvature.

∙ Let K= C, −+ be the signature of ⟨−,−⟩ and − the sign in (2.2.1). In this case, BV and
EV are two Poincaré disks glued together along the absolute SV .

∙ Let K= C, −++ be the signature of ⟨−,−⟩ and − the sign in (2.2.1). Then, BV is the
complex hyperbolic plane H2

C.

∙ Let K= C, +...+ be the signature of ⟨−,−⟩ and + the sign in (2.2.1). This one is known
as Fubini-Study metric and its use in physics is in the geometry of quantum information.

Although the aim of this dissertation is to use this approach to describe special relativity
in the light of hyperbolic geometry, some other examples of classic geometries above, as cited,
appear in physics, indicating that this framework could be useful in other areas of physics as well.
So this section can also be seen as an invitation to physicists to become aware of this approach.

An interesting and useful fact is that, in this language, important geometric objects can
be expressed in a “linear” way, in some sense. For instance, geodesics are projectivizations
of certain R-linear subspaces of dimension 2. But before going in that direction, we need to
understand the Levi-Civita connection.

2.3 Levi-Civita Connection

Given a tangent vector t ∈ TpPKV ≃ Lin(Kp, p⊥), we can extend by zeroes and see it
as an element of Lin(V,V ). Conversely, given t ∈ Lin(V,V ), we can produce a tangent vector
tp ∈ PKV by composing with projectors:

(2.3.1) tp := π[p]tπ ′[p]

2.3.2. Definition. Let U ⊂V , PKU ∩SV = /0, be a saturated open set (i.e., π−1(π(U)) =U). A
lifted field on U is a smooth map X : U → Lin(V,V ) such that X(p)p = X(p) and X(kp) = X(p)

for all p ∈U , k ∈K∙.

2.3.3. Definition. Given t ∈ Lin(V,V ), the lifted field T spread from t is defined by T (p) := tp

for all p ∈ PKV , p /∈ SV .
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2.3.4. Definition. Let X ,T : U → Lin(V,V ) be lifted fields on a saturated open set U ⊂V without
isotropic points and let t ∈ Lin(V,V ) be such that T (p) = t. We define:

∇T X(p) :=
(

d
dε

∣∣∣
ε=0

X
(

p+ εt(p)
))

p
.

The proof that ∇ is an affine connection is routine (it comes directly from the properties of the
derivative as a linear map).

2.3.5. Lemma. Let p ∈ PKV ∖SV and t ∈ TpPKV . Then:

d
dε

∣∣∣
ε=0

π
′[p+ εt(p)] =− d

dε

∣∣∣
ε=0

π[p+ εt(p)] = t + t*,

where t* stands for the adjoint of t.

Proof. From the definition (2.3.4), we get:

d
dε

∣∣∣
ε=0

π
′[p+ εt(p)] =

d
dε

∣∣∣
ε=0

⟨−, p+ εt(p)⟩
⟨p+ εt(p), p+ εt(p)⟩

(
p+ εt(p)

)
=

=
d

dε

∣∣∣
ε=0

⟨−, p⟩+ ε⟨−, t(p)⟩
⟨p, p⟩+ ε2⟨t(p), t(p)⟩

(
p+ εt(p)

)
=

=
⟨−, t(p)⟩
⟨p, p⟩ p+

⟨−, p⟩
⟨p, p⟩ t(p).

Since t is a tangent vector to the point p, we can write tπ ′[p] = t. Let t ′ := ⟨−,t(p)⟩
⟨p,p⟩ p; then, for

arbitrary v,w ∈V ,

⟨t(v),w⟩=
〈 ⟨v, p⟩
⟨p, p⟩t(p),w

〉
=

⟨v, p⟩
⟨p, p⟩⟨t(p),w⟩=

=
〈

v,
⟨t(p),w⟩*
⟨p, p⟩ p

〉
=
〈

v,
⟨w, t(p)⟩
⟨p, p⟩ p

〉
= ⟨v, t ′(w)⟩

Therefore, t ′ = t*. �

2.3.6. Lemma. Let p ∈ PKV ∖SV and s, t ∈ TpPKV . Let S,T be the fields spread respectively
from s and t. Then

∇T S(x) = (sπ[x]t − tπ ′[x]s)x

for all non-isotropic x ∈ PKV .

Proof. By definition (2.3.4), lemma (2.3.5), and using that (tx)*π ′[x] = π[x](tx)* = 0, we have

∇T S(x) =
( d

dε

∣∣∣
ε=0

S
(
x+ εtxx

))
x
=
( d

dε

∣∣∣
ε=0

π[x+ εtxx]sπ
′[x+ εtxx]

)
x
=

=
(

π[x]s(tx +(tx)*)− (tx +(tx)*)sπ
′[x]
)

x
= (sπ[x]t − tπ ′[x]s)x

�

2.3.7. Proposition. The affine connection ∇ in (2.3.4) is the Levi-Civita connection for the
(pseudo-)Riemannian metric defined in (2.2.1) (for each component, BV and EV of PKV ).
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Proof. To show that ∇ is symmetric we recall that, because tensor fields are linear over C∞(PKV ),
the torsion tensor τ(S,T ) := ∇ST −∇T S− [S,T ] in a point only depends on the value of the
vector fields S,T on that point. Therefore, given p ∈ PKV ∖SV and S and T lifted fields, we
can assume that S and T are spread respectively from t := T (p) and s := S(p). Then, from
Lemma 2.3.6, we have ∇ST (p) = ∇T S(p) = 0. Now, it remains to check that [S,T ](p) = 0. By
definition, given f ∈C∞(PKV ):

T (x) f =
d

dε

∣∣∣
ε=0

f̃
(

p+ επ[x]t(x)
)

where f̃ = f ∘π . Then,

S(T f )(p) =
d

dδ

∣∣∣
δ=0

(
d

dε

∣∣∣
ε=0

f̃
(

p+δ s(p)+ επ[p+δ s(p)]t(p+δ s(p)
))

=

=
d

dδ

∣∣∣
δ=0

(
d

dε

∣∣∣
ε=0

f̃
(

p+δ s(p)+ εt(p)− εδ
⟨s(p), t(p)⟩

⟨p, p⟩+δ 2⟨s(p),s(p)⟩
(

p+δ s(p)
)))

=

=
d

dδ

∣∣∣
δ=0

(
d

dε

∣∣∣
ε=0

f̃
((

1− εδ
⟨s(p), t(p)⟩

⟨p, p⟩

)(
p+δ s(p)

)
+ εt(p)

))
=

=
d

dδ

∣∣∣
δ=0

(
d

dε

∣∣∣
ε=0

f̃
(

p+δ s(p)+
εt(p)

1− εδ ⟨s(p), t(p)⟩⟨p, p⟩−1

))
.

In the last equality above we used that f̃ (kp) = f̃ (p) for any k ∈K∙. Now, being f smooth, we
end up with:

S(T f )(p) =
d

dδ

∣∣∣
δ=0

(
d

dε

∣∣∣
ε=0

f̃
(

p+δ s(p)+ εt(p)
))

.

Therefore, since the above expression is symmetric in t and s, we have S(T f )(p) = T (S f )(p),
i.e., [S,T ](p) = 0 and τ(S,T ) = 0.

To show the compatibility with the metric, we note that, given smooth vector fields
S,T,X ∈ X(PKV ∖SV ), the quantity C(X ,S,T ) := X

(
⟨S,T ⟩

)
−⟨∇X S,T ⟩− ⟨S,∇X T ⟩ is also a

tensor field. Therefore, given a non isotropic p ∈ PKV , in order to calculate C(X ,S,T )(p) we
can assume that X ,S,T are respectively spread from x,s, t ∈ TpPKV . We have

X
(
⟨S,T ⟩

)
(p) =± d

dε

∣∣∣
ε=0

〈
Sp+εx(p)

(
p+ εx(p)

)
,Tp+εx(p)

(
p+ εx(p)

)〉

⟨p+ εx(p), p+ εx(p)⟩ =

=± d
dε

∣∣∣
ε=0

〈
π[p+ εx(p)]s

(
p+ εx(p)

)
,π[p+ εx(p)]t

(
p+ εx(p)

)〉

⟨p, p⟩+ ε2⟨x(p),x(p)⟩ =

=± 1
⟨p, p⟩

(〈 d
dε

∣∣∣
ε=0

π[p+ εx(p)]s(p), t(p)
〉
+
〈

s(p),
d

dε

∣∣∣
ε=0

π[p+ εx(p)]t(p)
〉)

=

=± 1
⟨p, p⟩

(〈
− (x*+ x)s(p), t(p)

〉
+
〈
s(p),−(x*+ x)t(p)

〉)

where in the last equality we used Lemma 2.3.5. Then, knowing that x* = ⟨−,x(p)⟩
⟨p,p⟩ p, we end

up with X
(
⟨S,T ⟩

)
(p) = 0. From Lemma 2.3.6, we have ∇X S(p) = ∇X T (p) = 0 and therefore,

C(X ,S,T )(p) = 0. �
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2.4 Geodesics, Tance and Parallel Transport

The simplest algebraic invariant of two non-isotropic points p,q ∈ PKV is the tance (see
(ANAN’IN; GROSSI, 2011b)), defined as:

(2.4.1) ta(p,q) :=
⟨p,q⟩⟨q, p⟩
⟨p, p⟩⟨q,q⟩ .

It’s immediate that the tance doesn’t depend on the choice of representatives. As a convention,
when one of the points p or q is isotropic, we define ta(p,q) :=+∞ if ⟨p,q⟩ ̸= 0, and ta(p,q) = 1
if ⟨p,q⟩= 0.

It turns out that the tance is a monotonic function of the distance, as will be shown in the
future (see Propositions 2.4.9 and 2.4.11). This makes the tance extremely useful since we can
use it instead of the distance on many occasions; this is desirable because the tance is algebraic
while the distance is a transcendental function of the tance.

2.4.2. Lemma. Let γ : [a,b] → PKV be a smooth curve and γ0 : [a,b] → V be a smooth lift
of γ , i.e. a smooth curve such that π ∘ γ0 = γ . Then, for γ(t0) non isotropic, the tangent vector
γ̇(t0) : Kγ0(t0)→ γ0(t0)⊥ to γ at the point γ(t0) is given by:

γ̇(t0) =
⟨−,γ0(t0)⟩

⟨γ0(t0),γ0(t0)⟩
π[γ0(t0)]γ̇0(t0)

Proof. Given f ∈C∞(PKV ) and f̃ := f ∘π , we can write:

γ̇(t0) f :=
d
dt

∣∣∣
t=t0

( f ∘ γ) =
d
dt

∣∣∣
t=t0

( f̃ ∘ γ0) =

=
d

dε

∣∣∣
ε=0

f̃
(
γ0(t0)+ εγ̇0(t0)

)
=

=
d

dε

∣∣∣
ε=0

f̃
(
γ0(t0)+ επ

′[γ0(t0)]γ̇0(t0)+ επ[γ0(t0)]γ̇0(t0)
)
.

Now, being k := ⟨γ̇0(t0),γ0(t0)⟩/⟨γ0(t0),γ0(t0)⟩, we have:

γ̇(t0) f =
d

dε

∣∣∣
ε=0

f̃
(
(1+ εk)γ0(t0)+ επ[γ0(t0)]γ̇0(t0)

)
=

=
d

dε

∣∣∣
ε=0

f̃
(
γ0(t0)+

ε

1+ εk
π[γ0(t0)]γ̇0(t0)

)
=

=
d

dε

∣∣∣
ε=0

f̃
(
γ0(t0)+ επ[γ0(t0)]γ̇0(t0)

)
.

�

2.4.3. Definition (Geodesic). Let W ≤ V be a two dimensional R-linear subspace of V such
that ⟨−,−⟩

∣∣
W is real and non-null. We will call PKW := π(W )⊂ PKV a geodesic.

The above definition of geodesic (restricted to BV or EV ) coincides with the usual one as
we will see in Corollary 2.4.16. Since Kp∩W = Rp for all 0 ̸= p ∈W , we have PKW = PRW .
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Hence, PKW ≃ S1, i.e, every geodesic is topologically a circle. Of course, when we restrict a
geodesic to BV or to EV , in order to get an actual pseudo-Riemannian geodesic, we may no
longer have a circle.

2.4.4. Lemma. The geodesics PKW and PKW ′ coincide iff W = kW ′ for some k ∈K∙.

Proof. One direction is immediate. Now, let PKW = PKW ′ be two coincident geodesics. Let
w1,w2 ∈ W be such that ⟨w1,w2⟩ ̸= 0 and W = Rw1 + ⟨w1,w2⟩Rw2. It follows from PKW =

PKW ′ that there exist w′
1,w

′
2 ∈W ′ and k1,k2 ∈K∙ such that w1 = k1w′

1 and w2 = k2w′
2. So,

W = Rk1w′
1 + k1k2⟨w′

1,w
′
2⟩Rk2w′

2 = k1(Rw′
1 +Rw′

2) = k1W ′ �

2.4.5. Definition. Let W ≤V be a real linear subspace. A point p ∈W is said to be projectively
smooth in W if dimR(Kp∩W ) = min

0̸=w∈W
dimR(Kw∩W ).

2.4.6. Lemma. Let W ≤V be a real linear subspace, p ∈W a non-isotropic projectively smooth
point in W and ϕ ∈ Lin(Kp,V ). Then ϕ ∈ TpPKW if, and only if ϕ(p) ∈W ∩ p⊥.

Proof. We begin by defining:

d := min
0̸=w∈W

dimR(Kw∩W ), D := {w ∈W | dimR(Kw∩W ) = d}

Note that given 0 ̸= w ∈W we have either Kw∩W = Rw or Kw∩W =Kw, which implies that
D is open in W . When d = 2, this is immediate; when d = 1 is just a matter of noticing that
D = {w ∈W | iw /∈W}, and therefore that W ∖D is a C-linear subspace of V contained in W .0

Now, suppose that ϕ(p) ∈W ∩ p⊥. Since D is open in W , for a sufficiently small ε > 0,
the curve γ0(ε) := p+εϕ(p) is contained in D and the curve γ := π ∘γ0, which by Lemma 2.4.2
has tangent vector ϕ at p, is contained in PKD. So, we proved one direction, ϕ ∈ TpPKW . To
finish, we have:

dimRPKD = dimRW −d = dimR(W ∩ p⊥)

And therefore TpPKW ≃W ∩ p⊥. �

2.4.7. Lemma. Let p,q,r ∈ PKV with p /∈ SV , q ̸= r and ⟨q,r⟩ ̸= 0. Let t ∈ TpPKV . Then:

1) There exists a unique geodesic containig q and r;

2) There exists a unique geodesic passing through p and with tangent vector t at p. Such geodesic
is the projectivization of the subspace W = Rp+Rt(p).

Proof. 1) Let W :=Rq+R⟨q,r⟩r. It’s clear that q,r ∈ PKW . The hermitian form restricted to W

is non-null and real since
〈
q,⟨q,r⟩r

〉
= ⟨q,r⟩⟨q,r⟩ ∈ R. Let PKW ′ be another geodesic passing

through q and r. Then W ′ = Rkq+Rk′r for some k,k′ ∈K. We have ⟨kq,k′r
〉
= kk′⟨q,r⟩ ∈ R∙.

So, W ′ = Rkq+Rkk′⟨q,r⟩k′r = kW which, by Lemma 2.4.4, implies that PKW = PKW ′.

2) By Lemma 2.4.6, t is tangent to the geodesic PKW at p (remember that t(p) ∈ p⊥).
Now, let PKW ′ be another geodesic passing through p with tangent vector t at p. We can
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choose, by Lemma 2.4.4, a subspace W ′ such that p ∈ W ′. Again by Lemma 2.4.6, we have
t(p) ∈W ′∩ p⊥ and therefore W ′ = Rp+Rt(p). �

2.4.8. Proposition. Let p,q ∈ PKV be two distinct and non orthogonal points, being p non
isotropic. Then t := ⟨−,p⟩π[p]q

⟨q,p⟩ is a tangent vector to the geodesic passing through p and q at the
point p.

