• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2007.tde-29042007-141846
Documento
Autor
Nombre completo
Marcio Colombo Fenille
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2007
Director
Tribunal
Manzoli Neto, Oziride (Presidente)
Lucas, Laercio Aparecido
Mattos, Denise de
Título en portugués
Mergulho de produtos de esferas e suas somas conexas em codimensão 1
Palabras clave en portugués
Codimensão um
Mergulho de variedades
Produto de esferas
Pseudo-isotopia
Soma conexa.
Resumen en portugués
Estudamos inicialmente resultados de classificação de difeomorfismos de produtos de esferas de mesma dimensão. Tratado isto, estudamos os mergulhos suaves de produtos de três esferas, sendo a primeira de dimensão um e as demais de dimensão maior ou igual a um, com a dimensão da última maior ou igual a da segunda, em uma esfera em codimensão um, e buscamos a total caracterização do fecho das duas componentes conexas do complementar de tais mergulhos. Tratamos com enfoque especial os mergulhos do produto de três esferas de dimensão um na esfera de dimensão quatro, e, finalmente, estudamos problemas de classificação de mergulhos PL localmente não-enodados de somas conexas de toros em codimensão um.
Título en inglés
Embeddings of cartesian products of spheres and its connected sums in codimension 1
Palabras clave en inglés
Codimension one
Connected sums.
Embedding of manifolds
Product of spheres
Pseudo-isotopy
Resumen en inglés
We study initially results of classification of difeomorfisms of Cartesian products of spheres of same dimension. Treated this, we study the smooth embeddings of cartesian products of three spheres, being the first one of dimension one and excessively of bigger or equal dimension to one, with the dimension of the last equal greater or of second, in a sphere in codimension one, and search the total characterization of the latch of the two connected components of complementing of such embeddings. We deal with special approach the embeddings of the product to three spheres to dimension one in the sphere dimension four, and, finally, we study problems of classification of PL locally unknotted embeddings of connected sums of torus on codimension one.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fenille.pdf (849.71 Kbytes)
Fecha de Publicación
2007-05-08
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.