Proof. The geodesic passing through p and q is given by the subspace W = Rp+R⟨p,q⟩q. It’s
immediate that t(p) ∈ p⊥. We have:

t(p) =
⟨p, p⟩
⟨q, p⟩π[p]q =

⟨p, p⟩
|⟨q, p⟩|2 ⟨p,q⟩q− p

So, we also have t(p) ∈W . Therefore, by Lemma 2.4.6, t ∈ TpPKW . �

2.4.9. Spherical Geodesics. A geodesic PKW is called spherical if the subspace W has signature
++. We shall parameterize PKW and calculate its length. Let {p,q} be an orthonormal basis for
W . The curve:

γ0 : [0,a]→V, t ↦→ cos(t)p+ sin(t)q

where a ∈ [0, π

2 ], is a lift of the parameterization γ := π ∘ γ0 of a segment of geodesic connecting
p and r := γ(a) contained in PKW . From Lemma 2.4.2 we can write

γ̇(t) =
⟨−,γ0(t)⟩

⟨γ0(t),γ0(t)⟩
π[γ0(t)]γ̇0(t) = ⟨−,γ0(t)⟩γ̇0(t)

because ⟨γ0(t),γ0(t)⟩= 1 and ⟨γ̇0(t),γ0(t)⟩= 0 for all t ∈ [0,a]. Choosing the + sign in equation
(2.2.1), we have:

l(γ) =
∫ a

0

√
⟨γ̇(t), γ̇(t)⟩γ(t) dt =

∫ a

0

√〈
γ̇0(t), γ̇0(t)⟩⟨γ0(t),γ0(t)

〉
dt = a

By Sylvester’s criterion (Appendix A, Theorem A.1.7), ⟨p, p⟩⟨r,r⟩−⟨p,r⟩⟨r, p⟩ ≥ 0. Therefore
0 ≤ ta(p,r)≤ 1. Calculating the tance we obtain ta(p,r) = cos2 a which gives us

(2.4.10) l(γ) = arccos
√

ta(p,r)

�

2.4.11. Hyperbolic Geodesics. A geodesic PKW is called hyperbolic if the subspace W has
signature −+. Following a similar procedure as we did in the spherical case, we take an
orthonormal basis {p,q} for W , where ⟨p, p⟩=−1. Given a > 0, the curve

γ0 : [0,a]→V, γ0(t) := cosh(t)p+ sinh(t)q

is a lift of the parameterization γ := π ∘ γ0 of a segment of geodesic passing through p and
r := γ(a) and contained in PKW . We have

⟨γ0(t),γ0(t)⟩=−cosh2 t + sinh2 t =−1, ⟨γ̇0(t), γ̇0(t)⟩=−sinh2 t + cosh2 t = 1
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and ⟨γ̇0(t),γ0(t)⟩= 0. Therefore, by Lemma 2.4.2, we have γ̇(t) =−⟨−,γ0(t)⟩γ̇0(t). Choosing
the − sign in equation (2.2.1) and, as in the spherical case, calculating the length of γ , we end
up with l(γ) = a. By Sylvester’s criterion (Appendix A, Theorem A.1.7), we have ⟨p, p⟩⟨r,r⟩−
⟨p,r⟩⟨r, p⟩ ≤ 0, which implies ta(p,r)≥ 1. If we calculate the tance, we gain ta(p,r) = cosh2 a,
and then the following relation holds:

(2.4.12) l(γ) = arccosh
√

ta(p,r).

�

Our next goal is to describe parallel transport along geodesics and to show that our
geodesics, outside isotropic points, are actual geodesics of the Levi-Civita connection. Given
a geodesic G = PKW , we define the projective line of the geodesic as L := PK(KW ), where
KW :=W if K= R and KW :=W ⊕ iW if K= C.

2.4.12. Definition. Let p ∈ PKV be a non-isotropic point, t ∈ TpPKV be a tangent vector at p

and T be the spread (lifted) field from t. We define the smooth field

Tn(t)(x) :=
T (x)

ta(x, p)

for all x ∈ PKV ∖ (PKp⊥∪SV ).

2.4.13. Proposition. Let p ∈ PKV be a non-isotropic point, t ∈ TpPKV a tangent vector at p and
G a geodesic passing through p with tangent vector t at p. Then the field Tn(t) is non-null and
tangent to G in the points of G where it’s defined.

Proof. Let x ∈ G, x /∈ p⊥. It’s clear that Tn(t)(x) ̸= 0, otherwise we would have x ∈ p⊥. By
Lemma 2.4.7, we know that G = PKW , where W = Rp+Rt(p). We choose a representative
such that x ∈W and write

Tn(t)(x) = π[x]t(x) = π[x]t
( ⟨x, p⟩
⟨p, p⟩ p

)
=

⟨x, p⟩
⟨p, p⟩t(p)− ⟨x, p⟩

⟨p, p⟩
⟨t(p),x⟩
⟨x,x⟩ x

(since t ∈ TpPKV ≃ Lin(V,V ), we have t(Kp) ⊂ p⊥ and t(p⊥) = {0}). Therefore Tn(t)(x) ∈
W ∩ x⊥, which by Lemma 2.4.6 concludes the proof. �

2.4.14. Proposition. Let p ∈ PKV be a non-isotropic point, t ∈ TpPKV a tangent vector at p and
T be the spread field from t. Then

T (x)ta(−, p) =−2ta(x, p)Re
⟨t(x),x⟩
⟨x,x⟩

for all x ∈ PKV ∖SV .

Proof. It’s routine:

T (x)ta(−, p) =
d

dε

∣∣∣
ε=0

〈
p,x+ επ[x]tx

〉〈
x+ επ[x]tx, p

〉

⟨p, p⟩
〈
x+ επ[x]tx,x+ επ[x]tx

〉 =
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=
d

dε

∣∣∣
ε=0

〈
p,x+ επ[x]tx

〉〈
x+ επ[x]tx, p

〉

⟨p, p⟩
(
⟨x,x⟩+ ε2

〈
π[x]tx,π[x]tx

〉) =
d

dε

∣∣∣
ε=0

〈
p,x+ επ[x]tx

〉〈
x+ επ[x]tx, p

〉

⟨p, p⟩⟨x,x⟩ =

=

〈
p,π[x]tx

〉
⟨x, p⟩+ ⟨p,x⟩

〈
π[x]tx, p

〉

⟨p, p⟩⟨x,x⟩ =−⟨p,x⟩⟨x, p⟩⟨tx,x⟩−⟨tx,x⟩⟨p,x⟩⟨x, p⟩
⟨p, p⟩⟨x,x⟩2 =

=−2ta(x, p)Re
⟨t(x),x⟩
⟨x,x⟩

�

2.4.15. Proposition. Let G be a geodesic with tangent vector t ∈ TpG at a point p ∈ G, p /∈ SV ,
and let h ∈ TpL, where L = PK(KW ) is the projective line of G. Then,

∇Tn(t)Tn(h)(x) = 0

for all non-isotropic x ∈ G, x /∈ PKp⊥.

Proof. We can write, by Lemma 2.4.7, that G = PKW where W = Rp+Rt(p). It suffices to
show that ∇T Tn(h)(x) = 0, being T the spread field from t. If H is the spread field from h, we
have:

∇T Tn(h)(x) = ∇T

(
1

ta(p,−)
H
)
(x) =

= T (x)
(

1
ta(p,−)

)
H(x)+

1
ta(p,x)

∇T H(x) =

=− 1
ta(p,x)2 T (x)

(
ta(p,−)

)
H(x)+

1
ta(p,x)

∇T H(x) =

=
1

ta(p,x)

(
2Re

⟨t(x),x⟩
⟨x,x⟩ H(x)+∇T H(x)

)

where, in the last equality, we used Proposition 2.4.14. We can choose a representative x ∈W of
the form x = p+ rt(p), for some r ∈R, which gives us t(x) = t(p). From Lemma 2.4.6 we know
that h(p) ∈KW ∩ p⊥, being KW =Kp+Kt(p). Therefore h(p) = kt(p), for some k ∈K∙, and
h(x) = kt(x). Now, from Lemma 2.3.6, we have

(
∇T Tn(h)(x)

)
x =

1
ta(p,x)

(
2
⟨t(x),x⟩
⟨x,x⟩ h+hπ[x]t − tπ ′[x]h

)

x
(x) =

=
1

ta(p,x)

(
2
⟨t(x),x⟩
⟨x,x⟩ π[x]h(x)+π[x]h

(
t(x)− ⟨t(x),x⟩

⟨x,x⟩ x
)
− ⟨h(x),x⟩

⟨x,x⟩ π[x]t(x)
)
= 0

�

2.4.16. Corollary. In each connected component of PKV ∖ SV the geodesics introduced in
Definition 2.4.3 are geodesics of the Levi-Civita connection. Conversely, all pseudo-Riemannian
geodesics are of this kind.

2.4.17. Definition. Let p ∈ PKV ∖SV , t ∈ TpPKV and T be the spread (lifted) field from t. We
define the field:

Ct(t)(x) :=
T (x)√
ta(p,x)
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for all non-isotropic x ∈ PKV ∖ PKp⊥, such that x is in the same connected component of
PKV ∖SV as the point p.

2.4.18. Proposition. Let G be a geodesic, p ∈ G a non-isotropic point and 0 ̸= t ∈ TpG. Let L

be the projective line of G and let v ∈ (TpL)⊥. Then

∇Tn(t)Ct(v)(x) = 0

for all non-isotropic x ∈ G∖PKp⊥ such that x is in the same connected component of PKV ∖SV

as the point p.

Proof. Let W and T be the spread (lifted) fields from v and t respectively. We shall proceed
similarly to what we did in Proposition 2.4.15, choosing a representative x ∈ W of the form
x = p+ rt(p) for some r ∈ R. It suffices to check that ∇T Ct(v)(x) = 0. We have

∇T Ct(v)(x) = T (x)
(

1√
ta(p,−)

)
W (x)+

1√
ta(p,x)

∇TW (x) =

=− 1

2ta(p,x)
3
2

T (x)
(
ta(p,−)

)
π[x]vπ

′[x]+
1√

ta(p,x)
∇TW (x) =

=
1√

ta(p,x)

(⟨t(x),x⟩
⟨x,x⟩ v+ vπ[x]t − tπ ′[x]v

)

x

where, in the last equality, we used Proposition 2.4.14 and Lemma 2.3.6. We know that
t(x) = t(p) and, by Lemma 2.4.6, t(p) ∈W ∩ p⊥. By the definition of the metric 2.2.1 one can
immediately see that v(p) ∈

(
Kp+Kt p

)⊥∩ p⊥, which implies that tπ ′[x]v(x) = ⟨vx,x⟩
⟨x,x⟩ t(x) = 0.

And therefore:

∇T Ct(v)(x) =
1√

ta(p,x)

(⟨tx,x⟩
⟨x,x⟩ v+ vπ[x]t

)

x
= 0

�

Let G = PKW be a geodesic, L = PK(KW ) be the projective line of the geodesic G and
p ∈ G∖SV . If the real linear subspace W ≤V is nondegenerate one can readily see that we have
the decomposition TpPKV = TpL⊕ (TpL)⊥.

2.4.19. Corollary. Let c : (−a,a)→ PKW be a geodesic2 with c(0) = p nonisotropic and W ≤V

nondegenerate. Given t ∈ TpPKV , let t = h+ v, where h ∈ TpL, v ∈ (TpL)⊥ and L = PK(KW )

is the projective line of PKW . The parallel transport of t along the geodesic c is given by
Tn(h)

(
c(ε)

)
+Ct(v)

(
c(ε)

)
for every c(ε) /∈ p⊥.

Proof. Follows immediately from Propositions 2.4.15 and 2.4.18. �

Clearly, when dealing with geodesics G = PKW , where W ≤V is degenerate, we cannot
proceed as in Corollary 2.4.19. In this case, we need another special lifted field. Given p ∈
2 Here we are referring to geodesics in the usual way, as parameterized curves with null covariant

derivative. This ambiguity is not a source of any problem due to Corollary 2.4.16.
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PKV ∖SV and t ∈ TpPK, where T stands for the spread field from t, we define the smooth (lifted)
field

(2.4.20) Eu(t)(x) :=
1
2
(
π[p]π ′[x]t

)
x −T (x)

for all non-isotropic x ∈ PKV .

2.4.21. Proposition. Let G = PKW be a geodesic, where the real subspace W ≤V is degenerate.
Let p ∈ G be a non-isotropic point and let 0 ̸= t ∈ TpG and h ∈ TpPKV . Then ∇Tn(t)Eu(h)(x) = 0
for all x ∈ G∖SV .

Proof. We can assume W has signature +0 (the case of signature −0 is totally analogous). By
Lemma 2.4.7 we know that we can choose representatives such that W =Rp+Rt(p). Choosing
a representative such that ⟨p, p⟩= 1, by Sylvester’s law of inertia (see Appendix A, Theorem
A.1.6) it’s immediate that

〈
t(p), t(p)

〉
= 0. It suffices to show that ∇T Eu(h)(x) = 0, where T is

the spread field from t and x ∈ G∖SV . Then

∇T Eu(h)(x) =
(

d
dε

∣∣∣
ε=0

Eu(h)(x+ εtxx)
)

x
=

=

(
1
2

d
dε

∣∣∣
ε=0

π[x+ εtxx]π[p]π ′[x+ εtxx]hπ
′[x+ εtxx]+

d
dε

∣∣∣
ε=0

π[x+ εtxx]hπ
′[x+ εtxx]

)

x
.

By Lemma 2.3.5,
(

d
dε

∣∣∣
ε=0

π[x+ εtxx]π[p]π ′[x+ εtxx]hπ
′[x+ εtxx]

)

x
=

=
(
−
(
tx +(tx)*

)
π[p]π ′[x]hπ

′[x]+π[x]π[p]
(
tx + t*x

)
hπ

′[x]+π[x]π[p]π ′[x]h
(
tx +(tx)*

))
x
=

=
(

π[x]π[p]
(
tx +(tx)*

)
hπ

′[x]
)

x

since (tx)* =
⟨−,txx⟩
⟨x,x⟩ x which implies t*x x = π[x]t*x = 0. It follows from

π[x]π[p]π ′[x]hπ[x]t(x) = π[x]π[p]π ′[x]h
(

t p− ⟨t p, p⟩
⟨x,x⟩ x− r

⟨t p, t p⟩
⟨x,x⟩ x

)
=

= π[x]π[p]π ′[x]ht(p) = 0,

where x = p+ rt(p) for some r ∈ R, and from

π[x]tπ ′[x]π[p]π ′[x]h(x) = π[x]tπ ′[x]
(⟨hx,x⟩

⟨x,x⟩ x− ⟨hx,x⟩⟨x, p⟩
⟨x,x⟩⟨p, p⟩ p

)
=

= π[x]tπ ′[x]π[p]π ′[x]h(x) = π[x]t
(⟨hx,x⟩

⟨x,x⟩ x− ⟨hx,x⟩
⟨x,x⟩ ta(p,x)x

)
= 0

that (
∇T Eu(h)(x)

)
x =

1
2

π[x]π[p]
(
tx +(tx)*

)
hx−π[x]hπ[x]tx−π[x]tπ ′[x]hx

=
1
2

π[x]π[p]
(⟨hx, txx⟩

⟨x,x⟩ x+
⟨hx,x⟩
⟨x,x⟩ txx

)
−π[x]h

(
tx− ⟨tx,x⟩

⟨x,x⟩ x
)
−π[x]t

(⟨hp,x⟩
⟨x,x⟩ x

)
=

= π[x]
(

r
⟨hp, t p⟩
⟨x,x⟩ t p− r3 ⟨hp, t p⟩⟨t p, t p⟩

⟨x,x⟩2 t p+
⟨tx,x⟩
⟨x,x⟩ hx− ⟨tx,x⟩⟨hx,x⟩

⟨x,x⟩2 x−⟨hp,x⟩
⟨x,x⟩ tx

)
= 0.

�
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2.5 Curvature Tensor

We begin this section by expressing the curvature tensor in terms of the hermitian form.
Then we will proceed to the calculation of the sectional curvature and finish showing that in Pn

R
and in P1

C the sectional curvature is constant in every connected component.

Let p∈PKV be a non-isotropic point and S,T and U be lifted smooth vector fields defined
in a neighborhood of p. To express the curvature tensor R(S,T )U :=∇S∇TU−∇T ∇SU−∇[S,T ]U

we recall that, due to the fact that tensor fields are linear over smooth functions, the curvature
tensor at a point only depends on the value of the fields at the point. Therefore, we can assume
that S,T and U are spread fields respectively from s, t and v, where s, t,v ∈ TpPKV . As we have
shown in the proof of Proposition 2.3.7, [S,T ](p) = 0, and therefore ∇[S,T ]U(p) = 0. From
Lemma 2.3.6, we have

∇S∇TU(p) =
(

d
dε

∣∣∣
ε=0

(
vπ[p+ εsp]t − tπ ′[p+ εsp]v

)
p+εsp

)

p
.

So, by Lemma 2.3.5, we can write

d
dε

∣∣∣
ε=0

π[p+ εsp]vπ[p+ εsp]tπ ′[p+ εsp] =

=−(s+ s*)vπ[p]tπ ′[p]+π[p](−vs*t − vst)π ′[p]+π[p]vπ[p]t(s+ s*)

and

− d
dε

∣∣∣
ε=0

π[p+ εsp]tπ ′[p+ εsp]vπ
′[p+ εsp] =

= (s+ s*)tπ ′[p]vπ
′[p]+π[p](−ts*v− tsv)π ′[p]−π[p]tπ ′[p]v(s+ s*).

Now, from the fact that π ′[p]v = st = sv = vt = 0 and π[p]t = t we end up with

∇S∇TU(p) =−vs*t − ts*v

Similarly,

∇T ∇SU(p) =−vt*s− st*v,

which implies

(2.5.1) R(S,T )U = vt*s+ st*v− vs*t − ts*v.

�

Let p ∈ PKV ∖SV and W ≤ TpPKV be a 2-dimensional real linear subspace such that
⟨−,−⟩p

∣∣
W is nondegenerate. Given t,s ∈ W two R-linearly independent tangent vectors, we

define the sectional curvature of W by

(2.5.2) KW := K(s, t) :=

〈
R(s, t)t,s

〉
p

⟨s,s⟩p⟨t, t⟩p −⟨t,s⟩2
p
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We can express the tangent vectors s, t as s = ⟨−, p⟩v and t = ⟨−, p⟩w for some v,w ∈ p⊥.
Since the formula (2.5.2) doesn’t depend on the choice of representatives v and w, we can
assume ⟨v,v⟩ = σ and ⟨w,w⟩ = δ , where δ ,σ ∈ {−1,0,1}. It is easy to see that s* = ⟨−,v⟩p

and t* = ⟨−,w⟩p. Let k := ⟨v,w⟩. From equations (2.2.1) and (2.5.1), we have

⟨R(s, t)t,s⟩p =± 1
⟨p, p⟩Re

(〈
tt*s(p),s(p)

〉
+
〈
st*t(p),s(p)

〉
−2
〈
ts*t(p),s(p)

〉)
=

=±⟨p, p⟩2 Re
(
⟨v,w⟩⟨w,v⟩+ ⟨v,v⟩⟨w,w⟩−2⟨w,v⟩⟨w,v⟩

)
=

±⟨p, p⟩2(|k|2 +σδ −2Re(k2)
)
.

Hence,

KW =±|k|2 +σδ −2Re(k2)

σδ − (Rek)2 =±
(

1+3
(Rek)2 −Re(k2)

σδ − (Rek)2

)
=

(2.5.3) =±
(

1+
3
4

|k− k|2
σδ − (Rek)2

)
.

2.5.4. Corollary. In each connected component of Pn
R, for arbitrary n ∈ N, and in P1

C, the
sectional curvature is constant.

Proof. Clearly, when K = R, the sectional curvature satisfies KW = ±1. When K = C, and
v,w ∈W are C-linearly dependent,

|k|2 −σδ = ⟨v,w⟩⟨w,v⟩−⟨v,v⟩⟨w,w⟩= 0.

Since, for p ∈ P1
C, we have dimC p⊥ = 1, then v,w ∈ W are always C-linearly dependent.

Therefore, we end up with

KW =±
(

1+3
(Imk)2

|k|2 − (Rek)2

)
=±4.

�

2.6 The Real Hyperbolic Space

In this work we are particularly interested in the case where the vector space V is real,
of dimension n+1, and it’s endowed with a bilinear form ⟨−,−⟩ of signature −+ ...+. If we
choose n = 3, the vector space V is the well known Minkowski spacetime of special relativity.3

We will take the − sign in equation (2.2.1). For all p∈BV , the subspace p⊥ has signature
+...+ and therefore the metric in BV is Riemannian. Let B = {b j|1 ≤ j ≤ n} be an orthonormal
basis for V , with ⟨b1,b1⟩=−1 and ⟨b j,b j⟩= 1 for j ̸= 1. Given p ∈ BV , it’s clear that, for any
3 More precisely, the Minkowski spacetime is an affine space with V as its underlying vector space (see

(GOURGOULHON, 2013)).
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representative of p, its component in the direction of b1 cannot be null, so there is a unique
representative of the form p = b1+∑ j x jb j, for some x j ∈R. From ⟨p, p⟩< 0, we have ∑ j x2

j < 1
and, therefore, BV is diffeomorphic to the open ball Bn := {v ∈ Rn : |v| < 1}. We will call
BV the real hyperbolic space and denote it by Hn

R. Similarly, given p ∈ SV , we can choose a
representative of the form p = b1 +∑ j x jb j, and ⟨p, p⟩= 0 implies the relation ∑ j x2

j = 1, i.e.,
SV is diffeomorphic to the sphere Sn−1 and it’s the boundary of Hn

R.

For all p ∈ EV , the subspace p⊥ has signature −+ ...+ and therefore the metric in EV

is Lorentzian. We will call EV the de Sitter space. In the case where n = 2, the manifold EV is
diffeomorphic to an open möbius strip, since it’s the complement of a closed disk in P2

R.

In order to give consistency to the name we gave to BV we shall show that this space
is isometric to the well-known hyperboloid model for hyperbolic geometry. So let w ∈V be a
negative vector. The space

(2.6.1) H := {v ∈V |⟨v,v⟩=−1,⟨v,w⟩< 0}

is the hyperboloid of one sheet. We provide the tangent space to a point p ∈ H, TpH = p⊥ with
the Riemannian metric ⟨⟨−,−⟩⟩p : TpH ×TpH → R given by:

(2.6.2) ⟨⟨v,w⟩⟩p := ⟨v,w⟩

for all v,w ∈ p⊥.

2.6.3. Proposition. The map I : H →Hn
R, v ↦→ π(v) is an isometry.

Proof. Given f ∈C∞(Pn
R), p ∈ H and v ∈ TpH, we can write

dpI(v) f =
d

dε

∣∣∣
ε=0

f (I(p+ εv)) =
d

dε

∣∣∣
ε=0

( f ∘π)
(

p+ εv
)
= ϕ f

where ϕ =−⟨−, p⟩v ∈ TpHn
R. Now, for v,w ∈ p⊥, we have

⟨dpI(v),dpI(w)⟩I(p) =
〈
−⟨−, p⟩v,−⟨−, p⟩w

〉
I(p) =−⟨p, p⟩⟨v,w⟩= ⟨⟨v,w⟩⟩p

�

If we take n = 2, in coordinates H2
R is identified with the unitary disk in R2, as we

discussed above. The induced metric in this disk is the famous Beltrami-Klein disk metric
for hyperbolic geometry. Indeed, take the chart φ : B2 → H2

R, (x,y) ↦→ p = [1,x,y]. Given
f ∈C∞(H2

R), (a,b) = v ∈ T(x,y)B2 ≃ R2, and (0,a,b) = ṽ ∈V , we have

d(x,y)φ(v) f =
d
dt

∣∣∣
t=0

( f ∘φ)(x+ ta,y+ tb) =
d
dt

∣∣∣
t=0

f̃ (1,x+ ta,y+ tb) =

=
d
dt

∣∣∣
t=0

f̃ (p+ tṽ) =
d
dt

∣∣∣
t=0

f̃
(

p+ t
⟨ṽ, p⟩
⟨p, p⟩ p+ tπ[p]ṽ

)
=

=
d
dt

∣∣∣
t=0

f̃
(

p+
t

1+ t⟨ṽ, p⟩/⟨p, p⟩π[p]ṽ
)
=

d
dt

∣∣∣
t=0

f̃
(

p+ tπ[p]ṽ
)
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where f̃ = f ∘ π . Therefore, the differential dφ(x,y)(v) is given by the linear map Rp → p⊥,
p ↦→ π[p]ṽ, and the pullback of the metric g(x,y)(v,w) :=

〈
dφ(x,y)(v),dφ(x,y)(w)

〉
p, for all v,w ∈

T(x,y)B2, by

g(x,y)(v,w) =−
〈
π[p]ṽ,π[p]w̃

〉

⟨p, p⟩ =
1

⟨p, p⟩

(⟨ṽ, p⟩⟨p, w̃⟩
⟨p, p⟩ −⟨ṽ, w̃⟩

)
.

Hence, one can readily see that, expressing the above formula in coordinates, we arrive at the
well known Beltrami-Klein metric:

g =
dx2 +dy2

x2 + y2 −1
+

x2dx2 +2dxdy+ y2dy2

(x2 + y2 −1)2 .

2.7 The Complex Hyperbolic Disk

Take a C-vector space V of dimension 2, endowed with a nondegenerate hermitian form
of signature −+. Both BV and EV are diffeomorphic, respectively by the maps in homogeneous
coordinates [1,z] ↦→ z and [z,1] ↦→ z, to the unitary complex disk D := {z ∈ : |z|< 1}. Moreover,
choosing the minus sign in the definition of the metric (2.2.1), the spaces BV and EV are in fact
isometric. We will call BV , provided with such metric, the complex hyperbolic disk and denote
it by H1

C.

2.7.1. Proposition. The map φ : H1
C → EV , p ↦→ p⊥, is an isometry (due to dimensional reasons,

we abuse notation and write p⊥ instead of PCp⊥).

Proof. The map φ is well defined because of the signature of the hermitian form. Given
ϕ ∈ TpH1

C, let φ̃ : π−1(H1
C)→ π−1(EV ) be defined by φ̃

(
p+ tϕ(p)

)
= p′− tϕ*(p′) for small t,

where ϕ* stands for the adjoint of ϕ and p′, for a representative of p⊥. Note that

〈
p+ tϕ(p), p⊥− tϕ*(p)

〉
= t
〈
ϕ(p), p⊥

〉
− t
〈

p,ϕ*(p⊥)
〉
= 0.

Therefore, π ∘ φ̃ = φ ∘π . Given f ∈C∞(EV ), the differential of φ at p is given by

dφp(ϕ) f = ϕ( f ∘φ) =
d
dt

∣∣∣
t=0

( f ∘φ ∘π)
(

p+ tϕ(p)
)
=

=
d
dt

∣∣∣
t=0

( f ∘π ∘ φ̃)
(

p+ tϕ(p)
)
=

d
dt

∣∣∣
t=0

( f ∘π)
(

p′− tϕ*(p′)
)
.

In other words, dφp(ϕ) =−ϕ*. Writing ϕ = ⟨−, p⟩v, with ⟨p,v⟩= 0, we have ϕ* = ⟨−,v⟩p by
Lemma 2.3.5. Hence ⟨ϕ,ϕ⟩=−⟨p, p⟩⟨v,v⟩= ⟨−ϕ*,−ϕ*⟩. �

The metric in D induced by the metric in H1
C is the famous Poincaré disk metric (rescaled

by a real factor). To show this, we shall proceed similarly as we did in the last section.

Consider the map in homogeneous coordinates ψ : D → H1
C, z ↦→ [1,z]. Given f ∈

C∞(H1
C), and v ∈ TzD≃ C,

dψz(v) f =
d
dt

∣∣∣
t=0

( f ∘ψ)(z+ tv) =
d
dt

∣∣∣
t=0

f̃
(
(1,z)+ t(0,v)

)
=
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=
d
dt

∣∣∣
t=0

f̃
(
(1,z)+ t

〈
(0,v),(1,z)

〉
〈
(1,z),(1,z)

〉 (1,z)+ tπ[(1,z)](0,v)
)
=

=
d
dt

∣∣
t=0 f̃

(
(1,z)+

tπ[(1,z)](0,v)
1+ t

〈
(0,v),(1,z)

〉
/
〈
(1,z),(1,z)

〉
)
=

=
d
dt

∣∣∣
t=0

f̃
(
(1,z)+ tπ[(1,z)](0,v)

)

where f̃ = f ∘π . Hence, the differential dψz(v) is the linear map (1,z) ↦→ π[(1,z)](0,v), and the
pullback metric gz(v,w) :=

〈
dψz(v),dψz(w)

〉
z, for all v,w ∈ TzD, is given by

gz(v,w) =−Re

〈
π[(1,z)](0,v),π[1,z](0,w)

〉
〈
(1,z),(1,z)

〉 =

=− 1
(1−|z|2)2 Re

〈
(zv,v),(zw,w)

〉
〈
(1,z),(1,z)

〉 =− Re(vw)
(1−|z|2)2 =

=
Re(v)Re(w)+ Im(v)Im(w)

(1−|z|2)2

Therefore, from the above formula, it is easy to see that in coordinates,

(2.7.2) g =
dzdz

(1−|z|2)2

2.7.3. Remark. The usual metric h for the Poincaré disk D differs from equation (2.7.2) by a
factor 4, being expressed in coordinates by

(2.7.4). h =
4dzdz

(1−|z|2)2

In order to obtain the Poincaré metric (2.7.4), one would have to define the metric

⟨ϕ1,ϕ2⟩p :=−4Re
⟨ϕ1(p),ϕ2(p)⟩

⟨p, p⟩

for all p ∈ H1
C, and ϕ1,ϕ2 ∈ TpH1

C, in place of (2.2.1). This way we would have constant
sectional curvature equal to −1 instead of −4 (see Corollary 2.5.4).
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CHAPTER

3
GYROVECTOR SPACES AND SPECIAL

RELATIVITY

Unlike in Newtonian mechanics, in special relativity the addition of velocities is neither
associative nor commutative; in fact, it satisfies a “weak associativity and commutativity” con-
dition. This motivated A. A. Ungar in (UNGAR, 2008) to develop the concepts of gyrovector
spaces and gyrogroups, and here lies one link between relativity and hyperbolic geometry.

It turns out that gyrovector spaces provide a framework for the study of hyperbolic
geometry. In some sense, they play the same role in hyperbolic geometry as vector spaces do in
Euclidean geometry. So, one can notice that this whole section is about one of these examples of
mathematical structures that were discovered inspired by physics problems.

We shall begin by defining gyrogroups, since gyrovector spaces are gyrogroups with
more structure.

3.1 Gyrogroups

3.1.1. Definition (Gyrogroups). A gyrogroup is a nonempty set G with a binary operation
⊕ : G×G → G satisfying:

G1) There exists an element e ∈ G such that e⊕a = a, ∀a ∈ G. (left identity)

G2) For every a ∈ G exists an element ⊖a ∈ G such that ⊖a⊕a = e. (left inverse)

G3) Given a,b,c ∈ G, there exists a unique element {a,b}c ∈ G such that:

a⊕ (b⊕ c) = (a⊕b)⊕{a,b}c (Gyroassociative law)

G4) The map {a,b} : G → G, c ↦→ {a,b}c is a gyrogroup automorphism, which we denote by
{a,b} ∈ Aut(G,⊕); this means that

{a,b}(c⊕d) = {a,b}c⊕{a,b}d
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for all c,d ∈ G.

G5) The relation {a,b}= {a⊕b,b} holds for all a,b ∈ G.

3.1.2. Definition (Gyrocommutative gyrogroups). A gyrogroup (G,⊕) is gyrocommutative
if the automorphism of “gyroassociativity” is also involved in a commutation rule:

a⊕b = {a,b}(b⊕a)

for all a,b ∈ G.

Just as with ordinary groups, we will use the notation a⊖b := a⊕ (⊖a).

Exploring the details of the gyrogroup structure is outside the scope of this dissertation,
so we will show only some basic algebraic properties that may be useful for our purposes. For
more details concerning the study of gyrogroups see (UNGAR, 2008).

3.1.3. Proposition Let (G,⊕) be a gyrogroup. For elements a,b,c,e ∈ G, being e a left identity
and ⊖a the left inverse of a with respect to the identity e, then:

1) a⊕b = a⊕ c ⇒ b = c

2) {e,a}= Id

3) {a,a}= Id

4) {⊖a,a}= Id

5) There exists e′ ∈ G a left identity that is also a right identity.

6) There is only one left identity.

7) Every left inverse is a right inverse.

8) The left inverse of an element is unique.

Proof. 1) We know that ⊖a⊕ (a⊕b) =⊖a⊕ (a⊕ c). Then, by gyroassociativity,

(⊖a⊕a)⊕{⊖a,a}b = (⊖a⊕a)⊕{⊖a,a}c.

So, {⊖a,a}b = {⊖a,a}c. Since {⊖a,a} is bijective, a = c.

2) From gyroassociativity,
e⊕ (a⊕ c) = (e⊕a)⊕{e,a}c

⇒ a⊕ c = a⊕{e,a}c.

Now, from 1), we get {e,a}c = c.

3) and 4) are immediate from 2) and from the property G5.

5) Let a′ ∈ G be the left inverse of a with respect to e′. From gyroassociativity, 4) and 1) we can
write

a′⊕ (a⊕ e′) = (a′⊕a)⊕{a′,a}e′ = e′ = a′⊕a

⇒ a⊕ e′ = a.
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6) From 5), we have e = e⊕ e′ = e′.

7) From gyroassociativity, 4) and 1) we have:

⊖a⊕ (a⊖a) = (⊖a⊕a)⊕{⊖a,a}(⊖a) = e⊖a =⊖a⊕ e

⇒ a⊖a = e.

8) From 1) and 7), we have a⊕a′ = a⊖a ⇒ a′ =⊖a. �

There are two gyrogroups that are specially important to us. The first is the obvious one,
the gyrogroup related to the sum of velocities in special relativity; the second is a gyrogroup
inspired by Möbius transformations. The latter is important because it is isomorphic to the first,
in the sense of its gyrogroup/gyrovector space structures, fact that is going to be particularly
important to the task of finding a geometric construction of the relativistic velocity addition.

3.1.4. Definition (Möbius Gyrogroup). Inspired by Möbius transformations of the complex
unit disk D := {z ∈ C : |z|< 1}, we define the Möbius addition ⊕ : D×D→ D by

a⊕b :=
a+b
1+ab

for all a,b ∈ D.

Given a,b ∈ D, it is clear that we can correct the non commutativity of ⊕ by the factor:

(3.2.2) {a,b} :=
a⊕b
b⊕a

=
1+ab
1+ab

.

It’s immediate that {a,b} ∈ Aut(D,⊕). Also notice that |1+ab|/|1+ab|= 1; hence, the non
commutativity is corrected by a rotation around the origin of the disk. Now, given a,b,c ∈ D, we
can write

a⊕ (b⊕ c) =
(

a+
b+ c

1+bc

)(
1+

a(b+ c)
1+bc

)−1

=
a+abc+b+ c

1+bc+ab+ac

(a⊕b)⊕{a,b}c =
(

a+b
1+ab

+
1+ab
1+ab

c
)(

1+
a+b
1+ab

c
)−1

=
a+b+ c+abc

1+ab+ac+bc
.

Therefore, the automorphism also corrects the associativity. Finally,

{a⊕b,b}=
(

1+
a+b

1+ab
b
)(

1+
a+b

1+ab
b
)−1

=
1+ab
1+ab

= {a,b}

So, (D,⊕) satisfies the gyrogroup axioms.

Inspired now by special relativity, we provide the space of admissible velocities, i.e.,
B0(c) := {v ∈ R3 : |v|< c}, where c ∈ R is the speed of light in the vacuum, with a sum that, in
physics, means the relativistic addition of relative velocities. What we mean by that is, given
an observer O , another observer O ′ moving with velocity v ∈ B0(c) relative to O and an object
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moving with velocity w ∈ B0(c) relative to O ′, we are going to denote the velocity of the object
as measured by O as v⊕w.

3.1.5. Definition (Einstein Gyrogroup). We define Einstein’s addition ⊕ : B0(c)×B0(c)→
B0(c) by the rule:

v⊕w :=
1

1+ ⟨v,w⟩
c2

(
v+

w
γv

+
1
c2

γv

1+ γv
⟨v,w⟩v

)

for all v,w ∈ B0(c). Here, c is the speed of light in the vacuum and γv := 1/
√

1−|v|2/c2 is
called the Lorentz factor; it appears in most special relativity formulas.

According to Ungar in (UNGAR, 2008), it can be proved by computer algebra that
this addition satisfies the gyrogroup axioms and the gyrocommutativity condition, therefore
(B0(c),⊕) is a gyrocommutative gyrogroup.

Now, the next step is to provide our gyrogroups with a scalar multiplication and an inner
product in order to set an algebraic framework to hyperbolic geometry in a similar way to what
we do with usual inner product vector spaces and Euclidean geometry.

3.2 Gyrovector Spaces

3.2.1. Definition (Gyrovector Spaces). Let V be a real vector space provided with an inner
product ⟨−,−⟩ and G ⊂V be a subset such that (G,⊕) is a gyrocommutative gyrogroup. If G
is provided with a scalar multiplication ⊗ : R×G → G satisfying, for all v1,v2,u,w ∈ G and
r,k ∈ R:

V 0)
〈
{u,w}v1,{u,w}v2

〉
= ⟨v1,v2⟩;

V 1) 1⊗u = u;

V 2) (r+ k)⊗u = r⊗u⊕ k⊗u;

V 3) (rk)⊗u = r⊗ (k⊗u);

V 4)
|r|⊗u
|r⊗u| =

u
|u| , u ̸= 0,r ̸= 0;

V 5) {v1,v2}(r⊗u) = r⊗{v1,v2}u;

V 6) {r⊗u,k⊗u}= Id;

VV ) The set |G| := {±|u| : u ∈ G} is provided with an addition ⊕ and a scalar multiplication ⊗
that turn |G| into a vector space;

V 7) |r⊗u|= |r|⊗ |u|;
V 8) |u⊕w| ≤ |u|⊕ |w|.

we will call (G,⊕,⊗) a real inner product gyrovector space, or just gyrovector space.

It is easy to verify that (−1)⊗ u = ⊖u, 0⊗ u = 0 and |⊖ u| = |u|. Also, an important
remark is that we are using the same notation for the gyrovector operations in G and for the
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vector ones in |G|, since there is not much chance of ambiguity.

In order to define a scalar multiplication for Einstein gyrogroup we will use the fact that,
for a gyrovector space (G,⊕,⊗), given v ∈ G and n ∈ N, the equality

n⊗ v = v⊕ . . .⊕ v︸ ︷︷ ︸
n times

holds immediately from V 2) by induction.

Taking (B0(c),⊕) to be an Einstein gyrogroup, we are going to define scalar multiplica-
tion motivated by the equality above and, given v ∈ B0(c) and n ∈ N, show that:

(3.2.2) n⊗ v := v⊕ . . .⊕ v︸ ︷︷ ︸
n times

= c · (1+ |v|/c)n − (1−|v|/c)n

(1+ |v|/c)n +(1−|v|/c)n
v
|v| .

To show the second equality in (3.2.2) we shall proceed by induction. For n = 1 it is immediate
that the equality holds. Now assuming it holds for n ∈N, and using the reduced addition formula,
valid for parallel velocities (see (RINDLER, 2006), section 3.6), we have a pretty straightforward
calculation:

(n+1)⊗ v = n⊗ v⊕ v =
n⊗ v+ v

1+ ⟨n⊗v,v⟩
c2

=

=

(
c · (1+ |v|/c)n − (1−|v|/c)n

(1+ |v|/c)n +(1−|v|/c)n
v
|v| + v

)(
1+

(1+ |v|/c)n − (1−|v|/c)n

(1+ |v|/c)n +(1−|v|/c)n
|v|
c

)−1

=

= c ·

(
1+ |v|

c

)n
−
(

1− |v|
c

)n
+ |v|

c

(
1+ |v|

c

)n
+ |v|

c

(
1− |v|

c

)n

(
1+ |v|

c

)n
+
(

1− |v|
c

)n
+ |v|

c

(
1+ |v|

c

)n
− |v|

c

(
1− |v|

c

)n
v
|v| =

= c ·

(
1+ |v|

c

)n+1
−
(

1− |v|
c

)n+1

(
1+ |v|

c

)n+1
+
(

1+ |v|
c

)n+1
v
|v|

�

3.2.3. Definition (Einstein Gyrovector Space). Let (B0(c),⊕) be Einstein’s gyrogroup. Moti-
vated by equation (3.2.2) we define the scalar multiplication ⊗ : R×B0(c)→ B0(c) by:

r⊗ v := c · (1+ |v|/c)r − (1−|v|/c)r

(1+ |v|/c)r +(1−|v|/c)r
v
|v| = c tanh

(
r tanh−1 |v|

c

)
v
|v|

for all r ∈ R and v ∈ B0(c). The second equality is just a straightforward calculation. We also
provide the set |B0(c)| := {±|v| : v ∈ B0(c)} with the operations

|u|⊕ |v| :=
|u|+ |v|

1+ |u||v|/c2

r⊗|v| := c tanh
(

r tanh−1 |v|
c

)
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for all u,v ∈ B0(c) and r ∈ R.

The step by step proof that the above operations satisfy all the axioms of a gyrovector
space can be found in (UNGAR, 2008); it is just a matter of either performing direct calculations
or using computer algebra.

3.2.4. Definition (Gyrovector Space Isomorphisms). Let (G,⊕,⊗) and (H,⊕,⊗) be two
gyrovector spaces. A bijective map ϕ : G → H is a gyrovector space isomorphism if

1) ϕ(u⊕ v) = ϕ(u)⊕ϕ(v);

2) ϕ(r⊗ v) = r⊗ϕ(v);

3)
⟨ϕ(u),ϕ(v)⟩
|ϕ(u)||ϕ(v)| =

⟨u,v⟩
|u||v| , u ̸= 0,v ̸= 0,

for all u,v ∈ G and r ∈ R.

3.2.5. Definition. Let (V,+, ·) be a real vector space with inner product ⟨−,−⟩, and let B0(s) :=
{v ∈V : |v|< s}, where s > 0 is a positive constant. We define the generalized Möbius addition
⊕̂ : B0(s)×B0(s)→ B0(s) by

u⊕̂v :=

(
1+2⟨u,v⟩/s2 + |v|2/s2)u+

(
1−|u|2/s2)v(

1+2⟨u,v⟩/s2 + |u|2|v|2/s4
)

for all u,v ∈ B0(c). We define the generalized Einstein addition ⊕ : B0(c)×B0(c)→ B0(c) using
the same expression of Definition 3.1.5:

u⊕ v :=
1

1+ ⟨u,v⟩
s2

(
u+

v
γu

+
1
s2

γu

1+ γu
⟨u,v⟩u

)

for all u,v ∈ B0(s), where γu := 1/
√

1−|u|2/s2 is the Lorentz factor; the scalar multiplication
⊗ : R×B0(s)→ B0(s) is also given by a familiar expression (from Definition 3.2.3):

r⊗ v := s tanh
(

r tanh−1 |v|
s

)
v
|v|

for all v ∈ B0(s) and r ∈ R.

Both (B0(c),⊕,⊗) and (B0(c),⊕̂,⊗) are gyrovector spaces, as shown in (UNGAR,
2008). We will call the first the generalized Einstein gyrovector space and the latter the general-
ized Möbius gyrovector space.

When V = C and s = 1, the generalized Möbius addition is reduced to the known one,
defined in 3.1.4. Given u,v ∈ D := {z ∈ C : |z|< 1},we have

(u+ v)(1+uv)
(1+uv)(1+uv)

=
u+u2v+ |u|2v+ v+u|v|2 −|u|2v

1+uv+uv+ |u|2|v|2 =

=

(
1+2⟨u,v⟩+ |v|2

)
u+
(
1−|u|2

)
v(

1+2⟨u,v⟩+ |u|2|v|2
) .
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According to (UNGAR, 2008), the operations ⊕ and ⊕̂, defined above, are related by the
expression

(3.2.6) u⊕̂v =
1
2
⊗ (2⊗u⊕2⊗ v)

for all u,v ∈ B0(s). This relation gives us a hint on how to define an isomorphism between
(B0(s),⊕̂,⊗) and (B0(s),⊕,⊗).

3.2.7. Proposition. The generalized Möbius gyrovector space and the generalized Einstein
gyrovector space are isomorphic via the map ϕ : (B0(s),⊕̂,⊗)→ (B0(s),⊕,⊗), v ↦→ 2⊗ v.

Proof. The map ϕ is immediately bijective. Given u,v ∈ B0(s), we write

ϕ(u⊕̂v) = 2⊗ (u⊕̂v) = 2⊗
(

1
2
⊗ (2⊗u⊕2⊗ v)

)
=

= 2⊗u⊕2⊗ v = ϕ(u)⊕ϕ(v).

Given r ∈ R, it follows that

ϕ(r⊗ v) = 2⊗ (r⊗ v) = (2r)⊗ v = r⊗ (2⊗ v) = r⊗ϕ(v).

Finally, if u ̸= 0 and v ̸= 0,

⟨ϕ(u),ϕ(v)⟩
|ϕ(u)||ϕ(v)| =

〈
2⊗u,2⊗ v

〉
√〈

2⊗u,2⊗u
〉
·
√〈

2⊗ v,2⊗ v
〉 =

=

〈
s tanh

(
2tanh−1(|u|/s)

)
,s tanh

(
2tanh−1(|v|/s)

)〉

s tanh
(
2tanh−1(|u|/s)

)
|u| · s tanh(2tanh−1 (|v|/s)

)
|v|

=
⟨u,v⟩
|u||v| .

�

Our next aim is to see how hyperbolic geometry takes place in a gyrovector space. In the
process, the similarities with the usual relation between vector spaces and Euclidean geometry
are going to become clearer.

3.3 Gyrometric and Gyrolines

3.3.1. Definition (Gyrometric). Let (G,⊕,⊗) be a gyrovector space. We will call a gyrometric
the function d⊕ : G×G → R given by

d⊕(x,y) := |y⊖ x|

for all x,y ∈ G.

3.3.2. Proposition. Given a gyrovector space (G,⊕,⊗), its gyrometric d⊕ : G×G →R satisfies:

1) d⊕(x,y)≥ 0, and d⊕(x,y) = 0 if and only if x = y;



50 Chapter 3. Gyrovector Spaces and Special Relativity

2) d⊕(x,y) = d⊕(y,x);

3) d⊕(x,z)≤ d⊕(x,y)⊕d⊕(y,z)

for all x,y,z ∈ G.

Proof. The first item is immediate from the definition of norm in a vector space. To prove 2),
we will use the identity:

{x,y}(⊖x⊖ y) =⊖(x⊕ y)⊕ (x⊕ (y⊕ (⊖y⊖ x))) =⊖(x⊕ y)⊕ (x⊕{y,⊖y}(⊖x)) =

(3.2.6) =⊖(x⊕ y)

From the identity (3.2.6), V 0) in the Definition 3.2.1 and from gyrocommutativity,

|y⊖ x|=
∣∣⊖ (y⊖ x)

∣∣=
∣∣{x,y}(⊖y⊕ x)

∣∣= |⊖ y⊕ x|= |x⊖ y|.

To show 3), we will use the identity ⊖x⊕ z = (⊖x⊕y)⊕{⊖x,y}(⊖y⊕ z) (see (UNGAR, 2008))
and the inequality V 8 in 3.2.1:

|⊖ x⊕ z|=
∣∣(⊖x⊕ y)⊕{⊖x,y}(⊖y⊕ z)

∣∣≤
∣∣(⊖x⊕ y)

∣∣⊕
∣∣{⊖x,y}(⊖y⊕ z)

∣∣=

=
∣∣(⊖x⊕ y)

∣∣⊕
∣∣(⊖y⊕ z)

∣∣.

�

3.3.3. Definition (Gyroline). Let x,y ∈ G be distinct points in a gyrovector space (G,⊕,⊗).
The gyroline in G that passes through x and y is the curve γ : R→ G defined by

γ(t) := x⊕ t ⊗ (⊖x⊕ y).

It turns out that, in full analogy with straight lines in vector spaces, in Einstein gyrovector
space, these gyrolines are the geodesics of the Beltrami-Klein model for hyperbolic geometry,
and in Möbius gyrovector space they are the Poincaré disk geodesics.

3.3.4. Proposition. Let (B0(c),⊕,⊗) be the Einstein gyrovector space defined in 3.2.3, equipped
with its gyrometric d⊕ : B0(c)×B0(c)→ R (see Definition 3.3.1). Let d : B0(c)×B0(c)→ R
be the usual hyperbolic distance in the Beltrami-Klein model in the ball of radius c and curvature
−1/c2. Then

d⊕(x,y) = c tanh
d(x,y)

c
for all x,y ∈ B0(c).

Proof. In Remark 4.3.2.9 we show that x⊖ y is obtained geometrically by reflecting x (in the
sense of the hyperbolic metric) in the middle point between x and the origin 0, which implies that
d(x⊖ y,0) = d(x,y). The gyrometric d⊕(x,y) = |x⊖ y| gives the norm of the relative velocity
between objects moving with velocities x and y as measured by a observer at rest with respect
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to the origin (this fact comes immediately from the identity x⊕ (⊖x⊕ y) = (x⊖ x)⊕{x,⊖x}y,
which essentially means that x sees y with velocity ⊖x⊕ y). The hyperbolic distance gives the
norm of the relative scaled rapidity, as shown in equation (4.3.2.6), thus the desired result comes
directly from the well-known relation between the scaled rapidity and the velocity. �

The role of the gyrometric in the context of gyrovectors is similar to the role of the tance
(see equation (2.4.1)) in the projective model for hyperbolic geometry presented in Chapter 2.
Both are algebraic monotonic functions of the hyperbolic distance, so they can be used in place
of the latter, which is harder to calculate.

3.3.5. Proposition. Let H2
R be the Einstein gyrovector space (B0(1),⊕,⊗) for the open 2-

ball of radius 1 (see Definition 3.2.5) provided with the Beltrami-Klein hyperbolic distance
d : B0(1)×B0(1)→R. Also, let H1

C be the Möbius gyrovector space (D,⊕̂,⊗) defined in 3.2.5,
equipped with the Poincaré disk metric d′ : D×D→ R. Any isometry ϕ : H2

R →H1
C that fixes

the origin is a gyrovector space isomorphism.

Proof. Let x,y ∈ H2
R, I : H2

R → H2
R be the hyperbolic isometry that stabilizes the geodesic G

passing through 0 and x and such that I(0) = x, and I′ : H1
C → H1

C the hyperbolic isometry
that stabilizes the geodesic G′ connecting 0 and ϕ(x) and such that I′(0) = ϕ(x). By Theo-
rem B.2, the proof reduces to show that ϕ(I(y)) = I′(ϕ(y)). Indeed, the isometry ϕ maps the
hypercycle H of G that passes through y onto the hypercycle H ′ of G′ that contains ϕ(y), there-
fore ϕ(I(y)), I′(ϕ(y)) ∈ H ′ and d′(ϕ(I(y)),ϕ(x)

)
= d′(I′(ϕ(y)),ϕ(y)

)
, which concludes the

proof. �

3.3.6. Corollary The relation

d′
⊕̂(x,y) =

∣∣x⊖̂y
∣∣= tanhd′(x,y)

holds for all x,y ∈H1
C.

3.3.6. Proposition. Every gyroline γ : R→H2
R, t ↦→ x⊕ t ⊗ v, where x,v ∈H2

R, is a geodesic
parameterized with constant velocity of norm |v|H, where |.|H stands for the hyperbolic norm in
each tangent space. Moreover, every geodesic can be written in this way for some x,v ∈H2

R.

Proof. Clearly the curve γ̃ : t ↦→ t ⊗v = c tanh
(

t tanh−1 |v|
c

)
v
|v| is a geodesic, since it is a straight

line passing through the origin. By the expression for the hyperbolic distance we have:

d(t ⊗ v,0) = carctanh
|t ⊗ v|

c
= ct tanh−1 |v|

c
= td(v,0).

Therefore, γ̃ is parameterized with constant velocity of norm |v|H. The fact that γ = I ∘ γ̃ , where
I is the hyperbolic isometry that preserves the geodesic containing 0 and x and maps 0 to x (see
Theorem B.2), proves the first part of the proposition.

Conversely, given a geodesic γ : R→H2
R, it’s easy to see that it can be written in the form

γ(t) = γ(0)⊕ t ⊗ dIγ(0)(γ̇(0)), where I is the hyperbolic isometry that stabilizes the geodesic
that passes through 0 and γ(0) and sends γ(0) to the origin. �
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Note that, when γ(t) = x⊕ t ⊗ (⊖x⊕ y), x,y ∈H2
R, then γ(1) = y and therefore γ is the

geodesic connecting x and y.



53

CHAPTER

4
ON THE GEOMETRY OF THE KINEMATIC

SPACE IN SPECIAL RELATIVITY

This chapter presents the arXiv preprint “On the geometry of the kinematic space in
special relativity” which is submitted for publication. It contains the main results that we obtained
during the Master’s project and is therefore to be seen as the culmination of the project.



On the geometry of the kinematic space in special relativity

Rafael Ferreira João dos Reis Junior Carlos H. Grossi

Abstract
The classifying space of inertial reference frames in special relativity is naturally hyperbolic. There is a remarkable

interplay between central elements of hyperbolic geometry and those of special relativity — which, to a certain extent,
have already been observed in the past — that we present and further discuss in the paper. We aim at a geometrization
of special relativity at the level of kinematic space by giving to physical concepts/phenomena purely geometric defi-
nitions/descriptions. In this way, the differences between special relativity and classical mechanics can be seen as a
manifestation of the distinct geometric natures of their kinematic spaces.

1 Introduction
A major conceptual difference between Newtonian mechanics and special relativity is that the kinematic space K of

the first is Euclidean1 while that of the former is hyperbolic, a fact already observed by V. Varićak in 1910 [13] and
E. Borel in 1913 [6], [5]. Here, kinematic space is to be understood as the classifying space of all inertial reference frames
(see Subsection 2.1).

The hyperbolic nature of special relativity has been explored by several authors from distinct perspectives. Some are
based on the role played by rapidity, introduced by Varićak and called true velocity by E. Borel. Rapidity appears naturally
in the context of special relativity because it is simply the hyperbolic distance between inertial reference frames, that is,
it is the hyperbolic distance in K. Another hyperbolic view on special relativity involves the use of gyrovector spaces,
introduced by A. Ungar (see, for instance, [12]), which constitute an algebraic framework for hyperbolic geometry that
builds upon an axiomatization of the (noncommutative and nonassociative) relativistic velocity addition.

The path we take in this paper focuses on some simple geometric invariants related to finite configurations of points
in kinematic space. (It comes mainly from [2], where a coordinate-free toolbox that suits several “classic” geometries —
including, for instance, hyperbolic, spherical, Fubini-Study, de Sitter, and anti de Sitter geometries — is developed.)
A first example of such a geometric invariant is the tance (see (2.1.5) for the definition) which is, in a certain sense, the
simplest algebraic invariant of a pair of points in K. The square root of the tance is a fundamental quantity in hyperbolic
geometry because distance is a monotonic function of it. Curiously, when translated into the context of special relativity,
the square root of the tance between two inertial observers in K is simply the Lorentz factor related to the observers
(see Remark 3.1.1). Keeping up with this idea of translating into special relativity some natural concepts and geometric
invariants in hyperbolic geometry, we obtain the following:

• The relative velocity between inertial observers ppp,qqq ∈ K appears as a natural algebraic expression for the tangent
vector to the geodesic segment joining ppp,qqq (see Definition 3.2.4);

• Rapidity and the closely related concept of scaled rapidity are shown to have distinct geometric origins; while
rapidity measures the hyperbolic distance between inertial reference frames, scaled rapidity measures the hyperbolic
distance between relative velocities (see Section 3.2);

• Parallel transport gives rise to the relativistic velocity addition in a straightforward generalization of the classical
velocity addition (see Definition 3.2.1);

• Hypercycles (that is, curves equidistant from a geodesic in K) allow one to write a “parallelogram law” for the
relativistic velocity addition (see the end of Subsection 3.2);

• The general relativistic Doppler effect can be described by a natural expression involving the Busemann func-
tion related to a photon or, equivalently, to a point in the ideal boundary of K (see Proposition 3.3.2); moreover,
horospheres appear as level surfaces of energy/frequency (see Corollary 3.3.3). There is a striking resemblance
between such geometric form of the relativistic Doppler effect and the study of probability measures in the context
of Patterson-Sullivan theory (see [10, Section 1.2 and Proposition 3.9] for the Patterson-Sullivan perspective);

1It would be more accurate to say that it is just a vector space (with no distinguished metric), see [8].
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• A basic algebraic invariant involving two inertial observers inK and a pair of space-like separated events determines
whether the observers agree or disagree on the order of occurrence of the events (see Subsection 3.5);

• Curves in K can be seen as describing the inertial reference frames occupied by an observer at each instant of its
proper time and a tangent vector to such a curve gives the instantaneous 4-acceleration of the observer. Hence,
dynamics can also be modelled at the level of the kinematic space (see Subsection 3.6).

We arrive at what seems to be an effective geometrization of special relativity: physical concepts and phenomena
(like the Lorentz factor, velocity, velocity addition, the Doppler effect, among others) gain a purely geometric description
which does not depend on their actual definitions in physics. Moreover, the techniques that are used in the paper directly
extended to Grassmannians [3], [1] and this allows one to deal in a similar fashion with special relativity in other Einstein
geometries like anti de Sitter and de Sitter spacetimes.

It is worthwhile mentioning that, in our construction, kinematic space is naturally compactified by the de Sitter space
as they are are glued along their common ideal boundaries. The interplay between these geometries, which are linked by
the geometry of Minkowski space, is very rich. For instance, in the case of 4-dimensional Minkowski space, there is a
duality between points in the de Sitter component (which correspond to the sometimes called tachyonic inertial reference
frames) and circles in the ideal boundary (which correspond to families of photons whose velocities, as measured by
certain inertial observers, are all coplanar), see Remark 2.1.4.

In spite of the emphasis we give on the geometric point of view, the synthetic and coordinate-free methods that we use
provide simple explicit formulae for all the involved concepts (say, geodesics, parallel transport, Riemannian connection,
curvature tensor, among others [2]). These methods are essentially “linear” and they are also applicable to several other
geometries which are common in physics; in this regard, see Subsection 2.2 and Example 2.2.3.

Finally, developing a similar approach to classical mechanics requires one to take as spacetime a vector space equipped
with a degenerate symmetric bilinear form (of signature 0++ · · ·+) in place of Minkowski space [8]. In a certain sense,
special relativity and classical mechanics arise from their kinematic spaces in the same way; however, being very different
from each other, the geometric natures of such kinematic spaces give rise to completely distinct phenomenologies.

2 Preliminaries

2.1 Kinematic space
Let Mn+1 be Minkowski (n+ 1)-space, that is, an R-vector space equipped with a symmetric bilinear form 〈−,−〉 :

Mn+1 → R of signature − + · · ·+. As usual, the light cone consists of the lightlike vectors v ∈ Mn+1 which satisfy
v 6= 0 and 〈v, v〉 = 0. Minkowski space is divided by the light cone into timelike and spacelike vectors, respectively
characterized by 〈v, v〉 < 0 and 〈v, v〉 > 0. We also assume that one of the light cone sheets is chosen as the future light
cone.

The 1-dimensional subspace Rv ⊂ Mn+1, where v is a timelike vector, can be seen as the worldline of an inertial
reference frame. The space of all such worldlines consists of an open subspace of the real projective space PnR and,
topologically, this subspace is an open n-ball called the (open) kinematic space K. The boundary ∂K of K is an (n− 1)-
sphere consisting of the projectivization of the light cone; in other words, each point in ∂K, an isotropic point, represents
the worldline of a photon. We call K := K ∪ ∂K the closed kinematic space and the entire projective space, the extended
kinematic space. Moreover, we denote by G the complement PnR \ K.

A point in projective space will be denoted by a bold letter and a representative of this point in Minkowski space,
by the same roman letter; so, ppp ∈ PnR stands for the equivalence class Rp of a point p ∈ Mn+1. Strictly speaking, the
points in kinematic space represent the worldlines of inertial observers that synchronised their clocks at a same point
in spacetime (the vertex of the lightcone which corresponds to coordinate time t = 0 for every inertial observer). By
choosing a representative p ∈ Mn+1 of a point ppp ∈ K, we therefore pick a specific coordinate time t = ±|p|/c in the
frame of the corresponding inertial observer (c denotes the speed of light in vacuum). However, we will typically abuse
nomenclature and refer to a point in K simply as an inertial observer (or inertial reference frame).

2.1.1. Remark. When dealing with 3 inertial reference frames or, equivalently, with three points in K (a configuration
that will be considered several times in the paper), we can assume that n = 2 because the vector space generated by these
frames (equipped with the induced form) is precisely M3. In this case, the extended kinematic space is the real projective
plane P2

R and the worldlines corresponding to photons give rise to a topological circle S1 which divides P2
R into the open

disk K and the open Möbius band G = P2
R \ K.
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Tangent space and metric. The symmetric bilinear form in Mn+1 canonically induces a Riemannian metric in the
open kinematic space K as well as a Lorentzian metric in G. Indeed, there is a natural identification

TpppPnR = Lin(Rp, p⊥) (2.1.2)

between the tangent space to PnR at a nonisotropic point ppp ∈ PnR and the space of linear maps from Rp to its orthogonal
complement p⊥ with respect to the symmetric bilinear form. This identification may be interpreted in the following way
(for a formal proof see, for instance, [4, Subsection A.1.1]). A tangent vector ϕ ∈ TpppPnR can be seen as representing a
movement in its direction. When the point ppp starts moving in the direction of ϕ, the corresponding subspace Rp rotates
around the origin of Mn+1 and such a rotation can be described in terms of a linear map Rp→ p⊥ as in Figure 1.

Figure 1: Tangent vector

In view of the identification (2.1.2), given tangent vectors ϕ1, ϕ2 ∈ Lin(Rp, p⊥) at a non-
isotropic point ppp ∈ PnR, we define

〈ϕ1, ϕ2〉ppp := −
〈
ϕ1(p), ϕ2(p)

〉

〈p, p〉 . (2.1.3)

This provides a semi-Riemannian metric in extended kinematic space outside isotropic points
(note that the above formula does not depend on the choice of the representative for ppp). This
metric is actually Riemannian in the open kinematic space K because, in this case, the sym-
metric bilinear form, restricted to p⊥, is positive-definite. It is called the hyperbolic metric
and endowsK with a geometric structure equivalent to Klein’s model of the hyperbolic n-ball.
One can similarly see that (2.1.3) is a Lorentzian metric in G, called the de Sitter metric. The
extended kinematic space is therefore the gluing, along isotropic points, of the kinematic space

with the de Sitter space. In order to explore the interplay between K and G, we need to introduce (extended) geodesics.
Extended geodesics and duality. An extended geodesic is a projective line, that is, the projectivization PRW of a

2-dimensional linear subspace W ⊂ Mn+1. In particular, there exists a unique extended geodesic, denoted by Goppp,qqqo,
that contains a pair of distinct points ppp,qqq ∈ PnR. Topologically, an extended geodesic is always a circle. The intersection
of PRW with K (respectively, with G) is, if non-empty, a usual geodesic in hyperbolic space (respectively, in de Sitter
space). Moreover, all the geodesics in hyperbolic space, as well as in de Sitter space, appear in this way [2]. The possible
signatures of the symmetric bilinear form restricted to W are −+, +0, and ++. The first case provides all the geodesics
in K and it is easy to see that each such geodesic has a pair of isotropic points, called its vertices. In the case of de Sitter
space, all the admissible signatures ofW appear: whenW is respectively of signatures−+, 0+, or ++, the corresponding
geodesics have spacelike, lightlike, or timelike tangent vectors with respect to the Lorentzian metric (2.1.3). Moreover,
a geodesic has a pair of distinct isotropic vertices in the first case, a single isotropic vertex in the second case, and no
isotropic points in the last case.

We can now see, by means of a simple duality, that the de Sitter space is nothing but the space of all geodesics in
kinematic space when n = 2. Indeed, given a point ppp ∈ G, we obtain the geodesic PRp⊥ ∩K due to p⊥ being of signature
−+. The point ppp is called the polar point of the geodesic PRp⊥ ∩ K. Conversely, given a geodesic PRW ∩ K, we obtain
the point PRW⊥ ∈ G. (Clearly, the kinematic space itself can be seen as the space of all timelike geodesics in G and
the extended kinematic space, as the space of all geodesics in G.) For arbitrary n, the de Sitter space is the space of all
totally geodesic hyperplanes in the kinematic space (a totally geodesic hyperplane in K is given by PRW ∩K when W is
a codimension 1 linear subspace of Mn+1 of signature −+ · · ·+).

2.1.4. Remark. Let n = 3. Given ppp ∈ G, the totally geodesic plane P := PRp⊥ ∩ K intersects the ideal boundary ∂K
in a circle C. It follows from Definition 3.2.4, Proposition 3.2.5, and from the fact that P is totally geodesic that any
observer in P agrees that the velocities of the photons corresponding to the points in the circle C are coplanar. In other
words, under the mentioned duality, one can see an inertial “reference frame” corresponding to a point in G (sometimes
called a tachyonic worldline) as being equivalent to such a family of photons.

Tance. The length of the geodesic segment joining two inertial reference frames ppp,qqq ∈ K is the hyperbolic distance
d(ppp,qqq) between ppp and qqq. It is given by d(ppp,qqq) = arccosh

√
ta(ppp,qqq), where

ta(ppp,qqq) :=
〈p, q〉〈q, p〉
〈p, p〉〈q, q〉 (2.1.5)

is the tance between ppp,qqq [2]. (In the next subsection, we will also refer to the tance in the case of a non-degenerate
Hermitian form in a complex vector space; this is why we write its definition in this way.) The hyperbolic distance, also
known in the context of special relativity as rapidity, is therefore a monotonic function of (the square root of) the tance.
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In a certain way, (the square root of) the tance can be seen as being more fundamental than the distance: it is the
simplest algebraic invariant of two non-isotropic points in projective space while the distance involves applying to such
algebraic invariant a transcendental function. Unlike the distance, the tance is well-defined for any pair of non-isotropic
points. For instance, in view of the above duality, the tance in G allows to determine the relative position of the dual
hyperplanes (or geodesics, when n = 2) in K and to calculate the corresponding Riemannian quantities (distances and
angles between hyperplanes). Similarly, the tance between a point ppp ∈ K and a point qqq ∈ G allows to calculate the
distance between ppp and the dual hyperplane PRq⊥ ∩ K. Curiously, the square root of the tance is exactly the Lorentz
factor γ corresponding to a pair of inertial reference frames ppp,qqq (see Subsection 3.1).

Isometries. The restricted Lorentz group SO+(1, n) of all linear, orientation and future-preserving isometries of
Mn+1 naturally acts on K by orientation-preserving isometries (SO+(1, n) is in fact isomorphic to the group PSO(1, n)
of orientation-preserving isometries of K). The non-identical orientation-preserving isometries of K can be elliptic,
parabolic, or hyperbolic. Consider n = 2. In this case, the elliptic isometries have exactly one fixed point (its center)
in K and, geometrically, they are rotations around the center. The orbit of a point under a one-parameter group generated
by an elliptic isometry is a metric circle, that is, a locus equidistant from the center. A parabolic isometry has a unique
isotropic fixed point vvv and the orbit of a point under a one-parameter group generated by such an isometry is a horocycle,
that is, a curve containing vvv that is orthogonal to every geodesic that has vvv as a vertex.

Finally, a hyperbolic isometry I has exactly a pair of fixed isotropic points vvv1, vvv2. The geodesic G := G ov1, v2o ∩ K
is I-stable and, moreover, the orbit of a point under a one-parameter group generated by I is a hypercycle, that is, a locus
equidistant from G. Note that, at the level of Minkowski space, I is what is called a boost. Indeed, the geodesic G can be
interpreted as a family of inertial observers such that any of these observers sees all the others with velocities in a same
direction (see Subsection 3.2). Now, given inertial observers ppp,qqq ∈ G and a hyperbolic isometry stabilizing Goppp,qqqo, the
relative velocity between ppp,qqq and that between ppp,III(qqq) (as measured by ppp) have the same direction.

As we will see, elliptic, hyperbolic, and parabolic isometries play a major role respectively in the Wigner rotation, the
relativistic velocities addition, and the Doppler effect.

The above construction endowing (open subspaces of) the projective space with a geometric structure arising from a
non-degenerate form on a vector space does not depend on the choice of the signature of the form nor on the field of real
numbers. In fact, many other geometries that are relevant in physics can be approached in this manner. This includes
Fubini-Study geometries (quantum information theory), anti-de Sitter space (adS/CFT correspondence), and complex
hyperbolic geometry (complex Minkowski space). For this reason, in what follows, we will briefly discuss how the above
works in more general settings.

2.2 Classic geometries
Let V be an (n + 1)-dimensional K-vector space, where K is either R or C (it is also possible to take a module over

the quaternions in place of V , see [2]). We endow V with a nondegenerate symmetric bilinear (respectively, Hermitian)
form 〈−,−〉 : V × V → K when K = R (respecitvely, K = C). As in the previous subsection, we will denote by ppp a
point in projective space PKV and by p ∈ V \ {0} a representative of ppp.

The signature of a point ppp ∈ PKV is the sign of 〈p, p〉 (which can be−, +, or 0). The signature is well defined because
〈kp, kp〉 = |k|2〈p, p〉 for all 0 6= k ∈ K. It divides PKV into negative, positive, and isotropic points:

BV := {ppp ∈ PKV | 〈p, p〉 < 0}, EV := {ppp ∈ PKV | 〈p, p〉 > 0}, SV := {ppp ∈ PKV | 〈p, p〉 = 0}.

The space SV of isotropic points is called the absolute. Note that K, ∂K, and G in the previous subsection, where V is
taken as the Minkowski space Mn+1, correspond respectively to BV , SV , and EV .

Let ppp ∈ PKV \ SV be a nonisotropic point. Then

V = Kp⊕ p⊥, v = π[ppp]v + π′[ppp]v

where

π[ppp] : v 7→ v − 〈v, p〉〈p, p〉p ∈ p
⊥, π′[ppp] : v 7→ 〈v, p〉〈p, p〉p ∈ Kp (2.2.1)

are the orthogonal projectors.
As in (2.1.2), we have a natural identification TpppPKV ' LinK(Kp, p⊥) of the tangent space to PKV at a nonisotropic

point pppwith the space of K-linear maps from Kp to p⊥. Using this identification, we define the pseudo-Riemannian metric

〈ϕ1, ϕ2〉ppp := ±Re
〈
ϕ1(p), ϕ2(p)

〉

〈p, p〉 (2.2.2)
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where ppp is a nonisotropic point and ϕ1, ϕ2 ∈ TpppPKV . Clearly, when K = C, this pseudo-Riemannian metric comes from
a Hermitian metric (simply do not take the real part in the above expression; the imaginary part of the Hermitian metric is
the Kähler form).

Let W be a 2-dimensional real linear subspace W ⊂ V such that the restriction of the form to W is non-null; in
the complex case, we also require the Hermitian form restricted to W to be real. The projectivization PKW is called an
extended geodesic (note that, in the complex case, we take the complex projectivization of the real subspaceW ). Extended
geodesics are always topological circles and their intersections with BV and EV provide all the usual geodesics of the
corresponding (pseudo-)Riemannian metric connection [2].

2.2.3. Example. Besides the extended (real) hyperbolic space constructed in Subsection 2.1 (a hyperbolic ball glued with
de Sitter space along their absolutes), we point out a few other examples:

• Let K = C, let − + + · · ·+ be the signature of the Hermitian form 〈−,−〉, and take the sign − in (2.2.2). In this
case, BV =: HnC is the complex hyperbolic space. Complex hyperbolic space is to complex Minkowski space as
the real hyperbolic space is to real Minkowski space. Note that, when dimC V = 2, both BV and EV are Poincaré
hyperbolic discs isometric to the kinematic space K (see Subsection 2.1).

• Let K = R, let−−+ · · ·+ be the signature of the symmetric bilinear form of 〈−,−〉, and take the− sign in (2.2.2).
Now, BV =: adSn is the anti-de Sitter space (which appears, say, in relativity and in the adS/CFT correspondence).
Note that there is a natural map adS2n+1 → HnC, the anti-Hopf fibration: when V is an (n+1)-dimensional complex
vector space with a Hermitian form of signature − + · · ·+, its decomplexification is a 2(n + 1)-dimensional real
vector space with a symmetric bilinear form of signature − − + · · ·+ (the real part of the Hermitian form); the
fibers of the map PRV → PCV , Rp 7→ Cp, are circles. In particular, the fibration adS3 → H1

C can be relevant to
special relativity (see the previous item).

• Let K = C, let +...+ be the signature of the Hermitian form 〈−,−〉 and take the sign + in (2.2.2). In this case, we
obtain the Fubini-Study metric on the complex projective space EV = PCV . The Fubini-Study metric is widely
used in the geometry of quantum information (the Bloch sphere corresponds to the case dimC V = 2).

Following this approach, it is possible to express many other important (pseudo-)Riemmannian concepts (say, curva-
ture tensor, metric connection, parallel transport) in a similar coordinate-free fashion [2]. Moreover, all the geometries
obtained in this way, including their natural generalization to grassmannians, are Einstein manifolds [3].

3 The physics of kinematic space

3.1 Tance and Lorentz factor
Let us first describe the Lorentz factor, the time dilation, and the length contraction at the level of the kinematic

space K introduced in Subsection 2.1.
Let ppp,qqq ∈ K be inertial reference frames, and let p be an event that happened at time t0 = |p|/c for ppp. Hence, p

happened at time t =
∣∣π′[qqq]p

∣∣/c for qqq and we obtain

t

t0
=

√√√√
〈
π′[qqq]p, π′[qqq]p

〉

〈p, p〉 =

√√√√
〈
〈p,q〉q
〈q,q〉 ,

〈p,q〉q
〈q,q〉

〉

〈p, p〉 =
√

ta(p, q) =: γppp,qqq,

where ta(ppp,qqq) is the tance defined in (2.1.5). Clearly, γppp,qqq is the usual Lorentz factor and t = γppp,qqqt0 is nothing but the
time dilation (see Proposition 3.1.3).

3.1.1. Remark. The usual formula for the Lorentz factor in terms of the relative scalar velocity between ppp,qqq ∈ K can be
obtained as follows. Take homogeneous coordinates [c, x1, . . . , xn] with

∑
x2i 6 c2 that identify the closed kinematic

space with a closed n-ball Bn of radius c centred at ppp = [c, 0, 0, . . . , 0]. Then, if qqq = [c, v1, . . . , vn], the relative scalar
velocity v between ppp and qqq is given by the Euclidean distance in Bn between the observers, that is, v =

√∑
v2i . Hence,

we have

γppp,qqq =
√

ta(p, q) =

√
c4

−c2(−c2 +∑ v2i )
=

1√
1− v2

c2

.
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In particular, in terms of the tance, the relative scalar velocity between ppp,qqq is given by

v = c

√
1− 1

ta(ppp,qqq)
. (3.1.2)

(For a coordinate-free form of this remark, see Subsection 3.2.)

3.1.3. Proposition (time dilation). Let ppp,qqq ∈ K be inertial observers and let w ∈Mn+1 \{0} be an event that happened
at time tppp 6= 0 for ppp and at time tqqq for qqq. Then

tqqq
tppp

=

√
ta(qqq,www)

ta(ppp,www)
.

(Note that the formula is also well-defined when w is lightlike because the term 〈w,w〉 cancels out.) In particular, when
www = ppp, we obtain tqqq = γqqq,ppptppp.

Proof. Follows directly from t2ppp =
〈
π′[p]w, π′[p]w

〉
= 〈p,w〉〈w,p〉

〈p,p〉 and t2qqq =
〈
π′[q]w, π′[q]w

〉
= 〈q,w〉〈w,q〉

〈q,q〉 .

Taking tppp
tqqq
,
tqqq
tppp

as projective coordinates, one can think of time dilation as a function Mn+1 \ {0} → P1
R; this allows to

accommodate the cases when the event w happens at time t = 0 for (exactly) one of the inertial reference frames.

3.1.4. Proposition (length contraction). Let ppp,qqq ∈ K be inertial observers and assume that ppp observes a rigid rod at
rest as having length `ppp. We represent the rod by a spacelike vector w ∈ p⊥ \ {0}. Then,

`qqq
`ppp

=

√
1 +

ta(qqq,www)

ta(ppp,qqq)
,

where `qqq stands for the length of the rod as measured by qqq. In particular, if p, q, w are coplanar (that is, the rod is in the
direction of the relative velocity between ppp and qqq), then `ppp = γppp,qqq`qqq .

Proof. We have `ppp = |w| and `qqq = |w′|, where w′ := w − 〈w,q〉〈p,q〉 p (note that w′ ∈ q⊥ and that w′ belongs to the straight
line through w parallel to Rp). Therefore,

`2qqq =

〈
w − 〈w, q〉〈p, q〉 p, w −

〈w, q〉
〈p, q〉 p

〉
= 〈w,w〉

(
1 +
〈w, q〉〈q, w〉〈p, p〉
〈p, q〉〈q, p〉〈w,w〉 ·

〈q, q〉
〈q, q〉

)
= `2ppp

(
1 +

ta(qqq,www)

ta(ppp,qqq)

)
.

When p, q, w are coplanar, the determinant det
[ 〈p,p〉 〈p,q〉 0
〈q,p〉 〈q,q〉 〈q,w〉
0 〈w,q〉 〈w,w〉

]
vanishes, that is, ta(w, q)+ta(p, q) = 1 which implies

the result.

Given ppp,qqq ∈ K, the geometric configuration corresponding to the coplanar case in the above proposition is unique.
Indeed, www must be the point orthogonal to ppp in the extended geodesic G oppp,qqqo (because w ∈ p⊥ and the coplanarity of
p, q, w means thatwww belongs to G oppp,qqqo). Similarly,www′ must be the point in G oppp,qqqo orthogonal to qqq. Moreover, it is curious
to note that the formula `ppp = γppp,qqq`qqq is actually a direct consequence of the geometric identity ta(ppp,qqq) = ta(www,www′) (whose
proof is a straightforward calculation). Indeed, we have

γ2ppp,qqq = ta(ppp,qqq) = ta(www,www′) =
〈w,w′〉〈w′, w〉
〈w,w〉〈w′, w′〉 =

〈w,w〉〈w,w〉
〈w,w〉〈w′, w′〉 =

|w|2
|w′|2 =

`2ppp
`2qqq

since w′ = w − 〈w,q〉〈p,q〉 p and w ∈ p⊥.

3.2 Rapidity, velocity, and parallel transport
Rapidity and rapidity addition. Given an inertial observer ppp ∈ K, we call the tangent space TpppK the space of

rapidities at ppp. A tangent vector w ∈ TpppK is the relative rapidity, as measured by ppp (or, simply, at ppp), between ppp and
the inertial observer qqq := expppp w, where exp stands for the Riemannian exponential map. Hence, the hyperbolic distance
between ppp,qqq is d(ppp,qqq) = |w|.

There is a natural way to sum rapidities at ppp ∈ K that takes into account the geometry of the kinematic space. After
introducing it, we will relate rapidity and velocity in order to show that the geometric sum of rapidities leads to the
relativistic velocities addition.
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3.2.1. Definition. Let ppp ∈ K be an inertial observer and let w1, w2 ∈ TpppK be rapidities. Take qqq := expppp w1, let
w′2 ∈ Tqqq K be the parallel transport of w2 along the geodesic segment joining ppp and qqq, and let rrr := expqqq w

′
2. We

define the sum of rapidities w1 ⊕ w2 ∈ TpppK as the unique rapidity w ∈ TpppK such that expppp w = rrr. Equivalently,
w1 ⊕ w2 := exp−1ppp rrr (see Figure 2).

Clearly, the above definition works in any Riemannian manifold with infinite injectivity radius and, in the particular
case of an Euclidean vector space, it coincides with the vector space sum. (In fact, Definition 3.2.1 can be seen as a
straightforward generalization of the vector sum in an Euclidean vector space.)

Scaled rapidity. While rapidities live in the tangent spaces to points in the kinematic space, scaled rapidities (a.k.a
hyperbolic velocities) appear naturally as tangent vectors to points in the scaled kinematic space Kc. In order to introduce
the scaled kinematic space we will use the following remark.

3.2.2. Remark. Once a representative p ∈ Mn+1 of ppp ∈ K is chosen, we identify TpppK with p⊥ via (2.1.2), that is,
via the map ϕ 7→ ϕ(p) ∈ p⊥, ϕ ∈ TpppK ' Lin(Rp, p⊥). (There is, however, a natural identification TpppK ' p⊥, see
Remark 3.2.3.)

Figure 2: Rapidity addition

The (open) scaled kinematic space is the manifold K endowed with a different Rie-
mannian metric as follows. Given ppp ∈ K, we take the future-directed representative
p ∈ Mn+1 such that 〈p, p〉 = −c2 and identify TpppK ' p⊥ as in Remark 3.2.2. Now,
we equip TpppK with the inner product in p⊥ (that is, the restriction of the symmetric
bilinear form in Mn+1 to p⊥). Provided with such Riemannian metric, the manifold K
is called the scaled kinematic space Kc. The scaled kinematic space Kc is a hyperbolic
space of constant curvature −1/c2 because it is isometric to the future sheet of the hy-
perboloid 〈x, x〉 = −c2 with the induced metric from Minkowski space. The concepts
of space of scaled rapidities, of relative scaled rapidity, and of sum of scaled rapidities
are analogous to their rapidity counterparts.

Let w ∈ TpppK be a relative rapidity at ppp which correponds to the relative scaled
rapidity wc ∈ TpppKc. It follows from (2.1.3) that |wc| = c|w|, where the left-hand side
(respectively, the right-hand side) norm is the one in TpppKc (respectively, in TpppK).

3.2.3. Remark. Let ppp ∈ K. There is a natural identification TpppK ' p⊥ ⊂ Mn+1

because, given ϕ ∈ TpppK = Lin(Rp, p⊥), there exists a unique future-oriented repre-
sentative p ∈ Mn+1 such that u := ϕ(p) ∈ p⊥ satisfies 〈u, u〉 = 〈ϕ,ϕ〉ppp. Clearly, 〈p, p〉 = −1. Analogously, there is a
natural identification TpppKc ' p⊥ ⊂Mn+1 and the corresponding representative of p in this case satisfies 〈p, p〉 = −c2.

Velocity. Velocity and (relative) rapidity are concepts of different natures because velocity is algebraic. Let us intro-
duce the space of velocities at a point ppp ∈ Kc and endow it with its natural geometric structure.

Given ppp,qqq ∈ Kc, we define the relative velocity between ppp,qqq at ppp as the simplest algebraic expression (in the sense
that it does not depend on the choice of representatives) for a tangent vector v ∈ TpppKc that is tangent to the geodesic
G oppp,qqqo at ppp:

3.2.4. Definition. Given ppp ∈ Kc, the relative velocity v ∈ TpppKc ' Lin(Rp, p⊥) between ppp and qqq ∈ Kc at ppp is defined as

the linear map v = 〈−, p〉π[ppp]q〈q, p〉 , where 〈−, p〉 stands for the linear functional x 7→ 〈x, p〉, x ∈Mn+1.

By [2, Lemma 5.2], the relative velocity between ppp and qqq at ppp is tangent to the geodesic Goppp,qqqo. So, the relative
(scaled) rapidity and the corresponding relative velocity between inertial observers ppp,qqq at ppp have the same direction.

3.2.5. Proposition. Under the identification TpppKc ' p⊥ in Remark 3.2.3, the above definition of relative velocity coin-
cides with the usual one.

Proof. Let ppp ∈ Kc and let qqq ∈ Kc. At the level of Minkowski space, the usual relative velocity between Rp,Rq as
measured by Rp has the norm given in equation (3.1.2) and the direction of the projection π[ppp]q ∈ p⊥ for a future-
oriented q. On the other hand, the tangent vector 〈−, p〉π[ppp]q〈q,p〉 corresponds, via the identication TpppKc ' p⊥, to −c2 π[ppp]q〈q,p〉 .
It remains to observe that 〈p, q〉 < 0 (since both are future-oriented) and that

〈
− c2 π[ppp]q〈q, p〉 ,−c

2 π[ppp]q

〈q, p〉

〉
= c2

(
1− 1

ta(ppp,qqq)

)
. �
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The symmetric bilinear form restricted to Rp + Rq, where ppp,qqq are as in the proof above, has signature −+. Hence,
the determinant of the Gram matrix

[
〈p,p〉 〈p,q〉
〈q,p〉 〈q,q〉

]
is negative which implies that ta(ppp,qqq) > 1. The norm of the velocity

in Definition 3.2.4 is therefore always less or equal than c. So, the relative velocities at ppp constitute the closed n-ball
Vppp ⊂ TpppKc of radius c centered at 0 ∈ TpppKc. Such closed ball is called the space of velocities Vp at ppp. (This definition
can be seen as a coordinate-free form of Remark 3.1.1.)

Hyperbolic structure on Vppp. Besides the inner product inherited from p⊥, the space of velocities Vppp has a natural
hyperbolic structure induced from Kc: we simply send a velocity v ∈ Vppp to the inertial observer qqq ∈ Kc such that the
relative velocity between ppp,qqq at ppp equals v and equip Vppp with the pullback metric. From the perspective of Minkowski
space (see Figure 3), this is nothing but (1) associating a vector v ∈ p⊥ satisfying 〈v, v〉 < c2 to the inertial observer
R(p + v), where p is the future-oriented representative of ppp with 〈p, p〉 = −c2, and (2) equipping p + Bn ' Vppp with
the hyperbolic metric that comes from the stereographic projection onto the hyperboloid 〈x, x〉 = −c2, where Bn ⊂ p⊥

stands for the open ball of radius c centred at the origin. Note that, while rapidity is intended to measure the distance
between inertial reference frames, the role of scaled rapidity is to measure the “distance between velocities” in a velocity
space Vppp.

Figure 3: Hyperbolic structure on Vppp (at the level of Minkowski space)

Relativistic velocity addition. The relative velocity v ∈ Vppp between ppp,qqq ∈ Kc at ppp and the corresponding relative
scaled rapidity wc ∈ TpppKc are related by

v = v(wc) = c
(
tanh

(
|wc|/c

)) wc
|wc|

(3.2.6)

because those tangent vectors have the same direction and

|v|2 = c2
(
1− 1

ta(ppp,qqq)

)
= c2

(
1− 1

cosh2
(
dc(ppp,qqq)/c

)
)

= c2 tanh2
dc(ppp,qqq)

c
= c2 tanh2

|wc|
c

by Remark 3.1.1, where dc(ppp,qqq) stands for the distance function in Kc. In particular, v = v(w) = c
(
tanh |w|

)
w
|w| , where

w ∈ TpppK stands for the rapidity between ppp,qqq at ppp.

3.2.7. Definition. Let v1, v2 ∈ Vppp be velocities and let w1, w2 ∈ TpppKc be the corresponding scaled rapidities. We define
v1 ⊕ v2 simply as the velocity that corresponds to w1 ⊕w2, that is, v1 ⊕ v2 := v(w1 ⊕w2). (One can also take rapidities
instead of scaled rapidities here.)

3.2.8. Proposition. The above definition of velocity addition coincides with the usual relativistic velocity addition.

Proof. Let ppp,qqq, rrr ∈ Kc be inertial observers, let v1 ∈ TpppKc be the relative velocity between ppp,qqq at ppp, and let v′2 ∈ Tqqq Kc
be the relative velocity between qqq, rrr at qqq. The parallel transport v2 ∈ TpppKc of v′2 along the geodesic segment joining qqq
and ppp can be interpreted as the relative velocity between qqq, rrr as measured by ppp. Indeed, let I be the hyperbolic isometry
that stabilizes Goppp,qqqo and satisfies I(qqq) = ppp. It is easy to see that I∗(w′c) = wc, where I∗ stands for the differential of
I and wc, w′c denote respectively the scaled rapidities corresponding to v2, v′2. By the naturality of the exponential map
(see [9, Proposition 5.20], for instance), expppp wc = expppp

(
I∗(w′c)

)
= I(expqqq(w

′
c)) = I(r). At the level of Minkowski

space, the boost Ĩ corresponding to I sends the pair of inertial observers Rq,Rr to Rp,RĨ(r) and the relative velocity
between the last two observers, as measured by Rp, is therefore exactly the relative velocity between the first two ones as
measured by Rp.
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“Parallelogram” law. Let us take a closer look at the geometry of the sum of velocities. Given velocities v1, v2 ∈ Vppp,
where ppp ∈ Kc, we can assume that Vppp is an open disk in the two-dimensional subspace of TpppKc generated by v1, v2. Now,
the sum v1 ⊕ v2 is obtained simply by applying to v2 the hyperbolic isometry I (in the sense of the hyperbolic structure
of Vppp) that sends the null vector 0 to v1 and stabilizes the geodesic G := G o0, v1o. Note that the sum of velocities
is noncommutative because, if we apply to v1 the hyperbolic isometry I ′ that sends 0 to v2 and stabilizes the geodesic
G o0, v2o then, in general, I(v2) 6= I ′(v1). In other words, at a first glance, it seems that there is no “parallelogram” law
for the relativistic addition of velocities. However, this is the case only if we require the parallelogram to be geodesic;
substituting one of the sides for a hypercycle, that is, for a curve that is equidistant from a geodesic, there is indeed
a “parallelogram law” where the “parallelogram” has vertices 0, v1, v1 ⊕ v2, v2 and the sides are the geodesic segment
joining 0, v1, the geodesic segment joining v1, v1⊕ v2, the segment of the hypercycle H of G joining v1⊕ v2, v2, and the
geodesic segment joining v2, 0. In other words, v1 ⊕ v2 is obtained by the geometric construction that follows. Draw: the
geodesic G joining 0, v1; the geodesic G′ joining 0, v2; the geodesic G′′ through v1 such that the oriented angle from G
to G′′ at v1 equals that from G to G′ at 0; the hypercycle H of G through v2. Then, v1 ⊕ v2 is given by the intersection
H ∩G′′.

3.2.9. Remark. This construction of the relativistic velocity addition can also be seen as a geometric realization of the
Möbius addition discussed by A. Ungar; this follows from the above considerations and from the fact that Poincaré’s
hyperbolic disk H1

C (see Example 2.2.3) is isometric toK when dimK = 2. More precisely, given ooo,ppp,qqq ∈ H1
C, we define

ppp ⊕ooo qqq := I(qqq), where I stands for the hyperbolic isometry that stabilizes the geodesic Goooo,pppo and satisfies I(ooo) = ppp.
This is a coordinate-free geometric form of the Möbius addition formula in [12, Section 3.4]: take the unitary disk D in C
centered at the origin (which plays the role of ooo) and define a⊕M b := (a+ b)/(1 + ab) for all a, b ∈ D.

Similarly, one can give a geometric description of the Möbius subtraction a	M b := a⊕M (−b) by defining −qqq :=
R(ooo)qqq and ppp	ooo qqq := R(mmm)qqq, where R(ooo) and R(mmm) stand respectively for the reflection in ooo and in the middle pointmmm of
the geodesic segment joining ooo and ppp. Indeed, the hyperbolic isometry I that stabilizes the geodesic Goooo,pppo and satisfies
I(ooo) = ppp can be written as I = R(mmm)R(ooo). Now, ppp⊕ooo (−qqq) = I(−qqq) = I

(
R(ooo)qqq

)
= R(mmm)R(ooo)R(ooo)qqq = R(mmm)qqq.

Another geometric way to look at the relativistic velocities addition is the following. In order to obtain v1 ⊕ v2, we
first project v2 orthogonally (in the hyperbolic sense) over the direction of v1 thus obtaining the horizontal component v
of v2. Now, if v and v1 have the same direction, we add v1 and v by simply taking the velocity v1⊕ v = v⊕ v1 ∈ Vppp that
lies in the geodesic G := Go0, v1o and satisfies dc(0, v1 ⊕ v) = dc(0, v1) + dc(0, v), where dc stands for the hyperbolic
distance in Vppp (the case when v and v1 have opposite directions is handled similarly). Finally, it remains to take the unique
velocity v1 ⊕ v2 ∈ Vppp that is on the same side of G as v2, whose orthogonal projection onto G is v1 ⊕ v, and whose
distance to G equals that of v2 (in other words, the vertical component of v1 ⊕ v2 is the same as that of v2).

Figure 4: “Parallelogram” law and component sum

3.3 Relativistic Doppler effect
The relativistic Doppler effect can also be seen in a geometric way.2 In this section, we can assume (without loss of

generality) that dimK = 2.
A metric circle C in K is the locus of inertial observers that see a given inertial observer qqq ∈ K (the center of the

circle) with a same given energy. Indeed, C = {ppp ∈ K | ta(ppp,qqq) = r}, r > 0, and the energy of qqq as measured by ppp is

2We thank J. A. Hoyos for suggesting that horocycles should be related to the relativistic Doppler effect.
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determined by γppp,qqq =
√

ta(ppp,qqq). In the limit where qqq goes to the absolute (and r is fixed) this metric circle turns into a
horocycle tangent to the absolute at a point fff ∈ ∂K and the energy being measured by the inertial observers corresponding
to points in this horocycle becomes that of the photon fff . In other words, the function that assigns to each inertial observer
in K the energy (or, equivalently, the frequency) that it measures for the photon fff is constant along horocycles (in fact,
horocycles will be the level curves of this function, see Corollary 3.3.3). Let us formalize this argument.

3.3.1. Lemma. Let fff ∈ ∂K and let rrr,rrr′ ∈ K be inertial observers in a same horocycle containing fff . Then, νrrr = νrrr′ ,
where νrrr, νrrr′ stand for the frequencies of fff as measured respectively by rrr,rrr′.

Proof. Let I : K → K be the parabolic isometry that fixes fff and maps rrr′ to rrr. It is well-known that the energy Errr of
the photon fff as measured by rrr is given by the magnitude of the projection of the (n+ 1)-momentum of the photon in the
direction of Rr divided by c. Similarly, one can express the energy Errr′ of the photon fff as measured by rrr′, which leads to

(
Errr′

Errr

)2

=

〈
π′[rrr′]f, π′[rrr′]f

〉
〈
π′[rrr]f, π′[rrr]f

〉 =
〈f, r′〉2〈r, r〉
〈f, r〉2〈r′, r′〉 =

〈
f, r′

〉2〈
Ĩ(r′), Ĩ(r′)

〉
〈
f, Ĩ(r′)

〉2〈r′, r′〉
=

〈
f, r′

〉2〈
Ĩ(r′), Ĩ(r′)

〉
〈
Ĩ(f), Ĩ(r′)

〉2〈r′, r′〉
= 1,

where Ĩ stands for the element in SO+(1, 2) corresponding to I; it satisfies Ĩ(f) = f because I is parabolic (see, for
instance, [7]).

Figure 5: Horocycles and the
relativistic Doppler effect

Now, consider the case of two inertial observers rrr,sss ∈ K which are respectively
considered as the receiver and the source of a photon fff ∈ ∂K such that rrr,sss,fff are in a
same geodesic G. Assume that the inertial observers are moving away from each other
(it is easy to see that, in order to reach the receiver, the photon that has to be sent by the
source is such that rrr is in the geodesic segment joining sss and fff ). Let νsss (respectively,
νrrr) be the frequency of fff as measured by sss (respectively, by rrr). Then (see, for example,
[11, Section 4.3])

νsss
νrrr

=

√
1 + v/c

1− v/c =

√
1 + (ew − e−w)/(ew + e−w)
1− (ew − e−w)/(ew + e−w)

= ew = ed(rrr,sss),

where v and w are respectively the scalar relative velocity and relative rapidity between
rrr and sss. When the inertial observers are moving towards each other (in this case, the
photon fff ′ to be sent corresponds to the other vertex of G) we have νsss/νrrr = e−d(rrr,sss).
We are now able to prove the following proposition (for the definition of Busemann
function see, for instance, [10, Section 1.2]).

3.3.2. Proposition (relativistic Doppler effect). Let ppp,qqq ∈ K be inertial observers and let fff ∈ ∂K be a photon. Let νppp
and νqqq be respectively the frequencies of fff as measured by ppp and qqq. We have

νppp
νqqq

= ebfff (ppp,qqq),

where bfff stands for the Busemann function determined by fff .

Proof. By Lemma 3.3.1, the ratio νppp/νqqq can be obtained in terms of the distance between the horocycles H,H ′ contain-
ing fff and passing respectively through ppp,qqq. Now the proof follows from the case of collinear ppp,qqq,fff which was already
considered above.

A direct consequence of Lemma 3.3.1 and Proposition 3.3.2 is the following Corollary.

3.3.3. Corollary. Let fff ∈ ∂K and let ppp,qqq ∈ K be inertial observers. Then νppp = νqqq if and only if ppp,qqq belong to a same
horocycle containing fff , where νppp, νqqq stand for the frequencies of fff as measured respectively by ppp,qqq.

3.4 Wigner rotation
Let ppp,qqq, rrr ∈ K be inertial observers. A well-known fact in special relativity is that the composition of boosts Rp →

Rq → Rr → Rp is a spatial rotation called the Wigner rotation. Let us give a coordinate-free proof of this phenomenon
at the level of the kinematic space K. In the next proposition we consider, without loss of generality, that dimK = 2 and
that the kinematic space is (arbitrarily) oriented.
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3.4.1. Proposition (Wigner Rotation). Let pppi ∈ K, i = 1, 2, 3, be inertial observers and let Gij := Gopppi, pppj o be the
geodesic connecting pppi and pppj . Let h1, h2, H : K → K stand for the hyperbolic isometries such that h1 stabilizes G12

and h1(ppp1) = ppp2; h2 stabilizes G23 and h2(ppp2) = ppp3; H stabilizes G13 and H(ppp1) = ppp3. Then h2h1 = eθH , where
eθ : K → K is the elliptic isometry that fixes ppp3 and whose angle of rotation θ ∈ [−π, π] is minus the oriented area of the
triangle with vertices (ppp1, ppp2, ppp3).

Proof. Let qqq1 ∈ G12 be the middle point of the geodesic segment joining ppp1, ppp2 and let qqq2 ∈ G23 the middle point of
the geodesic segment joining ppp2, ppp3. We have h1 = R2R1 where R1 stands for the reflection in the geodesic orthogonal
to G12 passing through qqq1 and R2, for the reflection in the geodesic orthogonal to G12 passing through ppp2. Similarly,
h2 = R4R3 where R3 denotes the reflection in the geodesic orthogonal to G23 passing through ppp2 and R4, the reflection
in the geodesic orthogonal to G23 passing through qqq2. Lastly, let R5 and R6 be the reflections in the geodesics orthogonal
to Goqqq1, qqq2o passing respectively through qqq2 and qqq1 and let h3 : K → K, h3 := R5R6, be a hyperbolic isometry that
stabilizes the geodesic Goqqq1, qqq2o.

Note that R1R6, R3R2, and R5R4 are elliptic isometries such that R1R6 = σ2σ1, R3R2 = σ3σ2, and R5R4 = σ1σ3,
where σ1, σ2, σ3 stand respectively for the reflections in the geodesics Goqqq1, qqq2o, Goqqq1, ppp2o, and Goppp2, qqq2o. Hence,

R5h2h1R6 = (R5R4)(R3R2)(R1R6) = (σ1σ3)(σ3σ2)(σ2σ1) = 1

which implies h2h1 = R5R6 = h3. Now, note that h3H−1(ppp3) = h3(ppp1) = h2
(
h1(ppp1)

)
= ppp3, and h3 is obviously not

the inverse of H , so h3H−1 has to be an elliptic isometry eθ fixing ppp3. In other words, h2h1 = eθH .

Figure 6: Proof of Proposition 3.4.1

The differential of a hyperbolic isometry, being applied to a vector tangent at a point of its stable geodesic, coincides
with the parallel transport along this geodesic. So, since h2h1H−1 = eθ, we conclude that θ is minus the oriented area of
the triangle (ppp1, ppp2, ppp3) (the minus sign comes from the fact that the sum of the internal angles of a geodesic triangle in K
is less than π or, equivalently, from the Gauss-Bonnet theorem).

3.4.2. Remark. Wigner rotation can also be seen as a measure of the non-commutativity of the rapidity addition (see
Definition 3.2.1) as follows. Let w1, w2 ∈ Tppp1K be rapidities at ppp1 ∈ K. Moreover, define ppp2 := expppp1w1, ppp3 :=
expppp1(w1 ⊕ w2), qqq2 := expppp1w2, and qqq3 := expppp1(w2 ⊕ w1). The triangles (ppp1, ppp2, ppp3) and (qqq1, qqq2, qqq3) are clearly
congruent and it is straightforward to see that the angle θ at ppp1 between the geodesic ray joining ppp1, ppp3 and the geodesic
ray joining ppp1, qqq3 is given by θ = π −∑i αi = Area(ppp1, ppp2, ppp3), where the αi’s stand for the internal angles of the
triangle (ppp1, ppp2, ppp3).

3.5 An invariant of three points and causality
Let us take a look at a relativistic interpretation of the algebraic invariant

η(ppp,qqq,uuu) :=
〈u, p〉〈p, q〉〈q, u〉
〈p, p〉〈q, q〉〈u, u〉 (3.5.1)

of two inertial observers ppp,qqq ∈ K and a point uuu ∈ G in de Sitter space.
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The invariant η(ppp,qqq,uuu) determines whether ppp and qqq agree or disagree on the order of occurrence of an event that
happened at time t = 0 and a space-like event u ∈ Mn+1. Indeed, the observers agree or disagree respectively when the
sign of

〈
π′[ppp]u, π′[qqq]u

〉

〈u, u〉 =

〈
〈u,p〉
〈p,p〉p,

〈u,q〉
〈q,q〉 q

〉

〈u, u〉 = η(ppp,qqq,uuu)

is negative or positive. At the level of the extended kinematic space, this can be translated as follows: the observers
agree/disagree exactly when ppp,qqq lie in the same/in distinct components of K \ G, where G is the geodesic with polar
point u (this can be inferred by looking at the relative position between Rp, Rq, and u⊥). A usual way of saying that there
will always exist observers that do not agree on the occurrence order of spacelike separated events is that causality is not
well defined for this kind of events.

3.6 Dynamics
At a first glance it may seem that, when passing from Minkowski space to kinematic space, one loses information,

obtaining a space that models well kinematic phenomena but is not suited to described dynamics. This subsection is
intended to illustrate that this is not the case.

Let ξ : I → Mn+1 be a smooth curve such that ξ(0) = 0,
〈
ξ̇(τ), ξ̇(τ)

〉
= −c2 (that is, ξ is parameterized by proper

time), and ξ̇(τ) is future-oriented for every τ ∈ I . It gives rise to the curve ζ(τ) = PRξ̇(τ) in the scaled kinematic space
Kc, where PRξ̇(τ) stands for the image of ξ̇(τ) under the canonical projection Mn+1 → PnR. Conversely, given a smooth
curve ζ : I → Kc, there exists a unique lift ζ0 : I → Mn+1 of ζ to Mn+1 such that

〈
ζ0(τ), ζ0(τ)

〉
= −c2 and ζ0(τ)

is future-oriented for every τ ∈ I . Now, there exists a unique smooth curve ξ : I → Mn+1 such that ξ(0) = 0 and
ξ̇(τ) = ζ0(τ) for every τ ∈ I .

Let us see that a tangent vector to the curve ζ is nothing but the (n+ 1)-acceleration of ξ in view of the identification
Tζ(τ)Kc ' ζ(τ)⊥ (see Remark 3.2.3). On one hand, as a linear map Tζ(τ)Kc = Lin

(
Rζ(τ), ζ(τ)⊥

)
,

ζ̇(τ) : ζ0(τ) 7→ π
[
ζ(τ)

]
ζ̇0(τ) = π

[
ζ(τ)

]
ξ̈(τ)

by [4, Lemma A.1]. On the other hand, π
[
ζ(τ)

]
ξ̈(τ) = ξ̈(τ) since

〈
ξ̇(τ), ξ̇(τ)

〉
is constant.

The curve ζ can be interpreted as the list of inertial frames occupied by the observer with worldline ξ (that is, ζ(τ)
is the inertial frame occupied at the instant τ ). Note that, if ζ is constant, ζ(τ) = ppp for every τ , then ξ is a straight line
in Mn+1 passing through the origin (the worldline Rp of an inertial observer, as expected); when ζ is a geodesic, ξ is a
hyperbola that represents a motion with constant (n+ 1)-acceleration (a.k.a. hyperbolic motion).

Finally, let A = A(ppp, τ), ppp ∈ K, τ ∈ R, be a smooth time-dependent vector field in K. Let ζ be the maximal integral
curve of A corresponding to the initial conditions ppp0 ∈ K and τ0 ∈ R, that is, ζ̇(τ) = A

(
ζ(τ), τ

)
and ζ(τ0) = ppp0 (such

an integral curve exists and is unique by [9, Theorem 9.48]). The ξ obtained from ζ as above is nothing but the dynamics
associated to the time-dependent force field F = mA, where m is the rest mass of an observer whose worldline is ξ.
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APPENDIX

A
HERMITIAN FORMS

A.1 Hermitian Forms

This section is intended to present the basic tools of Hermitian algebra, which are
necessary in Chapters 2 and 4. In what follows, K denotes the field of real numbers R or the field
of complex numbers C, and z is the complex conjugate of z ∈ C.

A.1.1. Definition. Let V be a vector space over K. A Hermitian form in V is a map ⟨−,−⟩ :
V ×V →K, (v,w) ↦→ ⟨v,w⟩, linear in the first entry and such that ⟨v,w⟩= ⟨w,v⟩ for all v,w ∈V .

In particular, if ⟨−,−⟩ is a Hermitian form, then

⟨u,v+w⟩= ⟨v+w,u⟩= ⟨v,u⟩+ ⟨w,u⟩= ⟨v,u⟩+ ⟨w,u⟩= ⟨u,v⟩+ ⟨u,w⟩

and

⟨v,kw⟩= ⟨kw,v⟩= k⟨w,v⟩= k · ⟨w,v⟩= k · ⟨v,w⟩

for all u,v,w ∈V and k ∈K. Clearly, when K= R, a Hermitian form is nothing but a symmetric
bilinear form. A K-vetor espace endowed with a Hermitian form is called a Hermitian space.

A.1.2. Definition. Let V be a Hermitian space and let W 6V be a linear subspace. We define

W⊥ :=
{

v ∈V |⟨v,W ⟩= 0
}
,

where ⟨v,W ⟩ denotes the set
{
⟨v,w⟩ | w ∈V

}
⊂K. In this way, the kernel of the form is nothing

but V⊥. When V⊥ = 0, we say that V is nondegenerate. Let U,W 6V be linear subspaces of V .
We define the orthogonal of W relatively to U as W⊥U :=W⊥∩U .

A.1.3. Definition. A basis β = (b1,b2, ...,bn) for a Hermitian space is orthonormal if ⟨bi,bi⟩ ∈
{−1,0,1} for all i and if ⟨bi,b j⟩= 0 for all i, j, i ̸= j. Let β−,β0, e β+ be the number of vectors
in the basis β such that ⟨bi,bi⟩ is, respectively, −1,0,1. The triple (β−,β0,β+) is called the
signature of the basis.
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A.1.4. Definition. Let (v1,v2, ...,vk) be a k-tuple of vectors in a Hermitian space V . The Gram

matrix of this k-tuple is defined as G := [gi j], where gi j := ⟨vi,v j⟩.

It is immediate from the properties of the Hermitian form that the Gram matrix satisfies G* = G,
where G* is the transpose conjugate matrix of G, i.e., G is Hermitian. Thus, the Gram matrix of
an orthonormal basis is diagonal with entries −1, 0 and 1.

A.1.5. Lemma. Let β = (b1,b2, ...,bn) be an orthonormal basis in a Hermitian space V . Then
β0 = dimV⊥.

Proof. It is sufficient to show that β
′
:=
{

b j ∈ β | ⟨b j,b j⟩= 0
}

is a basis of V⊥. Let v ∈V⊥. We
write v=∑

n
i=1 αibi, αi ∈K, 16 i6 n. If ⟨b j,b j⟩ ≠ 0, then α j = 0 because 0= ⟨v,b j⟩=α j⟨b j,b j⟩.

�

The main result in Hermitian algebra, known as Sylvester’s Law of Inertia, states that
the signature is an intrinsic quantity of the Hermitian space. In other words, the signature of any
orthonormal basis in a Hermitian space is always the same (and, besides that, every Hermitian
space admits an orthonormal basis). This way, we can refer to the signature of a Hermitian space
without mentioning any particular orthonormal basis.

A.1.6. Theorem (Sylvester’s Law of Inertia). The signature doesn’t depend on the choice of
orthonormal basis.

Proof. Let β = (b1, . . . ,bn) and β ′ = (b′1, . . . ,b
′
n) be orthonormal basis of signatures (β−,β0,β+)

and (β ′
−,β

′
0,β

′
+), respectively. By Lemma A.1.5 we know that β0 = β ′

0 = dimV⊥ and, therefore,
it doesn’t depend on the choice of basis. Taking V/V⊥ in place of V , we can assume that V is a
nondegenerate Hermitian space (it is easy to see that V =V⊥⊕V/V⊥).

Now, we proceed by induction on dimV . If β− = 0, we have ⟨v,v⟩> 0 for all v ∈V and,
hence, β ′

− = 0. Similarly, β+ = 0 implies β ′
+ = 0. In this way, we can assume ⟨bn,bn⟩= 1 and

⟨b′n,b′n⟩=−1. We define

W :=Kbn +Kb′n, U := (Kbn)
⊥, U ′ := (Kb′n)

⊥.

Note that U =Kb1+Kb2+ ...+Kbn−1 and U ′ =Kb′1+Kb′2+ ...+Kb′n−1. Thus, the signatures
of the basis indicated in U and U ′ are respectively (β−,0,β+−1) and (β ′

−−1,0,β ′
+). Moreover,

a direct calculation shows that W is nondegenerate and, therefore, W⊥ is also nondegenerate.

By the relation (W1 +W2)
⊥ =W⊥

1 ∩W⊥
2 , which holds for any subspaces W1 and W2 of a

Hermitian space, we have W⊥ =U ∩U ′. Since U ∩U ′ is nondegenerate, we have the following
orthogonal decompositions:

U = (U ∩U ′)⊕ (U ∩U ′)⊥U

U ′ = (U ∩U ′)⊕ (U ∩U ′)⊥U ′
.

Let α , γ and γ ′ be orthonormal basis respectively in U ∩U ′, (U ∩U ′)⊥U , and (U ∩U ′)⊥U ′
. So,

we have that α ∪ γ and α ∪ γ ′ are orthonormal basis in U and U ′ respectively. And since, by the
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induction hypothesis, the signature in U and U ′ doesn’t depend on the basis, we can write the
following relations:

(β−,0,β+−1) =
(
(α ∪ γ)−,(α ∪ γ)0,(α ∪ γ)+

)
= (α−,0,α+)+(γ−,γ0,γ+)

(β ′
−−1,0,β ′

+) =
(
(α ∪ γ

′)−,(α ∪ γ
′)0,(α ∪ γ

′)+
)
= (α−,0,α+)+(γ ′−,γ

′
0,γ

′
+).

Now, it remains to prove that (U ∩U ′)⊥U = (Kbn)
⊥W and that (U ∩U ′)⊥U ′

= (Kb′n)
⊥W , because

this implies that (γ−,γ0,γ+) = (1,0,0) and that (γ ′−,γ
′
0,γ

′
+) = (0,0,1).

Being W and V nondegenerate, we have

(U ∩U ′)⊥U = (U ∩U ′)⊥∩U =W⊥⊥∩U =W ∩ (Kbn)
⊥ = (Kbn)

⊥W .

Similarly, (U ∩U ′)⊥U ′
= (Kb′n)

⊥W . �

Finally, it remains to solve the following problem: if we have a (reasonably) arbitrary
basis in V , how can we measure, using this basis, the signature of V without having to explicitly
finding an orthonormal basis? The answer of that question is Sylvester’s criterion.

A.1.7. Theorem (Sylvester’s Criterion). Let V be a nondegenerate Hermitian space, let γ =

(b1, ...,bn) be a basis in V , and let G be the Gram matrix of γ . We will assume that, for all k,
the submatrix1 Gk of G has non vanishing determinant. Then the signature of V is given by
(n−,0,n+), where n− and n+ are respectively the amount of negative and positive numbers in
the sequence

detG1,
detG2

detG1
,

detG3

detG2
, . . . ,

detGn

detGn−1
.

The proof of the Sylvester’s criterion consists of observing that, by applying to the basis
γ an orthonormalization process similar to Gram Schmidt’s, the signs of the determinants detGk

don’t change; clearly, when we arrive at an orthonormal basis (with diagonal Gram matrix), the
criterion measures the signature correctly.

1 the submatrix Gk is the k× k-matrix formed by the first k rows and by the first k columns of G.





73

APPENDIX

B
A PROOF OF REMARK 4.3.2.9

Here we present a proof, using the tools shown in Chapter 2, of the fact that Möbius
addition satisfies the same geometric construction as the relativistic addition of velocities, and to
do so, we begin by the following lemma.

B.1. Lemma. Let a,b ∈ D∩R. Möbius addition ⊕ : D×D→ D satisfies the rule:

d(a⊕b,0) = d(a,0)+d(b,0)

where d : D×D→ R is the hyperbolic distance in Poincaré’s disk model.

Proof. The value of d(a⊕b,0) in Poincaré’s disk model is given by:

d(a⊕b,0) = ln
1+ a+b

1+ab

1− a+b
1+ab

= ln
1+a
1−a

+ ln
1+b
1−b

= d(a,0)+d(b,0)

where ln is the natural logarithm. �

B.2. Theorem (Geometric Construction of Möbius Addition). Let a,b ∈ H1
C, where H1

C is
the disk D provided with Poincaré’s model hyperbolic distance d (see Chapter 2, Subsection 2.7).
Let G be the geodesic passing through a and the origin O. Let bG be the hyperbolic projection of
b in the geodesic G (i.e, the intersection between G and the geodesic orthogonal to G passing
through b). Now take H to be the hypercycle of G passing through b, and G′ to be the geodesic
orthogonal to G and passing trough a⊕bG. Then {a⊕b}= G′∩H.

Proof. Let v1 = (1,−1) and v2 = (1,1) be the vertices of the geodesic G (in homogeneous
coordinates in H1

C). It suffices to show that a⊕b = Ib, where I is the hyperbolic isometry that
stabilizes G and sends O to a (indeed, by Lemma B.1, IbG = a⊕bG). Let a = (1,r). In the basis
v1,v2 we take the representatives a =

√
1−r
1+r v1 +

√
1+r
1−r v2 and O = v1 + v2. It is now easy to see

that, in the basis v1,v2,

I =



√

1−r
1+r 0

0
√

1+r
1−r


 .
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We have b = zv1 +
1
z v2 ≃

(
1, 1−z2

1+z2

)
for some z ∈ C. So, on one hand,

a⊕b =

(
1,

r+ 1−z2

1+z2

1+ r · 1−z2

1+z2

)
=

(
1,

r(1+ z2)+1− z2

1+ z2 + r(1− z2)

)
.

On the other hand,

Ib = z

√
1− r
1+ r

v1 +
1
z

√
1+ r
1− r

v2 ≃
(

1,
1− z2

(
1−r
1+r

)

1+ z2
(

1−r
1+r

)
)

=

=

(
1,

1+ r− z2(1− r)
1+ r+ z2(1− r)

)
=

(
1,

r(1+ z2)+1− z2

1+ z2 + r(1− z2)

)

which completes the proof. �
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